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A B S T R A C T

Counts-in-cells are measured in the tCDM Virgo Hubble Volume simulation. This large

N-body experiment has 109 particles in a cubic box of size 2000 h21 Mpc. The

unprecedented combination of size and resolution allows, for the first time, a realistic

numerical analysis of the cosmic errors and cosmic correlations of statistics related to

counts-in-cells measurements, such as the probability distribution function PN itself, its

factorial moments Fk and the related cumulants jÅ and SNs. These statistics are extracted from

the whole simulation cube, as well as from 4096 subcubes of size 125 h21 Mpc, each

representing a virtual random realization of the local universe.

The measurements and their scatter over the subvolumes are compared to the theoretical

predictions of Colombi, Bouchet & Schaeffer for P0, and of Szapudi & Colombi and

Szapudi, Colombi & Bernardeau for the factorial moments and the cumulants. The general

behaviour of experimental variance and cross-correlations as functions of scale and order is

well described by theoretical predictions, with a few per cent accuracy in the weakly non-

linear regime for the cosmic error on factorial moments. On highly non-linear scales,

however, all variants of the hierarchical model used by SC and SCB to describe clustering

appear to become increasingly approximate, which leads to a slight overestimation of the

error, by about a factor of two in the worst case. Because of the needed supplementary

perturbative approach, the theory is less accurate for non-linear estimators, such as

cumulants, than for factorial moments.

The cosmic bias is evaluated as well, and, in agreement with SCB, is found to be

insignificant compared with the cosmic variance in all regimes investigated.

While higher order statistics were previously evaluated in several simulations, this work

presents textbook quality measurements of SNs, 3 # N # 10; in an unprecedented dynamic

range of 0:05 & �j & 50: In the weakly non-linear regime the results confirm previous

findings and agree remarkably well with perturbation theory predictions including the one-

loop corrections based on spherical collapse by Fosalba & GaztanÄaga. Extended perturbation

theory is confirmed on all scales.

Key words: methods: numerical ± methods: statistical ± galaxies: clusters: general ± large-

scale structure of Universe.

1 I N T R O D U C T I O N

Measurements of higher order statistics in galaxy catalogues test

theories of structure formation, the nature of the initial fluctua-

tions and the processes of galaxy formation. The power of such

measurements to constrain theories, however, depends crucially

on the detailed understanding of the errors. Usually it is tacitly

assumed that the underlying distribution of events is Gaussian and

thus the term `errors' becomes synonymous with the `variance'.

Knowledge of the variance is sufficient only when the error

distribution is Gaussian.

For statistics related to counts-in-cells a rigorous theory for the

cosmic errors was presented in a suite of papers by Szapudi &

Colombi (1996, hereafter SC), Colombi, Szapudi & Szalay (1998)

and Szapudi, Colombi & Bernardeau (1999a, hereafter SCB).

Nevertheless these calculations relied on approximations, for
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which the domain of validity could not be checked extensively

until the arrival of the Virgo Hubble Volume simulations.

Moreover, the regime where the underlying cosmic distribution

is Gaussian could not be examined previously. This paper

addresses the first problem by studying the statistical errors and

cross-correlations numerically, while a companion paper, Szapudi

et al. (2000, hereafter Paper II, in this issue), discusses the

underlying distributions of statistics in their full splendour.

Let us consider a statistic A measured in a galaxy catalogue of

volume V. The corresponding indicator is denoted by AÄ . In

practice, only one sample of our local universe is accessible.

However, a frequentist numerical experiment can be performed in

a large numerical simulation if a sufficient number CE of galaxy

catalogues Ei can be extracted from it. In each of them a value AÄ i,

1 # i # CE ; can be measured.

For any statistic A the cosmic distribution function Y(AÄ ) is the

probability density of measuring the value AÄ in a particular finite

realization. This distribution function can be approximately

extracted from the CE subsamples under the ergodic hypothesis.

For simplicity, we dispense with the (logical) notation YÄ and

replace it in what follows with Y. This expresses the fact that we

do not wish to enter one more level of complexity by considering

the `error on the error' problem (SC) in greater detail. The

smoothness and regularity of our measurements suggest that the

number of realizations, which represent a two orders of magnitude

improvement over any previous work, is large enough to provide

an adequate determination of the quantities measured.

While in practice the function Y(AÄ ) is the fundamental quantity

underlying all measurements, this paper concentrates on its first

two moments; Paper II examines its shape and skewness in detail.

In the following definitions, integrals are to be understood as

summations of the estimator over the distribution function. The

first moment of Y(AÄ ) is the spatial average�
~AY� ~A� d ~A � k ~Al ; A; �1�

where it is assumed that the estimator AÄ is unbiased. The bias is

negligible compared to the relative cosmic error in most

meaningful cases (SCB) as illustrated later by practical examples.

For completeness, however, the definition of the cosmic bias is

bA ;
k ~Al 2 A

A
: �2�

The second (centred) moment of the cosmic distribution is called

the cosmic error,�
� ~A 2 A�2Y� ~A� d ~A � k� ~A 2 A�2l ; �DA�2: �3�

For a biased statistic, the variance should be centred around the

biased average and not the true value. It can however be shown

formally (SCB) that the above definition is valid to second order

in DA/A for any biased statistic.1

Finally, the cosmic covariance can be defined analogously to

the variance as k� ~A 2 A�� ~B 2 B�l.
The theoretical results for the errors and cross-correlations are

summarized below. If v and V are the cell and catalogue volumes

respectively, the cosmic error can be approximately separated into

three components to leading order in v=V (SC).

(1) The discreteness or shot-noise error which is the result of the

finite number of objects Nobj in the catalogue, increases towards

small scales and with the order of the statistics considered, but

becomes negligible when Nobj is very large.

(2) The edge effect error is the result of the uneven weight given

to galaxies near the edges of the survey compared to those near the

centre. It is especially significant on large scales, comparable to

the size of the catalogue.

(3) The finite volume error is the result of fluctuations of the

underlying density field on scales larger than the characteristic

size of the catalogue.

The next to leading order correction in v/V is proportional to the

perimeter of the catalogue V. At this level of accuracy there are

also correlations between the three sources of error (e.g. Colombi

et al., in preparation, hereafter CCDFS).

Colombi, Bouchet & Schaeffer (1995, hereafter CBS) investi-

gated in detail the cosmic error on the void probability function.

The groundwork for error calculations of statistics related to

counts-in-cells is based on SC where the cosmic error for factorial

moments2 was evaluated analytically. SCB extended the work of

SC to cross-correlations, including perturbation theory predictions

(e.g. Bernardeau 1996, hereafter B96). The cosmic errors, biases

(see also Hui & GaztanÄaga 1999, hereafter HG) and covariances

for cumulants2 jÅ and SN were calculated as well. The main goal of

this paper is to compare the analytical predictions of CBS, SC and

SCB to measurements made in the VIRGO tCDM Hubble

Volume simulation.

The exhaustive nature of the comparison that follows warrants

the questions: is it meaningful to thrive for the detailed numerical

understanding of the theory? How much of it is practically useful?

Can it accurately estimate the errors on measurements in future

surveys? While some of these questions were addressed in SCB, a

brief account of supporting arguments is given next.

The analytics do take into account all possible theoretical

errors, but systematics, such as those resulting from cut out holes,

incompleteness from fibre separation, possible magnitude errors in

the case of the 2dF, etc., could in principle corrupt the theory and

introduce biases. These effects might even require detailed simu-

lation of the survey. In the case of the UKST (United Kingdom

Schmidt Telescope) and Stromlo surveys such simulations were

performed and compared with the predictions: the spectacular

agreement surprised even the present authors (Hoyle, Szapudi &

Baugh, in preparation). Thus systematics do not dominate in all

surveys; for another example, where cut out holes were found to

have an insignificant effect on the cosmic probability distribution

of the two-point correlations function see Kerscher, Szapudi &

Szalay (in preparation).

Moreover, the wide theoretical framework is flexible enough to

incorporate all systematics, which have the effect of altering

certain parameters, such as the factorial moments. In such a case

any bias can be corrected for.

There might be unforeseen systematics which have such a

complicated non-linear effect that they cannot even be modelled

by the appropriate alteration of a set of parameters. While it would

be difficult to anticipate whether these could dominate for a

particular survey, it is still instructive to investigate the potential

results in an ideal case, especially during the design phase of the

survey. Error calculations help in optimizing geometry, sampling

and other parameters. During the design of the Visible (Near) IR

q 2000 RAS, MNRAS 313, 711±724

1 More precisely, to first order in k� ~xi 2 xi�� ~xj 2 xj�l where xÄi denote the

unbiased estimators from which AÄ is constructed in a non-linear fashion. 2 For example, see Appendix A for definitions and notations.
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Multi-Object Spectrograph (VIRMOS) survey such considerations

were taken into account (Colombi et al., in preparation). These

calculations, as well as maximum likelihood analyses, need to

explore such a large region in parameter space that they would

typically be impractical to carry out with simulations.

In addition to applications to surveys, the theory can be applied

reliably to assess significance of measurements in simulations

where multiple runs would be too costly (e.g. Szapudi et al.

1999b). All these present and potential future applications

motivate the detailed investigations performed in this article.

The exposition is organized as follows. Section 2 describes the

N-body data used for the purpose of our study. Section 3 analyses

the count-in-cells distribution function PN, its cumulants jÅ and

SNs, and the scaling function of the void probability distribution

s ; 2ln�P0�=F1: These quantities are measured in the full

simulation as well as in CE � 4096 subsamples. The accuracy

of the simulation is assessed by comparing the measurements to

the non-linear Ansatz of Hamilton et al. (1991) improved by

Peacock and Dodds (1996, hereafter PD), and to perturbation

theory (hereafter PT) predictions. The model of Fosalba &

GaztanÄaga (1998) and extended perturbation theory (hereafter

EPT, see Colombi et al. 1997) are considered as well. Section 4

extends these investigations to the cosmic error and the variance of

the cosmic distribution function. A preliminary investigation of

the cross-correlations is done for factorial moments and cumu-

lants. The measurements are compared where possible to the

theoretical predictions of SC, SCB and CBS, including extended

perturbation theory. Finally Section 5 recapitulates the results and

discusses their implications. In addition, Appendix A gives a

summary of the definitions and notations used in this paper for

counts-in-cells statistics. It will be useful for the reader unfamiliar

with these concepts.

2 T H E N - B O DY DATA

The tCDM Hubble Volume simulation (e.g. Evrard et al., in

preparation) was carried out using a parallel P3M code described

in MacFarland et al. (1998). The code was run on 512 processors

of the Cray T3E-600 at the Rechenzentrum in Garching.

Initial conditions were laid down by imposing perturbations on

an initially uniform state represented by a `glass' distribution of

particles generated by the method of White (1996). Because of the

size of the simulation, a glass file of 106 particles was tiled 10

times in each direction. As the initial glass file was created with

periodic boundary conditions tiling does not create any non-

uniformities at the interface between the tiles.

A Gaussian random density field was set up by perturbing the

positions of the particles and assigning velocities to them

according to the growing mode linear theory solutions, using the

algorithm described by Efstathiou et al. (1985). Individual modes

were assigned random phases and the power for each mode was

selected at random from an exponential distribution with mean

power corresponding to the desired power spectrum kjd2
k jl: Unlike

Efstathiou et al. (1985), however, the initial velocities were set up

exactly proportional to the initial displacements, according to the

Zel'dovich (1970) approximation. As shown by Scoccimarro

(1998) this leads to larger initial transients. To compensate for this

the simulation was started at a high redshift, z � 29.

The cosmological model used for the simulation tCDM is

described in more detail in Jenkins et al. (1998). The approxima-

tion to the linear cold dark matter (CDM) power spectrum (Bond

& Efstathiou 1984) was used

kjd2
k jl �

Ak

{1� �aq� �bq�3=2 � �cq�2�n}2=n
; �4�

where q � k=G; a � 6:4 h21 Mpc; b � 3 h21 Mpc; c � 1:7 h21

Mpc and n � 1:13: The value of G was set equal to 0.21. The

normalization constant, A, is chosen by fixing the value of s2
8 (the

linear variance of the matter distribution in a sphere of radius

8 h21 Mpc at z � 0). A value of s8 � 0:6 was motivated by

estimates based on cluster abundances (White, Efstathiou & Frenk

1993; Eke, Cole & Frenk 1996).

The simulation was integrated using a leapfrog scheme as

described in Hockney & Eastwood (1981), section 11-4-3. The

simulation was completed in 500 equal steps in time. The

softening used was 100 kpc h21 comoving Plummer equivalent ±

see Jenkins et al. (1998).

3 C O U N T S - I N - C E L L S A N A LY S I S : T H E

U N D E R LY I N G S TAT I S T I C S

The count probability distribution function (CPDF) PN is defined

as the probability of finding N objects in a cell of volume v thrown

at random in the catalogue. CPDF was measured in the whole

simulation E for cubic cells of size Lbox=512 # ` # Lbox=8; where

Lbox � 2000 h21 Mpc is the size of the simulation cube (see

Table 1). Then the simulation cube was divided into 163 con-

tiguous cubic subsamples Ei of size L � 125 h21 Mpc: PN was

evaluated in each of these for L=512 # ` # L=2 (see Table 1).

The successive convolution algorithm of Szapudi et al. (1999b,

hereafter SQSL) allowed the determination of the CPDF on all

scales simultaneously in only a few minutes of CPU on a

workstation3 with 5123 sampling cells. The accuracy is thus PN $
Pmin;1 � 1=5123 . 7:45 � 1029 for the measurement in E and for

each individual Ei; the accuracy increases by averaging over all

subsamples: PN $ Pmin;2 � 1=�512 � 16�3 . 1:82 � 10212: For

4 & ` & 63 h21 Mpc the measurements in E and Ei overlap

(Table 1). This is illustrated by Fig. 1, displaying PN as a function

of N: the figure presents the CPDF extracted from both the full

cube and averaged over all the subcubes. In the overlap region, the

difference can be detected as slight irregularities of the high-N tail

from the full cube measurements. The figure suggests that at least

on the smallest scales considered in E (or each Ei), our sampling is

probably insufficient by the standards of SC. However, this does

not affect significantly the calculations as indicated by the

agreement of the moments measured in E and those calculated

from averages obtained from the subsamples. Therefore measure-

ment errors will be neglected in what follows, i.e. infinite

q 2000 RAS, MNRAS 313, 711±724

Table 1. The scales for which we measured the CPDF.

`(h21 Mpc) 0.24 0.49 0.98 1.95 3.91 7.8 15.6 31.3 62.5 125 250

E p p p p p p p
Ei

p p p p p p p p p

3 This estimate does not include the reading in of the file.
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sampling is assumed. Note that this ideal can be achieved in

practice for two-dimensional and small three-dimensional cata-

logues via the algorithm of Szapudi (1998), however, the present

simulation is too large for this method.

The smallest scale considered is only 2.4 times larger than the

softening length le � 100 h21 kpc: As discussed extensively in

Colombi, Bouchet & Hernquist (1996), contamination by soft-

ening restricts the validity of the simulation on small scales. For

spherical cells of radius R, at least R * 4le should hold. For the

cubic cells of the present simulation this condition translates to

` * 6:5le . 0:65 h21 Mpc: Thus the two smallest cell sizes, i.e.

the two leftmost points could be contaminated by softening, a fact

that should be borne in mind, especially when comparing with

theoretical calculations which employ models motivated by

dynamics. On the other hand, for statistical purposes the dynamics

can be ignored and the simulation can be regarded as a set with

prescribed statistics. Then the possible contamination is irrelevant

at the level of the approximations taken in the next sections.

Another possible source of contamination could be, in principle,

the anticorrelation introduced by the glass initial positions. The

effect of this is, however, extremely small as evidenced by the

measurement of jÅ shown below.

Fig. 2 displays the average correlation function jÅ as a function

of scale. By definition

�j ;
1

v2

�
v

d3r1 d3r2j�jr1 2 r2j�; �5�

where j (r) is the two-point correlation function. In practice, it is

obtained as the variance of the counts-in-cells, corrected for

discreteness effects automatically via the use of factorial moments

(e.g. see SQSL and Appendix A for the detailed description of the

method used in this paper to obtain the cumulants including the

variance from counts-in-cells). The measured jÅ is compared with

linear theory (dots) and with the non-linear Ansatz of Hamilton

et al. (1991) improved by PD (dashes). As expected, the agree-

ment with linear theory in the regime �j & 1 is excellent, even on

the largest scales where the anticorrelations introduced by the

glass initial condition could cause contamination. The two

leftmost points are slightly below the dashes, because of softening

effects as discussed above, otherwise the results are in perfect

accord with theory.

Fig. 3 plots the extracted cumulants, SNs, against jÅ. They are

compared with predictions of various models, including perturba-

tion theory (PT, dots). By definition (e.g. Balian & Schaeffer

1989a)

SN � NN22QN ; �j N= �j
N21; �6�

where jÅN is the N-point correlation function averaged over a cell:

�j N � 1

vN

�
v

d3r1
¼d3rNjN �r1;¼; rN�: �7�

Perturbation theory predictions have been calculated for spherical

cells by Juszkiewicz, Bouchet & Colombi (1993) for S3 and

extended to arbitrary order by Bernardeau (1994):

SN �`� � f N�g1;¼; gN22�; �8�

gi ;
di log �j

�d log `�i : �9�

For example

S3 � 34

7
� g1; �10�

S4 � 60712

1323
� 62

3
g1 �

7

3
g2

1 2
2

3
g2: �11�

The dots on Fig. 3 assume gi � 0; i $ 2: While this is incorrect, in

principle, for a scale-dependent spectrum such as tCDM, the long

dashes on the left-hand panels prove that the contribution of g2 is

insignificant. Higher order g i terms, as discussed also by Baugh,

GaztanÄaga & Efstathiou (1995), have an even smaller effect and

can be rightly neglected.

PT predictions are accurately fulfilled in the weakly non-linear

regime. This confirms again numerous earlier works (see, e.g.

Juszkiewicz et al. 1993, 1995; Bernardeau 1994; Baugh et al.

1995; GaztanÄaga & Baugh 1995; SQSL). In fact the textbook

quality agreement with PT demonstrates the accuracy of the

tCDM Hubble Volume simulation.

The dashes give the predictions obtained from extended

perturbation theory (EPT, Colombi et al. 1997; see also Szapudi,

Meiksin & Nichol 1996 for EPT applied to galaxy data, and

Scoccimarro & Frieman 1998 for `hyperextended' perturbation

theory). EPT assumes that the same forms of the higher order

moments are preserved in the highly non-linear regime. There g1

above is simply an adjustable parameter without any particular

q 2000 RAS, MNRAS 313, 711±724

Figure 2. The averaged two-point correlation function jÅ as a function of

scale. It is compared with linear theory (dots) and with the non-linear

Ansatz of Hamilton et al. (1991) with the recipe of Peacock & Dodds

(1996) (dashes). The open symbols correspond to the jÅ obtained from the

CPDF averaged over all the subsamples Ei and the filled symbols to the

measurement in E.

Figure 1. The measured CPDF as a function of N. Various scales are

plotted as described in the text and in Table 1. The curves shift to the right

as ` increases.
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meaning, i.e.

g1;eff � g1�S3� � S3 2
34

7
; �12�

where S3 is the measured one. With this value of g1 the SNs,

N $ 4; can be computed using equation (8) (with gi � 0; i $ 2).

The dashed curve matches the measurements quite well even in

the highly non-linear regime thereby reconfirming the efficiency

of EPT (see also SQSL). The agreement is not expected to be

absolutely perfect from this Ansatz: on Fig. 3, EPT tends to

underestimate slightly the measured values of SN when

1 & �j & 10.

The dynamic range in the upper left panel of Fig. 3 is narrower

than in the lower left panel: on large scales the agreement between

PT and measurement becomes less accurate for the SNs, especially

if N is large. This might be related to transients owing to the initial

setup of the particles on a glass perturbed by using the Zel'dovich

approximation. On the one hand, the transients related to pure

Zel'dovich should decrease the value of the SNs (e.g. Juszkiewicz

et al. 1993; Scoccimarro 1998) while, on the other hand, the

anticorrelations resulting from the glass could have the opposite

effect by decreasing jÅN21 more than jÅN. Although this problem

was not examined in detail, the glass contamination on jÅ appears

to be inconsequential. Alternatively, finite volume effects can

degrade the high-N tail of the CPDF (e.g. Colombi, Bouchet &

Schaeffer 1994; CBS; Colombi et al. 1996). In addition, it is worth

re-emphasizing that the two rightmost points are prone to errors

caused by softening as discussed earlier.

The right-hand panels of Fig. 3 zoom in on the transition

between the weakly and highly non-linear regime. For comparison,

PT (with gi � 0; i $ 2; dots), EPT (dashes) and the one loop

perturbation theory of Fosalba & GaztanÄaga (1998) (dots±long

dashes) are displayed. The last model yields agreement with the

extracted values of SN for �j & 1; or even larger when the order N

is high enough (see upper right panel). This affirms the success of

one-loop perturbation theory (see also Lokas et al. 1996;

Scoccimarro et al. 1998). Interestingly, EPT produces almost

identical results to the spherical model when �j & 1.

Finally, Fig. 4 shows s � 2ln�P0�= �N as a function of scale,

compared with EPT predictions. By definition (White 1979;

q 2000 RAS, MNRAS 313, 711±724

Figure 4. The scaling function s ; 2ln�P0�= �N; compared with extended

perturbation theory (dots). The convention for the symbols is the same as

in Fig. 2. Note that on the largest scales we measure P0 � 0; and thus no

points are plotted. For the direct measurement in E there is no empty cell

with ` � 7:8 h21 Mpc because of our insufficient sampling.

Figure 3. The cumulants SN ; �j N= �j
N21 as functions of jÅ compared to various theoretical models. The left-hand panels show the full dynamic range, while

the right-hand ones concentrate on the transition to the non-linear regime. The models considered are perturbation theory (dots on all panels and long dashes

on left panels), extended perturbation theory (short dashes) and one loop perturbation theory based on the spherical model (dots±long dashes on right panels).

The upper and the lower panels give SN for 6 # N # 10 and 3 # N # 5 respectively (the value of SN increases with order N). The convention for the symbols

is the same as in Fig. 2. Note that the right-hand panels show only the measurements in the full simulation E.
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Balian & Schaeffer 1989a; see also Appendix A)

s �
X1
N�1

�21�N21 SN

N!
� �N �j �N21; �13�

where NÅ is the average count in a cell. This function is thus

sensitive to low order statistics when Nc ; �N �j ! 1; and to high-

order statistics when Nc @ 1: According to Fig. 4, EPT is an

accurate Ansatz on small scales where s is close to unity and is

dominated by low order SN. It is a less precise approximation on

the largest scales probed, as expected. Indeed, the rightmost point

of Fig. 4 corresponds to where �j . 1 in Fig. 3. There EPT

increasingly underestimates the SNs when N is high. Note the

remarkable power-law behaviour of s / `
2D0 ; D0 . 0:25; in

agreement with the predictions of the scaling model of Balian &

Schaeffer (1989a). This reflects a non-trivial (multi)fractal particle

distribution (Balian & Schaeffer 1989b) with a Hausdorff

dimension D0. Such behaviour was found in a standard CDM

model by Bouchet, Schaeffer & Davis (1991). Subsequently, the

fractal distribution with D0 . 0:5 was established by Colombi,

Bouchet & Schaeffer (1992).

4 T H E C O S M I C E R R O R

In the previous section we demonstrated that good agreement was

obtained comparing measurements made on the tCDM Hubble

Volume data set with previous work regarding higher order

clustering statistics. Having established the accuracy of the data

set this section concentrates on the the determination of cosmic

errors and their comparison to the available theoretical predic-

tions, where possible. In Section 4.1 we summarize analytic

calculations of the cosmic errors and their cross-correlations.

From this follows a systematic study of the experimental cosmic

error of low-order statistics, i.e. factorial moments Fk, 1 # k # 4

(Section 4.2) and cumulants jÅ, S3 and S4 (Section 4.3) together

with a thorough comparison with the theoretical predictions. Also

in Section 4.3 we discuss the cosmic bias of the cumulants. Then

the void probability and its scaling function s are explored

(Section 4.4) followed by the cosmic error on the CPDF itself

(Section 4.5). Finally, in Section 4.6, there is a preliminary

investigation of the cosmic cross-correlations of factorial moments

and cumulants.

In all subsequent figures, except for the cross-correlations, there

are error bars plotted on the symbols corresponding to measure-

ments resulting from the finite number of realizations CE � 4096:
These measurement errors, proportional to 1=

�������
CE
p

(SC), are

negligible for our simulation, and the error bars are smaller than

the size of the symbols in most cases. As discussed in Section 1,

we neglect the cosmic error on the determination of the cosmic

error (which results from the finite size of the Hubble Volume

itself) because in practice it is insignificant.

4.1 Cosmic error: theoretical predictions

Before making any comparison with the analytic predictions, we

outline the main ideas in CBS, SC and SCB ± more details can be

found in these papers. Spherical cells of radius ` are assumed

throughout for simplicity.

The bivariate CPDF PN, M(`, r) is the probability of finding N

and M points in two cells of size ` at distance r � jr1 2 r2j from

each other. According to SC the cosmic error is computed via a

double integral of PN,M(`, r) over r1, and r2, conveniently split

according to whether the cells overlap or not.

(i) Overlapping cells �r & 2`� : give rise to the discreteness and

edge effect errors (see Section 1). The locally Poissonian

assumption (CBS, SC) enables the approximate representation

of the generating function P(x, y) for overlapping cells by using

only the monovariate generating function P(x), i.e. the calculation

depends on jÅ, SN, N $ 3 and the average count NÅ .

(ii) Disjoint cells �r * 2`� : generate the finite volume error

(see Section 1). To simplify the writing of PN, M(`, r), the distance

r is assumed to be large enough compared to the cell size such that

the bivariate CPDF can be Taylor expanded (to first order) in

terms of j�r�= �j : This approximation is surprisingly accurate even

when the cells touch each other (Szapudi, Szalay & BoschaÂn

1992; B96). Three models are used: two particular but still quite

general forms of the hierarchical model, SS and BeS, introduced

by Szapudi & Szalay (1993a, hereafter SSa, 1993b) and by

Bernardeau & Schaeffer (1992), respectively, and PT (B96). See SC

and SCB for more details. The former two models depend only on

monovariate statistics, i.e. on jÅ and SN, N $ 3 and NÅ . PT on the

other hand is expressed in terms of g i, jÅ and NÅ (B96). In principle,

PT is accurate only in the weakly non-linear regime, for which it

was originally designed, but it can be extended to the non-linear

regime as well: for monovariate distributions, EPT was proposed by

Colombi et al. (1997), as discussed and tested versus measurements

in Section 3. This Ansatz can actually be naturally generalized to

the bivariate CPDF (Szapudi & Szalay 1997, SCB). Our version,

denoted by E2PT, takes the measured (non-linear) value for jÅ, g1,eff

from equation (12) and it assumes, as EPT, gi � 0 for i $ 2.

Except for the error on the void probability and its scaling

function s detailed in CBS, the theoretical results shown in this

section were computed to leading order in v/V, where v is the cell

volume and V � L3 is the sample volume.

The calculation of the error on a statistics of order k depends on
�N ; F1; jÅ, jÅ(LÃ ), the average of the correlation function over the

survey (see below) and SN, 3 # N # 2k: PT is determined by g i,

i # 2k 2 2 (Section 3) and E2PT by g1,eff as explained above. In

all cases, we use the measured value of NÅ . Other parameters are

chosen as follows.

(a) PT: linear theory is employed to compute jÅ and jÅ(LÃ ) (the

catalogue is assumed to be spherical to simplify the calculation of

integral 16 below) while higher order statistics are evaluated

according to equation (8) with gi � 0; i $ 2.

(b) Other models: the experimental jÅ is used (open symbols on

Fig. 2). The quantity jÅ(LÃ ) is computed numerically with the non-

linear Ansatz of PD discussed in Section 3 (assuming that the

catalogue is spherical). For the SNs, the measurements (open symbols

on the left panels of Fig. 3) are used for ` # 15 h21 Mpc: On larger

scales, EPT is more appropriate to determine SN, N $ 4: the

increasing inaccuracy of the SNs on large scales and for large N

require this procedure. It is justified all the more since, when �j &
0:27; EPT matches quite well to the PT predictions (see Fig. 3).

There is a subtlety worth mentioning which concerns the finite

volume error, proportional to the integral

�j �L̂� � 1

V̂

�
r12$2`

d3r1 d3r2j�jr1 2 r2j�: �14�

To leading order in v/V, this integral reads (CCDFS)

�j �L̂� � �j 0�L̂�2
8v

V̂
�j 1�2`�; �15�

q 2000 RAS, MNRAS 313, 711±724
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with

�j 0�L̂� � 1

V̂2

�
r1;r2[V̂

d3r1 d3r2j�jr1 2 r2j�; �16�

�j 1�`� ;
1

v

�
r#`

4pr2j�r� dr: �17�

In the above equations, VÃ corresponds to the volume covered by

cells of volume v included in the catalogue.

The next to leading order correction, jÅ1, can be identified as a

negligible correction to the edge effects for most practical

purposes. Although it did not make a significant difference, we

included this correction none the less.

4.2 Cosmic error: factorial moments

Fig. 5 presents the cosmic error measured for the factorial

moments Fk, 1 # k # 4: By definition

Fk ; k�N�kl ; kN�N 2 1�¼�N 2 k � 1�l �
X

N

�N�kPN : �18�

The factorial moments directly estimate the moments of the

underlying continuous density field: Fk � �Nkkrkl where �N � F1 is

the average count (e.g. SSa). On Fig. 5, the dotted, dash, long

dash and dotted-long dash curves correspond to SS, BeS, E2PT

and PT.

All the models converge and agree quite well with the measure-

ments on large scales ` * `0 . 7:1 h21 Mpc; as expected, since

PT predictions should be valid. In contrast, on small scales ` , `0

the models overestimate slightly the numerically obtained error,

E2PT being the most accurate. It is worth remembering that the

leftmost two points may be contaminated by smoothing effects

and should not be over-interpreted. Nevertheless, the decrease of

precision on small scales suggests that our assumptions (i) or (ii)

in Section 4.1 are becoming more and more approximate in the

non-linear regime, i.e. either the local Poisson assumption or the

particular hierarchical decompositions lose their accuracy. To test

this idea the contribution of overlapping cells (edge� discreteness

effects) were separated from the contribution of disjoint cells

(finite volume effects), as shown respectively as solid and dash±

long dash curves on Fig. 6, which concentrates on E2PT (long

dashes). Note that the solid curve represents the SS and BeS

models as well. Finite volume effects appear to dominate on

small scales because our subsamples are dense enough to

suppress the discreteness error as expected (SC). This pinpoints

assumption (ii) as the source of inaccuracy. Note that naively one

would suspect additional loss of precision in the Taylor

expansion of the bivariate CPDF. However, the finite volume

error is a double integral over all the cells included in the

catalogue and separated by more than 2`. The contribution of

close cells is small, especially when `=L is small. Thus E2PT

itself appears to break down in the non-linear regime (SS and

BeS are even less accurate), at least for the particular experiment

we are analysing. Despite that EPT itself fares quite well (Fig.

3), its simplest natural extension to bivariate distributions, E2PT,

is less accurate, as noticed earlier by Szapudi & Szalay (1997) in

connection with the cumulant correlators of the APM (automated

plate measurement) galaxy catalogue. However, the accuracy of

the calculation based on E2PT should be adequate for most

practical uses, and future work on the representation of the

bivariate distribution in the highly non-linear regime will result in

increased precision.

The solid curves in Fig. 6 represent the main contribution of the

cosmic error on large scales. Here, as expected (SC), the cosmic

error is dominated by edge effects. Despite the fact that theoretical

predictions were determined to leading order in v/V and the largest

scale considered is ` � L=2; i.e. v=V � 1=8; the agreement

q 2000 RAS, MNRAS 313, 711±724

Figure 5. The cosmic error DFk=Fk as a function of scale. Each panel

corresponds to a value of k. The dots, dashes, long dashes, dot±long dashes

correspond respectively to the SS, BeS, E2PT and PT models. PT is shown

only in its expected range of validity, ` * `0; where `0 is the correlation

length defined by �j �`0� ; 1: For k � 1; all the models give the same

result. As discussed in the beginning of Section 4, there are error bars

owing to the finite number of realizations CE � 4096; but they are so

small that they do not show.
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between theory and measurement is surprisingly good. CCDFS

have computed the next to leading order contribution proportional

to the perimeter V of the survey. With this correction, which

increases the cosmic error, especially on the largest scales, next to

leading order theory would be inferior to the leading order one.

The reason is that the calculation of CCDFS assumes a perimetric

curvature radius much larger than the cell size. This assumption,

which is useful for deep galaxy surveys with small sky coverage,

obviously fails for a compact catalogue such as this one where the

cell size ` becomes comparable to L.

4.3 Cosmic error and cosmic bias: variance and cumulants

So far only the full moments Fk have been examined. The

cumulants jÅ and SN, however, are the more physically motivated

quantities. But the statistics of these is complicated by the fact that

they are ratios. For example (see Appendix A)

�j � F2=F2
1 2 1: �19�

As is well known in statistics (e.g. HG, SCB) kA=Bl ± kAl=kBl: In

other words, the estimator

�j~ � ~F2= ~F
2
1 2 1 �20�

is biased. Note that this is a general feature for any statistic

constructed from unbiased estimators in a non-linear fashion (e.g.

SCB). However, SCB showed theoretically that the cosmic bias

defined in Section 1, given here by

b �j ; �k ~�j l 2 �j �= �j ; �21�
is of same order of �D �j= �j �2 in the regime D �j= �j ! 1: Similar

reasoning applies to the SNs. Thus leading order theoretical

calculations neglect the bias. This can be done safely in the

domain of validity of the perturbative approach used to expand a

non-linear combination of biased estimators. A reasonable

criterion proposed by SCB for this domain is that the cosmic

bias be small compared to the relative cosmic error which itself

should be small compared to unity. For an arbitrary (possibly

biased) statistic A this reads as

bA ! DA=A ! 1: �22�
The left panels of Fig. 7 are analogous to Fig. 5 and show the

measured cosmic error as a function of scale for the biased

estimators of jÅ, S3 and S4. The middle panels show the absolute

value of the cosmic bias (open symbols) compared to the cosmic

error (filled symbols). For additional clarity, the cosmic bias is

plotted in linear coordinates as well in the right-hand panels.

It is interesting first to compare the cosmic error for factorial

moments and cumulants of same order. The discreteness error is

negligible for the scaling regime and the statistics considered here.

The cumulants fare better/worse than the factorial moments in the

non-linear/weakly non-linear regimes, respectively. The finite

volume error, dominating on small scales, is the limiting factor for

factorial moments, while the edge effect error, dominating on

large scales, drives the errors of the cumulants. This is in full

accord with the predictions of SCB which can be consulted for

more details.

The theoretical models on Fig. 7 use the analytic calculations of

SCB and are computed analogously to Fig. 5, as explained in

Section 4.1. E2PT only is presented in the middle and right-hand

panels. Again, it is worth remembering that the leftmost points are

dangerously close to the limit of possible contamination from

artificial smoothing effects introduced by the force softening.

For the variance jÅ, the theory systematically overestimates the

errors and the cosmic bias, except for the latter on large scales.

This is not at all unexpected in light of the previous findings on

small scales, where the three models SS, BeS and E2PT lose pre-

cision. In the weakly non-linear regime, ` . `0 � 7:1 h21 Mpc;
where perturbation theory is valid, this is somewhat disappointing.

However, the dynamic range is limited by criterion (22), which is

q 2000 RAS, MNRAS 313, 711±724

Figure 6. Same as in Fig. 5, but now the long dashed, dashed±long dashed

and solid curve correspond respectively to the E2PT model, the finite

volume contribution and the edge� discreteness contribution. Note the

sudden cut-off at large scales for the finite volume error, in agreement with

equation (15). Without the 8�v=V�j1�2`� correction, the cut-off would not

show up, but this would not significantly change the total error.
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hardly, if at all, fulfilled here. Hence the leading order perturbative

approach is likely to be insufficient.

For higher order statistics S3 and S4, the theory again tends to

overestimate the amplitude of the measured cosmic bias on small

scales. On large scales, where the predicted jbSk
j presents a sudden

turn-up, condition (22) breaks down, thus the theory is inapplic-

able. The measured cosmic errors, on the other hand, are in accord

with the theory within the range of its validity. The agreement on

small scales is even better for DSk=Sk than for DFk=Fk; k � 3; 4:
This, however, should not be over-interpreted, as it is probably a

coincidence owing to cancellation effects of the ratios S3 � �j 3= �j
2

and S4 � �j 4= �j
3.

The cosmic bias is always negative (right-hand panels of Fig. 7),

i.e. the biased estimators tend to underestimate real values (SCB;

HG). In this particular experiment, the measured cosmic bias is

always dominated by the measured cosmic error as predicted by

the perturbative approach, except for the largest scales. Here the

cosmic bias can become of same order as the cosmic error. HG

suggested that the cosmic bias should be corrected for when

measuring cumulants. Whether this makes sense depends on the

magnitude of the cosmic skewness, i.e. the skewness of the cosmic

distribution function itself. This will be discussed in more detail

by Paper II. However, it is worth noting that function Y(AÄ ) is

positively skewed and that its maximum corresponds to the most

likely measurement. This is in general smaller than the average,

k ~Al: Thus, as pointed out already by SC, the measured value AÄ in a

finite sample is likely to underestimate the real value A even if AÄ is

unbiased. If the cosmic skewness and/or the cosmic variance are

large compared to the cosmic bias, it is pointless to correct for the

cosmic bias. Either of the above is true for most surveys, including

the upcoming wide-field surveys such as the 2dF and SDSS, thus

bias-corrected estimators are unlikely to be useful in the future.

4.4 Cosmic error and cosmic bias: void probability and

scaling function

The upper panel of Fig. 8 shows DP0=P0 as a function of scale

compared to the prediction of CBS (long dashes), with the finite

volume error contribution (dashes±long dashes) and with the

edge� discreteness contribution (solid curve). The agreement

between theory and prediction is excellent.

The lower panel of Fig. 8 corresponds to the scaling function s .

As for jÅ and SN, the indicator ~s � 2ln� ~P0�= ~�N is biased. This bias

(open symbols) is of order (Ds /s )2 and can be neglected.4 The

agreement between theory and measurement is less impressive

than for P0, but this is mostly owing to the difference of dynamic

q 2000 RAS, MNRAS 313, 711±724

Figure 7. Same as Fig. 5 for the average correlation function (top row of panels), and the cumulants S3 (middle row of panels) and S4 (lower row of panels).

The cosmic bias is plotted both in logarithmic coordinates (middle column of panels) and linear coordinates (right column of panels). The filled and the open

symbols correspond to the cosmic error and the cosmic bias respectively. The theory breaks down on large scales for S4 shown in the bottom left-hand panel.

In this regime, the leading order calculation gives negative (DS4/S4)2 (see SCB). The theory result for the cosmic bias is shown for the E2PT model only. In the

middle column panels, there are two long-dashed curves: each one of which should be compared with the closest symbols overall, corresponding either to the

cosmic error (filled) or the cosmic bias (open).

4 The theoretical and measured errors displayed on the bottom part of Fig. 8

correspond to the biased indicator.
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range covered by the error in the upper and the lower panels of

Fig. 8. Moreover, the calculation of Ds /s by CBS is only

approximate and could certainly be improved (see the discussion

in CBS).

The error bars about s are quite small: nearly an order of

magnitude smaller than in Figs 5 and 7. According to equation (13),

s reflects the low-order statistics when Nc � �N �j ! 1 (s & 1 in

Fig. 4) and the high order statistics when Nc @ 1 �s , 1�. From

the point of view of the errors, function s is an excellent higher-

order indicator (as discussed earlier by CBS); it is better than the

low-order factorial moments or cumulants, at least in the non-

linear regime ` & `0: This fact alone unfortunately does not

guarantee the usefulness of this statistic as various models of large

scale structure formation could be degenerate with respect to the

void probability. The thorough work of Little & Weinberg (1994)

suggests that this is indeed the case. It is tempting, although

dangerous, to extrapolate the results of their analysis to the

function s .

4.5 Cosmic error: counts-in-cells

The upper panel of Fig. 9 shows the cosmic error in the CPDF as a

function of N for the various scales considered in Ei. The scale

increases with the x-coordinate of the upper right part of each

curve. In the lower panel DPN=PN is represented in a similar

manner as a function of N/Nmax, where Nmax is the value of N for

which PN is a maximum. [We did not display the (small) scales

corresponding to Nmax � 0 or Nmax � 1]. In agreement with

intuition, the cosmic error reaches its minimum in the vicinity of

N . Nmax and becomes increasingly large in the tails. Thus the

shape of the CPDF near its maximum has the most power to

constrain in terms of errors. Kim & Strauss (1998) have measured

the cumulants S3 and S4 by fitting an Edgeworth expansion

convolved with a Poisson distribution to the measured CPDF in

the 1.2 Jy IRAS galaxy catalogue. According to their recipe, the

best determined part of the CPDF near the maximum was kept for

the fit. Their maximum likelihood approach uses a simple model

for the cosmic error, but their method is promising. Its main

weakness is the necessity to make a strong prior assumption for

the shape of the CPDF. A natural consequence is that the

estimated error bars on the measured cumulants are considerably

smaller than with the standard methods.

4.6 Cosmic correlations

So far this section has dealt only with the second moment of the

cosmic distribution function, i.e. with the cosmic errors. For a full

q 2000 RAS, MNRAS 313, 711±724

Figure 9. The cosmic error DPN /PN in the CPDF as a function of N (upper

panel) and as a function of N/Nmax, where Nmax is the value of N for which

PN is maximum (lower panel). In the lower panel, only the scales large

enough so that Nmax . 1 are displayed.

Figure 8. The cosmic error of the void probability function P0 (upper

panel) and on the scaling function s � 2ln�P0�= �N (lower panel). The

measurements (filled symbols) are compared with the theoretical

predictions of CBS (long dashes). The finite volume error contribution is

drawn with short dash±long dash and the edge� discreteness effects

contribution with solid lines. The available scaling range is limited by the

fact that on large scales the measured void probability is zero. For ` .
7:8 h21 Mpc (upper right point on upper panel), the void probability

cancels from time to time in the subsamples Ei. As a result, it is possible to

compute the unbiased function s but the estimated cosmic error on the

biased estimator sÄ is infinite. The open symbols in the lower panel

correspond to the measured cosmic bias in s . It is positive and much

smaller than the cosmic error. It can be neglected for all the relevant

dynamic range in the experiment considered here.
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description in the Gaussian limit, however, the moments of

the joint distribution function are needed. These moments

form the cosmic (cross-correlation) matrix (SCB). It is defined as

k� ~A 2 k ~Al�� ~B 2 k ~Bl�l; where AÄ and BÄ are any counts-in-cells

related indicators, for example A � Fk�`� and B � Fk 0 �` 0�; or

A � �j �`� and B � SN�` 0�; etc. A detailed theoretical investigation

can be found in SCB (for ` � ` 0). By definition, for two statistics

A and B, the correlation coefficient 21 # r # 1 reads as

r ;
kd ~Ad ~Bl
DADB

;
k� ~A 2 A�� ~B 2 B�l

DADB
: �23�

The cosmic cross-correlation coefficient together with the errors

form the full correlation matrix. The inverse of this is the central

quantity for the joint probability distribution function in the

Gaussian limit. As a preliminary numerical analysis, Figs 10

and 11 present the correlation coefficients as functions of scale

�` 0 � `� for factorial moments and cumulants, respectively. As in

Fig. 5, the dots, dashes and long dashes show the theoretical

predictions given by the SS, BeS and E2PT models, respectively,

as computed by SCB. The computation of kd ~Ad ~Bl in equation (23)

is analogous to that of the cosmic error (see SCB for more details).

(For DA and DB, and to have completely self-consistent calcu-

lations, we take the theoretical results as well in equation 23).

The agreement between theory and measurement is less

convincing for the cosmic cross-correlations than for the cosmic

error. This appearance is partly results from the linear coordinates

of the figures which emphasize deviations, but none the less are

real.

On Fig. 10 there is a significant discord between theory and

measurements for factorial moments in the middle-top, middle-

bottom and top-right panels. On small scales, this result is quite

natural: it is probably owing to the inaccuracy of the models SS,

q 2000 RAS, MNRAS 313, 711±724

Figure 10. The measured cosmic cross-correlation coefficients of the factorial moments (symbols) are compared with the models SS (dots), BeS (dashes) and

E2PT (long dashes).

Figure 11. Same as in Fig. 10 but for the cosmic cross-correlation coefficients of the cumulants. The dynamic range for the theory is restrained by condition

(24).
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BeS and E2PT employed to describe the underlying bivariate

distributions (Section 4.2). In the weakly non-linear regime, this

discrepancy is apparently puzzling, since the predicted cosmic

error matches perfectly the measurements (Fig. 5). The disagree-

ment increases with jk 2 lj; where k and l are the corresponding

orders. On large scales, the cross-correlations are dominated by

edge effects leading to the suspicion that the local Poisson

approximation (SC, Section 4.1) is becoming increasingly

inaccurate with jk 2 lj:5 Another although less likely possibility,

is that the leading order approach in v/V is insufficient and higher

order corrections are necessary to calculate cross-correlations. It

would go beyond the scope of this paper to analyse in detail these

effects which are left for future research.

For the cumulants, in addition to the above arguments, our

perturbative approach to compute cross-correlation allows only a

narrow dynamic range for analytic predictions, defined by

criterion (22). In Fig. 11, this condition is chosen for practical

purposes to be

jbAj # DA=A # 1: �24�

This is necessary but not sufficient: the theory appears to disagree

significantly with the measurements on large scales at the top-left,

lower-left and lower-middle panels of Fig. 11.

Despite some of the discrepancies, the general features of the

cross-correlations are well described by the theoretical predic-

tions. For instance the cross-correlation between two statistics Ak

and Al decreases with the difference between the orders jk 2 lj as

predicted (SCB). In our particular experiment NÅ is significantly

correlated with jÅ, but only weakly (anticorrelated) with Sk,

k � 3, 4. Similarly, jÅ and S3 are weakly, but S3 and S4 are strongly

correlated. A detailed discussion on these effects can be found in

SCB.

5 S U M M A RY A N D D I S C U S S I O N

In this paper we have studied experimentally the properties of the

moments of the cosmic distribution function of measurements

Y(AÄ ), where AÄ is an indicator of a counts-in-cells statistic. For a

thorough examination of Y(AÄ ) itself the reader is referred to Paper

II also in this volume.

We examined the factorial moments Fk, the cumulants jÅ and

SNs, the void probability P0, its scaling function, s ; 2ln�P0�=F1

and the count-in-cells themselves PN. Y(AÄ ) was measured in the

largest available tCDM simulation divided into 4096 cubical

subsamples. In each of these many subsamples, AÄ was extracted

and its probability distribution function Y was estimated with

great accuracy. The main results of our analysis are the following.

(i) The measured count-in-cells in the whole simulation, in

particular the cumulants SN, are in excellent agreement with

perturbation theory predictions in the weakly non-linear regime.

This confirms the results of numerous previous investigations in

an unprecedented dynamic range. The textbook quality agreement

demonstrates the state-of-the-art accuracy of the simulation.

Similarly, the measurements confirm extended perturbation theory

(EPT) in the full available dynamic range 0:05 & �j & 50; for SN,

N # 10: In addition one loop perturbation theory predictions

based on the spherical model (Fosalba & GaztanÄaga 1998) were

found to be an excellent description of the measured SN up to
�j & 1.

(ii) The variance of Y is the square of the expected cosmic error,

DA, in the measurement of A in a subsample, identified with a

realization of the local observed universe. The measurement of

DA/A, for A � P0;s; Fk and SN appears to be globally in good

accord with the theoretical predictions of Colombi et al. (1995),

SC (1996) and SBC (1998a).

In the highly non-linear regime, the theoretical predictions of

SC and SCB tend to overestimate the cosmic error slightly, except

for the ratios S3 � �j 3= �j
2 and S4 � �j 4= �j

3: In the latter case, there

are some cancellations and the agreement between theory and

measurement is good, even on small scales, but this is probably a

coincidence. Thus it appears that none of the three variants of the

hierarchical model in SC and SCB, can give an accurate enough

account of the non-linear behaviour of gravitational dynamics for

the bivariate distribution functions.6

In the weakly non-linear regime, agreement between theory and

predictions is excellent for the factorial moments, but less good

for the cumulants, owing to the limitations of the perturbative

approach used to expand such ratios.

None the less EPT yields the most precise overall agreement

with theory for our particular experiment. On small scales

1 h21 Mpc & ` & 4 h21 Mpc; EPT overestimates the errors per-

haps by a factor of two in the worst case.

(iii) In addition to the cosmic errors, the cosmic bias, bA, was

studied in detail as well. An estimator is biased when its ensemble

average is different from the real value: bA ; k ~Al=A 2 1 ± 0:
This is always the case when unbiased estimators are combined in

a non-linear fashion to form a new estimator (SCB; HG), such as

the cumulants.

In agreement with SCB, the measured cosmic bias is of order

(DA/A)2 and thus negligible when the cosmic error is small.

However, as for the errors, the theory tends to overestimate the

bias in the non-linear regime. On large scales, where the cosmic

bias becomes significant because of edge effects, the perturbative

approach used by SBC to compute theoretical predictions is then

outside of its domain of validity.

Note that in the regime where the cosmic bias is significant, the

cosmic error is likely to be large. For instance, in the particular

numerical experiment used in this paper, the cosmic bias was

always smaller than the cosmic errors and in most cases

negligible. Moreover, in the regime where the bias could be

significant, the cosmic distribution function Y(AÄ ) is significantly

positively skewed (Paper II). This implies that the measured AÄ is

likely to underestimate the true value even for an unbiased

estimator. The result is an effective cosmic bias, at most of order

DA/A. As already shown by SC, this effective bias can contamin-

ate even unbiased estimators such as FÄ k and PÄ N. As a consequence,

it is pointless correcting for the cosmic bias, in contrast with the

proposition of HG, unless it is done in the framework of a

maximum likelihood approach which takes into account fully the

effects of the shape of the cosmic distribution function.

(iv) To complete the analysis of second moments, a preliminary

investigation of the cosmic correlation coefficients for factorial

moments and cumulants was conducted. Together with the cosmic

errors, these coefficients form the cosmic cross-correlation matrix

q 2000 RAS, MNRAS 313, 711±724

5 This is not surprising: this approximation neglects local correlations. This

is all the more inaccurate as the difference between the `weights' given to

two overlapping cells, i.e. (N)k and (N)l for factorial moments, increases.

6 As discussed in Section 4.1, the analysis of the cosmic error indirectly

probes the bivariate probability distribution function PN,M(r, `) of having

N and M galaxies, respectively, in two cells of size ` separated by distance

r (see, e.g. SC).
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which underlies maximum likelihood analysis in the Gaussian

limit.

Theoretical predictions of SBC give good qualitative account of

the measured correlation coefficients, although they become

increasingly approximate with the difference between the

corresponding orders. This is likely to be a consequence of the

local Poisson assumption (SC) employed for analytic predictions.

Provided that the Gaussian limit is reached in terms of the error

distribution, the formalism of SC and SBC allows for a maximum

likelihood analysis of the CPDF measured in three-dimensional

galaxy catalogues. Two preliminary investigations are currently

being undertaken. Szapudi, Colombi & Bernardeau (in prepara-

tion) reanalyse already existing joint measurements of F1 and jÅ,
and Bouchet, Colombi & Szapudi (in preparation) perform a

likelihood analysis of the count-in-cells measured in the 1.2 Jy

IRAS survey (Bouchet et al. 1993).

Paper II probes the domain of the Gaussian approximation for

the cosmic distribution function, together with preliminary investi-

gations for the bivariate cosmic distributions Y(AÄ , BÄ ). As shown

there, the Gaussian limit is reached when the relative cosmic error

is small compared to unity. This is expected to hold for a large

dynamic range in future large galaxy surveys such as the 2-degree

Field Survey (2dF) and the Sloan Digital Sky Survey (SDSS)

(Colombi et al. 1998).

Statistical analyses of weak lensing surveys are similar to

counts-in-cells measurements (e.g. Bernardeau, Van Waerbeke &

Mellier 1997; Jain, Seljak & White 1999; Mellier 1999). As a result,

slight modification of the formalism of SC and SCB is fruitful

to compute theoretical cosmic errors and cross-correlations

(Bernardeau, Colombi & Szapudi, in preparation).

Finally, it is worth mentioning a few questions which were not

addressed so far by the investigations presented in this paper. As

light might not trace mass, the distribution of galaxies may be

biased (not to be confused with the cosmic bias), and also realistic

galaxy surveys are subject to redshift distortion. While the above

results were obtained for the mass, note that the theory which

served as a basis of comparison is quite general and was

formulated to describe phenomenologically either the mass or the

galaxies. It appears that there should be no qualitative changes

introduced by biasing or redshift distortions (e.g. Szapudi et al., in

preparation), thus the same theory can be used for the galaxies as

for the mass, except perhaps with slightly different parameters, or

underlying statistical models. In fact, two of the models (SS, BeS)

were entirely motivated by the galaxy and not by the mass

distribution; they are expected to be more accurate for realistic

catalogues if used in a self-consistent fashion. The scaling

properties underlying these models is even more accurate in

redshift space, as is well known. EPT, on the other hand, was

originally motivated by theoretical considerations of the mass

distribution and numerical simulations (Colombi et al. 1997), and

therefore it is no wonder that it is the most successful model for

the mass (but see also Scoccimarro & Frieman 1998). None the

less, even EPT was found to be a fairly good model for the galaxy

distribution, and at least in the Edinburgh±Durham Southern

Galaxy Catalogue (EDSGC) survey (Szapudi et al. 1996), a

possible indication that galaxies approximately trace mass after

all. In addition, it is worth mentioning that biasing models can be

non-deterministic, i.e. stochastic in nature, but this again does not

introduce anything new qualitatively which could not be handled

in the framework of the theory of SCB. Finally, the theory outlined

in this paper was contrasted against measurements in a tCDM

simulation. However, the analytical framework is general enough

to accommodate any cosmological model and there are no

qualitative differences in this respect between different cosmol-

ogies with Gaussian initial conditions and hierarchical clustering.

Thus repeating the same analysis for a different CDM-like

cosmogony would be superfluous and inconsequential.
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A P P E N D I X A : D E F I N I T I O N S A N D N OTAT I O N S

The count probability distribution function (CPDF) PN, gives the

probability of finding N objects in a cell of volume v thrown at

random in the catalogue.

Factorial moments, Fk, are defined as follows

Fk ; k�N�kl ; kN�N 2 1�¼�N 2 k � 1�l �
X

N

�N�kPN ; �A1�

where the falling factorial (N)k is defined in the first part of the

equation. The Fk are proportional to the moments of the

underlying density field r smoothed over the cell of volume v:

Fk � �Nkkrkl (SSa; assuming the normalization krl � 1), where NÅ

is the average count in a cell:

�N ; kNl � F1: �A2�
Counts-in-cells are related to quantities of dynamical interest,

such as the (connected) N-point correlation functions, jN (e.g.

Peebles 1980). The averaged N-point correlation function over a

cell is given by

�j N ;
1

vN

�
v

d3r1
¼d3rNj�r1;¼; rN �: �A3�

This is the connected moment of the smoothed density field, �j N �
kdNlc (with d ; r 2 1). The connected moments or cumulants of a

Gaussian field are identically zero for N $ 3: In this paper,

normalized cumulants are defined as

SN ;
�j N

�j N21
; �A4�

with the short-hand notation �j ; �j 2: By definition, S1 ; S2 ; 1;
thus for second order jÅ is used.

The quantities S3 and S4 are often called skewness and kurtosis

in the astrophysical literature, although their definition differs

slightly from the original usage in statistics. The reason for

normalization in equation (A4) is dynamical. The SNs exhibit a

weak scale dependence only owing to the scale-free nature of

gravity. In the highly non-linear regime stable clustering is

expected to set in (e.g. Peebles 1980) and in the weakly non-linear

regime perturbation theory predicts approximate scaling depend-

ing on the initial fluctuation spectrum (e.g. Juszkiewicz et al.

1993; Bernardeau 1994).

The counts-in-cells generating function,

P�x� ;
X1
N�0

xNPN ; �A5�

writes (White 1979; Balian & Schaeffer 1989a; SSa)

P�x� � exp{ 2 �N�1 2 x�s�Nc�1 2 x��}; �A6�
where

Nc ; �N �j �A7�
is the typical number of objects in an overdense cell (e.g. Balian &

Schaeffer 1989a) and

s�Nc� �
X1
N�1

�21�N21 SN

N!
NN21

c : �A8�

It is worth noticing that (White 1979; Balian & Schaeffer 1989a;

SSa)

P�x� � P0� �N�1 2 x��; �A9�
if the void probability is expressed in terms of average counts NÅ .

The measurement of P0 is particularly interesting since it probes

directly the count probability generating function:

s�Nc� � 2ln�P0�= �N: �A10�
The exponential generating function for factorial moments,

F�x� �
X
k$0

Fk
xk

k!
�A11�

is directly related to P(x) (SSa) through

F�x� � P�x� 1�: �A12�
Combining equations (A6), (A8) and (A12), one can obtain a

useful relation between cumulants and factorial moments (SSa)

SN �
�jFN

NN
c

2
1

N

XN21

k�1

N

k

 !
�N 2 k�SN2kFk

Nk
c

: �A13�

The state of the art practical recipe consists of measuring the

CDPF with high oversampling (Section 3), computing the factorial

moments from equation (A1) and finally calculating the cumulants

from the above recursion equation (A13). This procedure elimin-

ates the need for an explicit discreteness correction.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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