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[1] The influence of clay and water content in the electrical conductivity of rocks and
soils has been experimentally established and is expressed by simple empirical laws:
the Archie’s law and the addition law between volume water conductivity and surface
shale conductivity. Two independent numerical modeling techniques, the moment
method and the finite difference method, are presented here and are used, first, to verify
the agreement between Maxwell’s equation based theoretical approaches and the
empirical laws and, second, to begin to investigate for a possible effect of the
microscopic geometry over macroscopic conductivity. A good agreement between
simulation results and Archie’s law is obtained when both randomly distributed isotropic
and elongated microvolumes of conducting water are considered and a slight difference
appears between these two microstructures. For low clay contents in clay-dispersed
media, the clay-associated conductivity is shown to be proportional to a specific clay
area, which is in good agreement with the addition empirical law. INDEX TERMS: 3914

Mineral Physics: Electrical properties; 0619 Electromagnetics: Electromagnetic theory; 0644

Electromagnetics: Numerical methods; 0999 Exploration Geophysics: General or miscellaneous;
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1. Introduction

[2] Electrical conductivity plays a determinant role in two
complementary aspects of the exploration of the ground:
surface measurements and well-logging measurements. This
property exhibits the widest range of variation among all the
properties used in exploration geophysics. It is directly
related to the water content and thus constitutes an indirect
but quantitative source of information about the presence of
fluids and the transfer properties of the ground.
[3] Interpretation of electrical or electromagnetic (EM)

surface measurements as well as resistivity logging corre-
sponds to a two step processes: first, the spatial variations of
the electrical resistivity value must be determined and
second, a geological model deduced from the physical mean-
ing of this property and its variations must be proposed. To
perform this second step much experimental and theoretical
work has been undertaken over the past seventy years [Serra,
1979; Keller, 1988]. Experimental studies established empir-
ical laws that describe the role of water and clay content.
They show that resistivity of porous, water-saturated clean
rocks follow Archie’s empirical law, namely [Archie, 1942],

F ¼ sw
s

¼ aj�m ð1Þ

where F is called the formation factor, s is the bulk
conductivity, sw is the conductivity of the water filling the

pores, j is the porosity, a depends on the lithology and lies
between 0.6 and 2.0 [Keller and Frischknecht, 1970] and m
is the cementation or tortuosity factor which depends on the
shape of the pores and of their connections, it is not far from
2.0. In unsaturated rocks, the gas volumes play the same
role as the solid volumes and the product (j Sw) replace j in
equation (1), Sw is the water saturation.
[4] In presence of fine grains, a surface conductivity

corresponding to the displacement of the external counter
ions of the grain-surface double layer has to be considered.
In a series of experiments undertaken in petroleum industry
on oil-bearing shaly sands [Waxman and Smits, 1968]
concluded that the bulk conductivity of the rock is the
sum of the water volume conductivity and of the shale
surface conductivity. They fitted their observations with the
empirical formula:

s ¼ 1

F*
sw þ BQvð Þ ð2Þ

where s is the bulk conductivity, sw the water conductivity,
B a coefficient, Qv the cation exchange capacity and F* the
formation factor in shaly sand. Other studies have
confirmed the simple summation of the two types of
conductivities [Johnson and Sen, 1988].
[5] In soil studies the role of both volume conductivity of

water (soil solution), sw, and surface conductivity of fine
grains, ss, was also recognized [Rhoades et al., 1976].
Again the bulk conductivity corresponds to their sum. The
volume conductivity depends on the soil solution conduc-
tivity and on the volumetric free water content, q, through a
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dimensionless ‘‘transmission coefficient’’, T, the empirical
expression of which is T = aq + b, a and b being empirical
constants. The final expression is thus:

s ¼ sw aq2 þ bq
� �

þ ss ð3Þ

and it is not different from that used for rocks (a = 1 and
b = 0).
[6] Others experiments are in agreement with these for-

mulas, and the general conclusion for large series of earth
material are the followings: (i) the bulk conductivity is the
sum of the water volume and clay surface conductivities, (ii)
the exponent of the water content in the formation factor is
not far from �2.
[7] Various theoretical works have been performed to fit a

physical model with the previous empirical laws. As for the
dielectric permittivity, most theoretical models can be
gathered in two groups: effective medium approximations
and statistical models.
[8] In the first group, inclusions, representing either pores

or solid grains, are embedded in a uniform matrix [Maxwell-
Garnett, 1904; Bruggeman, 1935; Sen et al., 1981; Men-
delson and Cohen, 1982; Bussian, 1983; Sen and Chew,
1983; Madden and Williams, 1993; Chelidze and Guéguen,
1999]. Models of partly molten upper mantle refer to this
group [Waff, 1974; Glover et al., 2000] as well as hydro-
carbon clean formations where the rock matrix conductivity
can be assumed to be negligible. In this group, although the
coupling between inclusions (i.e. EM interactions) is
roughly approximated, resulting analytical expressions of
the macroscopic effective conductivity depend on porosity
and inclusion shape [De Kuijper et al., 1996] and Archie’s
law is derived for granular media [Sen et al., 1981;
Mendelson and Cohen, 1982].
[9] In the statistical approach, the medium is considered

as a three dimensional network of resistors and/or capacitors
[Dullien, 1992]. Following this approach, the path of an
electric charge in the network is a function of the volume
fraction of the components [Madden, 1976; Suman and
Knight, 1997]. Jonas et al. [2000] have attempted to
introduce a more realistic description of porous medium
by using its statistical properties. Rothman [1988] and Küntz
et al. [2000] applied an analogy with gas flow in porous
media where the electrical conductivity is described by the
motion of particles over a lattice with different sets of
collision rules. All results lead to power law relationships
between formation factor and porosity in fair agreement
with Archie’s law. Other models were also proposed: in the
work of Herrick and Kennedy [1994], the electrical con-
duction occurs through small tubes of nonuniform section
and complex paths and Adler et al. [1992] used a numerical
finite difference scheme to solve the Laplace equation in an
artificial medium which shares same statistical properties as
the real sandstone medium.
[10] Finally multiple different modeling methods have

shown that they can simulate the Archie’s law response
for rocks and it seems difficult to extract the details of
the distribution of water in a rock from macroscopic
measurements.
[11] The role of grain surface conductivity has been

theoretically studied by Revil and Glover [1997, 1998].
Revil et al. [1998] developed an electrical conductivity

equation based on Bussian’s model and accounting for the
different behavior of ions in the pore space. Electrical
conductivity calculated with this equation is favorably
compared with published data. This theoretical equation
based on a differential effective medium theory does not
allow distinguishing different modes of clay distribution at
the microscopic scale, however.
[12] The approach we adopted hereafter is based on

numerical solutions of Maxwell’s equations written at the
microscopic scale. It allows: (i) the EM coupling between
the different components to be treated without assumptions,
and thus constitutes a physics-based method (ii) to inves-
tigate the role of water and clay content and distribution in
the bulk electrical conductivity.
[13] Following such an approach to understand the phys-

ical meaning of the empirical relation between the relative
dielectric permittivity value and the water content, we under-
took numerical modeling [Tabbagh et al., 2000] and estab-
lished that to fit the values and the curvature of the empirical
curve the elementary volumes of water become more elon-
gated as the water content increases. In a similar way, we
present here an attempt to apply physics-basedmethods to the
modeling of electrical conductivity (or resistivity) of hetero-
geneous media. Both moment and finite difference methods
are used. They are presented in the two first parts of this
paper. Our objective is to know if these numerical models of
very simple microstructure are in accordance with the empir-
ical laws and, in the case of clean rocks, to observe if the
microscopic geometry of water cells may influence the bulk
conductivity. In presence of clay, see the fourth part below,
our aim is to check that a microscopic dispersed distribution
of clay corresponds to a macroscopic addition law.

2. Modeling Using the Moment Method

[14] The moment method (MoM) was proposed by Har-
rington [1968] in EM. It establishes the equivalence bet-
ween the presence inside a given volume of heterogeneity of
differing properties and the presence of a ‘‘secondary’’
source of current. It has been used widely in EM geophysics
to model 3D structure representing conductivity, magnetic
susceptibility or permittivity contrasts, and was also
extended to the static case [Dabas et al., 1994]. In the
present modeling, we follow this extension.
[15] Consider a body of electrical conductivity sb located

in a uniform medium of electrical conductivity s0, one notes
(E, H) as the total EM field and (EP, HP) as the ‘‘primary’’
field, the field that would exist in the absence of the
heterogeneity. Both fields satisfy the Maxwell’s equations,
and their difference, the secondary field (E� EP,H�HP) =
(Es, Hs) satisfies:

r� E � Ep

� �
¼ 0 ð4Þ

r � H �Hp

� �
¼ s0 E � Ep

� �
þ sb � s0ð ÞE ð5Þ

[16] In equation (5), the term (sb � s0)E associated to
the heterogeneity appears as a secondary current source.
Thus, the heterogeneity can be considered as equivalent to
the presence of a secondary current density J = (sb �
s0)E, proportional to the total field. In the presence of a
series of different bodies, a series of corresponding sources
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will be considered. The intensity of each source depends
on the total field E and thus all the sources are coupled
together. Equation (5) is identical to that derived in low
frequency EM [Raiche, 1974; Hohmann, 1975; Cauter-
mann et al., 1979; Tabbagh, 1985] and (4) is specific of
the static case.
[17] To solve the coupled equations (4) and (5), for

secondary fields (Es, Hs) the potential vector A is defined
by:

H s ¼
1

m0
r� A ð6Þ

Substitution of (6) into (5) results in:

Es ¼
1

m0s0
r� r� Að Þ � J

s0
ð7Þ

From equation (4), one obtains: Es = �rU, and by
introducing the Lorentz gauge, r � A � m0s0U = 0,

r � A� m0s0U ¼ 0;
r2A ¼ �m0J

ð8Þ

[18] The solution of equation (8) which is the potential
vector created by the heterogeneity at a point r can thus be
expressed as the following integral:

A rð Þ ¼ �m0

ZZ
V

Z
J r0ð ÞeG r � r0ð Þdt0 ð9Þ

where V is the volume of the heterogeneity and eG is the
dyadic Green tensor (with eG r � r0ð Þ ¼ G r � r0ð Þ~d where ~d is
the dyadic unity tensor, G r � r0ð Þ ¼ 1

4pjr�r0 j inside a homo-
geneous medium). From equations (7) and (9), the
secondary field inside the heterogeneity is obtained:

Es rð Þ ¼ � 1

s0

ZZ
V

Z
J r0ð Þr � r� eG r � r0ð Þ

h i
dt0 � J

s0
ð10Þ

and outside one has:

Es rð Þ ¼ � 1

s0

ZZ
V

Z
J r0ð Þr � r� eG r � r0ð Þ

h i
dt0 ð11Þ

[19] To convert integral equation (10) into a set of
algebraic equations, we divide the volume of the body
(or of the bodies) into N cubic cells and assume that the
total electrical field and conductivity are constant in each
cell. Then, the integral (10) can be approximated by a
finite summation:

E rð Þ�Ep rð Þ ¼�
XN
n¼1

snb � s0
s0

� 	ZZ
Vn

Z
r� r� eG r � r0ð Þ

h i
dt0En

� sb rð Þ � s0
s0

� 	
E rð Þ ð12Þ

Figure 1. Median and quartile values of the formation factor when changing the number of cells (MoM
calculations).
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[20] In more concise notation, the total electric field at
the center of cell m (of which the center is located at r) is
given by:

Em
s ¼ �

XN
n¼1

snb � s0
s0

� 	
�mn � En � smb � s0

s0

� 	
Em ð13Þ

with the integral �mn ¼
R R R

Vn
r� r� eG r � r0ð Þ

h i
dt0 which

is numerically computed.
[21] Therefore, from equation (13), a system of 3N linear

equations with 3N unknowns which are the three components
of the total electrical field in the center of each elementary cell
(i.e. Ex, Ey and Ez) can be written in matrix form:

Ep ¼ aEE � E ð14Þ

[22] In the matrix aEE, each term represents the coupling
between one component of the electric field in one cell to
one component of the electrical field in another (or the
same) cell. When J is known, the effect of the heterogene-
ities at a point outside the volume is calculated by a simple
integration (11) of the effect of each secondary source.
[23] The MoM we apply hereafter does not contain

physical approximations in the calculation, in addition it
can allow a clear definition of the different assumptions: (i)

by assuming E = Ep, the Born’s approximation, the effects
of each cell are simply added which corresponds to the
simple mixing law, (ii) considering only the diagonal
coefficients of the matrix and neglecting the others, the
so-called ‘‘localized nonlinear approximation’’, corresponds
to the assumption used for inclusions in effective medium
models [Maxwell-Garnett, 1904].
[24] In the presentation of the results, one defines the bulk

conductivity as the conductivity of an equivalent homoge-
neous material to generate the same external effect as is seen
from the heterogeneous material.

3. Modeling Using the Finite Difference Method

[25] The finite difference (FD) approximation can be used
to model the response of direct current (DC) measurements
to 3D conductivity distribution of the ground [Dey and
Morrison, 1979]. FD is widely used in physical properties
modeling because it generally allows both sufficient accu-
racy (typically 5%) and speed of the calculation. Then,
several authors have changed the original algorithm in order
to increase its accuracy—for example with more appropriate
boundary conditions [Zhang et al., 1995]—or to decrease
the time calculation—with adequate linear system solving
[Zhang et al., 1995; Spitzer, 1995].

Figure 2. Relationship between formation factor and porosity for a random distribution of water cells,
MoM calculation (crosses), FD calculation (circles).
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[26] The DC forward problem consists in solving the
following equation:

r � s rð ÞrU rð Þð Þ ¼ Id r � rSð Þ ð15Þ

where s is the conductivity distribution, U the potential
function, I the intensity of the source and rS the source
location.
[27] Our 3D modeling algorithm, based on the FD

approximation, used the Dey and Morrinson grid geometry.
With this scheme of discretization, the equation is trans-
formed in the following linear system:

C � v ¼ i ð16Þ

where C is the capacitance matrix, v the vector containing
the potential at the nodes and i the source vector. The C
matrix is a sparse matrix, which only contains 7 nonzero
terms in a row. The terms of the C matrix only depend on
the grid geometry and on the conductivity distribution.
[28] This fact allows the use of a very efficient way of

storage called row-indexed compact storage [Press et al.,
1992]. Moreover, to solve the system, the conjugate gra-

dients or more generally the biconjugate gradients proce-
dure is well adapted. This method consists in the
minimization of the function:

f vð Þ ¼ 1

2
vT � C � v� iT � v; ð17Þ

where the matrix C is in general nonsymmetric and
nonpositive.
[29] To model bulk conductivity, we consider a cubic

volume divided in small elementary cells attributed either to
solid or to water. Sources are placed on the whole surface of
two sides (left-right, front-back, or top-bottom) of the cubic
volume. Then, the potential difference between both sides
of the volume is calculated for the homogeneous (rock
without water ! �U0) and heterogeneous (rock with water
! �U) cases.
[30] Thus, we have the following equations:

�U0 ¼
I � l
s0 � S

and �U ¼ I � l
s � S ð18Þ

where l is the side of the cubic volume and S the surface
of a side of the cubic volume. Finally, the apparent

Figure 3. Relationship between formation factor and porosity for elongated volumes of water, MoM
calculation (crosses), FD calculation (circles).
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conductivity of the cubic volume can be defined by the
following term:

s ¼ s0
�U0

�U
ð19Þ

4. Clean Rocks

[31] The application of Maxwell-equation based model-
ing tends toward to answer two questions: (i) are the
theoretical results in agreement with experiment based
Archie’s law? and (ii) is there any other information that
can be obtained from this theoretical approach and that was
not already observed in experiments ? In order to evaluate
the reliability of numerical calculations we compare, when
possible, the MoM and FD results. As they correspond to
two totally independent principles and numerical processes,
the agreement between both confirms the absence of error in
numerical codes and the differences that remain between the
results sets the limits of numerical approaches.
[32] One considers a two-phase model where solid and

water cubic elementary cells are randomly mixed in a cubic
volume, the number of water cells being proportional to j
and the number of solid cells to (1 � j). The random
character of the elementary cell distribution is achieved by
considering the median of 27 different trials of the cell
positions. This solution allows to obtain coherent results
even with a quite small number of cells. In Figure 1 are
presented the MoM results obtained with 343, 1000, 3375
cells for a 10�11 S m�1 solid conductivity and a 0.05 S m�1

water conductivity, which respectively correspond to that of
a pure silicate mineral and that of a common fresh water in
the vadose zone. After this comparison we adopted a 1000
cells volume.
[33] In Figure 2 are presented the results for a 0.05 S m�1

water conductivity and a 5 10�4 S m�1 solid conductivity,
this last value was chosen to avoid difficulties generated by
too high a resistivity contrast in FD calculations (but a
discussion of the best value to consider for solid fraction
resistivity is out of the scope of the present paper). Except
for high porosities, the agreement between the two calcu-
lation methods is good. The curve j(F) present a curvature
and its slope decreases as the formation factor increases, this
decrease is due to the limitation introduced by the solid
resistivity value which limits to 100 the maximum value of
F (this limit corresponds to the ratio of 0.05 S m�1 water
conductivity value over 5 10�4 S m�1 solid conductivity
value). The existence of this curvature, here established
from theoretical modeling, merits to be underlined while it
would be difficult to obtain experimentally because it is not
possible to change the porosity of a rock sample without
changing also other parameters (for example, the pore
lattice structure). Nevertheless the present results are not
in disagreement with Archie’s law, at the two ends of the
usual rock porosity range: a 0.21 porosity value corresponds
(with the MoM method) to F = 33 the exponent is thus
�2.28 and for a 0.066 porosity value one has F = 81 which
corresponds to �1.62 exponent.
[34] To test a different pore arrangement, one considers

elongated volumes of water of which length increases as the
porosity increases. One first starts with a deal of randomly

Figure 4. Differences in formation factor values between randomly located water cells and elongated
volumes of water (MoM calculations for ss = 10�11 S.m�1).
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distributed water cells corresponding to j = 0.05 and then
the porosity was increased by locating other water cells
beside them in x, y or z directions where they replace solid
cells. In Figure 3 are presented the medians of the results for
27 original trials using MoM (crosses) and FD (circles). The
agreement between both methods is here better, for the
middle porosity range the values of F is again comprise
between F = j�1.5 and F = j�2.5. The lower values of F
may correspond to a better connectivity. When considering
the MoM results for a 10�11 S m�1 solid conductivity the F
values are also slightly different (Figure 4).
[35] The microscopic arrangement of cells do have a non

negligible influence over the bulk conductivity even is this
effect is more limited than for the relative dielectric permit-
tivity case [Tabbagh et al., 2000].

5. Media With Clay

[36] The presence of clay considerably modifies the bulk
conductivity of natural media and thus the interpretation
that can be proposed for conductivity data. The clay
mineralogy, the clay content and the mode of distribution
in the formation have different effects over the conductivity.

They drastically change its in-phase value and generate an
out of phase induced polarization response. In this part, we
focus on media with clay for which electrical in-phase
conductivity follows the empirical addition law (equation
(2)) established by Waxman and Smits [1968] for shaly
reservoir rocks and validated by Rhoades et al. [1976] for
clayey soils. These media show three features:
1. Clay content is limited, typically lower than 10 wt%.
2. However, the macroscopic conductivity is drastically

changed by the presence of clay.
3. Clay is distributed in a dispersed way. In these media,

clay exists as small particles inside the pore space between
coarser solid grains and/or may adhere and coat sand grains.
Therefore, the comparison with empirical addition law is
restricted to particular water-solid-clay systems that exist
especially in shaly sedimentary rocks and soils.
[37] Considering the particular mode of clay distribution,

clay cells are modeled with a special type of cells (which we
call platelets hereafter) within the water volumes in MoM
method. One dimension (for example w) is small compared
the two others (for example u and v). The counter ion
displacement being parallel to the (u, v) surface and blocked
in the w direction, the electrical conductivity tensor corre-

Figure 5. Relationship between surface conductivity and specific clay area for a random distribution of
clay platelets inside water volumes (MoM calculation). The line is obtained by a statistical linear
regression.
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sponding to these cells have diagonal terms such that sw = 0
and su = sv = 0.2 S m�1 which is a value commonly used in
applied geophysics [Parasnis, 1997].
[38] The location and geometrical arrangement of the clay

platelets can be very complex and variable; in the present
work, we choose to limit the study to the case where both
the orientation and the location of the platelets inside water
volume is random, which implies that statistically one third
is parallel to x, one third to y and one third to z. Con-
sequently the modeling process is organized with the
following steps:
- One fixes the macroporosity at a given value, for

example 0.30, and calculates the apparent conductivity, s1,
of the cube without clay.
- One places inside water volumes clay platelets with

random orientation and arrangement and calculate the new
apparent conductivity, s2.
- One deduces the clay contribution to the conductivity, ss

= s2 � s1.
This process is repeated with different clay contents corre-
sponding to different total platelet surface, in order to get
the relationship between ss and the specific clay area. This
relationship is presented in Figure 5; it is linear, which is in
perfect correspondence with the Waxman and Smits [1968]
empirical law.

6. Conclusion

[39] The approaches developed here to model the rela-
tionship between electrical conductivity and water and clay
contents are based on numerical solutions of Maxwell’s
equations written at the microscopic scale. They can take
into account: (i) the EM coupling between the different
components without assumptions and thus constitute
physics-based methods, (ii) the water and clay volumetric
distributions and their effect over the bulk electrical
conductivity.
[40] The results presented here confirm those of the differ-

ent other modeling techniques already applied and match
empirical laws. Numerical values of the formation factor are,
in the middle porosity range, in agreement with Archie’s law
for the two considered different distributions of water cells.
The electrical conductivity due to the clay contribution is
shown to be proportional to specific clay area.
[41] In case of clean media, the case where the water

phase does not correspond to microscopic isotropic vol-
umes, differs from the case with a random distribution of
cubic water volumes, but getting significant information
about the microscopic arrangement of water and solid
volumes from the macroscopic conductivity will be more
difficult than with permittivity.
[42] Considering media with clay, one must emphasized

that, even if the present modeling results are in agreement
with published experimental results expressed by the empir-
ical addition law, both refers to a particular group of geo-
materials, the media where clay content is limited and where
clay particles are dispersed inside the pore. The calculations
do not take into account overall diversity of water–rock–
clay systems and especially the time dependent phenomena.
Others compacted clayey media with different clay platelet
mineralogy and arrangement inside the pores and with
higher clay content could be also studied by the same

numerical tools in future works, but these studies will have
to be supported by extensive experimental data sets that do
not exist yet.
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