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Abstract. Photochemistry of dissolved organic matter
(DOM) plays an important role in marine biogeochemical cy-
cles, including the regeneration of inorganic nutrients. DOM
photochemistry affects nitrogen cycling by converting bio-
refractory dissolved organic nitrogen to labile inorganic ni-
trogen, mainly ammonium (NH+4 ). During the August 2009
Mackenzie Light and Carbon (MALINA) Program, the ab-
sorbed photon-based efficiency spectra of NH+

4 photopro-
duction (i.e. photoammonification) were determined using
water samples from the SE Beaufort Sea, including the
Mackenzie River estuary, shelf, and Canada Basin. The pho-
toammonification efficiency decreased with increasing wave-
length across the ultraviolet and visible regimes and was
higher in offshore waters than in shelf and estuarine wa-
ters. The efficiency was positively correlated with the mo-
lar nitrogen:carbon ratio of DOM and negatively corre-
lated with the absorption coefficient of chromophoric DOM
(CDOM). Combined with collateral measurements of CO2
and CO photoproduction, this study revealed a stoichiom-
etry of DOM photochemistry with a CO2 : CO : NH+

4 mo-
lar ratio of 165 : 11 : 1 in the estuary, 60 : 3 : 1 on the shelf,
and 18 : 2 : 1 in the Canada Basin. The NH+

4 efficiency spec-
tra, along with solar photon fluxes, CDOM absorption co-
efficients and sea ice concentrations, were used to model
the monthly surface and depth-integrated photoammonifi-
cation rates in 2009. The summertime (June–August) rates
at the surface reached 6.6 nmol l−1 d−1 on the Macken-
zie Shelf and 3.7 nmol l−1 d−1 further offshore; the depth-
integrated rates were correspondingly 8.8 µmol m−2 d−1 and

11.3 µmol m−2 d−1. The offshore depth-integrated rate in
August (8.0 µmol m−2 d−1) was comparable to the missing
dissolved inorganic nitrogen (DIN) source required to sup-
port the observed primary production in the upper 10-m layer
of that area. The yearly NH+4 photoproduction in the entire
study area was estimated to be 1.4× 108 moles, with 85 % of
it being generated in summer when riverine DIN input is low.
Photoammonification could mineralize 4 % of the annual dis-
solved organic nitrogen (DON) exported from the Macken-
zie River and provide a DIN source corresponding to 7 %
of the riverine DIN discharge and 1400 times the riverine
NH+

4 flux. Under a climate warming-induced ice-free sce-
nario, these quantities could increase correspondingly to 6 %,
11 %, and 2100 times. Photoammonification is thus a signifi-
cant nitrogen cycling term and may fuel previously unrecog-
nized autotrophic and heterotrophic production pathways in
the surface SE Beaufort Sea.

1 Introduction

Photodegradation of dissolved organic nitrogen (DON),
a constituent of dissolved organic matter (DOM), pro-
duces certain forms of labile nitrogen, mainly ammonium
(NH+

4 ), thereby contributing to biological production in nat-
ural waters (Bushaw et al., 1996). The extent and eco-
logical relevance of NH+4 photoproduction (i.e. photoam-
monification) are, nonetheless, not well constrained be-
cause of the large varibility of results obtained by different
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laboratories and from different samples. While many stud-
ies observed environmentally relevant rates of photoammoni-
fication (e.g. Bushaw et al., 1996; Gao and Zepp, 1998;
Väḧatalo et al., 2003; Smith and Benner, 2005; Väḧatalo
and Zepp, 2005; Kitidis et al., 2006; Stedmon et al., 2007;
Aarnos et al., 2012), others reported little or no NH+

4 pho-
toproduction (e.g. Buffam and McGlathery, 2003; Jørgensen
et al., 1998; Bertilsson et al., 1999; Wiegner and Seitzinger,
2001) or even photochemical loss of NH+

4 (Kieber et al.,
1997; Koopmans and Bronk, 2002; Väḧatalo et al., 2003).
These contrasting results have been attributed to variations in
DOM’s intrinsic properties and prior light exposure history,
environmental controls (e.g. pH, iron, oxygen), ambient con-
centrations of NH+4 , and possibly methodological differences
as well (Kieber et al., 1997; Gao and Zepp, 1998; Wang et
al., 2000; Mopper and Kieber, 2002; Koopmans and Bronk,
2002; Buffam and McGlathery, 2003; Kitidis et al., 2008).
The wide range of photoammonification results makes cross-
region extrapolation difficult and consequently hampers the
evaluation of the overall biogeochemical role of this process.

DON in Arctic rivers is generally more enriched rel-
ative to dissolved inorganic nitrogen (DIN) compared to
other world rivers (Holmes et al., 2011). The Macken-
zie River, the largest North American Arctic river, deliv-
ers 2.2× 109 mol DON yr−1 to the Mackenzie Shelf and the
Beaufort Sea (Holmes et al., 2011), but little is known of the
transformation and fate of this terrestrial DON pool. Soluble
reactive phosphorus in the surface southeastern (SE) Beau-
fort Sea continues to decline after nitrate is exhausted by the
vernal phytoplankton bloom (Simpson et al., 2008; Tremblay
et al., 2008). This observation has led to propositions that
new sources of bioavailable nitrogen, such as labile riverine
DON (e.g. urea) and photochemically produced NH+

4 , may
sustain primary production to some extent after the nitrate
depletion (Tremblay et al., 2008).

DOM photochemistry becomes increasingly pertinent to
Arctic biogeochemical cycles due to the sensitivity of the
Arctic environments to climate warming (Amon, 2004;
Bélanger et al., 2006; Osburn et al., 2009; Xie et al., 2009).
Rising temperatures lead to sea ice decline, allowing more
solar radiation available for DOM photooxidation in the wa-
ter column. Tank et al. (2011) modeled Pan-Arctic photoam-
monification rates using published apparent quantum yield
(AQY) spectra from the Baltic Sea. Their results demon-
strate that photoammonification in the top 10 m of the Arctic
Ocean during the summer melting season can mineralize 5 %
of the annual riverine DON input. In view of the potentially
large cross-system varibility of photoammonification afore-
mentioned, the validity of applying non-Arctic AQY data to
Arctic environments is unclear. The present study, for the
first time, measured the AQY spectra of photoammonifica-
tion in an Arctic marine system, modeled photoammonifica-
tion rates using the obtained AQY data, and evaluated the
biogeochemical implications of this photochemical process
in the SE Beaufort Sea.

2 Methods

2.1 Sampling

Fieldwork was carried out during the Mackenzie Light and
Carbon (MALINA) program aboard theCCGS Amundsenin
the SE Beaufort Sea from 31 July to 25 August 2009. Sam-
pling stations for photoammonification experiments were
distributed along two salinity-gradient transects extending
from the mouth of the Mackenzie estuary to the Macken-
zie Shelf (Fig. 1). Transect 390, encompassing Sta. 391, 394,
398, was located off the east channel of the estuary while
transect 690, covering Sta. 691, 693, 694, 697, was situ-
ated off the west channel. Also visited were two stations in
the Canada Basin (Sta. 430 and 640). Twelve-liter standard
Niskin bottles, mounted on a conductivity-temperature-depth
(CTD) rosette, were used to take waters from the surface
(3.3 m) at Sta. 640 and from 150 m at Sta. 430. The latter
depth was located within the upper halocline of the Beaufort
Sea water column. A small boat, released from theCCGS
Amundsen, traversed the two estuarine transects character-
ized by shallow waters. Surface waters were collected with
a clean high-density polyethylene (HDPE) bucket into 10-
l acid-cleaned HDPE jugs or collapsible bags. Bulk waters
in both Niskin bottles and plastic jugs/bags were immedi-
ately gravity-filtered through a Whatman Polycap 75 AS fil-
ter capsule sequentially containing a 0.2 µm glass microfiber
filter and a 0.2 µm Nylon membrane filter. Prior to sample
collection, the capsules were thoroughly rinsed with Nanop-
ure water and sample water to avoid potential contamination.
The filtered samples were transferred into acid-cleaned 4-l
clear-glass bottles, stored in darkness at 4◦C, and transported
to a land-based laboratory for further treatment within two
months of sample collection. Detailed sampling information
is given in Table 1.

2.2 Irradiations

Samples brought back from the field were re-filtered with
0.2 µm polyethersulfone membrane filters immediately be-
fore they were irradiated for determination of the AQY
spectra of photoammonification (symbol8NH+

4
). Each re-

filtered sample was directly poured into pre-combusted
(420◦C) quartz-windowed cylindrical cells (i.d: 3.4 cm;
length: 11.4 cm). Irradiations followed the procedure re-
ported by Zhang et al. (2006). Briefly, the sample-filled
quartz cells were irradiated in a temperature-controlled in-
cubator (4◦C) using a SUNTEST CPS solar simulator
equipped with a 1.5-kW xenon lamp. Six spectral treat-
ments employed successive Schott long band-pass glass fil-
ters: WG280, WG295, WG320, WG345, GG395, GG435.
Spectral irradiance under each filter was measured using
an OL-754 spectroradiometer fitted with a 2-inch (∼5 cm)
OL IS-270 integrating sphere calibrated with an OL 752-
10E irradiance standard. The irradiance under the WG280
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Table 1.Sampling information and physical and chemical properties of samples for8NH+

4
determinations.

Lat. Long. Sa. Total T acdom,412
Location Sta. Date (◦ N) (◦ W) deptha depth Salinity (◦C) (m−1) SR

b

(m) (m)

Transect 390
391 16/08 70.095 133.539 0 34.6 27.82 3.2 0.11 1.458
394 16/08 69.846 133.490 0 11.5 21.45 8.8 0.72 1.055
398 16/08 69.534 133.424 0 2.2 16.37 8.8 1.15 1.024

Transect 690

691 13/08 69.387 137.792 0 42.6 23.61 5.2 0.37 1.149
693 13/08 69.296 137.398 0 32.3 15.00 8.8 1.09 0.998
694 13/08 69.251 137.202 0 10.9 9.43 9.3 1.57 0.985
697 13/08 69.125 136.681 0 1.0 0.15 10.3 1.98 0.992

Offshore
430 18/08 71.184 134.748 150 1300 33.13−1.4 0.17 1.527
640 11/08 70.334 139.099 3.3 550 21.43 2..2 0.29 1.323

a 0 m depth indicates bucket samples.
b SR = S275–295/S350–400whereS275–295andS350–400are CDOM’s absorption spectral slopes over the wavelength ranges of 275–295 nm and
350–400 nm, respectively (Helms et al., 2008). Spectral slopes were calculated from the modelacdom,λ = acdom,λ0 ×exp[S × (λ0 −λ)] whereλ0 is
a reference wavelength.

Fig. 1. Map of sampling stations. Solid line denotes the 200-m iso-
bath and dashed line delimits the area for which NH+

4 photoproduc-
tion was modeled.

filter (least filtered light) was 706.3 W m−2 in the wavelength
range from 280–800 nm. Irradiation lasted from ca. 4–7 d,
depending on the sample’s initial absorption coefficient. Par-
allel incubations in darkness showed negligible thermal NH+

4
production.

2.3 Analysis

Determination of NH+4 concentrations followed the fluoro-
metric method of Holmes et al. (1999). Samples were mixed
with a working regent containingo-phthaldialdehyde (OPA),
sodium sulfite, and sodium borate. The addition of sodium
sulfide minimizes potential interference from amino acids
(Holmes et al., 1999). The sample and working reagent mix-
ture was allowed to stay in the dark for 2.5 h before its flu-
orescence was measured with a Trilogy Laboratory Fluo-
rometer (Turner Designs). The procedure was calibrated us-

ing freshly prepared ammonium chloride aqueous solutions
covering concentrations from 0 to 1.6 µmol l−1. Corrections
were made for the sample’s background fluorescence and
matrix effect caused by substances such as sea salts and
DOM (Holmes et al., 1999). The amount of NH+

4 photo-
chemically produced was taken as the difference between the
NH+

4 concentration in the irradiated sample and that in the
parallel dark control.

CDOM absorbance spectra were recorded at room temper-
ature from 250 nm to 800 nm at 1 nm increments using a dual
beam UV-visible spectrometer (Perkin Elmer, Lambda 35)
fitted with a 5-cm quartz flow cell and referenced to HPLC-
grade pure water (Ricca Chemical Company). A baseline
correction was applied by subtracting the absorbance value
averaged over an interval of 5 nm around 685 nm from all the
spectral values (Babin et al., 2003). CDOM absorption coef-
ficient (basee) at wavelengthλ, acdom,λ (m−1), is calculated
as 2.303 times the absorbance divided by the cell’s light path-
length in meters. The lower detection limit ofacdomanalysis,
defined as three times the standard deviation of five replicate
blank measurements using Nanopure water, was 0.02 m−1

over 250 nm to 700 nm.
Samples for dissolved organic carbon (DOC), total dis-

solved nitrogen (TDN) and total dissolved amino acids
(TDAA) were gravity-filtered (Whatman GF/F filters) di-
rectly from Niskin bottles into clean Nalgene HDPE bot-
tles (60 ml) and stored frozen until analysis in the home
laboratory (Davis and Benner, 2005). The concentrations
of DOC and TDN were measured using high-temperature
combustion in a Shimadzu TOC-V analyzer equipped with
an inline chemiluminescence nitrogen detector (Davis and
Benner, 2005). Dissolved organic nitrogen (DON) was cal-
culated as the difference between TDN and total DIN.
The concentrations of nitrate and nitrite were determined

www.biogeosciences.net/9/3047/2012/ Biogeosciences, 9, 3047–3061, 2012



3050 H. Xie et al.: Photoproduction of ammonium in the southeastern Beaufort Sea

on freshly collected samples using an Autoanalyzer 3
(Bran + Luebbe) with colorimetric methods adapted from
Grasshoff et al. (1999). Total dissolved amino acids (TDAA)
were measured as OPA derivatives using an Agilent 1100
high performance liquid chromatography system with a flu-
orescence detector (Davis and Benner, 2005). Salinity (ex-
cept bucket samples) and temperature were recorded using a
SeaBird 911+ CTD profiler. Salinity for bucket samples was
determined using an AutoSal 8400B salinometer (precision:
±0.002).

2.4 Retrieval of ammonium AQY

The spectral AQY of NH+4 , 8NH+

4 ,λ , is defined as the number

of moles of NH+

4 produced per mole of photons absorbed by
CDOM at wavelengthλ. The number of photons absorbed by
CDOM at λ, Qa,λ (mol photons s−1 nm−1), was calculated
according to Eq. (1) (Hu et al., 2002):

Qa,λ = A × Q0,λ ×
acdom,λ

acdom+w,λ

[
1− exp

(
−acdom+w,λ × L

)]
, (1)

whereA (m−2) andL (m) denote, respectively, the cross sec-
tion and pathlength of the irradiation cell,Q0,λ the photon
flux just below the front window of the cell, andacdom+w,λ

the sum of absorption by CDOM (acdom,λ) and water (aw,λ).
Values ofaw,λ were taken from Pope and Fry (1997) and
Buiteveld et al. (1994) for the visible and UV domains, re-
spectively.

8NH+

4 ,λ was derived with an iterative curve-fit protocol
previously established to model AQYs of CO and CO2 pho-
toproduction under polychromatic light (Johannessen and
Miller, 2001; Zhang et al., 2006). Ziolkowski and Miller
(2007) confirmed that this multi-spectral approach agrees
with the conventional monochromatic method for retriev-
ing CO AQY spectra. Briefly, this method assumed an ap-
propriate mathematical form with unknown parameters to
express the change of8NH+

4
as a function of wavelength.

The amount of NH+4 produced in an irradiation cell over
the exposure time could then be predicted as the product
of the assumed8NH+

4
function and the number of pho-

tons absorbed by CDOM integrated over the 280–500 nm
wavelength range, assuming negligible NH+

4 production at
wavelengths> 500 nm (Sect. 3.2). The optimum values of
the unknown parameters in the assumed8NH+

4
function

were obtained by varying these parameters from initial es-
timates until the minimum difference between the measured
and predicted production is achieved. The following quasi-
exponential form was adopted to fit the data:

8NH+

4 ,λ = m1 × exp

(
m2

λ + m3

)
(2)

wherem1, m2, andm3 are fitting parameters. This function
generally performs better, particularly in the long UV and
visible wavelengths, than the simple 2-parameter exponen-
tial form (Supplement Table SM1) (B́elanger et al., 2006;

Zhang et al., 2006; Xie et al., 2009). It is similar to the two-
part exponential equation adopted by several previous stud-
ies to characterize the multiple exponential behavior of CO
AQY spectra (Zafiriou et al., 2003; Stubbins et al., 2006; Zi-
olkowski and Miller, 2007). NH+4 production rates predicted
from the retrieved8NH+

4
spectra agreed well with measured

rates, withr2 ranging from 0.976–0.997 (Table 2).

2.5 Blank, reproducibility and linearity

The blank, reproducibility, and linearity of NH+4 photopro-
duction were tested only with radiation under cutoff filter
WG280 and on a limited number of samples due to con-
strains on irradiation time and sample volumes. To deter-
mine the blank, six quartz cells were filled with HPLC-
grade pure water (Ricca Chemical Company) and irradi-
ated for 9.8 d. This gave an NH+4 photoproduction rate
of −0.08± 2.6 nmol l−1 d−1 (mean± 2 s.d., 95 % confidence
interval; all uncertainty expressions hereinafter are based on
the 95 % confidence interval). The reproducibility was eval-
uated on the sample from Sta. 430 (irradiation time: 11.5 d),
arriving at a rate of 17.9± 3.6 nmol l−1 d−1 or 20 % (n =

6). The 10 % relative standard deviation should represent
or approach the uncertainties for NH+

4 photoproduction un-
der shortwave cutoff irradiations described above (WG280,
WG295, WG320) but likely to underestimate the uncertain-
ties under longwave cutoff irradiations (WG345, GG395,
GG435) where NH+4 productions were substantially lower
(Sect. 3.2). A time-course irradiation was performed on a
filtration-sterilized Mackenzie River water sample collected
from the east channel of the Mackenzie Delta slightly up-
stream of Inuvik, the Northwest Territory of Canada, on 11
June 2009. NH+4 concentration increased linearly within the
first 6.74 d, close to the longest irradiation times for8NH+

4
determination (Sect. 2.2). Photoammonification continued
thereafter at a lower rate (Fig. 2), consistent with previous
studies (e.g. Bushaw et al., 1996; Väḧatalo and Zepp, 2005).
Similar kinetic patterns are expected for samples collected
from the two estuarine transects, which were strongly influ-
enced by the Mackenzie runoff. The kinetic behavior for off-
shore Sta. 640 and 430 was, however, less certain, since the
riverine impact there was weaker.

3 Results and discussion

3.1 Physicochemical properties

The salinity, temperature and optical properties of samples
are summarized in Table 1. Salinity along transect 690 mono-
tonically increased from 0.15 at Sta. 697 to 23.61 at Sta. 691.
Transect 390 covered a much narrower salinity range: 16.37
at Sta. 398 to 27.82 at Sta. 391. Owing to dilution by sea ice
meltwater and possibly meteoric water as well, surface salin-
ity at Sta. 640 (21.43) in the Canada Basin was considerably
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Table 2.Fitted parameters for Eq. (2) and AQY of photoammonification at 330 nm (unit: mol NH+

4 (mol quanta)−1).

Location Station m1× 109 m2 m3 r2a 8NH+

4 ,330× 106b

Transect
391 384 179 −234 0.995 2.5± 0.5

390
394 185 205 −230 0.976 1.4± 0.3
398 146 238 −230 0.986 1.6± 0.3

Transect
691 439 143 −234 0.997 2.0± 0.4

690
693 245 145 −237 0.990 1.2± 0.2
694 171 172 −233 0.984 1.0± 0.2
697 4.11 1010 −150 0.997 1.1± 0.2

Offshore
430 303 223 −227 0.990 2.6± 0.5
640 532 118 −237 0.988 1.9± 0.4

a Coefficients of determination (r2) are from linear regressions between modeled and measured
ammonium production rates.
b 95 % confidence interval calculated from the combined varibility of factors used to determine8

NH+

4 ,λ

(i.e. measured NH+4 photoproduction rate,Q0,λ andacdom,λ in Eq. 1).

Fig. 2. NH+

4 concentration as a function of irradiation time for the
sample collected in June 2009 from the mid-channel of the Macken-
zie River off Inuvik, the Northwest Territory of Canada. The sample
was exposed to full-spectrum irradiation. Line connects mean of du-
plicates at each irradiation time point.

lower than those at Sta. 391 and 691 on the Mackenzie Shelf.
Sea surface temperature (SST) trended inversely to salinity,
decreasing from inshore to offshore. SST ranged from 5.2◦C
to 10.3◦C along transect 690 and from 3.2◦C to 8.8◦C
along transect 390, with the lowest SST occurring at Sta. 640
(2.2◦C). CDOM absorption coefficients (as examplified by
acdom,412) were negatively correlated with salinity for both
transects excluding Sta. 697 (Fig. 3a), indicating conserva-
tive mixing behavior across the land-ocean transitional zone.
However,acdom,412 at the innermost Sta. 697 was 20 % lower
(1.98 m−1 vs. 2.38 m−1) than expected from the linear fit for
the outer section of transect 690, suggesting CDOM input
slightly downstream of Sta. 697. The process responsible for
this input was unclear but could be linked to episodic sedi-
ment resuspensions due to shallow water depths there. The
CDOM mixing line of transect 390 was consistently above

that of transect 690 within the encountered salinity range
(Fig. 3a), implying a larger CDOM end member in the east
channel of the Mackenzie River. Sta. 640’sacdom,412 lay be-
low the mixing lines of the two transects, since sea ice melt-
water was depleted with CDOM (Matsuoka et al., 2012). On
the contrary, Sta. 430’s subsurface sample (150 m deep) ex-
hibitedacdom,412 far greater than inferred from the two mix-
ing lines (Fig. 3a). This observation is consistent with the
finding that the upper halocline water of the Beaufort Sea,
originating from the Pacific winter water mass formation,
entrains organic-rich freshwater during its northward transit
along the Alaska coast (Matsuoka et al., 2012).

The spectral slope ratio,SR, as defined in Table 1, has
been used as an indicator of CDOM molecular weight with
a lower SR, implying high molecular weight typical of a
stronger terrestrial CDOM signature (Helms et al., 2008).
TheSR vs. salinity relationship for the combined data of tran-
sects 390 and 690 could be well described by a 3-parameter
exponential function (Fig. 3b).SR displayed little variation
at salinity< 21.5 but increased rapidly with salinity at val-
ues> 23. Station 640’sSR was well above the trendline for
the two transects, whereas Sta. 430’s was far below it. There-
fore, CDOM was of more marine character at Sta. 640 but of
more terrestrial nature at Sta. 430 than expected from their
salinities. IfSR was plotted againstacdom,412, all data points
closely followed the mixing line constructed from Sta. 697
and Sta. 430 as end members, (Fig. 3c), suggesting that
CDOM was a more conservative tracer than salinity for de-
scribing the dynamics ofSR. SR remained quite constant at
acdom,412 > 0.7 m−1 and rose quickly withacdom,412 at val-
ues< 0.4 m−1. Both theSR-salinity andSR-acdom,412 plots
thus categorize the sampling stations into two groups. Group
1, covering Sta. 394, 398, 693, 694 and 697 withSR ranging
from 0.992 to 1.055, possessed CDOM of essentially terris-
trial origin; and Group 2, comprising Sta. 391, 430, 640 and

www.biogeosciences.net/9/3047/2012/ Biogeosciences, 9, 3047–3061, 2012
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Fig. 3. Plots of CDOM absorption coefficient at 412 nm vs. salin-
ity (A) and plots of spectral slope ratio vs. salinity(B) and
acdom,412 (C). Panel(A) solid and dashed lines are best fits for tran-
sects 690 (excluding Sta. 698) and 390, respectively; dotted line is
the extrapolation from the solid line. Panel(B) circles represent data
combining transects 390 and 690 (excluding Sta. 430 and Sta. 640);
line is best fit of circles. Panel(C) line is the conservative mixing
line of SR vs.acdom,412 using Sta. 697 as the riverine end member
and Sta. 430 as the marine end member.

691 withSR ranging from 1.149–1.527, carried CDOM hav-
ing a significant marine signature. It should be pointed out
that photobleaching also increasesSR (Helms et al., 2008).
The largely conservative behaviors ofacdom (Fig. 3a) andSR
(Fig. 3c), however, suggested that photoleaching should not
be the dominant factor controllingSR in the study area. The

lack of substantial photobleaching observed in the present
study is consistent with the conclusion of a previous photo-
bleaching modeling study for the Mackenzie Shelf area (Os-
burn et al., 2009).

3.2 Indicators of ammonium photoproduction

Figure 4 shows typical coastal and offshore CDOM absorp-
tion spectra and the corresponding NH+

4 photoproduction
rates as a function of cutoff wavelength observed in labo-
ratory irradiations. NH+4 production rate decreased rapidly
with increasing cutoff wavelength with the production under
cutoff filter GG435 (50 % transmittance cutoff at 430 nm)
being < 8 % of the production under cutoff filter WG280
(50 % transmittance cutoff at 268 nm). High-CDOM samples
consistently gave high NH+4 production rates, particularly at
short cutoff wavelengths. NH+4 production decreased approx-
imately linearly with salinity (r2

= 0.718,n = 9, p < 0.01),
excluding the June Mackenzie River water sample. The lat-
ter showed a much higher NH+4 production rate compared to
the freshest sample (Sta. 697, salinity 0.15) that was taken
in August (Fig. 5a). However, such inconsistency was es-
sentially absent for the relationship of NH+

4 production to
CDOM (Fig. 5b). The two exhibited a good positive, lin-
ear correlation (r2

= 0.945,n = 10,p < 0.01). NH+

4 produc-
tion also increased linearly with DON (r2

= 0.912, n = 7,
p < 0.01) and TDAA (Fig. 5c and d). For TDAA, Sta. 691
was an exception whose NH+

4 production was much lower
than expected from the highly elevated TDAA level. Conse-
quently, NH+

4 production was only weakly related to TDAA
(r2

= 0.492,n = 7, p > 0.05). Hence amino acids, of which
> 90 % were combined forms (R. Benner, unpublished data,
2012), were probably not the predominant precursors of
NH+

4 photoproduction. Tarr et al. (2001) reached a similar
conclusion based on a mechanism study on photoammonifi-
cation of natural organic matter. Our supposition is also in
line with the finding that the concentrations of TDAA in the
Broad River, South Carolina, are controlled primarily by mi-
crobial utilization rather than photodegradation (Benner and
Kaiser, 2011).

3.3 AQYs of ammonium photoproduction

Fitted parameters for Eq. (2) are shown in Table 2 and
8NH+

4
spectra representative of coastal and offshore wa-

ters are displayed in Fig. 6a. Offshore waters (Sta. 430
and 640) had higher8NH+

4
values than did coastal wa-

ters (Sta. 693 and 697) at wavelengths> 300 nm. 8NH+

4
for Sta. 697 decreased with wavelength more quickly than
8NH+

4
for other stations. At 330 nm, the mean8NH+

4

for Group 2 stations (2.2× 10−6
± 0.6× 10−6 mol NH+

4
(mol quanta)−1) was twice that for Group 1 stations
(1.2× 10−6

± 0.4× 10−6 mol NH+

4 (mol quanta)−1). Com-
pared to previously reported NH+4 AQY data, our values
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Fig. 4.Typical CDOM absorption spectra(A) and their correspond-
ing NH+

4 photoproduction rates as a function of cutoff wavelength
observed from laboratory irradiations(B).

are generally lower in the UV wavelengths and sim-
ilar or higher in the visible wavelengths (Fig. 6a).
The overall range of AQY at 330 nm in the present
study was from 1.0× 10−6 mol NH+

4 (mol quanta)−1 to
2.6× 10−6 mol NH+

4 (mol quanta)−1, which are far be-
low those observed by V̈aḧatalo and Zepp (2005) (range:
11× 10−6–61× 10−6 mol NH+

4 (mol quanta)−1) and Sted-
mon et al. (2007) (range: 27× 10−6–144× 10−6 mol NH+

4
(mol quanta)−1) but close to the lower end of those
reported by Aarnos et al. (2012) (range: 3.5× 10−6–
11× 10−6 mol NH+

4 (mol quanta)−1). To the best of our
knowledge, these are the only published photoammonifi-
cation AQYs and they were all obtained from the Baltic
Sea, with the data of Aarnos et al. (2012) covering larger
spatiotemporal scales. Our lower AQY values, particularly
in the most photochemically active UV wavelengths, may
indicate a lower photoreactivity of DON in our sampling
area, reflecting the fact that the water discharged into the
Baltic Sea is much more strongly impacted by human ac-
tivity (e.g. agriculture) than the water flowing into the Beau-
fort Sea. However, the lower irradiation temperature adopted
in the present study, 4◦C vs. near room temperature in
the studies by V̈aḧatalo and Zepp (2005) and Stedmon et
al. (2007), should also have decreased the AQY values, since
DOM photochemical reactions, such as CO photoproduction
(Zhang et al., 2006), can be temperature dependent. Aarnos

Fig. 5. Plots of ammonium photoproduction rate vs. salinity(A),
CDOM absorption coefficient(B), dissolved organic nitrogen(C),
and total dissolved amino acids(D). Data labels represent station
numbers and MKZR denotes the June 2009 sample collected in the
Mackenzie River near Inuvik (see Sect. 2.5). No DON and TDAA
data are available for the MKZR station. NH+

4 photoproduction
rates were determined under cutoff filter WG280.

et al. (2012) used a similarly low irradiation temperature
(5◦C), which may partly explain the much smaller differ-
ence between their results and ours. Hence, photoammonifi-
cation is plausibly a strong temperature-dependent process.
Note that our lower AQYs could also be partly caused by the
relatively long exposure periods (4–7 d), since8NH+

4
can de-

crease with increasing doses of absorbed photons if photoam-
monificable DON in a sample is depleted during irradiation
(Bushaw et al., 1996; Kitidis et al., 2008; Väḧatalo and Zepp,
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Fig. 6. Examples of apparent quantum yield(A) and action(B)
spectra of photoammonification. Also shown in panel(A) are AQY
spectra from the literature. VZ stands for Väḧatalo and Zepp (2005)
(station LL12), Stedmon for Stedmon et al. (2007) (station Kotka),
and Aarnos for Aarnos et al. (2012) (station III-Gulf of Finland).

2005). The linear relationship between photoammonification
and irradiation time (Fig. 2; at irradiation times< 7 d), how-
ever, implied that the photoammonificable DON was not the
limiting factor, at least for the riverine DOM-dominated sam-
ples. Because the offshore samples were subjected to longer
exposures but had higher8NH+

4
compared with the nearshore

samples, substrates did not appear to be exhausted in the
offshore samples either. The linear correlation between the
photoammonification rate under the WG280 cutoff filter and
acdom (Fig. 5a) further corroborated that substrate-limitation
was unimportant, since samples under the WG280 cutoff
filter received the highest UV irradiance and CDOM ab-
sorbed very different amounts of photons among different
samples. Use of aged samples (see Sect. 2.1) might lead to
lower 8NH+

4
values as well if loss of photoammonificable

DON occurred during sample storage. Nevertheless,acdom
changed little over the two-month storage period (Supple-
ment Fig. SM1), which, combined with the linear relation-
ship between the photoammonification rate andacdom, sug-
gested that the storage effect was minimal.

To evaluate the spectral dependence of photoammonifica-
tion in natural waters, action spectra were calculated asQλ×

acdom,λ ×8NH+

4 ,λ, whereQλ (mol photons m−2 s−1 nm−1) is

the surface spectral solar photon fluxes at 70◦ N, 133◦ W at
14:00 local time on 1 July, simulated using the SMARTS
model (Simple Model of the Atmospheric Radiative Trans-
fer of Sunshine; Gueymard, 2001) under mid-summer Arc-
tic atmospheric and cloudless conditions with an ozone col-
umn burden of 330 Dobson Units. The NH+

4 action spectra
(Fig. 6b), characterized by a non-Gaussian shape with a long
tail in the visible, are like those of CO and CO2 (Zhang et al.,
2006; White et al., 2010). They demonstrate that UVB radi-
ation (280–320 nm) contributed 8–18 %, UVA (320–400 nm)
58–71 %, and visible (400–500 nm) 11–33 % of the surface
NH+

4 photoproduction integrated over the full active wave-
length range (280–500 nm). The dominant role of UVA ob-
served in the present study is consistent with previous results
(Bushaw et al., 1996; V̈aḧatalo and Zepp, 2005; Stedmon et
al., 2007; Aarnos et al., 2012). Notably, the offshore sites
(Sta. 430 and 640) held the lowest contributions from UVB
(10 % and 8 %) and the highest contributions from the visi-
ble (31 % and 33 %) while the most nearshore sites (Sta. 398
and 697) behaved conversely, 13 % and 18 % from UVB and
21 % and 11 % from the visible. This spectral contribution
pattern is consistent with the8NH+

4
spectra of the nearshore

samples being steeper than those of the offshore samples
(Fig. 6a). Notwithstanding the widely differing values and/or
spectral shapes ofacdom and 8NH+

4
(Figs. 4a and 6a), all

action spectra converge at the same wavelength (330 nm)
giving the maximum NH+4 production rates (Fig. 6b). This
wavelength is similar to the peak production wavelengths ex-
hibited by CO and CO2 action spectra (Zhang et al., 2006;
White et al., 2010).

Previous studies have revealed that CO AQYs are linearly
and positively correlated with CDOM absorption coefficients
(Xie et al, 2009; Stubbins et al., 2011). Here we also tested
the relationship between8NH+

4
andacdom and found the two

variables to be inversely correlated. Based on the residual
sum of squares (RSS) and the adjusted coefficient of deter-
mination (adjustedr2) of the regression between the pre-
dicted and determined8NH+

4
, the relationship between8NH+

4
and acdom switched from being linear over 421–500 nm to
a 2-parameter single exponential over 350–420 nm to a 3-
parameter single exponential over 290–349 (Fig. 7). It should
be noted that the8NH+

4
versusacdom patterns identified here

did not necessarily imply a causative relationship between
the two parameters.8NH+

4
was more likely controlled by

the chemical characteristics of CDOM than by CDOM abun-
dance. As low-CDOM samples contained a larger component
of CDOM of marine origin (Sect. 3.1), the inverse correspon-
dence between8NH+

4
and acdom points to marine CDOM

being more efficient than its terrestrial counterpart at pho-
toammonification. NH+4 photoproduction thus contrasts with
CO photoproduction, which is more efficient with terrestrial
than marine CDOM (Zafiriou et al., 2003; Xie et al., 2009;
Stubbins et al., 2011). Sinceacdom was anti-correlated with
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Fig. 7. Regression analysis between NH+

4 apparent quantum yields
and CDOM absorption coefficients at 412 nm at three selected
wavelengths, 330 nm, 360 nm, and 450 nm. Data were fitted to the
equations ofY = 1.1× 10−6

+ 1.9× 10−6exp(−2.3X) at 330 nm
(solid line; r2

= 0.914), Y = 1.7× 10−6exp(−0.65X) at 360 nm
(dashed line;r2

= 0.960), andY = 9.3×10−7
−4.1X (dotted line;

r2
= 0.912).

salinity (Fig. 3), it is not surprising that8NH+

4
increased

with salinity (data not shown), excluding the ice meltwater-
influenced Sta. 640. Aarnos et al. (2012) identified a similar
8NH+

4
-salinity relationship for the Baltic Sea. A closer exam-

ination further revealed that8NH+

4
co-varied with the molar

DON : DOC ratio (Fig. 8), the latter increasing linearly with
salinity (r2

= 0.718,n = 7, p < 0.02). The higher8NH+

4
in

offshore waters was thus likely linked to the higher quality
of DOM in terms of the relative DON abundance.

3.4 Modeling ammonium photoproduction

The photoammonification rate at the surface (0 m),
PNH+

4 ,0 (mol NH+

4 m−3 d−1), were calculated using Eq. (3):

PNH+

4 ,0 =

500∫
290

Q0−,λ × acdom,λ × 8NH+

4 ,λ × dλ (3)

Q0−,λ denotes the scalar photon flux just beneath the
surface (mol photons m−2 d−1 nm−1), which was estimated
as 1.3 times the downwelling photon flux,Qd0−,λ (Gor-
don, 1989). Assuming negligible backscattering of light
to the atmosphere and vertical homogeneity of8NH+

4
and

light-absorbing constituents in the photic layer, the wa-
ter column or depth-integrated photoammonification rate,
PNH+

4 ,col (mol NH+

4 m−2 d−1), is given by Eq. (4):

PNH+

4 ,col =

500∫
290

Qd0−,λ ×
acdom,λ

at,λ
× 8NH+

4 ,λ × dλ. (4)

Here at,λ denotes the total absorption coefficient (m−1),
i.e. the sum of the absorption coefficients of CDOM, par-
ticles, and seawater. The study area was divided into two

Fig. 8.Plot of NH+

4 apparent quantum yield at 330 nm vs. the molar
DON : DOC ratio. Data labels represent station numbers.

sub-regions: the Mackenzie Shelf with total water depths
< 200 m and the Canada Basin farther offshore (Fig. 1).
Monthly acdom,λ : at,λ ratios andat,412 values were retrieved
from the ocean color data of the Sea Wide field-of-view Sen-
sor (SeaWiFS) using the empirical algorithm of Bélanger
et al. (2008) and the quasi-analytical algorithm of Lee et
al. (2002; IOCCG, 2006), respectively. Thenacdom,412 was
calculated as the product of theacdom,λ : at,λ ratio andat,412
(Bélanger, 2006).8NH+

4 ,λ was fitted toacdom,412 based on
the wavelength-specific relationships shown in Fig. 7. Fitting
results are presented as online supplemental materials (Sup-
plement Table SM2). DailyQd0−,λ values were computed
at 5-nm intervals using pre-computed look-up-table (LUT)
generated using the Santa Barbara DISORT Atmospheric Ra-
diative Transfer (SBDART) software tool (Ricchiazzi et al.,
1998). The LUT inputs were the solar zenith angle, total
ozone concentration, cloud fraction over the pixel, and cloud
optical thickness. The last three parameters, derived from
satellite data following the method developed by Zhang et
al. (2004) to produce global radiative flux data (FD), were
obtained from the International Satellite Cloud Climatol-
ogy Project (ISCCP) website. The ISCCP-FD data were dis-
tributed on a 280-km equal-area grid at 3-h intervals for dates
between January 1983 and December 2009. This method was
previously validated against in situ irradiance measurements
(Xie et al., 2009). Daily surface ice concentration data de-
rived from passive microwaves sensors (SSMI) were pro-
vided by the US National Snow and Ice Data Center. Monthly
and annualPNH+

4 ,0 andPNH+

4 ,col were calculated at spatial
resolutions of one L3 SeaWiFS pixel (9.28 km× 9.28 km).

Table 3 summarizesPNH+

4 ,0 and PNH+

4 ,col, along with
other relevant parameters for each sub-region. Seasonally,
PNH+

4 ,col reached maximum in June on the Mackenzie

Shelf (10.7 µmol m−2 d−1) and in July in the Canada Basin
(13.3 µmol m−2 d−1), and decreased gradually toward suc-
cessively earlier and later months of the year. As the June
or July acdom: at ratio was not highest on a yearly ba-
sis, solar insolation was the dominant factor controlling
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Table 3. Modeled monthly ammonium photoproduction rates in open waters of the SE Beaufort Sea in 2009, along with open-water areas,
ocean color-derivedacdom,412: at,412 ratios andacdom,412, and downwelling UV photon fluxes. Open-water areas excluded those where no
ocean-color data were available. Lack of ocean color data also left out October and November. December to March were omitted due to
nearly complete ice cover. MS stands for Mackenzie Shelf and CB for Canada Basin.

Region Apr May Jun Jul Aug Sep Annual

Open-water areas (km2)

MS 1015 5674 44 406 62 667 65 667 74 652 54 889
CB 92 5784 37 394 57 391 73 939 78 561 50 182

acdom,412/at,412

MS 0.56 0.56 0.59 0.60 0.75 0.70 0.66
CB 0.54 0.66 0.68 0.75 0.76 0.77 0.75

acdom,412 (m−1)

MS 0.09 0.19 0.21 0.26 0.57 0.41 0.38
CB 0.05 0.17 0.10 0.19 0.12 0.15 0.14

UV photon flux (290–400 nm, mol m−2 d−1)

MS 1.3 2.2 3.4 3.2 2.0 1.0 2.2
CB 1.2 1.9 3.3 3.1 1.9 0.9 2.0

Surface ammonium photoproduction (PNH+

4 ,0, nmol l−1 d−1)∗

MS 1.5± 0.7 4.3± 2.0 6.4± 3.0 6.8± 3.2 8.3± 3.9 3.8± 1.8 4.6± 2.2
CB 1.1± 0.5 3.0± 1.4 3.6± 1.7 5.2± 2.4 2.2± 1.0 1.4± 0.7 2.7± 1.3

Depth-integrated ammonium photoproduction (PNH+

4 ,col, µmol m−2 d−1)∗

MS 4.7± 1.4 6.5± 1.9 10.7± 3.1 10.5± 3.0 7.2± 2.1 4.4± 1.3 6.2± 1.8
CB 5.0± 1.5 7.4± 2.1 12.5± 3.6 13.3± 3.9 8.0± 2.3 4.2± 1.2 7.4± 2.1

Area-integrated ammonium photoproduction (
∑

PNH+

4 ,col, 105 moles)∗

MS 1.4± 0.4 11.4± 3.3 143± 41 203± 59 168± 49 99± 29 625± 181
CB 0.14± 0.04 13.3± 3.9 141± 41 236± 68 185± 54 100± 29 675± 196
Sum 1.5± 0.4 24.7± 7.2 284± 82 439± 127 353± 103 199± 58 1300± 377

∗ 95 % confidence intervals calculated from the combined variability of factors used to determineP
NH+

4 ,0
(i.e.Q0−,λ, acdom,λ, and

8
NH+

4 ,λ
in Eq. 3) andP

NH+

4 ,col
(i.e.Qd0−,λ, acdom,λ/at,λ, and8

NH+

4 ,λ
in Eq. 4).

PNH+

4 ,col in both sub-regions. The seasonality ofPNH+

4 ,0
in the Canada Basin parelleled that ofPNH+

4 ,col, attain-

ing a peak value of 5.2 nmol l−1 d−1 in July. The maxi-
mum PNH+

4 ,0 on the shelf, however, occurred in August

(8.3 nmol l−1 d−1), two months later than the maximum
PNH+

4 ,col, due to the much higheracdom in August as com-

pared to June (acdom,412 : 0.57 m−1 vs. 0.21 m−1). This pat-
tern could be attributed to the characteristic CDOM dynam-
ics occurring on the Mackenzie Shelf revealed by satellite-
derived ocean color data (Bélanger et al., 2006). CDOM from
freshwater runoff is held close to the shore by sea ice in
spring and extends offshore after sea ice breakup in early
summer. Consequently, riverine CDOM is more extensively
spread over the shelf in August, about two to three months
after the peak discharge of the Mackenzie River, resulting

in a larger amount of photochemically active solar energy
being absorbed near the sea surface. Spatially,PNH+

4 ,0 was
higher on the shelf than in the basin as a result of higher
shelfacdom (Table 3).PNH+

4 ,col, nevertheless, exhibited a pat-
tern opposite to that ofPNH+

4 ,0, since both theacdom: at ra-
tio and8NH+

4
were higher offshore. Finer distributional pat-

terns ofPNH+

4 ,0 andPNH+

4 ,colcan be gleaned from their con-
tour maps (Fig. 9). Consistent with decreasingacdom sea-
ward, PNH+

4 ,0 steadily declined from the shore to the open
ocean.PNH+

4 ,col in the basin displayed relatively small vari-
ations and clearly exceededPNH+

4 ,col in particles-rich wa-
ters close to the land. There existed a narrow strip of high
PNH+

4 ,col, particularly west of 135◦ W, at the offshore fringe
of the river plumes where light absoroption was strongly
dominated by CDOM. This phenomenon is in accordance
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Fig. 9.Contour maps of modeled NH+4 photoproduction rates at the
sea surface (PNH+

4 ,0, A) and in the entire water column (PNH+

4 ,col,

B) in August 2009. Grey color denotes lack of satellite ocean color
data due to sea ice, persistent cloud cover or extreme turbidity.

with highly elevatedacdom: at ratios, reaching up to 90 % at
412 nm, in a similarly confined zone observed by Bélanger et
al. (2008; their Fig. 9). Note that the onshore–offshore pat-
terns of photoammonification rates revealed in the present
study were relatively consistent across a fairly broad expanse
of the Beaufort Sea. It is, therefore, worthwhile to verify
in future studies if similar patterns also exist in other Arc-
tic seas. At the same time, caution should be exercised to
apply our photoammonification rates to other coastal waters
of the Arctic Ocean, given that the chemical characteristics
(e.g. DON and DOC concentrations, particle loads) of the
Mackenzie River are quite different from those large Siberian
rivers (Dittmar and Kattner, 2003; Holmes et al., 2011).

Väḧatalo and Zepp (2005) modeled the summer-season
(May–August) photoammonification rates in the Baltic Sea
using a simplified approach. They yielded surface produc-

tion rates spanning from 31 nmol l−1 d−1 to 331 nmol l−1 d−1

(mean: 143 nmol l−1 d−1) and water column produc-
tion rates from 16 µmol m−2 d−1 to 102 µmol m−2 d−1

(mean: 53 µmol m−2 d−1), which are substantailly higher
than our summertime (June–August) surface (range: 2.9–
8.1 nmol l−1 d−1; mean: 5.5 nmol l−1 d−1) and water column
(range: 7.1–12.9 µmol m−2 d−1; mean: 10.0 µmol m−2 d−1)
production rates. Main elements contributing to this differ-
ence are the much smaller8NH+

4
in the UV wavelengths

(Sect. 3.3) and relatively lower solar insolation in the SE
Beaufort Sea as compared to those in Baltic Sea. The as-
sumption made by V̈aḧatalo and Zepp (2005) that all light
in the water column is absorbed by CDOM (i.e.acdom,
λ : at,λ = 1) should also somewhat bias their rates upward
(see B́elanger et al., 2008). In a more recent Baltic Sea
survey, Aarnos et al. (2012) reported much lower summer-
time production rates ranging from∼ 6 to 22 µmol m−2 d−1

(mean:∼ 13 µmol m−2 d−1), which are close to our rate for
the SE Beaufort Sea. Tank et al. (2011) modeled the Pan-
Arctic photoammonification rates using AQY spectra re-
proted in the literature and arrived at a summertime (June–
August) rate of∼33 µmol m−2 d−1, with a range across an
order of magnitude, depending on the choice of the AQY
spectrum. The summertime rates we obtained for the SE
Beaufort Sea are within the lower end of their range.

Area-integrated NH+4 photoproduction,
∑

PNH+

4 ,col, dis-
played similar seasonal and regional patterns to those of
PNH+

4 ,col, reaching a maximum in July and ascending from
nearshore to offshore (Table 3). April was an exception,
when

∑
PNH+

4 ,col was much lower in the basin than on

the shelf (0.14× 105 vs. 1.4× 105 moles) due obviously to
the much smaller ice-free surface area in the former re-
gion in early spring (92 vs. 1015 km2). The total annual
NH+

4 photoproduction in the entire study area was estimated
to be 1.3× 108 moles, of which 85 % (1.1× 108 moles)
was contributed by the summer season (June–August). Note
that this assessment omitted the open water areas where no
satellite-based ocean color data were available. The underes-
timation stemming from this omission was calculated to be
1.2× 107 moles, assuming a constantacdom,412 : at,412 ratio
of 0.70 and a constantat,412 of 0.15 m−1 based on a previous
study by B́elanger et al. (2006). The total annual NH+

4 pro-
duction thus arrived at 1.4× 108 moles. October and Novem-
ber were exlcuded also due to lack of satellite ocean color
data. Under a global warming-induced totally ice-free sce-
nario, the NH+4 yielded from photoammonification could
amount to 2.1× 108 mol yr−1. Note that our estimate does
not include NH+4 photoproduction from particulate organic
matter (POM), which has recently been confirmed by sev-
eral studies using algal detritus (Mayer et al., 2009; H. Xie,
unpublished data, 2012). As POM absorbed roughly 30 % of
the solar radiation on an annual basis (Table 3), including
particulate NH+4 photoproduction could increase the above
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estimates by 30 % as well, i.e. 1.8× 108 mol yr−1 under ac-
tual ice-cover conditions or 2.7× 108 mol yr−1 under totally
ice-free conditions, assuming equal AQYs of POM- and
DOM-based photoammonification, as is generally the case
for CO (Xie and Zafiriou, 2009; G. Song et al., unpublished
data, 2012).

3.5 Biogeochemical implications

The biogeochemical ramifications of photoammonification
can be evaluated by comparision with other major nitrogen
fluxes in the SE Beaufort Sea. The Mackenzie River annually
supplies 2.2× 109 moles of DON, 1.9× 109 moles of DIN
(Holmes et al., 2011), and 1.0× 105 moles of NH+

4 (Mc-
Clelland et al., 2008) to the Beaufort Sea. A yearly NH+

4
production of 1.4× 108 moles, therefore, provides a DIN
source equivalent to 7 % of the riverine DIN input and 1400
times the riverine NH+4 discharge. A yearly NH+4 produc-
tion of 2.1× 108 moles for the completely ice-free situa-
tion would raise these quantities correspondingly to 11 % and
2100 times under otherwise identical conditions. Assuming
80 % ofacdom on the shelf and 50 % ofacdom in the basin to
be of terrestrial origin (B́elanger et al., 2006), we estimated
that photoammonification in the study area could mineralize
4 % (8.8× 107 moles yr−1) and 6 % (1.3× 108 moles yr−1)
of the annual riverine DON discharge under the actual ice-
cover and totally ice-free scenario, respectively. Regarding
the role of photoammonification as a DIN source, more im-
portant than the numeric values is the timing of this process.
As discussed in Sect. 3.4, 85 % of the annual NH+

4 photo-
production took place between June and August, over which
the Mackenzie River only delivers 30 % of its annual DIN
(mainly nitrate) flux (Emmerton et al., 2008; Holmes et al.,
2011). Nitrogen is the limiting element for the growth of
heterotrophic prokaryotes on the Mackenzie Shelf in sum-
mer (Ortega-Retuerta et al., 2012). Riverine DIN can thus
be essentially used up on the shelf before being exported
offshore. Ecosystem modeling has, however, demonstrated
that currently recognized DIN sources are short of support-
ing offshore primary productivity observed in the MALINA
sampling season (August) (V. Lefouest, unpublished data,
2012). A missing DIN source of 6.0 µmol m−2 d−1, which
accounts for 25 % of total DIN uptake in the top 10-m layer,
is required to fill the gap. This missing nitrogen is com-
parable in magnitude to the August NH+

4 photoproduction
rate (8.0 µmol m−2 d−1) obtained from the present study (Ta-
ble 3). Hence, photoammonification probably drives a pre-
viously unrecognized primary production pathway that is at
least partly responsible for the continued decline of solu-
ble reactive phosphorus after nitrate is depleted in the upper
SE Beaufort Sea following the spring phytoplankton bloom
(Tremblay et al., 2008). Notably, heterotrophic prokaryotes
compete with primary producers for photochemically formed
NH+

4 , since heterotrophic prokaryotic activity in the offshore
Beaufort Sea surface water is also nitrogen-limited in sum-

mertime (Ortega-Retuerta et al., 2012). The relative impor-
tance of these two NH+4 uptake pathways remains to be elu-
cidated.

3.6 Stoichiometry of DOM photooxidation

In addition to8NH+

4
, AQYs of CO (8CO) and CO2 (8CO2)

were concomitantly determinated (G. Song et al., unpub-
lished data, 2012). Methods for8CO and8CO2 determina-
tions can be found in the studies by Bélanger et al. (2006),
Zhang et al. (2006), and Xie et al. (2009). Such concur-
rent measurements made it feasible to explore the stoichiom-
etry among the three photoproducts, i.e. the molar ratio
of CO2 : CO : NH+

4 (Rhν). Rhν was, however, wavelength-
dependent, since the shape of AQY vs. wavelength differed
among the three species (data not shown). To minimize the
varibility of Rhν , we derived a solar spectrum-weighted mean
AQY (8̄) using Eq. (5) (Zhang et al., 2006):

8̄ =

λ2∫
λ1

Qλ × 8λ × dλ

600∫
290

Qλ × dλ

. (5)

Qλ is defined in Sect. 3.3. The wavelength range of inte-
gration for the numerator is denoted byλ1 and λ2, being
290–500 nm for NH+4 , and 290–600 nm for CO2 and CO
(Bélanger et al., 2006; Xie et al., 2009). This normalization
reduced the AQY spectrum to a single value corresponding to
the solar insolation-normalized production of a compound in
the entire water column in which all solar radiation over 280–
600 nm was absorbed by CDOM. The calculated8̄ andRhν

are shown in Table 4. Both the CO2 : NH+

4 and CO : NH+

4 ra-
tios decreased from nearshore to offshore and increased ex-
ponentially withacdom,412 (Fig. 10) due to the opposing trend
between the AQYs of CO2 and CO and that of NH+4 with
respect toacdom. Rhν changed from 165 : 11 : 1 in the estu-
ary (Sta. 398, 694, 697) to 60 : 3 : 1 on the shelf (Sta. 391,
394, 691, 693) and 18:2:1 in the basin (Sta. 430, 640). This
Rhν pattern suggests differing mechanims of and/or envi-
ronmental control on CO2, CO, and NH+4 photoproduction.
Because the DOC : DON ratios for these stations fell into a
relatively narrow range of 26 to 37 (Fig. 10), DOM pho-
totransformation tended to enrich its nitrogen proportion in
neashore waters but to diminish it in offshore waters. Fi-
nally, as a reference to Sect. 3.3,8̄NH+

4
for Group 2 stations

(5.2× 10−7
±0.4×10−7 mol NH+

4 (mol quanta)−1) differed
from Group 1 stations (2.4× 10−7

± 0.8× 10−7 mol NH+

4
(mol quanta)−1) by the same factor (i.e. 2) as that based on
8NH+

4 ,330, further underscoring the validity of the SR-based
grouping of stations adopted in Sect. 3.1.
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Table 4.Comparision of8̄ among NH+4 , CO2 and CO.8̄ is defined

in Eq. (5) in the text.Rhν is the molar ratio of CO2 : CO : NH+

4 and
equal to8̄CO2 : 8̄CO : 8̄NH+

4
. n.d. = not determined.

Location Station 8̄ × 107 Rhν

CO2 CO NH+

4

Transect 390
391 270 9.1a 5.4 60 : 2 : 1
394 136 11 3.0 42 : 4 : 1
398 288 13b 2.9 88 : 4 : 1

Transect 690

691 207 9.1 5.0 46 : 2 : 1
693 187 13 2.9 56 : 4 : 1
694 222 20 2.3 99 : 9 : 1
697 253 22 1.1 230 : 19 : 1

Offshore
430 n.d. 17 5.3 3 : 1c

640 83 8.9 5.3 18 : 2 : 1

a No data are avaiable for CO at Sta. 391. Data shown are from Sta. 392, whose
salinity (27.90) andacdom,412 (0.10 m−1) values are similar to those of Sta. 391

(27.82, 0.11 m−1).
b No data are avaiable for CO2 and CO at Sta. 398. Data shown are from Sta. 396,
whose salinity (17.27) andacdom,412 (1.04 m−1) values are similar to those of

Sta. 398 (16.37, 1.15 m−1).
c Molar ratio of CO : NH+

4 only.

4 Conclusions

Photoammonification was detected in all samples collected
from both nearshore and offshore warters of the SE Beaufort
Sea. The rate of photoammonification was positively corre-
lated to CDOM absorbance and DON concentration. On an
absorbed-photon basis, photoammonification, however, was
inversely related to CDOM absorbance, leading to8NH+

4
in-

creasing seaward. The UVA (320–400 nm) component of the
solar spectrum dominated photoammonification at the sea
surface. The photochemical ratio of CO2 : CO : NH+

4 varied
from 165 : 11 : 1 in the estuary to 60 : 3 : 1 on the shelf and
18 : 2 : 1 in the basin, indicating a greater photoreactivity of
terrestrial DOM with respect to CO2 and CO than to NH+4 .
Coupled optical-photochemical modeling yielded photoam-
monification rates of 7.3 nmol l−1 d−1 (Mackenzie Shelf)
and 3.5 nmol l−1 d−1 (Canada Basin) at the sea surface and
9.2 µmol m−2 d−1 (Mackenzie Shelf) and 10.8 µmol m−2 d−1

(Canada Basin) in the entire water column. The modeled off-
shore NH+

4 photoproduction in August (8.0 µmol m−2 d−1)
was comparable to the missing DIN source that supported
primary production in the upper 10-m layer after nitrate
depletion. Annual NH+4 photoproduction in the SE Beau-
fort Sea in 2009 amounted to 1.4× 108 moles, of which
85 % was formed in the summer season when nitrate is usu-
ally depleted. Photoammonification under a completely ice-
free scenario, generating 2.1× 108 moles of NH+

4 per year,
could mineralize 6 % of the annual DON transported from
the Mackenzie River and provide a DIN source representing
11 % of the riverine DIN export and 2100 times the riverine

Fig. 10. Plots of photochemical molar ratios of CO2 to NH+

4 and

CO to NH+

4 vs. CDOM absorption coefficient at 412 nm. Data were

fitted to the equation ofY = 20.4exp(1.17X) for CO2 : NH+

4 (solid

line; r2
= 0.908, n = 8) andY = 0.90exp(1.53X) for CO : NH+

4
(dashed line;r2

= 0.968, n = 9). Superimposed is the plot of
DON : DOC ratio vs. CDOM absorption coefficient.

NH+

4 discharge. This light-initiated process thus plays a sig-
nificant role in nitrogen cycling and biological production in
the SE Beaufort Sea.

Future studies should resolve potential seasonality of
8NH+

4
and increase sampling resolutions, especially in off-

shore waters. A quantitative assessment of the temperature
dependence of photoammonification is particularly relevant
to this climatically sensitive region. Rising surface water
temperatures can directly increase the efficiency of photoam-
monification (Sect. 3.3), which would support additional pri-
mary production and perhaps lead to more riverine photoam-
monificable DON being used closer to the shore.

Supplementary material related to this article is
available online at:http://www.biogeosciences.net/9/
3047/2012/bg-9-3047-2012-supplement.pdf.
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