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[1] We propose a new probabilistic scheme for the auto-
matic recognition of underwater acoustic signals generated
by teleseismic P‐waves recorded by hydrophones in the
ocean. The recognition of a given signal is based on the rel-
ative distribution of its power among different frequency
bands. The signal’s power distribution is compared with a
statistical model developed by analyzing relative power dis-
tributions of many signals of the same origin and a numer-
ical criterion is calculated, which can serve as a measure of
the probability for the signal to belong to the statistical
model. Our recognition scheme was applied to 6‐month‐long
continuous records of seven ocean bottom hydrophones
(OBH) deployed in the Ligurian Sea. A maximum of 94%
of all detectable teleseismic P‐waves recorded during the
deployment of the OBHs were recognized correctly with no
false recognitions. The proposed recognition method will
be implemented in autonomous underwater robots dedicated
to detect and transmit acoustic signals generated by teleseismic
P‐waves. Citation: Sukhovich, A., J.‐O. Irisson, F. J. Simons,
A. Ogé, Y. Hello, A. Deschamps, and G. Nolet (2011), Automatic
discrimination of underwater acoustic signals generated by teleseis-
mic P‐waves: A probabilistic approach, Geophys. Res. Lett., 38,
L18605, doi:10.1029/2011GL048474.

1. Introduction

[2] Currently, there is a lack of seismic data collected over
oceanic regions. The scarcity of seismic records from the
oceans hampers the progress of global seismic tomography,
especially when one attempts imaging of the southern
hemisphere, which contains most of the known hot spots. The
present approach to seismic data collection in the oceans
includes the use of ocean bottom seismometers [Webb, 1998;
Stephen et al., 2003] and moored hydrophones [Fox et al.,
2001; Dziak et al., 2004]. However, high installation and
data recovery costs render these instruments too expensive
to allow for a coverage that is sufficiently dense for the pur-
poses of global seismic tomography. Teleseismic P‐waves
arriving at the ocean bottom are refracted into the water
column and generate acoustic signals, which are of particular

interest as their arrival times can be used in seismic tomog-
raphy. Simons et al. [2009] have proposed to use autono-
mous freely‐drifting underwater robots (called MERMAID,
short for Mobile Earthquake Recording in Marine Areas
by Independent Divers) equipped with hydrophones. By
changing its buoyancy, the robot is able to dive to and remain
at a certain depth. While at depth, the robot continuously
monitors the pressure variation by calculating the ratio of
short‐term to long‐term moving averages (STA/LTA algo-
rithm) [Allen, 1978]. We wish that, once a strong teleseismic
P‐wave is detected, the robot immediately begins an ascent
to establish satellite connection for the transmission of the
recorded waveform. However, in oceanic domains there are
many detectable acoustic signals generated by sources other
than teleseismic earthquakes (e.g. ships, air gun campaigns,
T‐waves, marine animals). As each diving/re‐surfacing cycle
depletes the MERMAID’s battery, it is of utmost importance
to ensure that the robot surfaces only in case of a strong
teleseismic P‐wave detection. In this paper, we report on the
development of a new probabilistic scheme that allows
the automatic discrimination of teleseismic P‐waves while
missing very few of them and at the same time maintaining
the probability of false recognitions at a minimum.

2. Method

[3] Our method begins with the analysis of a detected
signal to obtain the distribution of its power among different
frequency bands. This distribution is then compared to a
statistical model for signals of a given type to calculate a
numerical criterion, which can be regarded as a probability
for the signal to be of this type. Based on the value of the
criterion, the decision is taken on whether the MERMAID
will or will not ascend.
[4] To obtain information on how the power of the signal

is split among frequency bands, we use the discrete wavelet
transform (DWT). Wavelet analysis has several advantages
over conventional Fourier transforming of overlapping time
windows. Just as the spectrogram, wavelet analysis provides
information on both time behavior and frequency content of
a signal. However, the DWT is non‐redundant; it generates
exactly as many wavelet coefficients as there are samples in
the signal and thus requires fewer calculations. At the same
time, simple and easy‐to‐program algorithms exist for cal-
culating the DWT. In particular, we are using the “lifting”
algorithm [Sweldens, 1996]. By removing small‐magnitude,
statistically unimportant wavelet coefficients, it is also pos-
sible to compress the signal and thus significantly reduce
the amount of the data transmitted via satellite, as shown in
the analysis by Simons et al. [2009]. Finally, the DWT can
be performed in integer arithmetic with little or no loss of

1Géoazur, Villefranche‐sur‐Mer, France.
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accuracy, which helps to reduce the power consumption
by the central processing unit. To improve accuracy of the
integer DWT, we have modified the normalization part of
the lifting algorithm, which originally involved division and
multiplication by an irrational number. The details can be
found in the auxiliary material.1

[5] In the wavelet transform analysis, the notion of fre-
quency is replaced by the notion of a “scale”. In a sense, the
wavelet transformation is analogous to a filter‐bank analy-
sis, with overlapping filters covering different frequency
bands [Jensen and la Cour‐Harbo, 2001]. During wavelet
transformation, every iteration produces a set of wavelet
coefficients for each scale, which in its turn corresponds to a
particular frequency band. As a rule of thumb, each subse-
quent scale has a passband centered around a frequency that
is half of the center frequency of the previous scale. There
exist many wavelet bases, amongwhich the most suitable one
can be chosen for the problem at hand. We use a biorthogonal
wavelet basis with two and four vanishing moments for the
primal and dual wavelets respectively, which is commonly
abbreviated as CDF(2,4) [Cohen et al., 1992]. As McGuire
et al. [2008] found, this wavelet construction provides a
very good compromise between computational effort and
the filtering performance of the wavelets.
[6] The result of the wavelet analysis is most conveniently

visualized by means of a scalogram, which presents the
absolute values of the wavelet coefficients in the time‐scale
plane. The scalograms of representative signals of four
different types analyzed in this paper are shown in Figure 1.
We estimate the power of the detected signal at any scale by
calculating the average of absolute values of its wavelet
coefficients:

sk ¼ 1

Nk

XNk

i¼1

wk
i

�� ��; ð1Þ

where wi
k is a wavelet coefficient, Nk is the number of the

wavelet coefficients and indices i and k number time and
scale, respectively. Strictly speaking, the estimate of the
signal power should be done by calculating the average of
the squares of wavelet coefficients; however, our definition
is better suited for the calculations when the minimization of
energy consumption is required. Equation (1) is evaluated for

wavelet coefficients within a time window, whose limits are
defined by the instances at which the STA/LTA ratio rises
over 2 (trigger threshold) and then drops below 1 (de‐trigger
threshold). Note that after a trigger occurs, the LTA is still
updated and thus affected by the triggering signal. By
applying equation (1) to each scale, we obtain a set of scale
averages sk. To find the relative power distribution among the
scales, the scale averages are normalized by their L1 norm:

~sk ¼ sk
L1

; where L1 ¼
XK
k¼1

sk : ð2Þ

[7] In our case the number of scales K equals 6. We
subsequently divide each element ~sk by the corresponding
element ~nk of the similar scale average calculated for the
ambient noise record preceding the time of the STA/LTA
trigger:

Sk ¼ ~sk
~nk

: ð3Þ

[8] To better estimate the values of ~nk, the scale averages
are calculated for several overlapping noise records (512‐
samples‐long taken with 10% overlap) and averaged to give
a single element ~nk used in equation (3). This second nor-
malization by ambient noise means that a pure noise record
with no signal should give elements Sk with values close to 1
for all scales. For brevity, in the rest of the paper we will
refer to the normalized scale averages Sk as simply “scale
averages”, while the term “normalized” should be implied.
[9] In order to derive statistical properties of signals of a

certain origin, the scale averages Sk are calculated for as
many pre‐identified signals as possible and their distribu-
tions are obtained for each scale. We call this set of dis-
tributions the “statistical model” for the signals of this type
(Figure 2). The recognition is performed by comparing the
values of scale averages Sk

0 calculated for a detected signal
with the statistical model for the signals generated by tele-
seismic P‐waves. For each scale k, we compute the pro-
portion pk of the model scale averages Sk more extreme than
Sk
0 (i.e. Sk > Sk

0 when Sk
0 lies to the right of the median and

Sk < Sk
0 when Sk

0 lies to the left of the median); in other
words, we estimate the area of the tail of the distribution
beyond Sk

0. This is similar to quantifying the probability of
committing an error known in statistics as a Type I error,
which here means rejecting the signal as not belonging to

Figure 1. Representative acoustic signals generated by (a) an air gun, (b) a passing ship, (c) a teleseismic P‐wave and (d) a
T‐wave with their scalograms. Each pixel in a scalogram represents the absolute value of a wavelet coefficient (arbitrary
scale). The sampling rate of the signals is 40 Hz. The effective frequency range is thus between 0 and 20 Hz. The first scale
of the DWT corresponds approximately to a passband covering the upper half of the original frequency range, 10–20 Hz;
the second scale corresponds to 5–10 Hz, and so on. Note that most of the power of the teleseismic P‐wave signal is at
scales 5 and 6, which jointly cover the low frequency range between approximately 0.30 and 1.25 Hz, as expected.

1Auxiliary materials are available in the HTML. doi:10.1029/
2011GL048474.
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the category of interest while it does. When Sk
0 is close to the

median of the distribution, the probability of committing the
Type I error is high since many Sk values are more extreme
than Sk

0 and thus the computed proportion is high. We take
the high probability of the Type I error as an indication
that the detected signal is likely to be of the same origin
as that of the signals used to create the statistical model.
Conversely, when Sk

0 is located near one of the tails of the
distribution, the probability of wrongly rejecting the signal
is low. This serves as an indication that the signal is likely to
be of a different origin.
[10] To combine the information from the various scales,

multiplying the proportions would compute the probability
to obtain a signal more extreme at all scales, which is too
restrictive. Instead, we have found it to be much more
effective to calculate a weighted average of pk to obtain a
single criterion C, ranging between 0 and 1 and quantifying
the overall agreement between the detected signal and the
statistical model:

C ¼
X
k

pkDk

,X
k

Dk ; ð4Þ

where weights Dk are quantified by the Kolmogorov‐
Smirnov statistic [Press et al., 1992]; more details on their
calculation are given in the auxiliary material. When C is
higher than a given threshold, we accept the signal as being
a P‐wave.
[11] The complement to the Type I error is the Type II

error, i.e. the error of accepting the detected signal as
belonging to the model while it does not. This error would
cause the MERMAID to surface and transmit a signal
generated by a source other than a teleseismic P‐wave. We
refer to such recognition as a “false positive”. Minimizing or
eliminating false positives is critically important for reduc-

ing the power consumption and thus for the overall success
of the MERMAID’s mission. We discuss our approach to
ensure the absence of Type II errors after the presentation of
our data analysis.

3. Data

[12] To determine the optimum threshold for C and to test
the method, we have used continuous records of seven High
Tech HTI‐01‐PCA hydrophones deployed at the bottom of
the Ligurian Sea during the Grosmarin experiment, which
was conducted between the end of April and the beginning
of October 2008 [Dessa et al., 2011]. The hydrophones were
installed at distances ranging between 18 and 52 km from
the coast and at depths ranging between 1300 and 2400 m
within a square area of approximately 37.5 km × 50 km near
(8.00E, 43.5N). The sampling rate was 100 Hz.
[13] To keep our analysis as close as possible to an actual

mission of the MERMAID, the Grosmarin data were down-
sampled to 40 Hz after low‐pass filtering with a numerical
filter whose transfer function closely approximated the ana-
logue 10 Hz low‐pass filter installed on the MERMAID.
Because of this low‐pass filter, we did not consider the first
scale of the wavelet transforms.
[14] The Grosmarin data set was very useful for the devel-

opment of the method since it contains a large variety of
noise signals detectable by the STA/LTA algorithm. First,
cruise ships and ferries passed several times a day over the
area of instruments’ deployment. Also, the installation of the
OBHs was followed by a continuous 3‐day‐long campaign
of seismic shots using Bolt air guns which generated a large
number of acoustic signals arriving at hydrophones from
many angles and distances.

4. Results

[15] During the Grosmarin experiment, a total of 131
acoustic signals unambiguously generated by teleseismic
P‐waves were recorded and then used to produce a statistical
model for teleseismic P‐waves. These signals were identified
by predicting the arrival times of the P‐waves for known
earthquakes. In addition, we have also created statistical
models for three other types of signals which are most likely
to be encountered by the MERMAID during an actual long‐
time mission: signals produced by air guns, passing ships and
T‐waves. The ship and T‐wave signals were identified by
eye. As explained in section 2, the scale averages for each
signal were normalized by the scale averages of the pre-
ceding noise record. Therefore, the statistical model for the
ambient noise was created as a reference model allowing
us to validate the normalization by the ambient noise. This
model was obtained by randomly choosing a large number of
ambient noise record pairs (512‐samples‐long) from the full
Grosmarin database and calculating normalized scale averages
for each pair. All statistical models are shown in Figure 2.
[16] The statistical model describes how on average the

power of the signals of a given origin is split among different
scales (or equivalently, frequency bands). From Figure 2 it is
already clear by eye that the power of the two types of
geophysical interest (P‐ and T‐waves) is distributed signif-
icantly differently from each other and from signals of other
origins. The fact that ship signals are statistically close to the
ambient noise may indicate a relatively high contribution of

Figure 2. Description of the statistical models (top) for the
ambient noise and (bottom) for the four types of signals
recorded during the Grosmarin experiment. For each distri-
bution of scale averages, the center point denotes the
median, the box is delimited by the 25% and 75% quantiles
and the vertical line ranges from the 5% to the 95% quan-
tiles. The lines joining the medians of the distributions serve
only as a guide for the eye.
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ships to the ambient noise. The inspection of the statistical
model for teleseismic P‐waves shows that most of the power
is concentrated in scales 5 and 6, as expected for teleseismic
events of large magnitude [Aki, 1967]. Also, all median
values of the ambient noise model are very close to unity,
as expected.
[17] After the recognition criterion C for a given signal

is obtained, we must decide which numerical value should
be taken as an indicator of a teleseismic P‐wave detec-
tion with high probability. To this end, we simulated the
MERMAID’s mission by running the STA/LTA algorithm
on the full Grosmarin database and calculated C for each
detected signal using the P‐wave statistical model. In addi-
tion to C, we calculated signal‐to‐noise ratio (SNR) values
defined as:

SNR ¼
XK
k¼2

sk

,XK
k¼2

nk ; ð5Þ

where sk and nk are given by equation (1). A total of 176
signals were detected by the STA/LTA algorithm. Figure 3
shows the detected signals according to their C and SNR
values. It is evident that most of the signals of non‐P‐wave
origin (lower panel of Figure 3) with high value of C have
low values of SNR. At the same time, the non‐P‐wave
signals with high SNR have very low values of C. Therefore,
by choosing thresholds for both C and SNR, we can elimi-
nate false positive recognitions. With thresholds C0 = 0.15
and SNR0 = 2.25, 94% (61 out of 65) of detected P‐wave
signals are recognized correctly with no false positives.
Even with more conservative thresholds C0 = 0.2 and
SNR0 = 3.1, which would further limit the possibility of
false positive recognitions, the recognition rate of P‐wave
signals was still 69%. Although there is no guarantee that
false positives will be completely eliminated in a future
independent data set, the choice of C0 and SNR0 is obvi-

ously a good one. In MERMAID deployments we plan to
use the most conservative thresholds to decide if the robot
should surface immediately upon a teleseismic P‐wave
detection, while using C to rank less certain detections by
their priority in a (finite) buffer for transmission at the next
surfacing. The exact values of the thresholds are yet to be
determined; in fact, we are still in the process of collecting
noise data before committing ourselves to a fixed strategy.
The lateral drift during an ascent of about 2.5 hours
depends on the local oceanic currents and is at most a few
hundred meters so that the GPS location upon surfacing
should be accurate enough for seismic tomography. The
geolocation of the stored events will require interpolation
[e.g., Taillandier et al., 2006]. To keep interpolation errors
acceptable, the robot will surface at least every 10–15 days,
depending on location.
[18] All detected signals with high SNR (>5) but not

originating from teleseismic P‐waves (Figure 3, bottom),
are ruled out even with a very moderate threshold C0 = 0.1.
We found that most of these strong signals were T‐waves.
The T‐waves are expected to be frequently detected by the
MERMAIDs whose programmed parking depth (around
1500 m) at low‐ and mid‐latitudes will be within the depth
range of the axis of the Sound Fixing And Ranging channel,
where T‐waves propagate over long distances with very
little attenuation [Dziak et al., 2004]. Since T‐waves are
unsuitable for seismic tomography, it is very important that
our method is able to eliminate them with high efficiency.
[19] As a final test, we have applied the recognition

method to an independent data set obtained with the same
instrument as in the Grosmarin experiment, but deployed
near the coast of Haiti (72.97W, 18.62N) at the depth of
1508 m during a 4‐month‐long period after the devastating
earthquake in January 2010. By using the statistical model
for P‐waves obtained from the Grosmarin data and the
thresholds C0 = 0.15 and SNR0 = 2.25 we recognized 75%
(21 out of 28) of teleseismic P‐wave signals with only two
false positives. One of these false positives was produced by
a high‐amplitude spike signal due to electronic noise. The
other much weaker signal, although closely resembling a
P‐wave, was tentatively classified as a false positive since
we were not able to identify its source earthquake. The
application of more conservative thresholds C0 = 0.2 and
SNR0 = 3.1 resulted in 46% of correct recognitions while
ruling out the tentative false positive.
[20] The statistical models presented in this paper were

developed from the data recorded by instruments used
during the Grosmarin experiment. One would expect that
the normalization by a preceding ambient noise record will
render the method insensitive to instrument response. How-
ever, a wavelet decomposition is not equivalent to a Fourier
transform, and one can show that the instrument response
does not divide out perfectly during the normalization. In
addition, care should be taken not to include scales that are
mostly outside the passband of the instrument. Finally, the
noise characteristics may be different depending on geo-
graphical location. We therefore recommend not to blindly
adopt the criteria developed in this paper (although they may
provide a good starting point in most cases), but to perform
an analysis separately for each pool of equivalent instru-
ments and for each geographical location, if possible.
[21] It seems worthwhile comparing our recognition

scheme with other existing methods applicable to an auto-

Figure 3. Positions of the signals, recorded during the
Grosmarin experiment, in (C, SNR) space. Note that the
SNR scale is not linear to better spread the points. Top panel
shows teleseismic P‐wave signals while the bottom panel
shows all other signals. The figures allow visualization of
the choice of thresholds for C and SNR in order to simulta-
neously maximize the number of correct recognitions and to
minimize (or eliminate completely) the number of false
positives. The shaded region on top and bottom figures is
defined by the values of C0 = 0.15 and SNR0 = 2.25.
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matic recognition of teleseismic events. Similar to our
method, all of them analyze both time and frequency prop-
erties of seismograms. Evans and Allen [1983] use two
STA/LTA ratios calculated simultaneously for high‐passed
and low‐passed versions of a seismogram, and call an event
detected when triggering for the low‐passed version but not
for the high‐passed one. Goforth and Herrin [1981] com-
pute coefficients of the Walsh transform (which in a broad
sense is analogous to Fourier transform) of overlapping time
windows. The distribution of the absolute values of the
coefficients corresponding to the frequency band of interest
is obtained and detection is declared when the similar sum
for subsequent time windows falls out of a pre‐set confidence
interval. Gledhill [1985] uses the Discrete Fourier Trans-
form on a 10‐s‐long time window to estimate spectral power
within five equal frequency bands and compares band levels
with average band levels obtained from similar analysis on
preceding 512 time windows. The above methods are sim-
ilar in that they all use negative decision logic, i.e. the
detection is declared based on the detected deviations from
the ambient noise. Our approach is different as we test for
positive correlation between a signal and a given statistical
model. In this sense, our method is similar to the one by
Joswig [1990], whose recognition algorithm tests the degree
of correlation between a continuously updated pattern of a
seismogram and patterns corresponding to the signals of
known origins. However, his patterns (two‐dimensional
gray scale pictures) are calculated from scaled spectrograms
whose calculation involves significantly larger amount of
computations as compared to the DWT [Simons et al., 2009].
Our method thus seems to be better suited for platforms with
limited power supply such as MERMAIDs. Finally, to the
best of our knowledge, our method is the first one which
utilizes the probabilistic approach and allows to estimate the
probability of false positive recognitions.
[22] Note that our method is not limited to the recognition

of teleseismic P‐waves. Provided the statistical model of the
signals whose automatic recognition is sought is sufficiently
different from those of the signals of other types (most likely
to be encountered by a detecting instrument) the proposed
recognition method should work. In particular, the method
seems to be readily applicable to the automatic recognition
of T‐waves (Figure 2).

5. Conclusions

[23] We have presented a new method for the automatic
recognition of underwater acoustic signals generated by
teleseismic P‐waves. The method is based on the analysis of
the relative power distribution among different frequency
bands and utilizes the DWT as a signal processing tool. By
analyzing the relative power distributions of a large number
of P‐wave signals, we derived a statistical model for P‐waves.
The resemblance between a detected signal and the statistical
model is quantified by the criterion C, which is akin to a
probability of committing the Type I error during recogni-
tion (i.e. rejecting a P‐wave signal while it should be
accepted). It was also shown that the SNR of the analyzed
signal can be used as an additional recognition criterion and
can help eliminate false positive recognitions. Our method is
not limited to the recognition of teleseismic P‐waves and
can be applied to the recognition of any signals whose sta-

tistical models differ sufficiently from those of other inter-
vening signals.

[24] Acknowledgments. We wish to thank J. Perrot for helpful dis-
cussions on T‐waves. This work was supported by European Research
Council (Advanced grant 226837) and by Marie Curie Re‐integration grant
(project 223799).
[25] The Editor thanks the two anonymous reviewers for their assis-

tance in evaluating this paper.

References
Aki, K. (1967), Scaling law of seismic spectrum, J. Geophys. Res., 72(4),

1217–1231.
Allen, R. V. (1978), Automatic earthquake recognition and timing from

single traces, Bull. Seismol. Soc. Am., 68(5), 1521–1532.
Cohen, A., I. Daubechies, and J. Feauveau (1992), Biorthogonal bases of

compactly supported wavelets, Commun. Pure Appl. Math., 45, 485–560.
Dessa, J.‐X., S. Simon, M. Lelièvre, M.‐O. Beslier, A. Deschamps,

N. Béthoux, S. Solarino, F. Sage, E. Eva, G. Ferretti et al. (2011),
The GROSMarin experiment: three dimensional crustal structure of the
North Ligurian margin from refraction tomography and preliminary
analysis of microseismic measurements, Bull. Soc. Geol. Fr., 182(4),
305–321.

Dziak, R. P., D. R. Bohnenstiehl, H. Matsumoto, C. G. Fox, D. K. Smith,
M. Tolstoy, T.‐K. Lau, J. H. Haxel, and M. J. Fowler (2004), P‐ and
T‐wave detection thresholds, Pn velocity estimate, and detection of
lower mantle and core P‐waves on ocean sound‐channel hydrophones
at the Mid‐Atlantic Ridge, Bull. Seismol. Soc. Am., 94(2), 665–677.

Evans, J., and S. S. Allen (1983), A teleseism‐specific detection algorithm
for single short period traces, Bull. Seismol. Soc. Am., 73(4), 1173–1186.

Fox, C. G., H. Matsumoto, and T.‐K. A. Lau (2001), Monitoring Pacific
Ocean seismicity from an autonomous hydrophone array, J. Geophys.
Res., 106(B3), 1347–1352.

Gledhill, K. R. (1985), An earthquake detector employing frequency
domain techniques, Bull. Seismol. Soc. Am., 75(6), 1827–1835.

Goforth, T., and E. Herrin (1981), An automatic seismic signal detection
algorithm based on the Walsh transform, Bull. Seismol. Soc. Am., 71(4),
1351–1360.

Jensen, A., and A. la Cour‐Harbo (2001), Ripples in Mathematics,
Springer, Berlin.

Joswig, M. (1990), Pattern recognition for earthquake detection, Bull.
Seismol. Soc. Am., 80(1), 170–186.

McGuire, J. J., F. J. Simons, and J. A. Collins (2008), Analysis of seafloor
seismograms of the 2003 Tokachi‐Oki earthquake sequence for earth-
quake early warning, Geophys. Res. Lett., 35, L14310, doi:10.1029/
2008GL033986.

Press, W., S. Teukolsky, W. Vettering, and B. Flannery (1992), Numerical
Recipes, 2nd ed., Cambridge Univ. Press, Cambridge, U. K.

Simons, F. J., G. Nolet, P. Georgief, J. M. Babcock, L. A. Regier, and R. E.
Davis (2009), On the potential of recording earthquakes for global seis-
mic tomography by low‐cost autonomous instruments in the oceans,
J. Geophys. Res., 114, B05307, doi:10.1029/2008JB006088.

Stephen, R. A., F. N. Spiess, J. A. Collins, J. A. Hildebrand, J. A. Orcutt,
K. R. Peal, F. L. Vernon, and F. B. Wooding (2003), Ocean seismic net-
work pilot experiment, Geochem. Geophys. Geosyst., 4(10), 1092,
doi:10.1029/2002GC000485.

Sweldens, W. (1996), The lifting scheme: A custom‐design construction of
biorthogonal wavelets, Appl. Comput. Harmonic Anal., 3(2), 186–200.

Taillandier, V., A. Griffa, P.‐M. Poulain, and K. Béranger (2006), Assim-
ilation of Argo float positions in the north western Mediterranean Sea
and impact on ocean circulation simulations, Geophys. Res. Lett., 33,
L11604, doi:10.1029/2005GL025552.

Webb, S. C. (1998), Broadband seismology and noise under the ocean, Rev.
Geophys., 36(1), 105–142.

A. Deschamps and G. Nolet, Géoazur, 250, Rue Albert Einstein, F‐06560
Sophia Antipolis, France.
Y. Hello, A. Ogé, and A. Sukhovich, Géoazur, Observatoire

Océanologique de Villefranche‐sur‐Mer, 2 quai de la Darse, BP 48,
F‐06235 Villefranche‐sur‐Mer, France. (alexey.sukhovich@geoazur.obs‐
vlfr.fr)
J.‐O. Irisson, Observatoire Océanologique, Station Zoologique, BP 28,

Chemin du Lazaret, F‐06230 Villefranche‐sur‐Mer, France.
F. J. Simons, Department of Geosciences, Princeton University, Guyot

Hall 321B, Princeton, NJ 08544, USA.

SUKHOVICH ET AL.: PROBABILISTIC DISCRIMINATION OF P‐WAVES L18605L18605

5 of 5

 19448007, 2011, 18, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2011G

L
048474 by C

ochrane France, W
iley O

nline L
ibrary on [31/05/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (ECI-RGB.icc)
  /CalCMYKProfile (Photoshop 5 Default CMYK)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /Courier-Oblique
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Symbol
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /Times-Roman
    /ZapfDingbats
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


