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A B S T R A C T

Colombi et al. (Paper I) investigated the counts-in-cells statistics and their respective errors

in the tCDM Virgo Hubble Volume simulation. This extremely large N-body experiment

also allows a numerical investigation of the cosmic distribution function, Y(AÄ ), itself for the

first time. For a statistic A, Y(AÄ ) is the probability density of measuring the value AÄ in a

finite galaxy catalogue. Y was evaluated for the distribution of counts-in-cells, PN, the

factorial moments, Fk, and the cumulants, jÅ and SNs, using the same subsamples as Paper I.

While Paper I concentrated on the first two moments of Y, i.e. the mean, the cosmic error

and the cross-correlations, here the function Y is studied in its full generality, including a

preliminary analysis of joint distributions Y(AÄ , BÄ ). The most significant, and reassuring

result for the analyses of future galaxy data is that the cosmic distribution function is nearly

Gaussian provided its variance is small. A good practical criterion for the relative cosmic

error is that DA=A & 0:2: This means that for accurate measurements, the theory of the

cosmic errors, presented by Szapudi & Colombi and Szapudi, Colombi & Bernardeau, and

confirmed empirically by Paper I, is sufficient for a full statistical description and thus for a

maximum likelihood rating of models. As the cosmic error increases, the cosmic distribution

function Y becomes increasingly skewed and is well described by a generalization of the

lognormal distribution. The cosmic skewness is introduced as an additional free parameter.

The deviation from Gaussianity of Y(FÄ k) and Y(SÄN) increases with order k, N and similarly

for Y(PÄ N) when N is far from the maximum of PN, or when the scale approaches the size of

the catalogue. For our particular experiment, Y(FÄ k) and Y(jÅÄ) are well approximated with the

standard lognormal distribution, as evidenced by both the distribution itself and the

comparison of the measured skewness with that of the lognormal distribution.

Key words: methods: numerical ± methods: statistical ± galaxies: clusters: general ± large-

scale structure of Universe.

1 I N T R O D U C T I O N

Precision higher order statistics will become a reality when the

new wide field surveys, such as the Sloan Digital Sky Survey

(SDSS) and the 2-degree Field Survey (2dF), become available in

the near future. These prospective measurements contain informa-

tion relating to the regime of structure formation, to the nature of

initial conditions and to the physics of galaxy formation. The

ability of such measurements to constrain models, in a broad

sense, is inversely proportional to the overlap between the

distribution of statistics predicted by different theories for a finite

galaxy survey. More precisely, maximum likelihood methods give

the probability of the particular measurements for each theory, or

after inversion, the likelihood of the theories themselves. This is

an especially natural and fruitful procedure for a Gaussian

distribution, where the first two moments are sufficient for a full

statistical description. This simple case is assumed for most

analyses in the literature and it motivates the special attention

given to the investigation of the errors, or standard deviations. In

general, however, the underlying distribution of measurements can

be strongly non-Gaussian, in which case the correct shape for the

distribution has to be employed for a maximum likelihood

analysis. As a consequence, terms such as `1s measurement' lose

their usual meaning: a few s deviation from the average can be

quite likely for a non-Gaussian distribution with a long tail.

Therefore it is of utmost importance to ask two important

questions.
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726 I. Szapudi et al.

(i) In what regime is the Gaussian approximation valid for the

distribution of the measured statistical quantities?

(ii) If the Gaussian limit is violated, is there any reasonably

simple, practical assumption which would enable a maximum

likelihood analysis?

This paper attempts to answer these questions by studying

numerically the underlying distribution function of measurements

for estimators of higher order statistics based on counts-in-cells.

This complements the thorough numerical investigation of the

errors undertaken by Colombi et al. (2000, hereafter Paper I, in

this issue) and the theoretical investigation of the errors exposed in

a suite of papers by Szapudi & Colombi (1996, hereafter SC),

Colombi, Szapudi & Szalay (1998, hereafter CSS), and Szapudi,

Colombi & Bernardeau (1999, hereafter SCB).

For a particular statistic A, Y(AÄ ) denotes the probability density

of measuring a value AÄ in a finite galaxy catalogue. We consider

the following counts-in-cells statistics: factorial moments Fk,

cumulants jÅ and SN, void probability P0 and its corresponding

scaling function s ; 2ln�P0�=F1; as well as the counts-in-cells

distribution itself, PN. A large tCDM N-body experiment, E,
generated by the VIRGO consortium (e.g. Evrard et al., in

preparation) was divided into CE � 4096 cubic subsamples, Ei,

i � 1;¼;CE for estimating numerically the cosmic distribution

function, Y(AÄ ). This was rendered possible by the fact that this

`Hubble Volume' simulation involves 109 particles in a cubic box

of size 2000 h21 Mpc. A detailed description of the simulation and

the method we used to extract counts-in-cells statistics in the full

box E and its each of subsamples Ei can be found in Paper I.

Paper I concentrated entirely on the first two moments of Y(AÄ ),

the average

k ~Al �
�
~AY� ~A� d ~A; �1�

q 2000 RAS, MNRAS 313, 725±733

Figure 1. The cosmic distribution function of measurements Y(FÄ k) shown as a function of dFÄ k/DFk as explained in the text. The scale of the measurements

` � 1; 7.8 and 62.5 h21 Mpc is indicated on each panel. The order k � 1; 2; 3; 4 increases from top to bottom. The solid, dotted and dash curves correspond to

the Gaussian, lognormal and generalized lognormal (equation 9) distributions, respectively. While the coordinate system of the figure does not display the

value of the cosmic error directly, the amount of skewness of the lognormal distribution is an indicator of the magnitude DFk/Fk. The error bars show the

measurement error as discussed at the beginning of Section 2.
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and the cosmic error

�DA�2 ; k� ~A 2 k ~Al�2l �
�
� ~A 2 k ~Al�2Y� ~A� d ~A: �2�

In the equations above, the mean kAÄ l can differ from the true

value. The cosmic bias is defined as

bA ;
k ~Al
A

2 1: �3�

It is always present when indicators are constructed from unbiased

estimators in a non-linear fashion, such as cumulants (e.g. SCB;

Hui & GaztanÄaga 1998, hereafter HG).

The most relevant results of Paper I are summarized next.

(i) The measured average kAÄ l is in excellent agreement with

perturbation theory, one-loop perturbation theory and extended

perturbation theory (EPT) in their respective range of applic-

ability. These tests demonstrate the quality of our numerical

experiment.

(ii) The measured cosmic error DA/A is in accord with the

theoretical predictions of SC and SCB in their respective domain

of validity. A few per cent accuracy is achieved in the weakly non-

linear regime for the factorial moments. On small scales the theory

tends to overestimate the errors, perhaps by a factor of 2 in the

worst case, owing to the approximate nature of the hierarchical

models representing the joint moments (SCB).

(iii) The cosmic bias is negligible compared to the errors in the

full dynamic range, as predicted by theory (SCB, see also HG for

an opposing view).

(iv) Cross-correlations between statistics of order k and l are in

general agreement with theory considering the preliminary nature

of the measurements. The precision of the predictions, however,

decreases with increasing difference of orders, jk 2 lj: This

suggests that the local Poisson model (SC) loses accuracy, as

expected.

The theory of the errors confirmed by Paper I provides an

excellent basis for future maximum likelihood analyses of data

whenever Y is Gaussian. While this was tacitly assumed by most

previous works, this article examines for the first time the range of

validity of this assumption. To this end the cosmic distribution

function Y(AÄ ) is examined numerically. In particular, one of the

q 2000 RAS, MNRAS 313, 725±733

Figure 2. The skewness S ; k� ~Fk 2 Fk�3l=�DFk�3 as a function of scale.

The triangles, squares, pentagons and hexagons respectively correspond to

k � 1; 2; 3 and 4. There are also dotted lines corresponding to an

underlying lognormal distribution (8); the orders increase from bottom to

top. The errors on the measurement have not been estimated since it would

require a complicated calculation depending on the estimate of up to the

sixth moment of Y(FÄ k).

Figure 3. Analogous to Fig. 1 for Y� ~�j �; Y(SÄ3) and Y(SÄ4).
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728 I. Szapudi et al.

parameters determining its shape, the cosmic skewness

S ; k� ~A 2 k ~Al�3l=�DA�3; �4�
is calculated as well. When Gaussianity is no longer a good

approximation, new AnsaÈtze are proposed for characterizing Y(AÄ ).

In addition we perform a preliminary analysis of the bivariate

cosmic distributions Y(AÄ , BÄ ).

The next section presents the estimates of Y for the factorial

moments, the cumulants (including the variance of the counts), the

void probability distribution and its scaling function and the

counts-in-cells themselves. A universal shape is found for Y(AÄ )

which is well described in all regimes by a generalized version of

the lognormal distribution. In addition to the mean (1) and vari-

ance (2), this depends on a third parameter, the cosmic skewness

(4). This is also investigated along with the resulting effective

cosmic bias. Section 3 presents the measured bivariate distribu-

tions, with explicit comparison to theoretical predictions of SCB.

Finally, section 4 discusses the results in the context of maximum

likelihood analysis of future surveys. Readers unfamiliar with

counts-in-cells statistics can consult Appendix A in Paper I for a

concise summary of definitions and notation.

2 T H E C O S M I C D I S T R I B U T I O N F U N C T I O N

The main results of this section are displayed in Figs 1±6. For

simplicity Figs 1, 3 and 5 will be referred to as type D, displaying

distributions, while Figs 2, 4 and 6 as type S, showing skewness. A

general description of each type is followed by the results obtained

for the cosmic distribution of the factorial moments (Section 2.1),

cumulants (Section 2.2), counts-in-cells (Section 2.3) and void prob-

ability with its scaling function s (Section 2.4). The cosmic

skewness and the resulting effective bias are discussed in Section 2.5.

In all figures of type D, the results are displayed in a con-

venient system of coordinates. For any statistic AÄ the normalized

q 2000 RAS, MNRAS 313, 725±733

Figure 4. Same is in Fig. 1, but we consider here the skewness of ~�j (left panel), SÄ3 (middle panel) and SÄ4 (right panel).

Figure 5. Same as in Fig. 1, but now the distribution function of measurements Y(PÄ N) is shown as a function of dPÄ N/DPN for various scales and values of N as

indicated on each panel.
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quantity

~xA ;
d ~A

DA
�

~A 2 A

DA
�5�

is considered, where A � k ~Al to simplify notations. The average

of xÄA is zero and its variance is unity by definition, which

facilitates the comparison of the plots. The disadvantage of this

coordinate system is that the cosmic error DA/A is not directly

shown.

For reference, each figure of type D displays a Gaussian (solid

curve) and lognormal distribution with the same variance and

average (dots, e.g. Coles & Jones 1991):

Y� ~A� � 1

~A
���������
2pk
p exp 2

�ln� ~A=A� � k=2�2
2k

� �
; �6�

with

k � ln�1� �DA=A�2�: �7�
The skewness of this distribution is given by

S � �DA=A�3 � 3DA=A: �8�
For comparison, the skewness of the lognormal assumption is

plotted with dotted lines on figures of type S. The amount of

skewness of the lognormal is a function of the cosmic error, i.e.

more skewness on the figures indicates a larger cosmic error

which is hidden by the choice of the coordinate system.

In addition, a `generalized lognormal distribution' is introduced

(dashes on figures of type D):

Y� ~A� � s

DA�s� ~A 2 A�=DA� 1� ���������2ph
p

� exp 2
{ln�s� ~A 2 A�=DA� 1� � h=2}2

2h

� �
; �9�

h � ln�1� s2�; �10�
where s is an adjustable parameter. It is fixed by the requirement

that the analytical function (9) has identical average, variance and

skewness, S � s3 � 3s; with the measured Y(AÄ ). It has more

parameters, thus form (9) characterizes the shape of function Y(AÄ )

better than the other two functions, especially for the large dAÄ tail.

As will be shown next, it is an excellent approximation for the

underlying probability distribution in all regimes for all statistics.

This robust universality is the most striking result of this article.

The cosmic distribution function, as with any measurement

from finite data, is subject to both measurement and cosmic errors

(the `error on the error problem', cf. SC). The measurement error

on Y, owing to the finite number of subsamples extracted from the

whole simulation, can be calculated via straightforward error

propagation. It essentially corresponds to the usual 1=
�������
CE
p

factor,

where CE is the number of subsamples. This is plotted on all

figures of type D as error bars. On figures of type S no error bars

are shown, since this would require an accurate estimate up to the

sixth moment of the cosmic distribution Y(AÄ ). The excellent

agreement between cosmic error measurements and theory (Paper

I) indicates that the number of subsamples is sufficient and thus

the resulting error bars should be fairly small. Similar arguments

suggest that the simulation volume was sufficiently large to render

the cosmic error on the cosmic distribution negligible.

2.1 Factorial moments

Fig. 1 displays Y(FÄ k) for 1 # k # 4 and various scales ` � 1; 7.8,

62.5 h21 Mpc.

The agreement with the generalized lognormal distribution is

excellent, but even the lognormal gives an adequate description.

The deviation from a Gaussian is pronounced whenever the

relative cosmic error DFk/Fk is significantly larger than unity.

While the figures do not show the cosmic error directly, the

skewness of Y(FÄ k) is a reliable indication. It increases with the

order k since DFk/Fk also increases with k. Fig. 2 shows directly

the quantity S measured for Y(Fk) along with the lognormal value

(8). The agreement shows that the lognormal model yields an

excellent approximation.

Fig. 1 in conjunction with the measurements of the cosmic error

in Paper I suggests that

DA=A & Dcrit; Dcrit � 0:2; �11�

is a practical criterion for the validity of the Gaussian

approximation.

2.2 Cumulants

Fig. 3 is analogous to Fig. 1, showing functions Y(jÅÄ), Y(SÄ3) and

Y(SÄ4) for the biased estimators. As was shown in Paper I, the bias

is negligible compared to the cosmic errors, thus correction is not

necessary. The agreement with the lognormal is more approximate

than for Y(FÄ k), except for the variance jÅ. Indeed, the skewness of

Y(SÄN) is in general different from the lognormal prediction, as

illustrated by Fig. 4. On small scales it is larger than predicted by

equation (8) while on large scales, where edge effects dominate, it

is much smaller. The generalized lognormal (9) can still account

for the shape of Y(SÄN) quite well, especially for the large SÄN tail.

The cosmic skewness of Y(SÄk) is fairly small on large scales.

This is a natural consequence of the fact that cumulants are not

subject to the positivity constraint ~Sk $ 0; as is the case for

factorial moments. On large scales, the measured SÄk may well be

positive or negative and similarly with jÅ on extremely large

scales. As a result, the left-hand tail of the distribution is more

pronounced in both lower right panels of Fig. 3 than the

corresponding figure for factorial moments and Y(S3) is almost

Gaussian in the middle-right panel.

Rule (11) for the Gaussian limit still applies, at least for jÅ, and

q 2000 RAS, MNRAS 313, 725±733

Figure 6. The skewness S of Y(PÄ N) as a function of N for three scales,

` � 1 h21 Mpc (left curve), ` � 7:8 h21 Mpc (middle curve) and ` �
62:5 h21 Mpc (right curve). The dotted curves give the lognormal

prediction, which is always larger than the measurement.
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perhaps a slightly more stringent condition should be chosen for

cumulants of higher order. Y(SÄ3) is fairly skewed even though the

measured cosmic error is slightly below the threshold value for

` � 1 h21 Mpc and ` � 7 h21 Mpc (see Paper I).

2.3 Counts-in-cells

Fig. 5 shows the function Y(PÄ N) in various cases. The upper panels

focus on a small scale ` . 1 h21 Mpc: In this regime, the CPDF and

2DPN/PN are decreasing functions of N as demonstrated in Paper

I.Once again, the validity of the Gaussian approximation depends on

the size of the cosmic error. As a result, Y(PÄ N) is nearly Gaussian

for N � 1 and becomes more and more skewed as N increases.

The lognormal approximation appears to be adequate within the

errors, although it is slightly too skewed as illustrated by Fig. 6.

The middle panels show an intermediate scale ` .
7:8 h21 Mpc: On these scales (cf. Paper I) both the CPDF and

the cosmic error have a unimodal behaviour with an extremum

(maximum for the CPDF and correspondingly minimum for the

errors) for N , Nmax � 26: This explains why for the chosen

values of N � 5; 50 and 500, function Y(PÄ N) is skewed,

approximately Gaussian and skewed again respectively. For N � 5

lognormal is an excellent approximation, while the skewness for

N � 500 is somewhat less than that of a lognormal.

Finally, the lower panels display the largest available scale ` �
62:5 h21 Mpc: The behaviour of PN and DPN/PN is similar as

previously, with the extremum shifted to N , Nmax . 30 000: In

this case, the cosmic error is always large, at least of order 50 per

cent (cf. Paper I). All the curves are thus significantly skewed for

the chosen values of N � 25 000; 30 000 and 40 000. The

agreement with the lognormal assumption is somewhat inaccurate,

although the generalized lognormal improves the fit, especially for

the left-hand panel. Note that the apparently abrupt limit for small

values of dPÄ N/DPN is the result of the positivity constraint ~PN $ 0:
This constraint becomes quite severe when the average value is

much smaller than the errors. While there is still plenty of

dynamic range for upscattering, there is a hard restriction for

down scattering. This is only partly taken into account in our

generalized lognormal model and any modifications in this respect

are left for future work. Finally, the practical criterion (11) is again

valid for determining the Gaussian approximation.

Note that the finite number C � 5123 of sampling cells (see

Paper I), the CPDF is necessarily a multiple of 1/C. This

quantization could cause contamination of Y(PÄ N) unless PN @
1=C . 1028:13: The condition PN $ 1026 adopted corresponds to

at least ,100 cells per subsample on average with N particles.

Despite that, a small amount of contamination might still persist

for d ~PN * 2PN ; i.e. at the left side of the plots on Fig. 5. The

same effect might also alter the tail of the counts-in-cells

measurements presented in Paper I, although not significantly.

2.4 Void probability and scaling function

According to the investigations in Paper I, the cosmic error on P0

and s increases steadily with scale up to a sudden transition on

scales ` , 5 h21 Mpc; where it becomes large or infinite. This

behaviour was studied extensively by Colombi, Bouchet &

Schaeffer (1995, hereafter CBS) where more of the details can

be found. The most relevant consequence here is that in the

available dynamic range the cosmic error is small and Y(PÄ 0) and

Y(sÄ ) are nearly Gaussian. For this reason it would be superfluous

to print the corresponding figures.

2.5 Cosmic skewness and cosmic bias

According to Figs 1±6, the degree of skewness of the cosmic

distribution function increases with the order k and with jN 2
Nmaxj; where Nmax is the value for which PN reaches its maximum.

The cosmic skewness is already significant for third-order

statistics, F3 and S3. An important consequence of the large

cosmic skewness is that the maximum Y(AÄ ), i.e. the most likely

measurement, is shifted to the left from the ensemble average on

Figs 1, 3 and 5. Maximizing the Ansatz (9), which is always a

good fit to the cosmic distribution function, yields

[A � Amax=A 2 1 � DA

As

1

�1� s2�3=2
2 1

� �
; �12�

where [A is the effective cosmic bias. Since s . 0; it is negative

and its absolute value is smaller than the cosmic error,

j[Aj & 0:66
DA

A
: �13�

For a lognormal distribution, s � DA=A;

j[Aj � 1 2 �1� �DA=A�2�23=2 # 1: �14�
The effective cosmic bias becomes increasingly significant when

the cosmic error is large. Similarly to the cosmic bias (SCB),

[A , 2�3=2��DA=A�2 from expanding equation (14) in the small

error regime.

The phenomenon of effective bias was already pointed out by

SC (and preliminarily investigated by Colombi, Bouchet &

Schaeffer 1994). Since Amax is the most likely value of AÄ , the

only one available measurement in a catalogue of the neighbour-

ing universe is likely to a yield lower than average value. This is

true even for an unbiased indicator such as FÄ k or PÄ N.

Unfortunately, this effect cannot be corrected for, but it can be

taken into account in the framework of the maximum likelihood

approach using the above results on the shape of Y(AÄ ).

3 B I VA R I AT E C O S M I C D I S T R I B U T I O N

F U N C T I O N : A P R E L I M I N A RY A N A LY S I S

Figs 7 and 8 display contours of the joint cosmic distribution

Y(AÄ , BÄ ) (solid lines) for factorial moments and cumulants,

respectively. For comparison the Gaussian limit is shown,

Y� ~A; ~B� � 1

2pDADB
�������������
1 2 r2

p exp 2
1

2
Q � ~A; ~B�

� �
; �15�

Q � ~A; ~B� � 1

1 2 r2
� ~x2

A 2 2r ~xA ~xB � ~x2
B�; �16�

where r ; kd ~xAd ~xBl is the cross-correlation coefficient. Dot-

dashes display the above function with the measured r , DA/A and

DB/B, while long dashes represent the same function but with the

parameters inferred from the theory of SCB with the E2PT model

(see Paper I for details). The contours, corresponding in the

Gaussian limit to the 1s (thin curves) level, Q � ~A; ~B� � 1; and the

2s (thick curves) level, Q � ~A; ~B� � 4; are displayed in the coordi-

nate system of the measured xÄA and xÄB.

On ` � 7:1 h21 Mpc scales the theoretical predictions are

expected to match the second-order moments of Y for factorial

moments and even the cross-correlations (see Paper I). This is

illustrated by Fig. 7, where the long-dashed ellipses superpose

well to the dot±dashed ones. For the cumulants the theory

q 2000 RAS, MNRAS 313, 725±733
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Experimental cosmic statistics ± II. Distribution 731

overestimates the errors slightly, which is reflected in the contours

of Fig. 8, although cross-correlations are still reasonable, as

indicated by the orientation of the ellipses.

The departure from the Gaussian limit is significant, except for

the upper left panel on Figs 7 and 8 and increases with order, in

accord with the findings of the previous section. The contrast with

Gaussianity increases with the cosmic error and thus with the

order considered. With the exception of NÅ , F2, jÅ and S3, the

measured cosmic error violates (11) at ` � 7:1 h21 Mpc (see

Paper I). Moreover, as shown previously, criterion (11) should be

strengthened for cumulants Sk, k $ 3: In conclusion, condition

(11) distinguishes the Gaussian limit for Y(AÄ , BÄ ) adequately when

applied to both statistics AÄ and BÄ .

Similarly to the monovariate distribution (Section 2), function

Y(AÄ , BÄ ) develops skewness and a significant tail for large values of

~x � � ~xA; ~xB� when rule (11) is broken. There are three notable

consequences.

(i) The effective cosmic bias (Section 2.5) is present again, i.e.

the maximum of Y is shifted from the average towards the lower

left corner of the panels.

(ii) The contours tend to cover a smaller area than for the

Gaussian limit.

(iii) As a result of the positivity constraint, there is a well-

defined lower vertical/horizontal bound in some panels, e.g. for

xÄF4
, F4 $ 0.

4 S U M M A RY A N D D I S C U S S I O N

This paper has presented an experimental study of the cosmic

distribution function of measurements Y(AÄ ), where AÄ is an

indicator of a statistic related to counts-in-cells. The cosmic

distribution was considered for the factorial moments Fk,

cumulants jÅ and SN, the void probability P0 with its scaling

function, s ; 2ln�P0�=F1; and finally the counts-in-cells PN

themselves. To analyse properties of the function Y(AÄ ), we used a

state-of-the-art tCDM simulation divided into 4096 subcubes,

large enough themselves to represent a full galaxy catalogue. The

statistics mentioned above were extracted from each subsample

and the resulting distribution of measurements was used to

estimate Y(AÄ ).

q 2000 RAS, MNRAS 313, 725±733

Figure 7. The joint cosmic distribution function for factorial moments, Y(FÄ k, FÄ l). Thin and thick solid contours are displayed for two values of Y which

would correspond respectively to 1s and 2s contours in the Gaussian limit. The latter is shown as thin and thick dot±dashes. For comparison, the analytic

prediction of SCB for E2PT is also plotted with thin and thick long dashes corresponding to the Gaussian limit with theoretical cosmic errors and cross-

correlation coefficient. The scale of the measurement is ` � 7:8 h21 Mpc as displayed on each panel. The image used to draw contour plots has 302 pixels. It

was generated using bilinear interpolation from another array with logarithmic binning in each coordinate in order to reduce the errors on the estimate of

function Y(AÄ , BÄ ) in each bin.
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While Paper I concentrated on the first two moments of the

cosmic distribution, the average and the errors, here the focus was

shifted towards the general shape of function Y itself, including its

skewness, the cosmic skewness. The main results of this analysis

are the followings.

(i) In contrast with popular belief, the cosmic distribution is not

Gaussian in general. The most reassuring result is, however, that

the Gaussian approximation appears to be valid whenever the

cosmic errors are small, typically DA=A & 0:2: This result is quite

robust and it is insensitive to the particular statistic considered

(except that a slightly more stringent condition might be chosen

for cumulants Sk, k $ 3). This means that for any quantity which

can be reliably measured from a survey, a Gaussian error analysis

should be valid.

When the relative cosmic error DA/A becomes significant, Y
becomes increasingly skewed. Since DFk/Fk and DSk/Sk increase

with k (SC; Paper I) and DPN/PN with jN 2 Nmaxj; where Nmax is

the maximum of the CPDF, so does the cosmic skewness, which

eventually results in the breakdown of the Gaussian approxima-

tion. Functions Y(FÄ k) and Y(jÅÄ) are well approximated by a

lognormal law. Otherwise, a third-order parametrization matching

the average, the variance and the skewness of the observed

distribution is necessary and in general sufficient. Such a

generalization of lognormal distribution is proposed and found

to be in agreement with the measurements in all regimes

investigated. Note that there are other alternatives such as the

Edgeworth expansion (e.g. Juszkiewicz et al. 1995) or the skewed

lognormal approximation of Colombi (1994). This latter consists

of applying the Edgeworth expansion to log(AÄ ). This method,

when applicable, improves significantly the domain of validity of

the Edgeworth expansion, normally only useful in the weakly non-

Gaussian limit DA=A & 0:5.

(ii) While Paper I examined the cosmic bias resulting from the

non-linear construction of certain estimators, here a new

phenomenon was pointed out, which is similar in effect, but

different in nature: the effective cosmic bias. It affects all

estimators, including unbiased ones, and is a result of the cosmic

skewness. Whenever the cosmic errors are large, the cosmic

distribution function develops a skewness corresponding to a long

tail. As a result, the most likely measurement will be smaller than

the average. Such a phenomenon was pointed out earlier in SC,

and here it has been found to be universal. As SCB and Paper I

found that the cosmic bias is usually insignificant compared to the

cosmic errors, it is likely that the effective cosmic bias is

responsible for some of the conspicuously low measurements from

small galaxy catalogues. This is in contrast with the conjecture of

Hui & GaztanÄaga (1998, hereafter HG), who assumed that the

cosmic bias resulting from the use of biased estimators could

explain this phenomenon. The effective cosmic bias renders

q 2000 RAS, MNRAS 313, 725±733

Figure 8. Same as in Fig. 7, but for the average count F1 and the cumulants, jÅ, S3 and S4.
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correction for the cosmic bias useless, in contrast with the

proposition of HG. The effective cosmic bias (and the less

significant cosmic bias if any) can be taken into account in the

framework of a full maximum likelihood analysis, which relies on

the shape of the cosmic distribution function approximated with

sufficient accuracy.

(iii) A preliminary investigation of joint distribution Y(AÄ , BÄ )

was performed for factorial moments and cumulants. It confirms

the validity of the above points (i) and (ii) for cosmic bivariate

distribution. In particular, a practical criterion for the validity of

the Gaussian limit is that the cosmic error for both estimators be

small enough, typically DA=A & 0:2 and DB=B & 0:2: This result

can be safely generalized to N-variate distribution functions, thus

providing the basis of full multivariate maximum likelihood

analysis of data in the Gaussian limit.

We have not attempted to develop a more accurate multivariate

approximation than (multivariate) Gaussian as this would go

beyond the scope of this paper. However, we conjecture that an

extension of our generalized lognormal distribution would be

feasible (see the point of view of Sheth 1995). An alternate

approach, proposed by Amendola (1996), would employ a multi-

variate Edgeworth expansion. However, similarly with point (i)

above for monovariate distributions, this approximation is only

valid when the errors are small; but this is precisely the criterion

for the Gaussian limit as we have shown previously. A general-

ization of the lognormal distribution expanding the logarithm of

the statistics via the multivariate Edgeworth technique provides a

potential improvement of this method.

It is worth noting that the behaviour of the cosmic distribution

function is expected to be extremely robust with respect to the

particular model studied in this paper, tCDM. For example, SC, in

their preliminary investigations, found essentially the same

universal behaviour in Rayleigh±Levy fractals. Moreover, as

discussed more extensively in Paper I, the results are sufficiently

stable that the usual worries of galaxy biasing (not to be confused

with cosmic and effective cosmic bias) and redshift distortions are

unlikely to change them qualitatively. Indeed the shape of the

cosmic distribution function is almost entirely determined by the

magnitude of the cosmic error and it is insensitive to which

statistic is considered. The powerful universality found among

entirely different statistics is likely to carry over when the two

effects mentioned above, which are subtleties in comparison with

the range of statistics investigated, are taken into account.

The results found in the present work and in Paper I are

encouraging for investigations in future large galaxy catalogues

and for problems related to data compression (e.g. Bond 1995;

Vogeley & Szalay 1996; Tegmark, Taylor & Heavens 1996; Bond,

Jaffe & Knox 1998; Seljak 1998). For example, the cosmic error

on factorial moments is expected to be small on a large dynamic

range in the SDSS (see, e.g. CSS), implying according to the

above findings that the cosmic distribution function should be

nearly Gaussian in this regime. In that case, theory of the cosmic

errors and cross-correlations, outlined in SC, CSS and SCB and

thoroughly tested in Paper I, will be sufficient for full multivariate

maximum likelihood analyses. Preliminary investigations on

current surveys are being undertaken by Szapudi, Colombi &

Bernardeau (in preparation) and Bouchet, Colombi & Szapudi (in

preparation). Similarly the theoretical background is currently

being developed for future weak lensing surveys (Berneardeau,

Colombi & Szapudi, in preparation), where statistical analyses

will be conducted with indicators very close to counts-in-cells

(see, e.g. Bernardeau, Van Waerbeke & Mellier 1997; Mellier

1999; Jain, Seljak & White 1999).
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