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SRAM-Based PUF Readouts
Sergio Vinagrero   1,3 ✉, Honorio Martin   2,3, Alice de Bignicourt1,3, Elena-Ioana Vatajelu   1,3 
& Giorgio Di Natale   1,3

Large-scale parameter characterization of Physical Unclonable Functions (PUFs) is of paramount 
importance in order to assess the quality and thus the suitability of such PUFs which would then 
be developed as an industrial-grade solution for hardware root of trust. Carrying out a proper 
characterization requires a large number of devices that need to be repeatedly sampled at various 
conditions. These prerequisites make PUF characterization process a very time-consuming and 
expensive task. Our work presents a dataset for the study of SRAM-based PUFs on microcontrollers; it 
includes full SRAM readouts along with internal voltage and temperature sensors of 84 microcontrollers 
of STM32 type. Data has been gathered with a custom-made and open platform designed for the 
automatic acquisition of SRAM readouts of such devices. This platform also provides possibilities of 
experimenting aging and reliability properties.

Background & Summary
Physical Unclonable Functions (PUFs) have emerged in the last decade among the most cost-effective security 
primitives to be used as hardware trust anchor of many systems. Silicon PUFs exploit inherent manufacturing 
variations to generate sequences of bits that are not stored but produced upon request; thanks to the random 
and uncontrollable nature of such variations, the given sequences are uniquely generated for each device and 
therefore can be used as the circuit signature. These signatures are randomly distributed (among various devices 
and within the same device) and are stable within the same device at each request. They can be used in diverse 
secure applications, including the generation of secure keys, hardware identification, and challenge-response 
based authentication protocols. Among the manifold silicon PUFs proposed in the literature, the SRAM-PUF1 
is one of the most popular because of the availability of its memory in every electronic device: due to transistors 
manufacturing variations, the symmetry of a SRAM cell can be broken, each cell having a preferred power-up 
state. Combining multiple cells leads to create start-up patterns suitable for signature.

Because of their paramount role in device security, PUFs must undergo exhaustive characterization of their 
properties in order to guarantee quality over lifetime and under various operating conditions. Such evaluation 
process is still subject to research, yet already typical widespread metrics are commonly employed in PUFs 
analysis2: uniformity is the distribution of Ones and Zeros in the start-up pattern; reliability is the variation of 
the start-up pattern on repeated power-on activation of the same device; uniqueness is the probability of having 
devices with different signatures; bit-aliasing is the probability of a specific bit position of the signature to be 
biased towards ‘0’ or ‘1’ over multiple devices.

The most challenging parameter to be assessed is reliability, since it requires many devices to be tested, dur-
ing long periods of time, and under various environmental conditions. Traditionally, the influence of aging 
and operating conditions in PUF responses has been addressed by simulation3 or performing small data-
sets. Regarding SRAM-PUFs, special focus was given to SRAM embedded in microcontroller (μC): in1, the 
authors collected 30 samples of 10 MSP430F1232 to study the PUF behaviour of that μC; in4, they studied the 
main quality metrics of 26 STM32F303 and 31 STM32F407 collecting 37 samples for each μC; in5, 200 sam-
ples of raw SRAM data from 144 Cortex-M4F μCs were published for further research on SRAM-PUFs. Most 
recently, the effects of aging has been thoroughly measured from 16 Arduino boards to get around 175 million 
measurements6.

The previous works have confirmed that SRAM-PUFs implemented in general purpose μCs could be used 
for most PUF applications. Nevertheless, small number of samples and devices (with the exception of5) limit 
further research touching spatial correlation, aging or suitable post-processing.
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In this assignment we present a dataset for the study of SRAM-based PUFs on microcontrollers. It contains 
the Unique Identifier (UID) of each device stored in memory by the vendor at manufacturing process. This UID 
comprises the device batch number as well as information such as wafer number, wafer lot and position of the 
μC. The details can be specifically useful when analyzing spatial correlation that could unveil unknown PUFs 
vulnerabilities7. Our custom-made platform gathers data and enables experiments on aging and reliability.

Methods
All the collected data has been gathered thanks to this open platform designed from scratch at TIMA Laboratory. 
The requirements for its creation were the capacity to:

	 1.	 be able to gather data from a large number of devices in order to ensure statistically relevant results.
	 2.	 automatically power-cycle each device as characterizing SRAM-based PUFs involves such compulsory and 

time-consuming process.
	 3.	 guarantee data integrity, considering storage over time and transmission without corruption.
	 4.	 be scalable, to allow for future development on other microcontrollers of various vendors.

This platform has been designed to work with any microcontroller but the data has been assembled from 
84 boards of STM32L152RE by ST Microelectronics. Moreover, it also provides easy access to a comprehensive 
database involving thousands of samples of multiple boards; it is of high interest since there are barely no dataset 
available to the public. Additionally, this platform offers advantages over ad-hoc solutions normally built for this 
purpose.

Our platform will save many resources to the users in terms of money (buying hundreds of devices) and 
time (collecting thousands of samples). The availability of raw-data will empower any user to carry out various 
experiments (e.g. designing new post-processing, searching for systematic variations, etc.) with a number of 
samples and devices big enough to consider the experiment statistically significant. Besides, the extra informa-
tion provided (operating conditions, wafer position, etc.) will open a variety of options to detect vulnerabilities 
and develop new metrics. Additionally, this platform gives access to real-time core voltage and temperature of 
the μC thanks to the measurements of sensors integrated on each μC. Operating conditions have proven of 
paramount importance for the stability of PUF responses so the information provided by the on-chip sensors is 
necessary in any analysis.

As a totally new feature to the best of our knowledge, we offer the possibility to interact with the boards 
by controlling the On/Off switch time of microcontrollers (data remanence studies) and to write custom val-
ues in the SRAM (NBTI studies). One can write any value at any SRAM region facilitating NBTI effects. It 
is well-known that storing certain value in a SRAM cell (e.g.,0), reinforces the tendency of power-up to the 
opposite value (e.g.,1) due to aging mechanisms8. NBTI, standing for Negative Bias Temperature Instability, is a 
common phenomenon in PMOS transistors, increasing the threshold voltage and thus resulting in the decrease 
of drain current and transconductance. With time, inverters in the SRAM cells may not behave as initially set up. 
Reliability being the capacity of a PUF to produce the same response under various conditions and timeframes, 
in9 it is proposed to induce aging into the transistors in order to improve this reliability. For that purpose, the 
opposite value of the one originally obtained is written into the cells.

Platform description.  The platform comprises diverse components designed to work together in order to 
easily gather data from a vast amount of devices while ensuring its integrity. The code is built with focus on scal-
ability to ensure the application of different devices without altering the main mechanics of the station. The plat-
form receives instructions from a message broker, allowing for the necessary commands to be performed on the 
devices; data is stored in a SQL database; every process is monitored and logged in real time to flag unexpected 
behaviour or error. The station is depicted in Fig. 1.

The requests from the message broker are split into different atomic “commands”. They are queued so that 
multiple commands can be sent at the same time but be executed sequentially. A timeout for each command 
is also set to avoid hanging forever. Communication with the devices is performed through a defined interface 
that translates commands into necessary packets of custom-made communication protocol. This process makes 

Fig. 1  Picture of the deployed platform used to gather the data.
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the platform very scalable indeed, multiple devices can be connected at the same time as long as they all use the 
same communication interface.

Communication protocol.  A packet-based communication protocol has been designed to transfer data between 
the PC and the devices. The packet contains bytes to transmit as well as metadata. Data is stored in the devices 
in a C struct, serialized when sending and deserialized when receiving. These packets are used to build atomic 
operations that will carry out the designed actions.

Table 1 presents the different atomic operations that the platform can perform. They are the basis of more 
complex commands Tables 1, 2.

Custom code execution.  As shown above, the platform provides commands for custom code exception. Code 
execution is performed thanks to zForth (https://github.com/zevv/zForth) being is a subset of Forth, designed 
to be highly portable. Each device comprises an instance of zForth interpreter that can read code from a buffer. 
As an example, the following code calculates the Fibonacci sequence from 1 to 1024.

: fib 1 1 begin.. dup rot rot + dup 1024 > until; fib

The same code can be executed multiple times without need of loading every instance. The results are auto-
matically written in a circular buffer that can later be retrieved. Users will be able to exploit this functionality 
for their experiments: make a request that will be queued and once done, the data will be sent to them directly.

Devices.  In order to maximize the number of connections to the PC, devices are united in Daisy Chains and 
two UART ports are plugged to communicate with the rest of the devices in both directions. All the devices are pro-
grammed with the same source code, which makes the process of adding, removing and changing equipment fairly 
trivial. The physical position of each one is detected through a field in our communication protocol called PIC, stand-
ing for Position In Chain. The value starts at 0 at PC level and is incremented with 1 for every jump the packet per-
forms downstream. This field along with the 96-bit identifier provided by the manufacturer stored in memory allows 
to fully know the position of a device in the chain. The automatic power cycle of the devices is handled with a YKUSH 
USB (https://www.yepkit.com/products/ykush) hub, enabling the control of three USB ports power independently.

Monitoring.  To monitor the status of the platform at any given time, each packet contains a header with 
metadata about the command to execute and additional options. To ensure preventing Bit Flips during data 
transmission, PUF quality parameters being very sensitive to bit changes, every packet comprises a checksum 
calculated as the CRC16 of the packet. Additionally, since every operation the platform performs is atomic, any 

Command Description

ACK Acknowledgement of an operation. An ACK is sent by a device, for example after a WRITE operation to inform the PC that 
the command has successfully been executed.

PING This command gives the PC the number of devices that are connected in a chain and their SRAM sizes.

READ
Read a region of information of a device. The Options field in the packet contains the offset to read from. The offset is the 
number of 512 bytes to skip. If the region cannot be read or the checksum does not match, an ERR is transmitted back to the 
station.

WRITE Write a series of bytes in a memory region of a device. The body in the packet contains the bytes to write. An ERR is sent back 
to the station in case the checksum does not fit.

INVERT This command employs the WRITE command to deliver the opposite values of the first sample.

SENSORS Extract the sensors information from a device. Microcontrollers connected to the platform have temperature and core voltage 
sensors.

LOAD Load source code to a device that would later be executed.

EXEC Execute code loaded by the LOAD command and store the results into a circular buffer that can later be retrieved.

RETR Retrieve results stored after the code has been executed.

ERR Error during communication. It can be a wrong checksum or a problem during the parsing of a packet.

Table 1.  Available commands in the platform.

Log level Information

ERROR Serial port is off. Please turn on the serial port first

ERROR No device managed

ERROR Device {device} is not managed

ERROR Offset {offset} for device {device} must be in range [0, {max_offset}]

ERROR Writing problem in device {device} at offset {offset}

ERROR Packet {packet} for device {device} is corrupted

INFO Data written correctly

Table 2.  Potential problems that may occur during a WRITE operation.

https://doi.org/10.1038/s41597-023-02225-9
https://github.com/zevv/zForth
https://www.yepkit.com/products/ykush


4Scientific Data |          (2023) 10:333  | https://doi.org/10.1038/s41597-023-02225-9

www.nature.com/scientificdatawww.nature.com/scientificdata/

problems that may occur at any given moment can easily be located and reported. As an example, Table 2 portrays 
potential issues that could be detected while performing a WRITE operation on a device.

Fail-safe mechanism are introduced to detect more complex trouble and immediately stop the platform to 
secure data integrity. (i.e. a command could hang indefinitely waiting for lost bytes or part of the devices could 
remain inaccessible due to a physical problem in the chain).

Database.  A SQL database is used for reliable long term storage and effortless data filtering. Communication 
with the database is designed to be agnostic so any SQL database should work; for this project we have chosen 
PostgreSQL. The memory and sensors readouts are stored into two separate tables. Tables 3, 4 represent them. 
Along with sample information, a UTC timestamp is stored with each document to keep track of when the sample 
was extracted.

Data Records
A static version of the full dataset available at the time of writing can be downloaded from Zenodo https://doi.
org/10.5281/zenodo.752951310. More data can be found online as explained in section 5 (Usage notes). The full 
dataset contains SRAM readouts of 84 Nucleo microcontrollers of STM32 type along with their voltage and 
temperature sensor data. This dataset is composed of two CSV files:

•	 The first one houses the readout of the SRAM memories. There are 9 samples per device and each memory is 
split into 160 regions of 512 bytes, summing up to a total of 120961 rows.

•	 The second files accommodates temperature and voltage sensor readouts. It contains 11 readouts, 9 of which 
were performed along with the SRAM memory readouts. There are a total of 925 rows.

The fields of both files are detailed in Tables 5, 6:

Technical Validation
The data provided by this platform has not been pre-processed so as to keep raw data of the SRAM. Nevertheless, 
it is still important to ensure that the data provided does not present faulty bits and complies with the quality 
metrics depicted in the literature. Earlier, we have already detailed the different techniques of monitoring and 
error reporting used to guarantee the physical integrity of data Table 7.

The minimum time required to assure that every device is correctly turned on or off is approximately 30 sec-
onds. For every power cycle we have waited at least one minute; comfort interval to make sure that the SRAM 
contents are completely erased, knowing that an attacker could exploit data remanence and get PUF responses 
indirectly11.

Moreover, the quality of the samples has been studied with the canonical quality metrics published by Maiti 
et al.2. We will provide a summary of such metrics in order to assess the performance of SRAM on the μCs as a 
PUF. The purpose of these widely used metrics is to find vulnerabilities in the PUF behaviour such as bias in the 
distribution of 1 s and 0 s, systematic variation, etc. These metrics are updated every 24 hours. Nevertheless, the 
user can select an specific device and obtain its metrics in real time. For the metrics that require reference values 
of response bits (e.g. reliability), these values are derived by Majority Voting among samples. In the near future, 
we plan to include new metrics such as the ones presented in12.

Before explaining the calculation of the metrics, a small visual aid on how calculations are performed is dis-
played in Fig. 2. Each row contains all the bits of each device and is arranged into a 3D matrix, where the third 
dimension gathers all the readouts of the devices.

id Internal ID of the sample.

board_type Type of device in the chain.

uid Universal ID of the device.

pic Position In Chain of the device.

address Hex formatted region of SRAM.

data List of values from memory.

created_at UTC timestamp.

Table 3.  CRPs schema.

id Internal ID of the sample.

board_type Type of device in the chain.

uid Universal ID of the device.

temperature Temperature of the device.

voltage Voltage of the device.

created_at UTC timestamp.

Table 4.  Sensors schema.

https://doi.org/10.1038/s41597-023-02225-9
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Uniformity.  It measures the randomness of each device. It is calculated as the average of all responses of each 
device, meaning the average of the responses across rows. The following formula is used to calculate the uniform-
ity of each device, where C represents the number of bits in the SRAM. This value should be 0.5 to ensure an even 
distribution of 0 s and 1 s.

∑=
=

Uniformity
C

crp1
(1)c

C

c
0

Bit-aliasing.  It assesses the randomness of each challenge across devices. It is calculated in the similar manner 
as uniformity but on columns instead of rows. The following formula is used for each challenge where D repre-
sents the number of devices that are studied. As with uniformity, this value should be 0.5.

∑− =
=

Bit aliasing
D

crp1
(2)c

D

d
0

Uniqueness.  This metric measures the difference in responses from pairs of devices, hoping there is enough 
randomness across devices. The HDnorm function refers to the normalized hamming distance and C to all the 
responses from a device in a given sample. The ideal value should be close to 0.5 to assure that each device pro-
duces a unique set of CRPs.

∑ ∑= − =
= = +

( )Uniqueness
P

HD C C P D1 1 ( , ) where
2 (3)i

D

j i

D

norm i j
0 1

Field Description

board_type Device model that is connected to the chain. This dataset only contains Nucleo.

uid STM32 96-bit ID formatted as 24 Hex-character string. This UID includes the batch number of the device, its wafer 
number, wafer lot and the X and Y position of the μC on the wafer.

pic The Position In Chain. Devices are assembled in a chain-like architecture to maximize their connections to the computer 
that performs the readout. The first device has a PIC of 1 and the last one has a PIC of 84.

address The address of each memory region where the data was read. Each memory region contains exactly 512 bytes. For 
Nucleo devices, there are 160 regions in total. The SRAM memory of them starts at address 0 × 20000000.

data 512 bytes as unsigned integers of the memory region. The values are separated with commas and surrounded with 
double quotation marks.

created_at Timestamp when data was gathered in ISO format (YYYY-MM-DD hh:mm:ss)

Table 5.  CSV file housing SRAM memory readouts.

Field Description

board_type Identical to description in Table 5.

uid Identical to description in Table 5.

pic Identical to description in Table 5.

temperature Temperature of the device in Celsius.

voltage Internal voltage of the device in Volts.

created_at Identical to description in Table 5.

Table 6.  CSV file housing temperature and voltage sensors.

Name Possible values

Date YYYY-MM-DD

Block Positive integer

DateFrom-Day 1 to 30

DateFrom-Month 1 to 12

DateFrom-Year 4-digit year

DateTo-Day 1 to 31

DateTo-Month 1 to 12

DateTo-Year 4-digit year

BoardId “all” or “0x” + 24-character UID + “−” + pic

CircuitId “all” or “NUCLEO” or “DISCOVERY”

Table 7.  Table of request parameters and their accepted values.

https://doi.org/10.1038/s41597-023-02225-9
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Reliability.  It determines the variability of responses in time and different conditions. The reliability of each 
device is calculated by grouping all responses into a vector and performing hamming distance with all the rest of 
the samples. The ideal value should be 1 to prove that responses do not change in time. It is important to mention 
that at least two samples are needed to calculate reliability as the hamming distance of a sample with itself is 0.

∑= −
∈

Reliability
S

HD s s1 1 ( , )
(4)s S

norm i ref

These quality metrics are measured when a new readout is performed and monitored through Grafana 
(https://grafana.com/) to asses potential problems during the readout. Figure 3 displays two snapshots of the 
Grafana dashboard checking the quality of the samples.

Figure 4 shows a heat map of a memory sample of the 84 devices connected to the platform. Each row corre-
sponds to a device and colors indicate the value of each memory cell. The areas at the beginning and at the end 
of each SRAM are full of 0 s as they are used for the stack to load the executable code and buffers. To secure the 
proper operation of the devices, these areas are read but not written. This heat map can be seen as one of the 2D 
matrix adopted to calculate metrics.

Limitations.  One of the main constraints of this platform is the acquisition time of the samples. The setup 
(described in the Methods section) follows a chain-like structure, the memory content is thus received and trans-
mitted one after the other according to the position of the board in the chain. With 84 devices connected in one 
chain, it takes approximately 15 minutes to transmit the 80 kilobytes of the entire SRAM of the last board of the 

Fig. 2  Diagram showing how data arrangement and calculations are performed. Orange: uniformity; blue: 
bit-aliasing; green: reliability; uniqueness is calculated for every combination of pair of rows. The metrics are 
monitored in real time in Grafana.

Fig. 3  Snapshots of the Grafana dashboard used to monitor in real time the operation of the platform.

https://doi.org/10.1038/s41597-023-02225-9
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chain; therefore, the memory from all 84 devices would be retrieved in about 24 hours. In case of error during 
communication, a packet notifying the faulty bits is sent back to the PC and the information is retransmitted, with 
a consequent increase in transmission delay.

Fig. 4  Heat map of a memory sample of 84 devices connected to the platform. Each tile refers to a byte of 
memory. Low regions of memory are represented in the left side and high regions are represented in the right.

Fig. 5  Form from PUF4IOT website displayed when requesting data.

https://doi.org/10.1038/s41597-023-02225-9
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The other limitation is that the control of voltage and temperature is not feasable at the moment; the devices 
are subjected to environmental conditions.

Usage Notes
Although the dataset described in this document is static, more data can be requested online through the fol-
lowing application hosted at https://puf4iot.univ-grenoble-alpes.fr/form.php. Any user can submit their need to 
the server specifying the data they want to retrieve, and a CSV or zip file (if larger records) will be handed over.

The database with raw data is updated once a week. The SRAM start-up values have been organized in mem-
ory regions of 512 bytes, proving a good trade-off between usability and data integrity. Each sample has been 
time-stamped in order to know the collection date.

Figure 5 pictures the entry point of the website. Users provide their information and are given access to the 
main site where they can ask for the needed data guided by filters. The website will then fetch the required data 
and generate the CSV or zip file.

Data can also be asked by making an HTTP request to the server with the filter parameters. Curl or Wget 
commands can be employed to get data directly from a terminal.

$ wget --post-data 'Param = value&Param2=value2...'  https://puf4iot.
univ-grenoble-alpes.fr/getdata.php

Table 7 shows all the possible request parameters and their accepted values.
When a vast amount of data is required, it will be split into various CSV files and contained in a zip, that can 

be saved with the following script; in this request, the Block parameter allows to skip certain number of records 
(here 2000).
#!/usr/bin/bash
params='Date=2020-01-22&BoardId=NUCLEO&CircuitId=0x3430716367336321B0660-
1&Block=2'
wget --post-data $params \

�https://puf4iot.univ-grenoble-alpes.fr/getdata.php\ 
-O srampuf-tima-2020-01-22-NUCLEO-0x3430716367336321B0660-1-2.zip
Although SRAM and sensors data were earlier presented as being split into two different CSV files, data 

is merged when requested through the website. Therefore, every generated CSV file contains the following 
columns:

id;TimeStamp;BoardId;UDID;Position;MemAddress;Size;Temperature;Volt-
age;Response

Code availability
The source code of the platform and the STM32 devices are available under the GPL-2.0 license at https://github.
com/servinagrero/SRAMPlatform. Online documentation on the platform and guidance on custom station set 
up can be found at https://servinagrero.github.io/SRAMPlatform. The full list of python dependencies is available 
in the pyproject.toml file in GitHub repository. PostgreSQL (https://www.postgresql.org/) is needed to store data, 
a message broker is necessary to communicate with the station, RabbitMQ (https://www.rabbitmq.com/)in our 
case, and Grafana is used to monitory metrics and sensors in a dashboard.
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