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Abstract. BIOSOPE cruise covered an oceanographic tran-
sect through the centre of the South Pacific Gyre (SPG)
from the Marquesas archipelago to the Peru-Chile upwelling
(PCU). Water samples from 6 depths in the euphotic zone
were collected at 20 stations. The concentrations of sus-
pended calcite particles, coccolithophores cells and detached
coccoliths were estimated together with size and weight us-
ing an automatic polarizing microscope, a digital camera,
and a collection of softwares performing morphometry and
pattern recognition. Some of these softwares are new and
described here for the first time. The coccolithophores stand-
ing stocks were usually low and reached maxima west of
the PCU. The coccoliths ofEmiliania huxleyi, Gephyrocapsa
spp. andCrenalithusspp. (Order Isochrysidales) represented
more than 30% of all the suspended calcite particles detected
in the size range 0.1–46µm (22% of PIC in term of calcite
weight). These species grew preferentially in the Chloro-
phyll maximum zone. In the SPG their maximum cell con-
centrations were recorded between depth of 150 and 200 m,
which is unusually deep for these taxa. The weight of coc-
coliths and coccospheres were correlated to their size. Large
and heavy coccoliths and coccospheres were found in regions
with relatively high fertility in the Marquises Island and in
the PCU. Small and light coccoliths and coccospheres were
found west of the PCU. This distribution is strongly related
to ocean chemistry in particular to alkalinity and to carbonate
ions concentration. The biotic (coccolithophores production)
influence on calcification is mainly driven at the local scale
(depth) whereas the abiotic (carbonate chemistry) plays its
most important role at the regional (horizontal) level. Here
94% of the variability of coccolith and coccosphere weight
can be explained by a change in 7 environmental variables.

Correspondence to:L. Beaufort
(beaufort@cerege.fr)

1 Introduction

Coccolithophores represent an important group of unicellular
algae. They are abundant both at high latitudes, where they
form large blooms detectable by satellites (Brown and Yoder,
1994; Balch et al., 2007), and at low latitudes in oligotrophic
(e.g. Okada and McIntyre, 1979; Winter et al., 1994) and
upwelling (e.g. Winter et al., 1994; Giraudeau and Bailley,
1995) areas. They are responsible for about half of the total
oceanic carbonate production (Milliman, 1993). Carbonate
precipitation, settling (including ballasting aggregates con-
taining organic mater), burial, and dissolution are key pro-
cesses of the oceanic carbon cycle (e.g. Archer et al., 2000).
Yet, despite their major role in the CO2 cycle, many aspects
of calcite production by coccolithophores are not well con-
strained. In particular the environmental impact on the secre-
tion of coccoliths are poorly understood because direct field
observations are scarce (Balch and Kilpatrick, 1996). Sev-
eral laboratory and mesocosms experiments have shown a
decrease in the production of calcium carbonate by coccol-
ithophores when atmospheric CO2 increases (e.g. Riebesell
et al., 2000; Engel et al., 2005). This is because an increase
of CO2 in the atmosphere causes a decrease of oceanic wa-
ter pH, with potentially dramatic consequences for oceanic
calcifiers (Feely et al., 2004; Orr et al., 2005). It is therefore
critical to determine how coccolithophores are calcifying in
today’s Ocean.

The South Pacific Gyre (SPG) is the most oligotrophic
and one of the least sampled ocean areas (Claustre and Mar-
itorena, 2003), particular for coccolithophores. The pri-
mary objective of BIOSOPE (BIogeochemistry and Optics
South Pacific Experiment) was to study the South Pacific
Gyre along a transect through the central part of the SPG
to the Peru-Chile Upwelling (PCU). The Isochrysidales rep-
resent, numerically, the most important order of coccol-
ithophores. We document, along this transect, variations of
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Fig. 1. Location map showing the transect and stations where water samples were taken at 6 depths, superimposed on the SeaWiFS composite
(November–December 2004) for surface Chlorophyll concentration. Inset: geographic location of the transect in the Pacific Ocean.

Isochrysidales standing stock, as well as the absolute abun-
dance of detached coccoliths and other small suspended cal-
cite particles. The calcite stock produced by Isochrysidales
was estimated using recently developed methods based both
on microscopy automation and the birefringence properties
of calcite. The size and weight of the coccospheres and coc-
coliths, was investigated in order to describe how Isochrysi-
dales were calcifying in contrasting natural trophic environ-
ments, in particular in relation to calcite saturation state.

2 1-Material and methods

2.1 Setting

The BIOSOPE cruise (26 October to 11 December 2004)
was conducted on board RV Atalante and covered a tran-
sect of about 8000 km in the South East Pacific. This en-
abled us to sample a full oceanic spectrum from the most
oligotrophic oceanic waters in the south Pacific gyre to the
fertile coastal waters of Chile (Fig. 1). Two features may ex-
plain why the broad South Pacific Gyre possesses the lowest
surface chlorophyll concentration estimated through satellite
imagery (0.019 mg Chl-a m−3). It has the largest pycnocline
depth recorded in the world ocean hydrological database
(>200 m), and the flux of atmospheric dust (e.g., iron) is ex-
tremely low (Claustre et al., 2008). In contrast, the PCU sys-

tem and the Marquesas archipelago (sub-equatorial area) are
bathed by nutrient richer waters.

The sea surface temperature and salinity recorded during
the cruise varied between 13◦ and 28◦C and from 34 to 36.5,
respectively, with higher values toward the west and lower
values toward the east.

2.2 Sampling

Twenty stations were sampled for biogeochemical parame-
ters (Claustre et al., 2008). At every station, samples for coc-
colithophores were taken depending on the position of the
Deep Chlorophyll Maximum (DCM). At most stations, wa-
ter samples were taken at 6 water depths: one sample at 5 m
(i.e., just below the surface), two samples between 5 m and
the DCM, one sample at the DCM, and two samples below
the DCM. The DCM is located near the pycnoline which is
considered as one of most important ecological boundaries in
the ocean (Longhurst, 1998). The sampling strategy thus en-
abled us to study coccolithophores above and below this sig-
nificant ecotone. In most cases, four liters of seawater were
filtered on a nitrate cellulose membrane (47 mm diameter)
having a pore size of 0.45µm. The membranes were quickly
dried and stored at room temperature. Once in the laboratory,
a quarter of each membrane was mounted between slide and
cover slip and fixed with Canada balsam, which rendered the

Biogeosciences, 5, 1101–1117, 2008 www.biogeosciences.net/5/1101/2008/



L. Beaufort et al.: Coccolithophores calcite production 1103

membrane optically transparent. Additionally a small frag-
ment of the filter was examined using a Hitachi 3000N Scan-
ning Electron Microscope (SEM).

At the last four stations of the transect (i.e. in the PCU) the
filter membrane diameter was 23 mm. Four liters of water
were still filtered so the amount of particles on these filters
was extremely high, leading to the possibility that signifi-
cant amounts of coccoliths were concealed by large particles.
Thus absolute abundances could not be reliably estimated for
these stations.

2.3 Coccolithophore determination and species counts

The composition of the coccolithophore assemblages was de-
termined using SEM at magnification of about 6000x and a
Polarizing Microscope (PM) Zeiss Axioscop at a magnifica-
tion of 1000x. Species abundances were estimated by count-
ing more than 300 coccospheres in counted field of views (70
on average). The number of field of view was never lower
than 10 even when coccolithophores were abundant on the
PM.

2.4 Grabbing frames

A Polarizing Microscope (LEICA DMRBE) with a 50X oil
immersion objective was used for automatic scanning of the
microscope preparations in cross-polarized light. Micro-
scope stage motions and focus were automated. For each
sample, a 2 Megapixel Spot Insight camera grabbed forty
fields of view. Each frame is 240×180µm2 with a pixel area
of 0.0225µm2. The amount of light going through the sam-
ple was held constant.

2.5 Analyzing calcite particles:

We developed a new software using routine LabView (Na-
tional Instruments) that automatically detects and measures
all birefringent particles from grabbed frames, hereafter
called “Particle Analyser”. It takes advantage of the fact
that some crystals are birefringent (they are illuminated in
cross-polarized light) whereas other crystals and the prepa-
ration background remain dark. There is a relation between
the thickness and the brightness of crystals, which can af-
ter calibration be expressed as a transfer function (Beaufort,
2005). TheParticle Analyseropens all the frames in a sam-
ple, counts the number of objects brighter than background,
and measures their surface. We placed a lower threshold
at 3 pixels (0.07µm2) to get rid off background noise; and
set an upper threshold at 74000 pixels (1683µm2 equiva-
lent to circular particles having a 46µm diameter; e.g., a
foraminifera). This upper-threshold is high enough to in-
clude all particles in the size range of nannoplankton, includ-
ing aggregates. The number (N) of particles ml−1 is calcu-
lated by

N=Nt · Sm/(Nf · Sf · Vf ) (1)
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Fig. 2. Transfer function of Grey Levels into calcite weight. The
x-axis represents the Grey Level value measure on average of one
pixel. The y-axis gives the calcite weight (in pg) put onto the mem-
brane per surface unit (here the area of one pixel). The line repre-
sents the best regression going through the origin.

whereVf is the volume filtered in milliliter,Sm is the sur-
face area of the membrane,Nf is the number of the grabbed
frames,Sf is the surface area of the grabbed frames, andNt

is the total number of particles analysed per sample.
TheParticle Analyserautomatically measures the “light-

ness” (L) of all frames as the sum of all grey levels (GL)
pixel values. A transfer function was established follow-
ing the protocol established in (Beaufort, 2005), but applied
to samples prepared with cellulosic membranes instead of
smear slides. In recalibrating we poured different (precisely
weighted) amounts of pure calcite powder into known vol-
umes of water. These suspensions were filtered on mem-
branes of the same type as used for the BIOSOPE samples,
and processed as described above. The relation betweenGL

and weight on the membrane now serves as a transfer func-
tion (Fig. 2).

w = 0.0013· GL (2)

wherew is the weight in pg per pixel (0.0225µm2).
The calcite weight ml−1 (W ) is calculated as following:

W = w · Np · Sm/(Nf · Sf · Vf ) (3)

WhereNp is the number of pixel per frame (=2 106). The
values are given in pg ml−1. Particulate Inorganic Carbon
(PIC) is often given in mmol CaCO3 m−3. PIC values for
the fraction<46µm (PIC<46µ) in this unit are obtained by
dividing W by 105.
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Four different sources of error may be associated with this
method:

1. The main source of error results from the patchiness of
the distribution of particles on the membrane. Only a
portion of the membrane is measured.

2. The error on the estimate of the light measure is ex-
tremely small and considered negligible.

3. High sediment loads on the membrane produce particle
aggregation and is a potential source of error (underes-
timation of the weight) but for the open ocean waters
investigated during BIOSOPE this problem did not oc-
cur.

4. Focus may be the cause of a small error on absolute
values. Frames out of focus were excluded from the
analysis.

The overall error associated with this method when dealing
with carbonated sediments is estimated at∼12% (Beaufort,
2005), although no estimate regarding the measurments of
PIC from water samples is available as yet.

2.6 Automated analysis of coccoliths and coccospheres:
taxonomic recognition and size analysis

Coccoliths and coccospheres were automatically detected by
SYRACO, a software developed in C++ at CEREGE (Doll-
fus and Beaufort, 1999; Beaufort and Dollfus, 2004). Based
on Artificial Neural Networks (ANN) SYRACO is adapted to
pattern recognition. In this study the ANN has been trained
by the SYRACO learning algorithm, on a training set com-
posed of two classes: (1) elliptical placoliths (essentially
Emiliania huxleyi, Gephyrocapsa oceanicaand other small
placoliths in the genusGephyrocapsaand Crenalithus; or
Reticulofenestrafor some authors), and (2) spherical coc-
cospheres smaller than 10µm in diameter bearing relatively
birefringent, elliptical placoliths having a size of about 1/2
to 1/4 of the coccosphere. The great majority of taxa hav-
ing these characteristics belongs to the Order of Isochrysi-
dales. The training set is a monospecific sample from the
Southern Indian Ocean with only coccospheres ofE. huxleyi.
However ANN has a large generalisation capability such that
the coccosphere recognition used here is not species specific.
Coccospheres from other orders (Syracosphaerales, Zygodis-
cales and Coccolithales) are generally not recognized by this
ANN.

Because of the large generalisation capability of the ANN,
a significant number of objects that resemble somewhat
the targeted pattern are also included in the specific output
frames. In the case of coccospheres, these foreign objects
are “manually” erased from the frame. For the coccoliths,
they are automatically eliminated from the analysis by a new
software developed in LabView.

This software, hereafter called “Coccolith Analyser”, au-
tomatically measures coccoliths and coccospheres. It reads
output frames where all the objects recognized as coccol-
iths are stored and analyses all of them. “Coccoliths Anal-
yser” is able to identify coccoliths based on 4 landmarks. If
it determines that an object in the frame possesses these 4
landmarks, then it identifies it as a coccolith. If, on the con-
trary, it determines that an object does not possess these 4
landmarks, it discards the latter. With “Coccolith Analyser”,
all objects incorrectly identified as coccoliths by SYRACO
are eliminated. In the case of coccospheres, all the objects
that were incorrectly identified as coccospheres by SYRACO
were erased manually with “Adobe Photoshop” from the
frames (we haven’t design yet a software capable to detect
true coccosphere).

To check the reliability of SYRACO’s in estimating the
abundance of coccospheres of Isochrysidales species in our
samples, we compared SYRACO’s data with estimates based
on direct counts of coccospheres using a polarizing micro-
scope. We found that the two (automated and manual) esti-
mates are highly correlated (R=0.95) (Fig. 3a). A slope of
2.2 could be interpreted as indicative that SYRACO misses
about half of the coccospheres, but this is not the case. This
slope reflects the fact that only few samples were taken at 4
stations (STB15 to STB18) located between 90 and 100◦ W
an area whereE. huxleyicoccospheres are extremely abun-
dant and often contiguous. SYRACO is not capable of de-
ciphering coccospheres in such groups. If the results from
these 4 stations are excluded, the slope of the regression
line is 0.98, indicating that the number of coccospheres of
Isochrysidales species recognized by SYRACO is the same
as recognized by direct human counts. Incidentally, this ex-
cellent fit confirms that only Isochrysidales are recognized
by SYRACO (the slope is 1.75 when the entire (including
not only the Isochrysidales but all the taxa) coccolithophore
assemblage counted by human is used for comparison with
SYRACO counts) (Fig. 3b). We estimated the abundance
of coccoliths by directly counting the number of coccol-
iths contained in more than 10 fields of view (=0.01 mm2)

in a total of 36 samples. Our estimates were then com-
pared with those obtained by SYRACO. The estimates of
coccolith abundance are significantly correlated for all sta-
tions (except STB15 to STB18), with a slope close to 1 and
a R>0.9. For stations STB15 to STB18 the abundance of
coccoliths was often>800 ml−1; aggregation of coccoliths
prevents accurate counts of coccolith number in a frame by
SYRACO. The abundance estimates reported in this paper
are those determined by SYRACO for all samples except for
those at Stations STB15 to STB18 for which manual counts
were established. Our preference for SYRACO counts is that
they are more representative of real values, counts being pro-
duced over a much larger area than is possible by humans.
SYRACO counts are also more reproducible than human’s
counts. It is important to note, however, that the patterns ob-
served in BIOSOPE are the same whether established solely
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Fig. 3. Relation between “human” and “automated” (SYRACO) counts of Isochrysidales coccospheres(A) and coccoliths(B). In red are
sample for 4 stations (STB15 to 18) where the density of Isochrysidales was too high (aggregation) for accurate automatic estimates. In blue
are reported the other BIOSOPE stations.

from manual or automatic processes.
TheCoccolith Analysermeasures the grey level of objects,

their diameter and surface, and tabulates the results. There is
a bias of 0.6µm in the measurement of the diameter of small,
and dim objects, such as coccoliths. This is because we apply
a minimum Grey Level threshold above background. This
threshold erodes 2 pixels of the periphery of dim objects.
Each pixel is 0.15µm, and 4 pixels are eroded in total when
the long diameter is measured. Thus we added 0.6µm to the
measurement of coccolith length to compensate for this au-
tomatic loss. Another small bias in the measurements of the
length of coccoliths ofE. huxleyiexists, the distal shield be-
ing not detected in its entirety in cross-polarized light. There-
fore the length ofE. huxleyipresented here are slightly un-
derestimated. We estimated this bias to a factor of 1.25 by
comparing measures from the Coccolith analyzer and from
SEM. The data presented here are uncorrected by this factor.

It should be noted that in the theoretical case of a pureE.
huxleyisample, the size distribution estimated by SYRACO
would be narrower that that estimated with theCalcite Anal-
yser. This is because SYRACO detects only well preserved,
well-oriented and isolated coccoliths whereas theCalcite
Analysermeasures all particles, including aggregated, bro-
ken, out of focus and tilted coccoliths.

2.7 Chemical and physical parameters

The physical and chemical parameters used for compari-
son here were measured in situ during the cruise and are
described in different papers in this volume. Temperature,
salinity, fluorescence (Claustre et al., 2008) and backscatter-
ing (Twardowski et al., 2007) were measured precisely at lo-
cation where water was collected for coccolithophores. Car-
bon chemistry was measured (Azouzi et al., 2007) at nearby
locations but not exactly at the same water depth. We have
selected the measurements available from the closest depths.

3 Results

3.1 Importance and composition of the Isochrysidales

Emiliania huxleyiand several species of the generaGephy-
rocapsaandCrenalithusrepresent all the calcifying taxa of
the marine Order Isochrysidales (de Vargas et al., 2007).
SYRACO has been trained to recognize the Isochrysidales
complex, which is therefore the focus of this paper. The
specific composition of Isochrysidales varied significantly
among BIOSOPE samples. Their variations have been stud-
ied in detail with both SEM and PM. East of Easter Island
(about 110◦ W) the Isochrysidales dominated the coccol-
ithophore community with relative abundance ranging from
60 to 100%. West of Easter Island the coccolithophore con-
centration diminished with the Isochrysidales representing

www.biogeosciences.net/5/1101/2008/ Biogeosciences, 5, 1101–1117, 2008
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The dots represent samples and the smooth lines show the stations
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40% on average of the coccolithophore community (Fig. 4).
Gephyrocapsa oceanicadominated the Marquesas area. Be-
tween 130◦ W and 100◦ W the relative abundances ofGephy-
rocapsaand Emiliania were variable with a low number
of Emiliania. From 100◦ W to the PCU,Emiliania domi-
nated the communities. In some samples it constituted al-
most 100% of the coccolithophores.Gephyrocapsa ericsonii
andCrenalithusalways formed a minor part of the coccol-
ithophore assemblages.

Because the version of SYRACO used in this study
was trained to recognize only the coccoliths of the Order
Isochrysidales, we relied on manual estimates for: 1) the
percentages of the Isochrysidales coccospheres in the coccol-
ithophores assemblages, and 2) the percentage of the various
species in the Isochrysidales assemblages. To estimate the
number of detached coccoliths of the different taxa, we com-
bined the number of Isochrysidales coccoliths with our es-
timate of the coccolithophores taxonomic composition pro-
duced manually. Our first order assumption is that the num-
ber of detached coccoliths per coccosphere is the same in
every species (which is not necessarily the case).

3.2 Spatial distribution of calcite particles

The concentrations of suspended calcite particles, and of
detached coccoliths and coccospheres of the Isochrysidales
Order showed very similar distribution patterns along the
BIOSOPE transect (Fig. 5): maximum concentrations were
found between 80◦ and 100◦ W, associated with the sub-
tropical front (Claustre et al., 2008)

The concentration in coccospheres of Isochrysidales was
generally low with an average of 11 ml−1 but it reached a
maximum of 350 ml−1 in the eastern part of the transect,
while the concentration of detached coccoliths ranged from
11 to∼2000 ml−1 with an average of 250. The concentration
in suspended calcite particles was on average 733 ml−1, and
the total weight of calcite per milliliter was 11 200 pg ml−1

(or PIC<46µ=0.11 mmol CaCO3 m−3). The corrected to-
tal weight of the Isochrysidales detached coccoliths and
coccospheres was on average 2224 pgml−1 (or 0.022 mmol
CaCO3 m−3), which represents 22% of the PIC<46µ. Large
aggregates that may be rich in coccoliths composed a large
part of remaining 78%.

The spatial distributions of coccospheres, detached coc-
coliths, and suspended calcite particles showed higher con-
centrations between 85◦ W and 100◦ W in the upper 80 m of
the water column.

The observed pattern of density distribution of calcite par-
ticles is confirmed by the study of backscattering properties
(Twardowski et al., 2007). The backscattering ratio (i.e. the
ratio of backscattering to scattering) depends on the size dis-
tribution of particle assemblages (high when dominated by
small particles and reciprocally) and on refractive index (high
for particles with high refractive index, like calcite). This ra-
tio approximately scales with the number of suspended cal-
cite particles and the PIC estimated by the “Calcite Anal-
yser” more specifically, it exhibits the two prominent scat-
ters of coccoliths at the exact same position than shown in
the present analysis, and confirms the relative “patchy” dis-
tribution of these biogenic particles.

3.3 Grain size distribution of suspended calcite particles,
detached coccoliths and coccospheres

Ninety five percent of the 416 000 suspended calcite parti-
cles analyzed from the BIOSOPE samples had a surface area
<20µm2 or a diameter<5µm (in the 0.1–46µm range).
Their size distribution was unimodal and slightly skewed
toward larger particles, with a mode at 3.2µm2 (Fig. 6a).
The distributions of detached coccoliths and coccospheres
was also unimodals with modes at 3.2µm2 and 40µm2,
respectively (Fig. 6a). Interestingly, the mode of the sus-
pended calcite particles was the same as that of the detached
coccoliths of Isochrysidales species. The number of de-
tached coccoliths (mostlyE. huxleyi,a few Gephyrocapsa
and rareCrenalithus) represented 1/3 of all suspended calcite
particles. At locations where coccoliths and coccospheres
were extremely abundant, for instance at 30 m at Station 18
which corresponded to an almost monospecific bloom ofE.
huxleyi, the distribution of calcite particles and of coccol-
iths/coccospheres were very similar (Fig. 6b).

The concentrations of coccoliths are significantly corre-
lated with the concentrations of calcite particles detected by
the Calcite Analyser(Fig. 7). The Isochrysidales taxa, and
in particularE. huxleyi,are the most important contributor
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C                     coccoliths/ml

I              Backscattering (c/m)
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 D                            length (µm)

                               coccosphere 
B                          diameter (µm)

                                 coccosphere

F                    weight (pg))

L       Saturation of calcite (Ωca)

J             Alkalinity (µmol kg-1)

K                Temperature (°C)

A                 coccosphere/ml

                                           calcite 
E                     particles/ml

G                     PIC (pg/ml)

                                         coccolith 
H                      weight (pg)

Fig. 5. Section along the BIOSOPE transect of(A) concentration in Isochrysidales coccospheres;(B) length of detached Isochrysidales
coccoliths (µm); (C) concentration of detached Isochrysidales coccoliths;(D) Average diameter of Isochrysidales coccospheres (µm); (E);
concentration in suspended calcite particles;(F) Average weight of detached Isochrysidales coccoliths (pg);(G) Total concentration of
suspended calcite particles (PIC);(H) cocolith weight;(I) Attenuation coefficient (processed as described in Claustre et al., 2008) (m−1);
(J) Alkalinity (µmol kg−1); (K) ; In situ temperature (◦C); (L) Saturation of Calcite (�Ca).
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Fig. 6. Size Distribution of area of coccoliths (red), coccospheres (green) and calcite particles (blue) in all samples(A) and in sample taken
at 30 m at Station 18(B).

to this correlation. The non-E. huxleyi Isochrysidales and
the non-Isochrysidales coccolithophores were less correlated
with the carbonate particle density (Fig. 7).Emiliania hux-
leyi dominated the assemblages where the coccolith density
and calcite particles were the highest, demonstrating thatE.
huxleyiwere a major source of fine suspended calcite parti-
cles in the open ocean.

3.4 Size and weight distribution and number of coccoliths
per coccosphere

The diameter and weight of the coccoliths and coccospheres
show the same spatial distribution (Fig. 5). In general,
both had higher values in the western part of the transect,
decreased progressively toward the east until they reached
their minima around 90◦ W, and slightly rose in the PCU
(Fig. 8). There were significant correlations (Fig. 9) be-
tween the average length of coccoliths and the average diam-
eter of coccospheres (r=0.85). The same was true for their
weights (r=0.88). There were also significant correlations
between the average of the weight and length of the coccol-
iths (r=0.95) and diameter of the coccosphere (r=0.94).

Assuming that the detached coccoliths have the same mor-
phological characteristics as the attached coccoliths on the
coccosphere, then the number of coccoliths per coccosphere
was obtained by dividing the average weight of coccospheres
by the average weight of the coccoliths. Doing so, we found
an average of 15 coccoliths per coccospheres with standard
deviation of 5. No clear pattern was found in the spatial dis-
tribution of that number.

3.5 Depth profiles

Morphometric and abundance data showed depth profiles
which are similar to depth profiles of chlorophyll concen-
tration. The maxima of abundance, weight, for both coc-
cospheres and coccoliths were generally found associated
with the chlorophyll maximum (Fig. 10). In consequence,
the concentrations in coccolithophores and coccoliths, their
weight and their size, were highest at shallow depth in the
upwelling area, and deep in oligotrophic area. For example
in the centre of the gyre, Isochrysidales taxa were most abun-
dant between 150 and 200 m.

4 Discussion

4.1 Abundance distribution

The coccosphere stocks estimated in the South East Pacific
were low, with a median value of 4000 cell l−1. The low-
est values were found at the centre of the South Pacific
Gyre (GYR station). However in the centre of the gyre and
at all stations, coccolithophores were continuously present
down to the deepest sample (200–300 m) where sufficient
light is remaining for the growth of some species (Claus-
tre et al., 2008). The average Isochrysidales stock at Sta-
tion GYR was 1250 cell per liter. This is equivalent to
375×106 cells m−2 in a 300 m deep water column; this value
represents only the stock of marine Isochrysidales which rep-
resent a small coccolithophore fraction (1/3). These data im-
ply that coccolithophore are in abundance even in the ex-
treme oligotrophic environments that we investigated. The
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coccolithophore stocks estimated in this study are in the same
range as previously reported for the more productive tropi-
cal Pacific, 1–240 cell ml−1 (Hagino and Okada, 2006), 0–
60 cell ml−1 (Balch and Kilpatrick, 1996), 1–100 cell ml−1

(Okada and Honjo, 1973; Ohkouchi et al., 1999), and 0–
60 cell ml−1 (Giraudeau and Beaufort, 2007). The highest
cell density ofE. huxleyi(240 cell ml−1) in the South Equa-
torial Pacific was reported in the Peru Upwelling (∼85◦ W–
∼2◦ S) (Hagino and Okada, 2006). This is equivalent to what
was found in BIOSOPE, where up to 350 cell ml−1 were ob-
served west of the PCU. The sample taken in the PCU on
smaller membrane does not permit us to estimate the abun-
dance of coccolithophores. One would nevertheless expect
even higher abundance in this area because higher numbers
of coccospheres ofE. huxleyiare generally reported in the
centre rather than outside of upwelling systems (Giraudeau
and Bailley, 1995) where their abundance can reach several
thousand of cell ml−1 (Mitchell-Innes and Winter, 1987).

4.2 Deep production of marine Isochrysidales

Coccolithophores are growing at the boundary of their great-
est depth habitat in the South Pacific Gyre. For example at
Station STB11,Florisphaera profundawas found between

200 and 300 m. In the gyre, the maximum abundance of
Isochrysidales occurred at about 120 m, i.e., deeper than usu-
ally found for coccoliths in oligotrophic area (e.g. Okada and
Honjo, 1973; Okada and McIntyre, 1979). The fact that coc-
colithophores calcify at depth greater than 100 m represents
a significant change from the proposed high-light niche ofE.
huxleyi (e.g. Nanninga and Tyrrell, 1996) and the observed
restriction of calcification to shallower waters than silicifica-
tion (Poulton et al., 2006). A possibility is that these cocco-
spheres were not living cells but the sinking remains of coc-
colithophores that grew at shallower depths. Several lines of
evidence argue against this: 1) the maximum abundances of
coccospheres coincide with the Deep Chlorophyll Maxima
(DCM) 2) the production in the upper photic zone is too low
to fuel the coccosphere higest number at the DCM which is
3 times larger than at the surface. This is particularly true for
Florisphaera profunda, which is found only below 200 m.
3) the community vertical structure is typical of oligotrophic
area, 4) it is interesting to note that the DCM is not only the
place of maximum abundance of Isochrysidales, but also an
area in which they secrete heavier coccoliths and have larger
cells. Why should a morphological change occur in dead as-
semblages during settling?
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scale in every picture) of typical Isochrysidales in 3 BIOSOPE stations.
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In conclusion, the system investigated can be considered
as an endmember of oligotrophic systems with the deep-
est chlorophyll maximum and the clearest waters ever re-
ported (Morel et al., 2007). The coccolithophores assem-
blage is typically adapted to these conditions with maximum
cell density in general closely associated with the DCM. Fur-
thermore it is very clear from pigment signature that be-
low the chlorophyll maximum and up to depths of 250 and
above, the dominant (sometimes the only) carotenoids is 19’-
hexnoyloxyfucoxanthin, the marker of prymnesiophyceae

(Ras et al., 2008, in their Fig. 11). This observation must
be integrated with the layer of high backscattering ratio (the
calcite marker) that is recorded at∼240 m (Twardowski et
al., 2007) at the GYR station.
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4.3 Implication of deep production for alkenone paleother-
mometry

When the temperature difference between the water surface
and the depth of maximum abundance of the Isochrysidales,
is calculated, it appears that for 1/3 of the stations, the dif-
ference is greater than 2◦C (Fig. 11). The Isochrysidales
are the producers of alkenones used in paleoceanography as
sea surface temperature (SST) proxy. Ohkouchi et al. (1999)
described some discrepancies between SST estimates from
North Pacific surface sediments and the observed SST at the
same locations attributable to the fact that alkenones were
produced in the DCM. Also, Conte et al. (2006) found some
differences between the alkenone calibration curve based on
surface sediments (Muller et al., 1998) and their calibration
based on mixed-layer water measurements. But these differ-
ences were essentially recorded at high latitudes in absence
of a DCM. Our results would indicate that it is may be exces-
sive to infer SST from an alkenone record core taken below
the South Pacific Gyre because alkenone would have been
produced far below the surface (there are no suitable sedi-
ments to establish such a record in the Central Southern Pa-
cific; Rea et al., 2006). But it has been shown that alkenones
are produced exclusively in the mixed layer depth, and above
the DCM in ALOHA Station in the oligotrophic North Pa-
cific Gyre (Prahl et al., 2005). Either Station ALOHA is dif-
ferent from the South Pacific gyre (SPG) whereE. huxleyi
was abundant above DCM, or the secretion of alkenones by
E. huxleyiis light dependent. In that case the deep produc-
tion of Isochrysidales observed in SPG would not temper the
SST reconstruction based on alkenones.
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4.4 Emiliania huxleyi: important calcite producer

The BIOSOPE PIC values are in the same range (0.05–
0.35 mmol m−3) as previously reported for the Equatorial Pa-
cific (Balch and Kilpatrick, 1996) if we exclude one value
from the latter study of 1.33 mmol m−3 in the open ocean
upwelling. One important finding of the present study is
a strong relation between the numbers of coccoliths ofE.
huxleyiand the number of suspended calcite particles (hence
PIC) (Fig. 7). The “cloud” of highest abundance of coccol-
ithophores (Fig. 5a,c) was dominated byE. huxleyi(Fig. 4);
it also was the place of highest PIC and of significant en-
hancement of backscattering (Fig. 5g, i).Emiliania has
been sometimes considered as one of the most important cal-
cite producers (e.g. Westbroek et al., 1993); but it has been
also suggested that it represents only an insignificant part
of the oceanic calcite production (Paasche, 2002; Ziveri et
al., 2007), because this species secreted one of the light-
est coccoliths (Beaufort and Heussner, 1999; Young and
Ziveri, 2000). The BIOSOPE transect covers the diversity
of trophic conditions potentially observable in open ocean
waters, we show that a large part of the fine calcite particles
is attributable to Isochrysidales coccoliths. Calcification in
the Tropical Pacific is very high, (similar the rate of photo-
synthesis) and the turnover times of calcite in the euphotic
zone ranges from 3 to 10 days (Balch and Kilpatrick, 1996).
These high turnover rates of calcite induce a high ballast-
ing of organic matter by carbonate particles and a decrease
of PIC possibly associated with a depletion of Ca++ ion in
the euphotic zone (Balch et al., 2007). Because of the high
abundance of detached coccoliths and of coccospheres, the
ballasting due toE. huxleyicoccoliths must have been par-
ticularly efficient around 90◦ W–30◦ S. Ballasting could also
have an effect on the alkalinity of the surface water. It is
interesting to note that the area of highest standing stock of
coccoliths present also has particularly low alkalinity. An
inverse relation exists between alkalinity and PIC (Fig. 12),
which is indicative of the effect of calcification on ocean sur-
face alkalinity.

It is also interesting to note that the highest coccolith den-
sity was found in a scatter at depth greater than 30 m, the
depth limit of detection of coccoliths by satellite. Hith-
erto coccolith blooms detected by satellite are always in re-
gions of shallow organic production (high latitudes, con-
tinental shelves, and upwelling zones) (Brown and Yoder,
1994; Balch et al., 2007), therefore, the calcite density of this
scatter will be been largely underestimated, if ever detected,
by satellite imagery.

4.5 Weight and size relation between coccolith and cocco-
sphere

An interesting aspect of this study were the fact that there
is a close relationship (r=0.65) between the diameters of the
Isochrysidales coccoliths and coccospheres (Fig. 8). A factor
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Fig. 12. Relation between the total weight of calcite particles and
the total alkalinity.

of about∼2.4 (or∼1.9 taking into account the measurement
bias for the coccolith length) can be used to estimate the di-
ameter of a coccosphere from the length of a coccolith. Also
the number of coccoliths per coccosphere is 15 on average
without variations throughout the BIOSOPE transect. If the
same relations were found elsewhere, these values would be
useful in paleoceanographic studies for estimating the num-
ber and size of the cells of marine Isochrysidales from the
number and length of their coccoliths.

4.6 Calcification, cell diameter and carbonate chemistry

The most calcified Isochrysidales are found in the high fer-
tility zones of the Marquesas area and Peru-Chile Upwelling
(PCU) (Figs. 5 and 8). Also we have shown that the max-
imal weight of both coccospheres and coccoliths are gener-
ally located in the DCM, which is close vicinity of the nitr-
acline (Raimbault et al., 2008). These two observations may
indicate that coccolithophores secrete more calcified coccol-
iths in higher fertility environments. This is in agreement
with recent culturing and mesocosms experiments showing
that E. huxleyiis more calcified in waters rich inP andN

in batch cultures (Beaufort et al., 2007) or after addition
of nutrients in mesocosms (Engel et al., 2005). However,
these results contrast with those discussed in Paasche (2002).
In BIOSOPE, the weights of the coccospheres and the coc-
coliths were weakly correlated with chlorophyll content and
with stock of coccolith and coccosphere. Therefore other en-
vironmental factors than fertility or productivity might influ-
ence the calcification of coccolithophores.
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The lightest coccoliths and coccospheres were recorded
between 80 and 95◦ W, which is also exactly the place of the
lowest alkalinity values in the upper 300 m of the BIOSOPE
transect (Fig. 12). The concentration in carbonate ion was
also particularly low in that area. These low values could
be responsible, in part, for the low calcification of Isochrysi-
dales cells. But this does not mean their growth was limited
in such conditions because it is the place of highest concen-
trations of Isochrysidales coccoliths. In contrast, significant
precipitation of calcite byE. huxleyi, revealed by highest PIC
and coccolith concentrations, may have the effect of decreas-
ing the dissolved carbonate concentration and the alkalinity
of this area. Similarly, it has been recently suggested (Balch
et al., 2007) that high PIC turnover such as recorded in the
tropical Pacific, induces a depletion of calcium ion in the
photic zone as a response of losses of PIC ballasted particles.
We found a significant (R=0.62) reverse logarithmic correla-
tion between the concentration of coccoliths and alkalinity.
Significant linear positive correlation exists between alkalin-
ity and the weight of coccolith and coccospheres (R=0.84
andR=0.85 respectively on the station averages orR=0.59
and R=0.74 respectively on all samples) (Fig. 13c and i).
This highlights the likely fundamental importance of alka-
linity on calcification. Except in the 3 upwelling stations,
carbonate concentration and calcite saturation state appears
to also share a strong influence on the coccolith and cocco-
sphere weights (Fig. 13a, b, g and h). The partial pressure of
CO2 as well as pH does not appear to have significant impact
on the degree of calcification of coccospheres and coccoliths
(R<0.03) (Fig. 13d, e, j and k). This could be see as contra-
dicting with previous findings from culture and mesocosms
experiments that predict a decrease of calcite production with
increasing concentration of CO2 (Riebesell et al., 2000; En-
gel et al., 2005). Recent culture experiments show that an in-
crease of CO2 may have a positive effect on calcification of
E. huxleyi(Iglesias-Rodriguez et al., 2008) and other species
(Langer et al., 2006). These experiments involve not only
changes in CO2 and pH, but also carbonate chemistry in very
different ways depending on how the experiment was con-
ducted. Our findings stress the importance of the entire car-
bonate system in the calcification of Isochrysidales.

The strong dependence of the concentration of carbon-
ate ion on the coccolithophore calcification, has been re-
cently illustrated by comparing Baltic and Black seas: the
absence of coccoliths ofE. huxleyiin the Baltic Sea result
from low carbonate saturation states particularly during the
winter (Tyrrell et al., 2008). In a comparison of numeri-
cal simulation and observed data from seasonal blooms in
the Bering Sea, it has been shown thatE. huxleyiproduction
benefits greatly from an increase in the concentration of car-
bonate ion in the surface water resulting from the increase in
phytoplankton production (Merico et al., 2006). These au-
thors hypothesized that in a zone of seasonal blooms,E. hux-
leyi would calcify more after a spring bloom in response to
the increase in carbonate ion concentration. This hypothesis

may explain why the heaviest coccospheres were observed
in the eutrophic and mesotrophic areas of the BIOSOPE ex-
periment. The least calcified Isochrysidales were found at
the subtropical front in the highest coccosphere abundance
zone of the BIOSOPE experiment. Because it is not a highly
productive area, the production of coccoliths may have de-
creased the carbonate ion concentration, making calcification
more difficult forE. huxleyi.

Multiple regression, applied to the weight of coccoliths
or coccospheres with seven environmental parameters (total
alkalinity, concentration of O2, CO3, and OH, temperature,
salinity, and saturation of calcite (�Ca)), shows high corre-
lations: R=0.97 (0.75) and 0.97 (0.82) respectively for the
station averages (all samples) (Fig. 13f and l). The fact that
the correlations are relatively less significant for the entire
sample set than for the station average results not only from
noise but also from the fact that at every station the maximum
calcification was found at the maximum of coccolithophore
density in the DCM (Fig. 10 and discussion above). There-
fore the depth profiles of weight do not follow the carbon-
ate chemistry profiles. The biotic (coccolithophores produc-
tion) influence on calcification exist mainly at local scale
(depth) whereas the abiotic (carbonate chemistry) plays a
more important role at regional (horizontal) scale where 94%
of the variability of coccolith and coccosphere weight can be
explained by the change in these 7 independent variables.
An important finding is that the degree of calcification of
Isochrysidales strongly depends on environmental parame-
ters. This relation was found at the ”order” level rather than
at the species level, suggesting that the specific composi-
tion of Isochrysidales could be related to carbon chemistry
of the water. For example the fact thatG. oceanicadom-
inates around the Marqueasas area could be related to the
higher alkalinity of this area that presents an advantage for
this relatively highly calcified species.

5 Conclusions

In most of the BIOSOPE stations the coccolithophore stand-
ing stocks were low, except in the vicinity of Peru Chile
Upwelling system (80 to 100◦ W), where the Isochrysi-
dales were highly abundant at mid photic zone depth (up to
350 000 coccospheres per liter between 30 and 60 m). This
low abundance has been also reported in other studies con-
ducted in the Tropical Pacific. In the South Pacific Gyre coc-
colithophores are rare at the surface but grow over the entire
0–300 m water column. The Isochrysidales coccoliths com-
pose a significant fraction of PIC. The area of highest coc-
colithophore standing stock (80 to 100◦ W) here corresponds
to the place of lowest alkalinity. There is a close relationship
between the diameter of the coccoliths and length of the coc-
cospheres of Isochrysidales. The most calcified Isochrysi-
dales were found in the Marquesas area and in the Peru-Chile
Upwelling (PCU) and the least calcified were found west of
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Fig. 13.Correlations between carbonate ion concentration(a, g), calcite saturation state(b, h) alkalinity (c, i) pCO2 (d, j), pH (e, k) and the
weight of Isochrysidales coccoliths (a, b, c, d, e) and coccospheres (g, h, I, j, k), and between observed and estimated weight of Isochrysidales
coccoliths(f) and coccospheres(l). The entire suite of sample is represented in red, and the Station averages are represented in blue. The
weights were estimated with the following equations:

Coccolith weight= 3.265+ (0.075· Alkalinity) − (0.040· [O2]) − (0.380· Temperature) − (4.557· Salinity) + (0.207· [CO3])

−10.178.�Ca) + (2.268· [OH]) (1)

Coccosphere weight= −1001.222+ (1.980· Alkalinity) + (0.078· [O2]) + (4.448· Temperature) − (102.652· Salinity)

−(0.952· [CO3]) − (31.654.�Ca) + (4.864· [OH]). (2)

Those equations have been obtained by performing multiple regressions between these parameters and coccospheres and coccolith weight
with the Station averages.
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the PCU where the abundance of coccosphere is highest. The
regional variability in the degree of calcification of Isochrysi-
dales (weight of their coccoliths and coccospheres) strongly
depends on environmental parameters (essentially the car-
bonate chemistry and the temperature). In area of high alka-
linity the Isochrysidales secretes the heaviest coccospheres.
The weight of Isochrysidales’ coccoliths and coccospheres
can be predicted at 94% from a set of 7 abiotic components.

Coccolithophores occur at great depths in the South Pa-
cific Gyre: the maximum abundances of Isochrysidales were
found between 150 and 170 m. The Deep Chlorophyll max-
imum is not only the place of maximum abundance of
Isochrysidales, but also an area in which they secrete heavier
coccoliths and have larger cells. Given the spatial extension
of subtropical gyres, the role of coccolithophore in mediating
particulate flux in these extreme oligotrophic waters may be
significant when dealing with global ocean estimates.
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