
HAL Id: hal-04110294
https://hal.science/hal-04110294

Submitted on 30 May 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

STLformer: Exploit STL decomposition and Rank
Correlation for Time Series Forecasting

Zuokun Ouyang, Meryem Jabloun, Philippe Ravier

To cite this version:
Zuokun Ouyang, Meryem Jabloun, Philippe Ravier. STLformer: Exploit STL decomposition and
Rank Correlation for Time Series Forecasting. 31th European Signal Processing Conference (EU-
SIPCO), Sep 2023, Helsinki, Finland. �hal-04110294�

https://hal.science/hal-04110294
https://hal.archives-ouvertes.fr

STLformer: Exploit STL decomposition and Rank
Correlation for Time Series Forecasting

Zuokun Ouyang, Meryem Jabloun, Philippe Ravier
PRISME Laboratory, University of Orléans, France

{zuokun.ouyang,meryem.jabloun,philippe.ravier}@univ-orleans.fr

Abstract—The challenge of time series forecasting has been
the focus of research in recent years, with Transformer-based
models using various self-attention mechanisms to uncover long-
range dependencies. However, complex trends and nonlinear
serial dependencies presented in some specific datasets may not
always be captured properly. To address these issues, we present
STLformer, a novel Transformer-based model that utilizes an
STL decomposition architecture and the rank correlation func-
tion to improve long-term time series forecasting. STLformer
outperforms four state-of-the-art Transformers and two RNN
models across multiple datasets and forecasting horizons.

Index Terms—Time Series, Forecasting, Transformer, Rank
Correlation, Nonlinear Dependencies, STL Decomposition

I. INTRODUCTION

Time series forecasting is a widely used technique that in-
volves predicting the future values of a given time series based
on its historical behavior. This technique has found extensive
applications in diverse fields such as GDP prediction [1],
weather forecasting [2], energy consumption forecasting [3],
and traffic forecasting [4]. While traditional statistical methods
like AutoRegression Integrated Moving Average (ARIMA),
Exponential Smoothing (ETS), and Theta method [5]–[8] have
long dominated the field, deep learning has emerged as a
promising alternative for time series forecasting in recent
years, achieving remarkable success [9]–[12]. In this context,
Convolutional Neural Networks (CNNs), Recurrent Neural
Networks (RNNs), and Transformers have become the most
popular deep learning models for time series forecasting. No-
tably, CNNs and RNNs are particularly suited for forecasting
tasks that require capturing sequential dependencies in the
time series [13], which is demonstrated by the success of
several representative works such as TCN [14], LSTNet [15],
DeepAR [16], and N-BEATS [17].

Since its inception in 2017, Transformer models have gained
increasing popularity and have been successfully applied in
various fields, including machine translation, computer vision,
and text generation [18]–[21]. Informer [22] was the first
work introducing the Transformer model for long-term time
series forecasting, employing a ProbSparse self-attention cal-
culation and a self-attention distilling mechanism to handle the
quadratic computation complexity. Autoformer [23] replaced
the self-attention block with an AutoCorrelation mechanism to
identify period-based dependencies and employed a decompo-
sition structure to separate the long-term stationary trend and

This research was partly supported by Association Nationale de la
Recherche et de la Technologie (CIFRE 2019/0551).

seasonal patterns. Our previous work, Rankformer, utilized the
Spearman Rank Correlation to better capture the autoregres-
sive conditional heteroskedasticity (ARCH) effect [24]. Other
Transformer models like LogTrans [25] and Reformer [26]
have also been applied to time series forecasting tasks.

Although the Transformer models discussed previously have
attempted to capture long-range dependencies in time series,
they have not always been successful. For example, while
Informer [22] utilized the ProbSparse self-attention mecha-
nism to reduce computation complexity, it did not extract
hidden long-range dependencies effectively. Similarly, Auto-
former [23] used the AutoCorrelation mechanism to discover
period-based dependencies. However, its use of the Pearson
correlation function only supports linear correlation, which
may not be sufficient for certain time series. Rankformer [24]
exploited the Rank Correlation to handle nonlinear depen-
dencies. However, it relies solely on simple moving averages
for decomposition, which may not accurately extract seasonal
patterns, resulting in suboptimal modeling for seasonal and
trend parts and final results.

This paper presents STLformer, a novel Transformer-based
model for long-term time series forecasting. STLformer is the
first of its kind to incorporate the Seasonal-Trend decomposi-
tion using LOESS (LOcall Estimated Scatterplot Smoothing)
architecture into the Transformer framework. By leveraging
the STL decomposition, our model is able to capture and
model the trend and seasonal patterns present in certain
time series, resulting in improved forecasting performance.
STLformer builds upon our prior work, Rankformer, which
uses rank correlation to detect nonlinear serial dependencies.
Extensive experiments on four benchmark datasets demon-
strate the superiority of STLformer over other Transformer
models for four different forecasting horizons. Overall, our
contribution lies in combining the Transformer architecture
with STL decomposition and demonstrating its effectiveness
for long-term time series forecasting.

The rest of the paper is organized as follows. Sec. II
introduces the proposed STLformer model. We then present
the experimental setups and configurations in Sec. III. The
comparison and discussions based on the results are given in
Sec. IV. Finally, Sec. V concludes the paper.

II. METHOD

This section presents an overview of the STLformer ar-
chitecture and its two essential components, i.e., the STL

mailto:zuokun.ouyang@univ-orleans.fr
mailto:meryem.jabloun@univ-orleans.fr
mailto:philippe.ravier@univ-orleans.fr

Encoder
Input

Rank
Correlation

STL
Decomp

Feed
Forward

STL
Decomp

Encoder

𝑄 𝐾 𝑉

𝐾
𝑉

Rank
Correlation

STL
Decomp

Rank
Correlation

Seasonal
Init

STL
Decomp

Feed
Forward

STL
Decomp

Trend-
cyclical Init

Prediction

Decoder

𝑄 𝐾 𝑉

𝑄

×𝑁

×𝑀

STL
Decomp

Fig. 1. The architecture of STLformer.

Decomposition block and the Rank Correlation block.

A. STLformer Architecture

STLformer employs an identical encoder-decoder architec-
ture as Rankformer and Autoformer, as depicted in Fig. 1. To
ensure the comprehensiveness of this article, we reiterate the
architecture.

The encoder consists of N identical layers, each comprising
a multi-head Rank Correlation (RankCorr) block, two STL
Decomposition (STLDecomp) blocks, and a Feed-Forward
(FF) block. Similarly, the decoder contains M identical layers,
with each layer having two multi-head RankCorr blocks, three
STLDecomp blocks, and one FF block. The final prediction
is formed by combining the outputs of the last STLDecomp
block and the refined trend-cyclical part in the decoder. Further
details of the STLformer architecture are detailed in the
subsequent sections.

1) Encoder: Using RankCorr and STLDecomp blocks, the
encoder decomposes the time series into seasonal and trend-
cyclical parts, with the latter being ignored during modeling.
As a result, the encoder primarily focuses on modeling the sea-
sonal part. The output of the l-th encoder layer is represented
as X l

en = Encoder(X l−1
en). The process in a single encoder

layer is formulated as follows:

Sl,1
en , = STLDecomp

(
RankCorr(X l−1

en) + X l−1
en

)
,

Sl,2
en , = STLDecomp

(
FF(Sl,1

en) + Sl,1
en

)
,

(1)

where Sl,i
en represents the seasonal component after the i-th

STLDecomp block. X l
en = Sl,2

en , l ∈ {1, 2, ..., N}.
2) Decoder: In STLformer, the decoder has two streams:

the trend-cyclical stream and the seasonal stream. The seasonal
stream continuously refines the seasonal part of the time series,
while the trend-cyclical stream focuses on modeling the trend-
cyclical component. Using a notation similar to the encoder,
we can summarize the process in a single decoder layer as
X l

de, T l
de = Decoder(X l−1

de , T l−1
de), and formalize it as follows:

Sl,1
de , T

l,1
de = STLDecomp

(
RankCorr(X l−1

de) + X l−1
de

)
,

Sl,2
de , T

l,2
de = STLDecomp

(
RankCorr(Sl,1

de ,X
N
en) + Sl,1

de

)
,

Sl,3
de , T

l,3
de = STLDecomp

(
FF(Sl,2

de) + Sl,2
de

)
,

T l
de = T l−1

de +Wl,1T l,1
de +Wl,2T l,2

de +Wl,3T l,3
de ,

(2)
Sl,i

en and T l,i
de denote the seasonal and trend-cyclical compo-

nents, respectively, and Wl,1, Wl,2, Wl,3 are trainable weights.
The output of the l-th decoder layer consists of two parts: the
refined seasonal patterns X l

de = Sl,3
de , and the multiple level

trend-cyclical patterns T l
de, where l ∈ {1, 2, ...,M}.

3) Model Inputs and Outputs: With I denoting the input
length, O representing the output length, and d indicating
the model dimension, the inputs of STLformer’s encoder and
decoder are then defined as follows:

• The encoder input, which consists of the last I time steps
in the time series: Xen ∈ RI×d.

• The seasonal init input, which concatenates the latter
half of the encoder’s decomposed input and O zero-
placeholders: Xde,S = concat(Xen,S,X0) ∈ R(I

2+O)×d.
• The trend-cyclical init input, which also consists of the

latter half of the decomposed Xen and a placeholder filled
with the average of Xen: Xde,T = concat(Xen,T,Xavg) ∈
R(I

2+O)×d.
The relationship between the STLformer inputs can be

formalized as follows:

Xen,S,Xen,T = STLDecomp

(
Xen

[
I

2
: I

])
,

Xde,S = concat(Xen,S,X0),

Xde,T = concat(Xen,T,Xavg).

(3)

The final output of the STLformer model is a combination
of the seasonal and trend-cyclical parts formed in the decoder.
It can be formalized as WSXM

de +T M
de , where WS is a trainable

weight to project XM
de into the target dimension.

B. STL Decomposition Block

The key difference between STLformer and Rankformer,
and the primary contribution of our work, is the substitution of
the Multi-Level Decomposition block in Rankformer with the
STL decomposition block, which utilizes LOESS regression.

LOESS was first proposed by Cleveland [27]. It is a
nonparametric robust locally weighted regression method for
smoothing a scatterplot, (xi, yi), i = 1, ..., n, in which the fit-
ted value at xk is the value of a polynomial fit to the data using
weighted least squares, where the weight for (xi, yi) is large
if xi is close to xk and small if it is not. It splits the data into
several small sections, performs weighted linear regressions
on different sections, and connects the center of these curves
to form the complete regression curve. Specifically, LOESS is
defined by the following sequence of operations for a given
time series:

1) For one data point, often called the focal point, select k
nearest points around it to form a local window. Every
focal point has a corresponding local window.

2) Calculate the weights of every point in the window
through a weight function W , which is conventionally
a Tricube function as shown in (4).

W (x) =

{
(1− |x|3)3, for |x| < 1,

0, for |x| ≥ 1.
(4)

3) Fit a weighted linear regression in the window. For n
focal points, we have n weighted linear regressions.

4) Connect the center points of the n weighted regressions
to form the final fitted curve.

The time complexity of LOESS mainly involves traversing
the entire dataset to select the k nearest points for each point to
form the local window, which leads to an O(N2) complexity.
This issue can be resolved by using a k-d tree for acceleration,
which can rapidly find the nearest neighbors of a data point.
Implementing a k-d tree can reduce the time complexity of
the LOESS algorithm to O(N logN) [27].

In 1990, Cleveland et al. proposed the famous STL decom-
position method [28], which leverages LOESS to estimate the
trend and seasonal components, contributing to a versatile and
robust method for decomposing time series.

Our model adopted the idea of STL decomposition and
implemented the k-d tree LOESS to decompose the input
time series into seasonal and trend-cyclical components. The
STLDecomp block employs the LOESS regression to fit a
locally smoothed trend-cyclical component. We formalize the
STLDecomp block as follows:

Xseasonal,Xtrend-cyclical = STLDecomp (X) ,

Xtrend-cyclical = LOESS (X) ,

Xseasonal = X − Xtrend-cyclical,

(5)

where LOESS is the LOESS regression function, and
Xtrend-cyclical and Xseasonal denote the trend-cyclical and seasonal
components, respectively.

C. RankCorrelation Block

STLformer leverages the RankCorrelation block, which is
also used in our previous work Rankformer [24]. We revisit the
concept behind it to provide a comprehensive understanding.

The AutoCorrelation Function (ACF) uses the well-known
Pearson correlation function, i.e., Pearson’s ρ, to measure the
correlation between two instants in a stationary time series yt:

ACF(k) = ρp(yt−k, yt) =
cov(yt−k, yt)

σ(yt−k)σ(yt)
, k = 0, 1, 2, ...,∀t.

(6)
However, in some time series, the long-term dependencies

are not linear, and this nonlinearity can result in a low
Pearson’s ρ, leading to the erroneous measurement of depen-
dencies. To address this issue, we use the Rank Correlation
Function (RCF), more commonly known as Spearman’s ρ, to
measure nonlinear correlations. Spearman’s ρ is defined as
follows:

ρs(X,Y) =
cov(R(X), R(Y))

σ(R(X))σ(R(Y))
, (7)

where R(X) and R(Y) denote the ranks of two random
variables X and Y , respectively. The usual Pearson correlation
coefficient is applied to the ranks to compute the Ranked
AutoCorrelation Function (RACF). ρs is defined in the range
[−1, 1], where −1 indicates a perfect negative monotonic
relationship, 0 indicates no monotonic relationship, and 1
indicates a perfect positive monotonic relationship. Our RACF
is defined as follows:

RACF(k) = ρs(yt−k, yt), k = 0, 1, 2, ...,∀t. (8)

We compute the RACF exploiting the Wiener-Khinchin
theorem, which states that the ACF of a stationary time
series can be computed by the Fourier transform of its power
spectrum. The latter is accelerated to O(N logN) with Fast
Fourier Transform. In our implementation, we rank the time
series using the efficient O(N logN) sorting operator [29]
provided by the torchsort1 library and then compute the
ACF of the ranked time series to obtain the RACF. Therefore,
the overall computation complexity of calculating the RACF
is O(N logN).

III. EXPERIMENTS

This section presents our experimental settings and results.

A. Datasets

We evaluated STLformer against other state-of-the-art meth-
ods on four popular datasets, as per Rankformer:

• Electricity Transformer Temperature (ETT) [22]: 15-
minute level oil temperature and six power load features
data recorded in two Chinese counties from July 2016 to
July 2018. Seasonal data.

• Exchange-Rate2: Daily exchange rates from 1990 to
2016 of eight countries, i.e., Australia, British, Canada,
China, Japan, New Zealand, Singapore, and Switzerland.
Nonseasonal.

• Weather3: 10-minute level local climate data of 21 mete-
orological features from Max-Planck-Institut für Biogeo-
chemie, Jena for 2020. Complex seasonal data.

1https://github.com/teddykoker/torchsort
2https://github.com/laiguokun/multivariate-time-series-data
3https://www.bgc-jena.mpg.de/wetter/

https://github.com/teddykoker/torchsort
https://github.com/laiguokun/multivariate-time-series-data
https://www.bgc-jena.mpg.de/wetter/

TABLE I
DATASET DESCRIPTION

Dataset ETT Exchange Weather ILI

Length 69680 7588 52696 966

Dimension 7 8 21 7

Frequency 15 min 1 day 10 min 1 week

Seasonality Seasonal Nonseasonal Complex Seasonal

Engle’s test
p-value

< 2.2e-16 < 2.2e-16 < 2.2e-16 0.8126

ARCH effect Significant Significant Significant Insignificant

• Influenza-Like Illness (ILI)4: Weekly ILI patients data
containing the ratio of ILI patients and the total number of
patients collected by the U.S. Centers for Disease Control
and Prevention from 2002 to 2021. Seasonal data.

We performed Engle’s Lagrange Multiplier Test [30] on the
four datasets to evaluate the significance of nonlinearity in
the serial dependencies. This test assesses the significance of
ARCH effects in a time series. A significant result reveals
the presence of nonlinear serial dependencies in the series.
The statistics of the datasets are listed in Tab. I, along with
Engle’s test results [24].

We split all datasets into train/validation/test sets in chrono-
logical order, using a 7/1/2 split for all datasets except for
ETT, which was split into 6/2/2, as per Rankformer [24] and
Autoformer [23].

B. Experimental Settings

We used the same number of encoder-decoder layers as
Rankformer, i.e., two encoder layers and one decoder layer.
STLformer was trained using the Mean Square Error loss and
the Adam optimizer [31], with an initial learning rate of 10−4.
We set the batch size to 32 and trained the model for ten
epochs with a learning rate scheduler that reduces the learning
rate by a factor of 0.5 when the validation loss plateaus. The
model was implemented in PyTorch [32] and trained on a
single NVIDIA Tesla V100 GPU.

IV. RESULTS AND DISCUSSION

STLformer was compared with the following Transformer
methods: Rankformer [24], Autoformer [23], Informer [22],
LogTrans [25], Reformer [26]. We also compared STLformer
with baseline deep learning models, i.e., LSTNet [15] and
LSTM [33]. Mean Square Error (MSE) and Mean Absolute
Error (MAE) were used to evaluate the performance of the
models. The results are shown in Tab. II with the best results
highlighted in bold, while the second-best ones are underlined.

In general, STLformer achieved superior performance com-
pared to the other methods on the ETT, Exchange-Rate,
and Weather datasets while being slightly less accurate than
Autoformer and Rankformer on the ILI dataset. STLformer
also performed slightly better than Autoformer on the Weather
dataset but also marginally poorer than Rankformer.

4https://gis.cdc.gov/grasp/fluview/fluportaldashboard.html

On the Exchange-Rate dataset, despite the absence of
any significant periodicity in the dataset, STLformer still
achieved the best performance boost on average for both
Rankformer (4.84%) and Autoformer (21.45%). We attribute
this to STLformer’s STL Decomposition Block being better
at extracting the trend and seasonal patterns, thus resulting in
better handling of the dataset’s nonlinear serial dependencies.
STLformer also achieved decent improvements on the ETT
dataset, with an average boost of 4.80% for Rankformer and
9.74% for Autoformer, compared to their respective perfor-
mances with their original decomposition blocks. This is less
than the performance boost on the Exchange-Rate dataset. We
observed that the ETT dataset has a significant seasonality,
where a standard moving average can effectively separate the
trend and seasonal patterns. At the same time, Exchange-
Rate is nonseasonal, which requires a more sophisticated
decomposition method to help the model focus on modeling
different patterns. This explains why STLformer achieved a
better performance boost on the Exchange-Rate dataset.

For the Weather dataset, STLformer outperformed Auto-
former but not Rankformer. We think as the Weather dataset
exhibits a complex seasonality, Rankformer’s Multi-Level
Decomposition block is more suitable for the dataset than
STLformer’s STL-based decomposition block. For ILI, both
STLformer and Rankformer filed to outperform Autoformer,
and there is no performance boost from STL decomposition.
The p-value of Engle’s Lagrange Multiplier test on the ILI
dataset was 0.8126, indicating statistically significant linear
serial dependencies that can be handled more appropriately
by the AutoCorrelation Block adopted in Autoformer.

Regarding the computation complexity, STLformer adopted
a k-d tree implementation for the LOESS regression and an
FFT and Wiener-Khinchin theorem-based solution for RACF,
both of which can be done in O(N logN) time. This makes
STLformer more efficient than the original Transformer when
dealing with long sequences.

V. CONCLUSION

This paper proposes a new Transformer-based model, STL-
former, for time series forecasting with a better decompo-
sition strategy. The model leverages the well-known STL
decomposition to extract trend and seasonal patterns and
utilizes the Rank Correlation for nonlinear serial dependen-
cies. Experiments on two real-world datasets demonstrate that
STLformer marginally outperforms the previous Rankformer,
which solely corporates moving averages for decomposition,
and Autoformer, which relies on linear serial dependencies,
proving the effectiveness of the STL decomposition on certain
datasets. We believe that our STL decomposition block can
be integrated into other Transformer-based models to enhance
their performance by performing a more sophisticated series
decomposition. In future work, we plan to explore the robust
LOESS for the presence of perturbations and investigate the
possibility of integrating other nonlinear serial dependencies
measurement methods, such as Generalized ARCH (GARCH),
to further enhance the performance of STLformer.

https://gis.cdc.gov/grasp/fluview/fluportaldashboard.html

TABLE II
FORECASTING RESULTS FOR DIFFERENT MODELS ON DIFFERENT FORECAST HORIZONS

Models STLformer Rankformer [24] Autoformer [23] Informer [22] LogTrans [25] Reformer [26] LSTNet [15] LSTM [33]

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T

24 0.142 0.255 0.149 0.258 0.153 0.261 0.173 0.301 0.211 0.332 0.333 0.429 1.101 0.831 0.580 0.572
48 0.178 0.281 0.183 0.281 0.178 0.280 0.303 0.409 0.427 0.487 0.558 0.571 2.619 1.393 0.747 0.630
96 0.209 0.298 0.221 0.302 0.255 0.339 0.365 0.453 0.768 0.642 0.658 0.619 3.142 1.365 2.041 1.073
288 0.295 0.356 0.314 0.357 0.342 0.378 1.047 0.804 1.090 0.806 2.441 1.190 2.856 1.329 0.969 0.742

E
xc

ha
ng

e 96 0.151 0.279 0.162 0.290 0.197 0.323 0.847 0.752 0.968 0.812 1.065 0.829 1.551 1.058 1.453 1.049
192 0.238 0.356 0.251 0.365 0.300 0.369 1.204 0.895 1.040 0.851 1.188 0.906 1.477 1.028 1.846 1.179
336 0.419 0.478 0.428 0.486 0.509 0.524 1.672 1.036 1.659 1.081 1.357 0.976 1.507 1.031 2.136 1.231
720 1.098 0.813 1.157 0.837 1.447 0.941 2.478 1.310 1.941 1.127 1.510 1.016 2.285 1.243 2.984 1.427

W
ea

th
er

96 0.264 0.333 0.263 0.332 0.266 0.336 0.300 0.384 0.458 0.490 0.689 0.596 0.594 0.587 0.369 0.406
192 0.310 0.365 0.298 0.356 0.307 0.367 0.598 0.544 0.658 0.589 0.752 0.638 0.560 0.565 0.416 0.435
336 0.350 0.394 0.350 0.390 0.359 0.395 0.578 0.523 0.797 0.652 0.639 0.596 0.597 0.587 0.455 0.454
720 0.433 0.440 0.430 0.435 0.419 0.428 1.059 0.741 0.869 0.675 1.130 0.792 0.618 0.599 0.535 0.520

IL
I

24 3.690 1.353 3.556 1.319 3.483 1.287 5.764 1.677 4.480 1.444 4.400 1.382 6.026 1.770 5.914 1.734
36 3.012 1.133 2.821 1.112 3.103 1.148 4.755 1.467 4.799 1.467 4.783 1.448 5.340 1.668 6.631 1.845
48 3.134 1.198 2.907 1.144 2.669 1.085 4.763 1.469 4.800 1.468 4.832 1.465 6.080 1.787 6.736 1.857
60 3.531 1.308 3.232 1.239 2.770 1.125 5.264 1.564 5.278 1.560 4.882 1.483 5.548 1.720 6.870 1.879

REFERENCES

[1] L. Longo, M. Riccaboni, and A. Rungi, “A neural network ensemble
approach for GDP forecasting,” J. Econ. Dyn. Control, vol. 134,
p. 104 278, 2022.

[2] X. Shi et al., “Convolutional LSTM Network: A Machine Learning
Approach for Precipitation Nowcasting,” in Proc. NeurIPS, 2015.

[3] Y. Yaslan and B. Bican, “Empirical mode decomposition based denois-
ing method with support vector regression for time series prediction:
A case study for electricity load forecasting,” Measurement, vol. 103,
pp. 52–61, 2017.

[4] J. Zuo et al., “Graph convolutional networks for traffic forecasting with
missing values,” Data. Min. Knowl. Disc., vol. 37, no. 2, pp. 913–947,
2023.

[5] V. Assimakopoulos and K. Nikolopoulos, “The theta model: A de-
composition approach to forecasting,” Int. J. Forecast., vol. 16, no. 4,
pp. 521–530, 2000.

[6] G. E. P. Box et al., Time Series Analysis: Forecasting and Control,
5th ed. John Wiley & Sons, Inc., 2015.

[7] R. J. Hyndman and G. Athanasopoulos, Forecasting: Principles and
Practice, 3rd ed. OTexts, 2021.

[8] Z. Ouyang, P. Ravier, and M. Jabloun, “STL Decomposition of Time
Series Can Benefit Forecasting Done by Statistical Methods but Not
by Machine Learning Ones,” Eng. Proc., vol. 5, no. 1, p. 42, 2021.

[9] A. L. Guennec, S. Malinowski, and R. Tavenard, “Data Augmentation
for Time Series Classification using Convolutional Neural Networks,”
in Proc. ECML/PKDD, 2016.

[10] J. F. Torres et al., “Deep Learning for Time Series Forecasting: A
Survey,” Big Data, vol. 9, no. 1, pp. 3–21, 2021.

[11] H. Hewamalage, C. Bergmeir, and K. Bandara, “Recurrent Neural
Networks for Time Series Forecasting: Current status and future
directions,” Int. J. Forecast., vol. 37, no. 1, pp. 388–427, 2021.

[12] K. Benidis et al., “Deep Learning for Time Series Forecasting: Tutorial
and Literature Survey,” ACM Comput. Surv., vol. 55, no. 6, 121:1–
121:36, 2022.

[13] Z. Ouyang, P. Ravier, and M. Jabloun, “Are Deep Learning Models
Practically Good as Promised? A Strategic Comparison of Deep
Learning Models for Time Series Forecasting,” in Proc. EUSIPCO,
2022.

[14] S. Bai, J. Z. Kolter, and V. Koltun, “An Empirical Evaluation of
Generic Convolutional and Recurrent Networks for Sequence Mod-
eling,” in Proc. ICLR, 2018.

[15] G. Lai et al., “Modeling Long- and Short-Term Temporal Patterns with
Deep Neural Networks,” in Proc. ACM SIGIR, 2018.

[16] D. Salinas et al., “DeepAR: Probabilistic forecasting with autoregres-
sive recurrent networks,” Int. J. Forecast., vol. 36, no. 3, pp. 1181–
1191, 2020.

[17] B. N. Oreshkin et al., “N-BEATS: Neural basis expansion analysis for
interpretable time series forecasting,” in Proc. ICLR, 2020.

[18] A. Vaswani et al., “Attention is All you Need,” in Proc. NeurIPS,
2017.

[19] J. Devlin et al., “BERT: Pre-training of Deep Bidirectional Transform-
ers for Language Understanding,” in Proc. NAACL, 2019.

[20] T. B. Brown et al., “Language Models are Few-Shot Learners,” in
Proc. NeurIPS, 2020.

[21] A. Dosovitskiy et al., “An Image is Worth 16x16 Words: Transformers
for Image Recognition at Scale,” in Proc. ICLR, 2021.

[22] H. Zhou et al., “Informer: Beyond Efficient Transformer for Long
Sequence Time-Series Forecasting,” in Proc. AAAI, 2021.

[23] H. Wu et al., “Autoformer: Decomposition Transformers with Auto-
Correlation for Long-Term Series Forecasting,” in Proc. NeurIPS,
2021.

[24] Z. Ouyang, M. Jabloun, and P. Ravier, “Rankformer: Leveraging Rank
Correlation for Transformer-based Time Series Forecasting,” in Proc.
IEEE SSP, 2023.

[25] S. Li et al., “Enhancing the Locality and Breaking the Memory
Bottleneck of Transformer on Time Series Forecasting,” in Proc.
NeurIPS, 2019.

[26] N. Kitaev, Ł. Kaiser, and A. Levskaya, “Reformer: The Efficient
Transformer,” Proc. ICLR, 2020.

[27] W. S. Cleveland, “Robust Locally Weighted Regression and Smoothing
Scatterplots,” J. Am. Stat. Assoc., vol. 74, no. 368, pp. 829–836, 1979.

[28] R. B. Cleveland et al., “A Seasonal-Trend Decomposition Procedure
Based on Loess,” J. Off. Stat., vol. 6, no. 1, pp. 3–73, 1990.

[29] M. Blondel et al., “Fast Differentiable Sorting and Ranking,” in Proc.
ICML, 2020.

[30] R. F. Engle, “Autoregressive Conditional Heteroscedasticity with Es-
timates of the Variance of United Kingdom Inflation,” Econometrica,
vol. 50, no. 4, pp. 987–1007, 1982.

[31] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimiza-
tion,” in Proc. ICLR, 2014.

[32] A. Paszke et al., “PyTorch: An Imperative Style, High-Performance
Deep Learning Library,” in Proc. NeurIPS, 2019.

[33] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, no. 8, pp. 1735–1780, 1997.

	Introduction
	Method
	STLformer Architecture
	Encoder
	Decoder
	Model Inputs and Outputs

	STL Decomposition Block
	RankCorrelation Block

	Experiments
	Datasets
	Experimental Settings

	Results and Discussion
	Conclusion

