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Abstract

Machine learning algorithms have been widely adopted in re-
cent years due to their efficiency and versatility across many
fields. However, the complexity of predictive models has led
to a lack of interpretability in automatic decision-making.
Recent works have improved general interpretability by es-
timating the contributions of input features to the prediction
of a pre-trained model. Despite these advancements, practi-
tioners still seek to gain causal insights into the underlying
data-generating mechanisms. To this end, some works have
attempted to integrate causal knowledge into interpretabil-
ity, as non-causal techniques can lead to paradoxical explana-
tions. These efforts have provided answers to various queries,
but relying on a single pre-trained model may result in quan-
tification problems. In this paper, we argue that each causal
query requires its own reasoning; thus, a single predictive
model is not suited for all questions. Instead, we propose a
new framework that prioritizes the query of interest and then
derives a query-driven methodology accordingly to the struc-
ture of the causal model. It results in a tailored predictive
model adapted to the query and an adapted interpretability
technique. Specifically, it provides a numerical estimate of
causal effects, which allows for accurate answers to explana-
tory questions when the causal structure is known.

1 Introduction
Recent Machine Learning (ML) methods are increasingly
sophisticated and generally improve the accuracy of the
models constructed but at the expense of greater difficulty of
interpretation. Moreover, the interpretability of these models
is a sensitive issue in many fields (Burkart and Huber 2021).
Indeed, using models in the context of automatic decision-
making requires detailed knowledge of their behavior in or-
der to be able to justify the decision; for instance, in the
medical domain of automatic prescription, in the legal do-
main, or in a legal context (Rieg et al. 2020). Practition-
ers are often interested in causal insights into the underly-
ing data-generating mechanisms, which Machine Learning
methods do not generally provide. Common causal ques-
tions include the identification of causes and effects, pre-
dicting the effects of interventions, and answering counter-
factual questions. If we assume that the underlying causal
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model of the data generation process can be represented as
a causal Bayesian network (i.e. a Bayesian network where
orientations have a causal interpretation), the ideal solution
is to utilize the causal framework and specialized tools such
as do-calculus to answer those queries. However, obtaining
the complete causal model can be challenging due to the
multiplicity of parents for the target or the impossibility of
querying latent variables. Hence, we may have to rely on as-
sumptions only about its causal structure, and on predictive
models.

Various works deal with quantifying causal effects (di-
rect and/or indirect) from a predictive model, presuming
knowledge of the causal structure, which depicts the con-
nections among features (Heskes et al. 2020; Wang, Wiens,
and Lundberg 2021). These studies follow the same pattern
as the Explainable AI (XAI) field, i.e. starting with a predic-
tive model, typically trained from all known variables, and
then trying to quantify the contribution of each variable. The
objective of this paper is to show the benefits of an alterna-
tive approach where the predictive model is no longer given
but is designed to answer a specific causal query. As in pre-
vious works, we assume prior knowledge about the causal
structure, but we propose using it before building, training,
and analyzing query-driven predictive models from observa-
tional data.

The first section of this paper presents state-of-the-art
XAI techniques and some notions of causality. Next, we de-
scribe our approach and the setup that will allow us to com-
pare the different approaches on a synthetic dataset. Section
four shows the limitations of using a predefined predictive
model typically trained on all input variables. In the last sec-
tions, we will study two causal questions that are difficult to
address with current approaches but can be correctly treated
by our proposal.

2 Predictive models, causal models
2.1 Predictive models and explainability
A common task in supervised learning is to predict the bi-
nary class Y of an object from a vector of features X =
{X1, · · · , Xj , · · · , XM}. A machine-learning model is
trained from a database of observations about the class and
the features. It is defined as a real-valued function f that
takes a vector of features as input and returns an estimate of



the probability of the target class: f(X) ≃ P (Y = 1|X).
Several tools have been developed to explain the predic-

tions made by an ML model. For instance, the Partial De-
pendence Plots (PDP) proposes to examine the effect of the
j-th variable by studying the average prediction when this
variable is perturbed (Friedman 2001). The Individual Con-
ditional Expectation Plots (ICE) are based on the same idea
as the PDPs but correspond to the study of the prediction by
f from a given example when the j-th variable is modified
(Goldstein et al. 2015). Thus, the average of all the ICEs
corresponds to the PDP.

Another idea is to estimate an importance score for each
variable. (Breiman 2001) proposes to exchange a variable
with noise and assess the impact on predictions.

This paper will often refer to Shapley values (Shapley
1953) and their application to XAI. Shapley values are a
method to spread credit among X players in a “coalition
game” (von Neumann and Morgenstern 1947). In this frame-
work, a value function v associates a real number v(S) to
any coalition S ⊆ X. To transpose this framework to XAI, a
parallel is drawn between the prediction by a model and the
value function for a game and between the input features X
and the players who collaborate to gain f(X).

Shapley values thus became a way to explain a model and
they spread in the area of ML (Strumbelj and Kononenko
2010; Lundberg and Lee 2017). Several variants (Sun-
dararajan and Najmi 2020; Frye, Rowat, and Feige 2020;
Heskes et al. 2020; Wang, Wiens, and Lundberg 2021;
Kolpaczki, Bengs, and Hüllermeier 2023) have been pro-
posed. Among these, we will mostly make reference to the
widespread SHAP values (Lundberg and Lee 2017).

The explanation provided by SHAP values is an excel-
lent basis for understanding the behavior of a predictive
model. SHAP values offer a model-agnostic explanation and
are based on solid mathematical foundations. However, the
problem of explainability often lies more in prescribing than
in predicting. Predictive Analytics aims at answering ques-
tions such as “What is the likely value of Y if I observed
X?” or “What are the weights of the evidence leading to
the prediction?”. On the other hand, Prescriptive Analytics
address questions such as “What intervention should I do
to improve Y ?” and “When and why should I make such
an intervention?”. SHAP values quantify the contributions
of features to the prediction made by a model and thus fit
the needs of Predictive Analytics. However, the weight of
evidence can be easily confused with the effect of an inter-
vention. The latter is needed for Prescriptive Analytics.

2.2 Causal models and explainability
One potential solution to prescriptive questions is to turn to
the causal framework and tools. From a causal perspective,
these questions can be answered by the causal effect of an
actionable variable on the target. An actionable variable is a
variable that can be acted upon in the ”real world” i.e. one
can intervene on the variable and thus control its value. The
do-calculus (Pearl 2012) is a solution for estimating causal
effects.

Janzing et al. (2013) propose to quantify the causal con-
tribution of a binary variable A by its Average Causal Effect

(ACE):

E[Y |do(A = 1)]− E[Y |do(A = 0)]

This is similar to the concept of average uplift (Rubin 1974;
Gutierrez and Gérardy 2017; Devriendt, Moldovan, and Ver-
beke 2018), which is appreciated for its simplicity and thus
facilitates decision-making.

Figure 1: Classic XAI Approach.

2.3 Our proposition to combine causal and
predictive models

XAI methods typically aim at explaining the predictions
made by a previously trained model. Some methods incor-
porate causality via a graphical model of the underlying
causal relationships between variables (Frye, Rowat, and
Feige 2020; Heskes et al. 2020). However, these methods in-
herit from general XAI the premise that a single pre-trained
predictive model is the main source of estimates to answer
causal queries about multiple variables, see Figure 1.

Figure 2: Proposed approach with 2 distinct queries.

In this paper, we propose a new methodology, illustrated
in Figure 2, which extends the common framework de-
scribed above. Our approach consists of several phases.
First, we start with a training population, a causal graph,
and a specific causal query. Next, we train an ML model
tailored to the query and causal context. Finally, we use an
interpretability method adapted to the query and context to
quantify the desired effect.

A key difference between our proposal and previous
methods is that we do not assume a pre-trained model.
The main argument is that different causal questions can-
not be systematically answered by a single general predic-
tive model. The construction of the model that generates the
explanation must also consider the constraints imposed by
the causal computation.

3 Experimental protocol
This article examines the feasibility of quantifying multiple
causal effects from observational data using standard super-
vised learning algorithms and interpretable ML techniques.



In practice, the learned models may be biased or distorted.
To overcome these problems, we propose a causal Bayesian
network as the ground truth reference.

A database is generated from this reference model. This
data is used as a learning base for the predictive models we
are trying to explain. Using a causal Bayesian network as
ground truth allows us to quantify the exact causal effects of
the features of interest using analytical methods such as do-
calculus (Pearl 2000). Thus, we can examine a classification
model’s interpretations and assess their consistency with the
underlying causal model.

To illustrate our point, we designed a synthetic example
with pyAgrum, a library for probabilistic graphical models
(Ducamp, Gonzales, and Wuillemin 2020). To facilitate the
reasoning, we assigned a semantic to this example: the task
of predicting whether the customer will renew his cell phone
subscription. The prediction is based on several features:
• Economy (noted as E) represents economics conditions,

from expansion to contraction,
• the client profile (e.g. residential vs commercial) is repre-

sented by the variable Customer Profile (noted as C),
• the yearly consumption of the service by the customer is

tracked by Usage (noted as U ). ,
• a one-time offer granted to the customer is illustrated by

Discount (noted as D),
• the Loyalty of the client cannot be directly observed and

will be handled as a latent variable (noted as L),
• Visits (noted as V ) indicates whether the customer has vis-

ited the provider website recently,
• finally Renewal (noted R) informs about subscription re-

newal and will be the target for binary classification.
To limit the feature space size and train accurate clas-

sification models, most variables are binary except Usage,
which can take five distinct values. Figure 3 represents the
causal Bayesian network used to generate data samples.

Two explanations of interest are the effect of the Economy
and the Discount. The fictitious model has been designed so
that granting a discount (D=1) has a positive causal effect
on renewals for one customer profile (C=0) and no causal
effect for the other profile (C=1):

P (R|do(D = 1), C = 0) > P (R|do(D = 0), C = 0)

P (R|do(D = 1), C = 1) = P (R|do(D = 0), C = 1)

and:
P (R|do(D = 1)) > P (R|do(D = 0))

Similarly, Economy (E=1) has a total negative effect on
Renewal when C=0 and no causal effect when C=1.

The purpose of the next sections is to show in different
contexts how the causal interpretation of classical XAI re-
sults can be ambiguous (section 4) and how our proposi-
tion can lead to more consistent estimations of causal ef-
fects from specific prediction tasks (section 5 and 6). The
implementation of the examples is provided as a notebook
on GitHub1.

1Figures and models can be found in
https://github.com/anonyme/query-driven-xai

Figure 3: The causal Bayesian network used to generate the
dataset. Loyalty is considered as a latent variable.

4 Sensitivity to feature selection
In any analysis of observational data, it is well-known that
the selection of variables has a significant impact. This sec-
tion illustrates how this selection without causal analysis
can lead to paradoxes (subsection 1) or unnecessary/missing
quantification of some parameters (subsection 2).

4.1 Paradoxical insights from general XAI
To train predictive models from populations, we use a well-
known ML algorithm, XGBoost (Chen and Guestrin 2016).
We train two models on the same dataset but using different
sets of features. A first model is trained on all known fea-
tures (i.e., all variables except the target and the unobserved
Loyalty), and a second model is trained after dropping Visits.
For these two models, we use the SHAP library (Lundberg
and Lee 2018) to compute the contributions of the features.
The results are given in Figure 4 and Figure 5.

Figure 4: Summary Plot from SHAP, explaining a model
trained on all variables.

The two plots represent, as documented in the SHAP li-
brary, the SHAP values of every feature for every sample.
The plot sorts features by the sum of SHAP value magni-
tudes over all samples and use SHAP values to show the dis-
tribution of each feature impacts on the model output. The
color represents the feature value (red high, blue low).

A reading of these two plots suggests that granting a dis-
count (Discount red dots) contributes negatively to the pre-



Figure 5: Summary Plot from SHAP, explaining a model
trained excluding Visits.

dictions in the first model Figure 4, while it has a positive
contribution in the second model Figure 5. If contributions
were naively interpreted as causal effects on the target, an
analyst might draw opposite conclusions from the two mod-
els. In this example, we observe that the widespread SHAP
interpretation method is sensitive to feature selection: it may
provide conflicting insights when applied to different mod-
els trained using the same ML algorithm on the same dataset,
but on different selections of features.

4.2 Predictive power versus causal effect
Several authors have proposed incorporating causal struc-
ture knowledge when interpreting a predictive model. How-
ever, quantifying causal effects may require information that
cannot be extracted from the model. Indeed, the predictive
model may not use a variable that has an indirect causal ef-
fect on the target. This situation arises when the variable is
independent of the target upon conditioning on other input
features.

If we assume that SHAP correctly represents the contribu-
tions of the input variables to the predictions (Janzing, Mi-
norics, and Bloebaum 2020), we can observe this situation
in our synthetic example. Economy has an indirect causal ef-
fect on the target: in the data-generating model, its Average
Causal Effect (ACE) is about -2.8%. However, the causal ef-
fect of Economy goes through a mediator (Usage) that is an
input feature of the predictive model. Thus, Economy brings
no additional information about the target over Usage and
can be ignored by the model without any impact on predic-
tion accuracy. Indeed, we observe from SHAP values ex-
tracted from both our predictive models that the contribution
of Economy is close to zero .

On the other hand, a variable may strongly contribute to
a predictive model while being neither a direct or indirect
cause nor a direct or indirect consequence of the target. In
our synthetic example, Visits is neither a cause nor a con-
sequence of renewals, but the existence of a latent variable
(Loyalty) implies that Visits is not independent of the target
when conditioning on all known variables, and thus Visits
brings additional information about the target. Indeed, the
SHAP plots show that Visits is the top predictor of the model
that has access to this variable.

5 Quantification of a total causal effect
Let us assume that the objective is to appraise the effect of
a discount on subscriber renewal. In this section, we show

how to exactly compute this effect under the assumption of
the full causal model and then how a query-driven applica-
tion of XAI tools from observational data allows a reliable
approximation of the effect, even in the presence of latent
variables.

5.1 Exact solution using do-calculus
Within a probabilistic causal framework, the query for the
total causal effect is the quantification of the probability
P (Y |do(X)). In such a framework, do-calculus provides
multiple techniques, such as frontdoor or backdoor adjust-
ments, to compute causal effects (Pearl 2000). In particu-
lar, the backdoor adjustment defines a set of variables that
should be considered.
Definition (Backdoor Criterion) — Given an ordered pair of
variables (X,Y ) in a directed acyclic graph G, a set of vari-
ables Z satisfies the backdoor criterion relative to (X,Y ):

• (i) if no node in Z is a descendant of X , and

• (ii) Z blocks every path between X and Y that contains
an arrow into X .

If a set of variable Z satisfies the backdoor criterion rela-
tively to (X,Y ), then the causal effect of X on Y is identi-
fiable and is given by the following adjustment:
Definition (Backdoor Adjustment) - If Z satisfies the back-
door criterion relative to (X,Y ):

P (Y |do(X = x)) =
∑
z

P (Y |X = x, Z = z)P (Z = z)

(1)
Applied to our example (Figure 3), the backdoor adjust-

ment is suitable for quantifying the causal effect of Discount
on Renewal with {Usage} as a set satisfying the backdoor
criterion.

5.2 Estimates from a sample data
Estimating the causal effect through the backdoor adjust-
ment in Equation 1 only involves the variables Y , X and
Z. Equation 1 can be generalized and reformulated using
XS = {X}, XS̄ = Z :

P (Y |do(xS)) =

∫
P (Y |XS = xS , XS̄ = xS̄)dP (xS̄)

To compute this quantity from observational data, a
proper process is to build a probabilistic model f of Y know-
ing only X = XS ∪ XS̄ and then to rely on a Monte-
Carlo integration over the training data where the probability
P (Y |X) is estimated by f(X) :

P (Y |do(xS)) ≃ 1

N

N∑
i=1

P (Y |XS = xS , X
i
S̄) (2)

≃ 1

N

N∑
i=1

f(xS , X
i
S̄). (3)

Zhao and Hastie (2019) already demonstrated the analogy
between the backdoor adjustment and the partial dependence
plot (PDP).



Given a predictive model f(X), a PDP grants visualiza-
tion and analysis of the dependence of the predictions on an
input feature of interest S (let S̄ be its complement). The
PDP can be computed as shown in Equation 4.

fS(xS) = EXS̄
[f(xS , XS̄)] =

∫
f(xS , xS̄)dP (xS̄) (4)

Indeed, the Monte-Carlo integration of Equation 4 over
the training data has exactly the same equation as Equation
3.

This development demonstrates that prior causal knowl-
edge guides toward relevant selections of variables for build-
ing predictive models so that tools such as PDP acquire a
causal meaning.

5.3 Illustration: effect of Discount on Renewal
By construction, the causal model of the synthetic data gen-
eration process grants access to the true causal effect that
pyAgrum can compute directly through do-calculus. The
calculation involves a backdoor adjustment with {Usage}
as the minimal set that satisfies the backdoor criterion
(see Equation 5). Indeed two sets satisfy the criterion 5.1:
{Usage} and {Usage, Customer profile}. For the first set
Equation 1 becomes:

P (R|do(D = d)) =
∑
U

P (R|D = d, U)P (U) (5)

We refer to this value as the exact ACE.

Figure 6: Average Effect of an Intervention using PDP
method for different feature selections. Exact ACE is com-
puted using do-calculus.

As previously discussed, the backdoor adjustment can be
estimated from a sample population using a predictive model
trained with an off-the-shelf algorithm such as XGBoost.
The calculation involves a Monte-Carlo integration over a
sample population of size N .

P (R|do(D = d)) ≃ 1

N

N∑
i=1

P (R|D = d, U)

≃ 1

N

N∑
i=1

f(D = d, U)

f is a classifier model trained to estimate the probability of
Renewal conditional on Discount and Usage. f is applied to
a sample population, taking Usage from the data and forcing
Discount to the value d, as per the PDP technique.

We then compare the exact ACE with estimates from 100
sample populations of size N = 10 000. For each sample
population, we trained four predictive models involving dif-
ferent selections of features:
• minimal: a minimal set of features that satisfies the back-

door criterion, here {Discount,Usage},
• compatible: a larger set of features compatible with the

backdoor criterion, adding {Customer Profile} to the min-
imal set,

• missing confounder: a set of features that does not sat-
isfy the backdoor criterion because it excludes a variable
needed to block a path between the action and the target,
here excluding Usage from the compatible set,

• all variables: the set of all known features, incompatible
with the backdoor criterion because it contains a conse-
quence of the action, namely Visits.
The PDP technique is then applied to estimate the average

effect on predictions of an intervention from Discount=0 to
Discount=1.

Figure 6 shows the experimental results. Both the mini-
mal and compatible feature selections provide an accurate
estimate of the Average Causal Effect for Discount. On the
other hand, the two feature selections that are incompatible
with the backdoor criterion lead to significantly different es-
timates. The calculation from the model with a missing con-
founder overestimates the causal effect. It is worth mention-
ing that here, with the classical usage of the whole set of
known features, the estimate of the ACE is reversed.

6 Quantifying the intervention in a given
context

Another relevant causal question is to estimate the effect of
an intervention in a specific context. For an intervention on
a binary variable X knowing a setting defined by the set of
variables Z, the problem is to estimate an uplift from obser-
vational data (Rubin 1974; Gutierrez and Gérardy 2017):

uplift = P (Y |do(X = 1), Z)− P (Y |do(X = 0), Z) (6)

6.1 Exact uplift using do-calculus
According to rule 2 (action/observation exchange) of the do-
calculus (Pearl 2012):

P (Y |do(T1), do(T2),K) =

P (Y |do(T1), T2,K) if (Y⊥⊥T2|T1,K)GT1T2
(7)

where GT1T2
is the causal graph obtained by removing all

arrows pointing to nodes in T1 and all arrows emerging from
nodes in T2. By substituting (T1, T2,K) with (∅, X, Z):
Property (Estimation of the effect of intervention):

P (Y |do(X), Z) = P (Y |X,Z) if (Y⊥⊥X|Z)GX
(8)



where GX is the causal graph obtained by removing all ar-
rows emerging from X.

In particular, if Z satisfies the backdoor criterion rela-
tive to the pair (X,Y ), then the variables in Z block all
paths connecting X to Y that contain an arrow into X ,
and further removing arrows emerging from X ensures that
(Y⊥⊥X|Z)GX

. Thus, if the set of variables Z satisfies the
backdoor criterion relative to the pair (X,Y ), then we can
estimate the effect of an intervention on X by directly using
conditional probabilities estimated from observational data:
P (Y |do(X = x), Z) = P (Y |X = x, Z).

Applied to our example (Figure 3), this property states
that the uplift from Discount can be correctly estimated
if X=Discount, Y =Renewal and Z verifies Property 8.
As part of an uplift analysis, Z can be maximized, i.e.
Z ={Economy, Usage, Customer profile}.

6.2 Estimate from a sample
In uplift modeling, the set of variables comprises the treat-
ment (X) and its context (Z). Several techniques from uplift
modeling can be applied to estimate an uplift from an ob-
servational dataset. In the ”two models” approach, separate
models are fitted on the control (X = 0) and treated (X = 1)
sub-populations, as in Equation 9. In the ”single model” ap-
proach, an estimator is trained on the full population, with
the allocated treatment being part of the feature space as in
Equation 10.

P (Y |do(X = x), Z) ≃ fx(Z) (9)
P (Y |do(X = x), Z) ≃ f(X = x, Z) (10)

Subsection 6.1 demonstrated that the estimates from
Equations 9 and 10 are relevant if the Property 8 holds.

6.3 Illustration: uplift from Discount
Since we know the causal model of our synthetic data gen-
eration process, we can compute the exact uplift from Equa-
tion 6 using pyAgrum. On the other hand, Property 8 pro-
vides an estimate from a predictive model trained on a sam-
ple population:

P (R|do(D), U, C,E) ≃ f(D,U,C,E) (11)

Figure 7 compares the exact uplift calculated on the data
generation causal model, with estimates from 100 classifica-
tion models trained on sample populations of 50 000 obser-
vations. The left plot represents uplifts for Corporate Cus-
tomers, and the right plot is about Residential Customers.
The blue dots represent the exact uplift. Boxplots represent
the predicted uplifts, in green for the correct selection of fea-
tures (D,U,C,E) and in red for a selection comprising all
known features. We observe that for Corporate Customers,
the estimated uplifts using the correct selection of features
are close to 0, regardless of the Usage. This is in line with
the ground truth where the uplift is precisely zero. The esti-
mated uplifts for Private Customer also align with the causal
data generation model. However, with classical predictive
approaches using the full set of known features, the uplift

Figure 7: Predicted and theoretical uplift from an interven-
tion on Discount.

estimates are far from the exact values and can even be re-
versed. Once again, causal effects estimated from a predic-
tive model are quite accurate as long as the features have
been carefully (and causally) selected.

7 Conclusion
The main contribution of this paper is a new XAI approach
that allows better quantification of causal effects from obser-
vational data. We show that bluntly applying XAI tools to a
model trained from all known features without considering
causality can lead to flawed interpretations. To tackle those
issues, we propose a new framework to analyze each causal
query separately based on the causal structure. This leads
to a tailored model and interpretability technique, providing
numerical estimates of causal effects. A counterpart is that
answering multiple causal queries may require training sev-
eral predictive models.

In the XAI community, a debate exists around the notions
true-to-the-model and true-to-the-data (Chen et al. 2020).
From this perspective, it seems to us that relaxing the con-
straint of a pre-existing predictive model opens up the pos-
sibility for XAI to be more faithful to-the-data.

In our approach, causality guides both the construction
and the analysis of predictive models. However, finding the
complete causal structure is difficult (if possible). Differ-
ent methods can be used to find a partially directed causal
graph (PDAG). They can be divided into two families: meth-
ods based on conditional independence (Spirtes et al. 2002;
Louis et al. 2017; Glymour, Zhang, and Spirtes 2019), and
methods based on score-based methods (Chickering 2002).
Hence, the next step for making our approach more oper-
ational would be to investigate how such a partial knowl-
edge of the causal graph may be sufficient to guide predic-
tive modeling and accurately answer causal queries.
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imating the shapley value without marginal contributions.
Louis, V.; Sella, N.; Affeldt, S.; Singh, P. P.; and Isambert, H.
2017. Learning causal networks with latent variables from
multivariate information in genomic data. Public Library of
Science Computational Biology 13.
Lundberg, S. M., and Lee, S.-I. 2017. A unified approach to
interpreting model predictions. In Advances in Neural Infor-
mation Processing Systems, volume 30. Curran Associates,
Inc.
Lundberg, S. M., and Lee, S.-I. 2018. Shap.
https://github.com/slundberg/shap.
Pearl, J. 2000. Causality: Models, Reasoning and Inference.
Cambridge University Press.
Pearl, J. 2012. The do-calculus revisited. In Proceedings of
the Twenty-Eighth Conference on Uncertainty in Artificial
Intelligence, UAI’12, 3–11. Virginia, USA: AUAI Press.
Rieg, T.; Frick, J.; Baumgartl, H.; and Buettner, R. 2020.
Demonstration of the potential of white-box machine learn-
ing approaches to gain insights from cardiovascular disease
electrocardiograms. PLOS ONE 15(12):1–20.
Rubin, D. B. 1974. Estimating causal effects of treatments
in randomized and nonrandomized studies. Journal of Edu-
cational Psychology 66(5):688–701.
Shapley, L. S. 1953. A value for n-person games. In Kuhn,
H. W., and Tucker, A. W., eds., Contributions to the Theory
of Games II. Princeton University Press. 307–317.
Spirtes, P.; Glymour, C.; Scheines, R.; Kauffman, S.;
Aimale, V.; and Wimberly, F. 2002. Constructing bayesian
network models of gene expression networks from microar-
ray data. Proc. of the Atlantic Symposium on Computational
Biology, Genome Information Systems & Technology.
Strumbelj, E., and Kononenko, I. 2010. An efficient expla-
nation of individual classifications using game theory. Jour-
nal Of Machine Learning Research 11:1–18.
Sundararajan, M., and Najmi, A. 2020. The many shapley
values for model explanation. In III, H. D., and Singh, A.,
eds., Proceedings of the 37th International Conference on
Machine Learning, volume 119 of Proceedings of Machine
Learning Research, 9269–9278.
von Neumann, J., and Morgenstern, O. 1947. Theory of
games and economic behavior. Princeton University Press.
Wang, J.; Wiens, J.; and Lundberg, S. 2021. Shapley flow:
A graph-based approach to interpreting model predictions.
In Banerjee, A., and Fukumizu, K., eds., Proceedings of The
24th International Conference on Artificial Intelligence and
Statistics, volume 130 of Proceedings of Machine Learning
Research, 721–729. PMLR.
Zhao, Q., and Hastie, T. 2019. Causal interpretations of
black-box models. Journal of business and economic statis-
tics : a publication of the American Statistical Association
2019.


