
HAL Id: hal-04110272
https://hal.science/hal-04110272

Submitted on 12 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

SRAM-Based PUF Readouts
Sergio Vinagrero Gutierrez, Honorio Martin, Alice de Bignicourt, Ioana

Vatajelu, Giorgio Di Natale

To cite this version:
Sergio Vinagrero Gutierrez, Honorio Martin, Alice de Bignicourt, Ioana Vatajelu, Giorgio Di Natale.
SRAM-Based PUF Readouts. Scientific Data , 2023, 10, �10.1038/s41597-023-02225-9�. �hal-04110272�

https://hal.science/hal-04110272
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr

1Scientific Data | (2023) 10:333 | https://doi.org/10.1038/s41597-023-02225-9

www.nature.com/scientificdata

SRAM-Based PUF Readouts
Sergio Vinagrero   1,3 ✉, Honorio Martin   2,3, Alice de Bignicourt1,3, Elena-Ioana Vatajelu   1,3
& Giorgio Di Natale   1,3

Large-scale parameter characterization of Physical Unclonable Functions (PUFs) is of paramount
importance in order to assess the quality and thus the suitability of such PUFs which would then
be developed as an industrial-grade solution for hardware root of trust. Carrying out a proper
characterization requires a large number of devices that need to be repeatedly sampled at various
conditions. These prerequisites make PUF characterization process a very time-consuming and
expensive task. Our work presents a dataset for the study of SRAM-based PUFs on microcontrollers; it
includes full SRAM readouts along with internal voltage and temperature sensors of 84 microcontrollers
of STM32 type. Data has been gathered with a custom-made and open platform designed for the
automatic acquisition of SRAM readouts of such devices. This platform also provides possibilities of
experimenting aging and reliability properties.

Background & Summary
Physical Unclonable Functions (PUFs) have emerged in the last decade among the most cost-effective security
primitives to be used as hardware trust anchor of many systems. Silicon PUFs exploit inherent manufacturing
variations to generate sequences of bits that are not stored but produced upon request; thanks to the random
and uncontrollable nature of such variations, the given sequences are uniquely generated for each device and
therefore can be used as the circuit signature. These signatures are randomly distributed (among various devices
and within the same device) and are stable within the same device at each request. They can be used in diverse
secure applications, including the generation of secure keys, hardware identification, and challenge-response
based authentication protocols. Among the manifold silicon PUFs proposed in the literature, the SRAM-PUF1
is one of the most popular because of the availability of its memory in every electronic device: due to transistors
manufacturing variations, the symmetry of a SRAM cell can be broken, each cell having a preferred power-up
state. Combining multiple cells leads to create start-up patterns suitable for signature.

Because of their paramount role in device security, PUFs must undergo exhaustive characterization of their
properties in order to guarantee quality over lifetime and under various operating conditions. Such evaluation
process is still subject to research, yet already typical widespread metrics are commonly employed in PUFs
analysis2: uniformity is the distribution of Ones and Zeros in the start-up pattern; reliability is the variation of
the start-up pattern on repeated power-on activation of the same device; uniqueness is the probability of having
devices with different signatures; bit-aliasing is the probability of a specific bit position of the signature to be
biased towards ‘0’ or ‘1’ over multiple devices.

The most challenging parameter to be assessed is reliability, since it requires many devices to be tested, dur-
ing long periods of time, and under various environmental conditions. Traditionally, the influence of aging
and operating conditions in PUF responses has been addressed by simulation3 or performing small data-
sets. Regarding SRAM-PUFs, special focus was given to SRAM embedded in microcontroller (μC): in1, the
authors collected 30 samples of 10 MSP430F1232 to study the PUF behaviour of that μC; in4, they studied the
main quality metrics of 26 STM32F303 and 31 STM32F407 collecting 37 samples for each μC; in5, 200 sam-
ples of raw SRAM data from 144 Cortex-M4F μCs were published for further research on SRAM-PUFs. Most
recently, the effects of aging has been thoroughly measured from 16 Arduino boards to get around 175 million
measurements6.

The previous works have confirmed that SRAM-PUFs implemented in general purpose μCs could be used
for most PUF applications. Nevertheless, small number of samples and devices (with the exception of5) limit
further research touching spatial correlation, aging or suitable post-processing.

1Univ. Grenoble Alpes, CNRS, Grenoble INP, TIMA, 38000, Grenoble, France. 2Electronic Technology Department,
University Carlos III of Madrid, Madrid, Spain. 3These authors contributed equally: Sergio Vinagrero, Honorio Martin,
Alice de Bignicourt, Elena-Ioana Vatajelu, Giorgio Di Natale. ✉e-mail: sergio.vinagrero-gutierrez@univ-grenoble-
alpes.fr

Data Descriptor

OPEN

https://doi.org/10.1038/s41597-023-02225-9
http://orcid.org/0000-0001-7460-3187
http://orcid.org/0000-0002-8720-406X
http://orcid.org/0000-0002-4588-1812
http://orcid.org/0000-0001-8063-5388
mailto:sergio.vinagrero-gutierrez@univ-grenoble-alpes.fr
mailto:sergio.vinagrero-gutierrez@univ-grenoble-alpes.fr
http://crossmark.crossref.org/dialog/?doi=10.1038/s41597-023-02225-9&domain=pdf

2Scientific Data | (2023) 10:333 | https://doi.org/10.1038/s41597-023-02225-9

www.nature.com/scientificdatawww.nature.com/scientificdata/

In this assignment we present a dataset for the study of SRAM-based PUFs on microcontrollers. It contains
the Unique Identifier (UID) of each device stored in memory by the vendor at manufacturing process. This UID
comprises the device batch number as well as information such as wafer number, wafer lot and position of the
μC. The details can be specifically useful when analyzing spatial correlation that could unveil unknown PUFs
vulnerabilities7. Our custom-made platform gathers data and enables experiments on aging and reliability.

Methods
All the collected data has been gathered thanks to this open platform designed from scratch at TIMA Laboratory.
The requirements for its creation were the capacity to:

	 1.	 be able to gather data from a large number of devices in order to ensure statistically relevant results.
	 2.	 automatically power-cycle each device as characterizing SRAM-based PUFs involves such compulsory and

time-consuming process.
	 3.	 guarantee data integrity, considering storage over time and transmission without corruption.
	 4.	 be scalable, to allow for future development on other microcontrollers of various vendors.

This platform has been designed to work with any microcontroller but the data has been assembled from
84 boards of STM32L152RE by ST Microelectronics. Moreover, it also provides easy access to a comprehensive
database involving thousands of samples of multiple boards; it is of high interest since there are barely no dataset
available to the public. Additionally, this platform offers advantages over ad-hoc solutions normally built for this
purpose.

Our platform will save many resources to the users in terms of money (buying hundreds of devices) and
time (collecting thousands of samples). The availability of raw-data will empower any user to carry out various
experiments (e.g. designing new post-processing, searching for systematic variations, etc.) with a number of
samples and devices big enough to consider the experiment statistically significant. Besides, the extra informa-
tion provided (operating conditions, wafer position, etc.) will open a variety of options to detect vulnerabilities
and develop new metrics. Additionally, this platform gives access to real-time core voltage and temperature of
the μC thanks to the measurements of sensors integrated on each μC. Operating conditions have proven of
paramount importance for the stability of PUF responses so the information provided by the on-chip sensors is
necessary in any analysis.

As a totally new feature to the best of our knowledge, we offer the possibility to interact with the boards
by controlling the On/Off switch time of microcontrollers (data remanence studies) and to write custom val-
ues in the SRAM (NBTI studies). One can write any value at any SRAM region facilitating NBTI effects. It
is well-known that storing certain value in a SRAM cell (e.g.,0), reinforces the tendency of power-up to the
opposite value (e.g.,1) due to aging mechanisms8. NBTI, standing for Negative Bias Temperature Instability, is a
common phenomenon in PMOS transistors, increasing the threshold voltage and thus resulting in the decrease
of drain current and transconductance. With time, inverters in the SRAM cells may not behave as initially set up.
Reliability being the capacity of a PUF to produce the same response under various conditions and timeframes,
in9 it is proposed to induce aging into the transistors in order to improve this reliability. For that purpose, the
opposite value of the one originally obtained is written into the cells.

Platform description.  The platform comprises diverse components designed to work together in order to
easily gather data from a vast amount of devices while ensuring its integrity. The code is built with focus on scal-
ability to ensure the application of different devices without altering the main mechanics of the station. The plat-
form receives instructions from a message broker, allowing for the necessary commands to be performed on the
devices; data is stored in a SQL database; every process is monitored and logged in real time to flag unexpected
behaviour or error. The station is depicted in Fig. 1.

The requests from the message broker are split into different atomic “commands”. They are queued so that
multiple commands can be sent at the same time but be executed sequentially. A timeout for each command
is also set to avoid hanging forever. Communication with the devices is performed through a defined interface
that translates commands into necessary packets of custom-made communication protocol. This process makes

Fig. 1  Picture of the deployed platform used to gather the data.

https://doi.org/10.1038/s41597-023-02225-9

3Scientific Data | (2023) 10:333 | https://doi.org/10.1038/s41597-023-02225-9

www.nature.com/scientificdatawww.nature.com/scientificdata/

the platform very scalable indeed, multiple devices can be connected at the same time as long as they all use the
same communication interface.

Communication protocol.  A packet-based communication protocol has been designed to transfer data between
the PC and the devices. The packet contains bytes to transmit as well as metadata. Data is stored in the devices
in a C struct, serialized when sending and deserialized when receiving. These packets are used to build atomic
operations that will carry out the designed actions.

Table 1 presents the different atomic operations that the platform can perform. They are the basis of more
complex commands Tables 1, 2.

Custom code execution.  As shown above, the platform provides commands for custom code exception. Code
execution is performed thanks to zForth (https://github.com/zevv/zForth) being is a subset of Forth, designed
to be highly portable. Each device comprises an instance of zForth interpreter that can read code from a buffer.
As an example, the following code calculates the Fibonacci sequence from 1 to 1024.

: fib 1 1 begin.. dup rot rot + dup 1024 > until; fib

The same code can be executed multiple times without need of loading every instance. The results are auto-
matically written in a circular buffer that can later be retrieved. Users will be able to exploit this functionality
for their experiments: make a request that will be queued and once done, the data will be sent to them directly.

Devices.  In order to maximize the number of connections to the PC, devices are united in Daisy Chains and
two UART ports are plugged to communicate with the rest of the devices in both directions. All the devices are pro-
grammed with the same source code, which makes the process of adding, removing and changing equipment fairly
trivial. The physical position of each one is detected through a field in our communication protocol called PIC, stand-
ing for Position In Chain. The value starts at 0 at PC level and is incremented with 1 for every jump the packet per-
forms downstream. This field along with the 96-bit identifier provided by the manufacturer stored in memory allows
to fully know the position of a device in the chain. The automatic power cycle of the devices is handled with a YKUSH
USB (https://www.yepkit.com/products/ykush) hub, enabling the control of three USB ports power independently.

Monitoring.  To monitor the status of the platform at any given time, each packet contains a header with
metadata about the command to execute and additional options. To ensure preventing Bit Flips during data
transmission, PUF quality parameters being very sensitive to bit changes, every packet comprises a checksum
calculated as the CRC16 of the packet. Additionally, since every operation the platform performs is atomic, any

Command Description

ACK Acknowledgement of an operation. An ACK is sent by a device, for example after a WRITE operation to inform the PC that
the command has successfully been executed.

PING This command gives the PC the number of devices that are connected in a chain and their SRAM sizes.

READ
Read a region of information of a device. The Options field in the packet contains the offset to read from. The offset is the
number of 512 bytes to skip. If the region cannot be read or the checksum does not match, an ERR is transmitted back to the
station.

WRITE Write a series of bytes in a memory region of a device. The body in the packet contains the bytes to write. An ERR is sent back
to the station in case the checksum does not fit.

INVERT This command employs the WRITE command to deliver the opposite values of the first sample.

SENSORS Extract the sensors information from a device. Microcontrollers connected to the platform have temperature and core voltage
sensors.

LOAD Load source code to a device that would later be executed.

EXEC Execute code loaded by the LOAD command and store the results into a circular buffer that can later be retrieved.

RETR Retrieve results stored after the code has been executed.

ERR Error during communication. It can be a wrong checksum or a problem during the parsing of a packet.

Table 1.  Available commands in the platform.

Log level Information

ERROR Serial port is off. Please turn on the serial port first

ERROR No device managed

ERROR Device {device} is not managed

ERROR Offset {offset} for device {device} must be in range [0, {max_offset}]

ERROR Writing problem in device {device} at offset {offset}

ERROR Packet {packet} for device {device} is corrupted

INFO Data written correctly

Table 2.  Potential problems that may occur during a WRITE operation.

https://doi.org/10.1038/s41597-023-02225-9
https://github.com/zevv/zForth
https://www.yepkit.com/products/ykush

4Scientific Data | (2023) 10:333 | https://doi.org/10.1038/s41597-023-02225-9

www.nature.com/scientificdatawww.nature.com/scientificdata/

problems that may occur at any given moment can easily be located and reported. As an example, Table 2 portrays
potential issues that could be detected while performing a WRITE operation on a device.

Fail-safe mechanism are introduced to detect more complex trouble and immediately stop the platform to
secure data integrity. (i.e. a command could hang indefinitely waiting for lost bytes or part of the devices could
remain inaccessible due to a physical problem in the chain).

Database.  A SQL database is used for reliable long term storage and effortless data filtering. Communication
with the database is designed to be agnostic so any SQL database should work; for this project we have chosen
PostgreSQL. The memory and sensors readouts are stored into two separate tables. Tables 3, 4 represent them.
Along with sample information, a UTC timestamp is stored with each document to keep track of when the sample
was extracted.

Data Records
A static version of the full dataset available at the time of writing can be downloaded from Zenodo https://doi.
org/10.5281/zenodo.752951310. More data can be found online as explained in section 5 (Usage notes). The full
dataset contains SRAM readouts of 84 Nucleo microcontrollers of STM32 type along with their voltage and
temperature sensor data. This dataset is composed of two CSV files:

•	 The first one houses the readout of the SRAM memories. There are 9 samples per device and each memory is
split into 160 regions of 512 bytes, summing up to a total of 120961 rows.

•	 The second files accommodates temperature and voltage sensor readouts. It contains 11 readouts, 9 of which
were performed along with the SRAM memory readouts. There are a total of 925 rows.

The fields of both files are detailed in Tables 5, 6:

Technical Validation
The data provided by this platform has not been pre-processed so as to keep raw data of the SRAM. Nevertheless,
it is still important to ensure that the data provided does not present faulty bits and complies with the quality
metrics depicted in the literature. Earlier, we have already detailed the different techniques of monitoring and
error reporting used to guarantee the physical integrity of data Table 7.

The minimum time required to assure that every device is correctly turned on or off is approximately 30 sec-
onds. For every power cycle we have waited at least one minute; comfort interval to make sure that the SRAM
contents are completely erased, knowing that an attacker could exploit data remanence and get PUF responses
indirectly11.

Moreover, the quality of the samples has been studied with the canonical quality metrics published by Maiti
et al.2. We will provide a summary of such metrics in order to assess the performance of SRAM on the μCs as a
PUF. The purpose of these widely used metrics is to find vulnerabilities in the PUF behaviour such as bias in the
distribution of 1 s and 0 s, systematic variation, etc. These metrics are updated every 24 hours. Nevertheless, the
user can select an specific device and obtain its metrics in real time. For the metrics that require reference values
of response bits (e.g. reliability), these values are derived by Majority Voting among samples. In the near future,
we plan to include new metrics such as the ones presented in12.

Before explaining the calculation of the metrics, a small visual aid on how calculations are performed is dis-
played in Fig. 2. Each row contains all the bits of each device and is arranged into a 3D matrix, where the third
dimension gathers all the readouts of the devices.

id Internal ID of the sample.

board_type Type of device in the chain.

uid Universal ID of the device.

pic Position In Chain of the device.

address Hex formatted region of SRAM.

data List of values from memory.

created_at UTC timestamp.

Table 3.  CRPs schema.

id Internal ID of the sample.

board_type Type of device in the chain.

uid Universal ID of the device.

temperature Temperature of the device.

voltage Voltage of the device.

created_at UTC timestamp.

Table 4.  Sensors schema.

https://doi.org/10.1038/s41597-023-02225-9
https://doi.org/10.5281/zenodo.7529513
https://doi.org/10.5281/zenodo.7529513

5Scientific Data | (2023) 10:333 | https://doi.org/10.1038/s41597-023-02225-9

www.nature.com/scientificdatawww.nature.com/scientificdata/

Uniformity.  It measures the randomness of each device. It is calculated as the average of all responses of each
device, meaning the average of the responses across rows. The following formula is used to calculate the uniform-
ity of each device, where C represents the number of bits in the SRAM. This value should be 0.5 to ensure an even
distribution of 0 s and 1 s.

∑=
=

Uniformity
C

crp1
(1)c

C

c
0

Bit-aliasing.  It assesses the randomness of each challenge across devices. It is calculated in the similar manner
as uniformity but on columns instead of rows. The following formula is used for each challenge where D repre-
sents the number of devices that are studied. As with uniformity, this value should be 0.5.

∑− =
=

Bit aliasing
D

crp1
(2)c

D

d
0

Uniqueness.  This metric measures the difference in responses from pairs of devices, hoping there is enough
randomness across devices. The HDnorm function refers to the normalized hamming distance and C to all the
responses from a device in a given sample. The ideal value should be close to 0.5 to assure that each device pro-
duces a unique set of CRPs.

∑ ∑= − =
= = +

()Uniqueness
P

HD C C P D1 1 (,) where
2 (3)i

D

j i

D

norm i j
0 1

Field Description

board_type Device model that is connected to the chain. This dataset only contains Nucleo.

uid STM32 96-bit ID formatted as 24 Hex-character string. This UID includes the batch number of the device, its wafer
number, wafer lot and the X and Y position of the μC on the wafer.

pic The Position In Chain. Devices are assembled in a chain-like architecture to maximize their connections to the computer
that performs the readout. The first device has a PIC of 1 and the last one has a PIC of 84.

address The address of each memory region where the data was read. Each memory region contains exactly 512 bytes. For
Nucleo devices, there are 160 regions in total. The SRAM memory of them starts at address 0 × 20000000.

data 512 bytes as unsigned integers of the memory region. The values are separated with commas and surrounded with
double quotation marks.

created_at Timestamp when data was gathered in ISO format (YYYY-MM-DD hh:mm:ss)

Table 5.  CSV file housing SRAM memory readouts.

Field Description

board_type Identical to description in Table 5.

uid Identical to description in Table 5.

pic Identical to description in Table 5.

temperature Temperature of the device in Celsius.

voltage Internal voltage of the device in Volts.

created_at Identical to description in Table 5.

Table 6.  CSV file housing temperature and voltage sensors.

Name Possible values

Date YYYY-MM-DD

Block Positive integer

DateFrom-Day 1 to 30

DateFrom-Month 1 to 12

DateFrom-Year 4-digit year

DateTo-Day 1 to 31

DateTo-Month 1 to 12

DateTo-Year 4-digit year

BoardId “all” or “0x” + 24-character UID + “−” + pic

CircuitId “all” or “NUCLEO” or “DISCOVERY”

Table 7.  Table of request parameters and their accepted values.

https://doi.org/10.1038/s41597-023-02225-9

6Scientific Data | (2023) 10:333 | https://doi.org/10.1038/s41597-023-02225-9

www.nature.com/scientificdatawww.nature.com/scientificdata/

Reliability.  It determines the variability of responses in time and different conditions. The reliability of each
device is calculated by grouping all responses into a vector and performing hamming distance with all the rest of
the samples. The ideal value should be 1 to prove that responses do not change in time. It is important to mention
that at least two samples are needed to calculate reliability as the hamming distance of a sample with itself is 0.

∑= −
∈

Reliability
S

HD s s1 1 (,)
(4)s S

norm i ref

These quality metrics are measured when a new readout is performed and monitored through Grafana
(https://grafana.com/) to asses potential problems during the readout. Figure 3 displays two snapshots of the
Grafana dashboard checking the quality of the samples.

Figure 4 shows a heat map of a memory sample of the 84 devices connected to the platform. Each row corre-
sponds to a device and colors indicate the value of each memory cell. The areas at the beginning and at the end
of each SRAM are full of 0 s as they are used for the stack to load the executable code and buffers. To secure the
proper operation of the devices, these areas are read but not written. This heat map can be seen as one of the 2D
matrix adopted to calculate metrics.

Limitations.  One of the main constraints of this platform is the acquisition time of the samples. The setup
(described in the Methods section) follows a chain-like structure, the memory content is thus received and trans-
mitted one after the other according to the position of the board in the chain. With 84 devices connected in one
chain, it takes approximately 15 minutes to transmit the 80 kilobytes of the entire SRAM of the last board of the

Fig. 2  Diagram showing how data arrangement and calculations are performed. Orange: uniformity; blue:
bit-aliasing; green: reliability; uniqueness is calculated for every combination of pair of rows. The metrics are
monitored in real time in Grafana.

Fig. 3  Snapshots of the Grafana dashboard used to monitor in real time the operation of the platform.

https://doi.org/10.1038/s41597-023-02225-9
https://grafana.com/

7Scientific Data | (2023) 10:333 | https://doi.org/10.1038/s41597-023-02225-9

www.nature.com/scientificdatawww.nature.com/scientificdata/

chain; therefore, the memory from all 84 devices would be retrieved in about 24 hours. In case of error during
communication, a packet notifying the faulty bits is sent back to the PC and the information is retransmitted, with
a consequent increase in transmission delay.

Fig. 4  Heat map of a memory sample of 84 devices connected to the platform. Each tile refers to a byte of
memory. Low regions of memory are represented in the left side and high regions are represented in the right.

Fig. 5  Form from PUF4IOT website displayed when requesting data.

https://doi.org/10.1038/s41597-023-02225-9

8Scientific Data | (2023) 10:333 | https://doi.org/10.1038/s41597-023-02225-9

www.nature.com/scientificdatawww.nature.com/scientificdata/

The other limitation is that the control of voltage and temperature is not feasable at the moment; the devices
are subjected to environmental conditions.

Usage Notes
Although the dataset described in this document is static, more data can be requested online through the fol-
lowing application hosted at https://puf4iot.univ-grenoble-alpes.fr/form.php. Any user can submit their need to
the server specifying the data they want to retrieve, and a CSV or zip file (if larger records) will be handed over.

The database with raw data is updated once a week. The SRAM start-up values have been organized in mem-
ory regions of 512 bytes, proving a good trade-off between usability and data integrity. Each sample has been
time-stamped in order to know the collection date.

Figure 5 pictures the entry point of the website. Users provide their information and are given access to the
main site where they can ask for the needed data guided by filters. The website will then fetch the required data
and generate the CSV or zip file.

Data can also be asked by making an HTTP request to the server with the filter parameters. Curl or Wget
commands can be employed to get data directly from a terminal.

$ wget --post-data 'Param = value&Param2=value2...' https://puf4iot.
univ-grenoble-alpes.fr/getdata.php

Table 7 shows all the possible request parameters and their accepted values.
When a vast amount of data is required, it will be split into various CSV files and contained in a zip, that can

be saved with the following script; in this request, the Block parameter allows to skip certain number of records
(here 2000).
#!/usr/bin/bash
params='Date=2020-01-22&BoardId=NUCLEO&CircuitId=0x3430716367336321B0660-
1&Block=2'
wget --post-data $params \

�https://puf4iot.univ-grenoble-alpes.fr/getdata.php\
-O srampuf-tima-2020-01-22-NUCLEO-0x3430716367336321B0660-1-2.zip
Although SRAM and sensors data were earlier presented as being split into two different CSV files, data

is merged when requested through the website. Therefore, every generated CSV file contains the following
columns:

id;TimeStamp;BoardId;UDID;Position;MemAddress;Size;Temperature;Volt-
age;Response

Code availability
The source code of the platform and the STM32 devices are available under the GPL-2.0 license at https://github.
com/servinagrero/SRAMPlatform. Online documentation on the platform and guidance on custom station set
up can be found at https://servinagrero.github.io/SRAMPlatform. The full list of python dependencies is available
in the pyproject.toml file in GitHub repository. PostgreSQL (https://www.postgresql.org/) is needed to store data,
a message broker is necessary to communicate with the station, RabbitMQ (https://www.rabbitmq.com/)in our
case, and Grafana is used to monitory metrics and sensors in a dashboard.

Received: 14 March 2023; Accepted: 10 May 2023;
Published: xx xx xxxx

References
	 1.	 Holcomb, D. E., Burleson, W. P. & Fu, K. Initial SRAM state as a fingerprint and source of true random numbers for RFID tags. In In

Proceedings of the Conference on RFID Security (2007).
	 2.	 Maiti, A., Casarona, J., McHale, L. & Schaumont, P. A large scale characterization of RO-PUF. In 2010 IEEE International Symposium

on Hardware-Oriented Security and Trust (HOST), 94–99, https://doi.org/10.1109/HST.2010.5513108 (2010).
	 3.	 Cortez, M., Hamdioui, S. & Ishihara, R. Design dependent SRAM PUF robustness analysis. In 2015 16th Latin-American Test

Symposium (LATS), 1–6, https://doi.org/10.1109/LATW.2015.7102498 (2015).
	 4.	 Barbareschi, M., Battista, E., Mazzeo, A. & Mazzocca, N. Testing 90 nm microcontroller SRAM PUF quality. In 2015 10th

International Conference on Design Technology of Integrated Systems in Nanoscale Era (DTIS), 1–6, https://doi.org/10.1109/
DTIS.2015.7127360 (2015).

	 5.	 Wilde, F. Large scale characterization of SRAM on infineon XMC microcontrollers as PUF. In Proceedings of the Fourth Workshop
on Cryptography and Security in Computing Systems, CS2 ‘17, 13–18, https://doi.org/10.1145/3031836.3031839 (Association for
Computing Machinery, New York, NY, USA, 2017).

	 6.	 Wang, R., Selimis, G., Maes, R. & Goossens, S. Long-term continuous assessment of SRAM PUF and source of random numbers. In 2020
Design, Automation Test in Europe Conference Exhibition (DATE), 7–12, https://doi.org/10.23919/DATE48585.2020.9116353 (2020).

	 7.	 Wilde, F., Gammel, B. M. & Pehl, M. Spatial correlation analysis on physical unclonable functions. IEEE Transactions on Information
Forensics and Security 13, 1468–1480, https://doi.org/10.1109/TIFS.2018.2791341 (2018).

	 8.	 Maiti, A., Gunreddy, V. & Schaumont, P. A Systematic Method to Evaluate and Compare the Performance of Physical Unclonable
Functions, 245–267 (Springer New York, New York, NY, 2013).

	 9.	 Garg, A. & Kim, T. T. Design of SRAM PUF with improved uniformity and reliability utilizing device aging effect. In 2014 IEEE
International Symposium on Circuits and Systems (ISCAS), 1941–1944, https://doi.org/10.1109/ISCAS.2014.6865541 (2014).

	10.	 Vinagrero Gutierrez, S., Martin Gonzalez, H., De Bignicourt, A., Vatajelu, EI. & Di Natale, G. SRAM-Based PUF Readouts, Zenodo,
https://doi.org/10.5281/zenodo.7529513 (2023).

	11.	 Oren, Y., Sadeghi, A.-R. & Wachsmann, C. On the effectiveness of the remanence decay side-channel to clone memory-based PUFs.
In Bertoni, G. & Coron, J.-S. (eds.) Cryptographic Hardware and Embedded Systems - CHES 2013, 107–125 (Springer Berlin
Heidelberg, Berlin, Heidelberg, 2013).

	12.	 Hori, Y., Yoshida, T., Katashita, T. & Satoh, A. Quantitative and statistical performance evaluation of arbiter physical unclonable
functions on FPGAs. In 2010 International Conference on Reconfigurable Computing and FPGAs, 298–303, https://doi.org/10.1109/
ReConFig.2010.24 (2010).

https://doi.org/10.1038/s41597-023-02225-9
https://puf4iot.univ-grenoble-alpes.fr/form.php
https://puf4iot.univ-grenoble-alpes.fr/getdata.php
https://puf4iot.univ-grenoble-alpes.fr/getdata.php
https://puf4iot.univ-grenoble-alpes.fr/getdata.php
https://github.com/servinagrero/SRAMPlatform
https://github.com/servinagrero/SRAMPlatform
https://servinagrero.github.io/SRAMPlatform
https://www.postgresql.org/
https://www.rabbitmq.com/
https://doi.org/10.1109/HST.2010.5513108
https://doi.org/10.1109/LATW.2015.7102498
https://doi.org/10.1109/DTIS.2015.7127360
https://doi.org/10.1109/DTIS.2015.7127360
https://doi.org/10.1145/3031836.3031839
https://doi.org/10.23919/DATE48585.2020.9116353
https://doi.org/10.1109/TIFS.2018.2791341
https://doi.org/10.1109/ISCAS.2014.6865541
https://doi.org/https://doi.org/10.5281/zenodo.7529513
https://doi.org/10.1109/ReConFig.2010.24
https://doi.org/10.1109/ReConFig.2010.24

9Scientific Data | (2023) 10:333 | https://doi.org/10.1038/s41597-023-02225-9

www.nature.com/scientificdatawww.nature.com/scientificdata/

Acknowledgements
This work has been partially supported by the French National Research Agency (CNRS) under the PUF4IOT
INS20 project and the Community of Madrid (Comunidad de Madrid), under the multi-annual agreement with
UC3M Spanish university (“Fostering Young Doctors Research”, PUCFA-CM-UC3M); it has emerged through the
Regional Programme for Research and Engineering Innovation (V PRICIT).

Author contributions
I.V. and G.D. matured the idea and helped with the deployment of the station. The software was developed by S.V.
the document written by H.M. the website designed by A.B.

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to S.V.
Reprints and permissions information is available at www.nature.com/reprints.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2023

https://doi.org/10.1038/s41597-023-02225-9
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	SRAM-Based PUF Readouts

	Background & Summary

	Methods

	Platform description.
	Communication protocol.
	Custom code execution.

	Devices.
	Monitoring.
	Database.

	Data Records

	Technical Validation

	Uniformity.
	Bit-aliasing.
	Uniqueness.
	Reliability.
	Limitations.

	Usage Notes

	Acknowledgements

	Fig. 1 Picture of the deployed platform used to gather the data.
	Fig. 2 Diagram showing how data arrangement and calculations are performed.
	Fig. 3 Snapshots of the Grafana dashboard used to monitor in real time the operation of the platform.
	Fig. 4 Heat map of a memory sample of 84 devices connected to the platform.
	Fig. 5 Form from PUF4IOT website displayed when requesting data.
	Table 1 Available commands in the platform.
	Table 2 Potential problems that may occur during a WRITE operation.
	Table 3 CRPs schema.
	Table 4 Sensors schema.
	Table 5 CSV file housing SRAM memory readouts.
	Table 6 CSV file housing temperature and voltage sensors.
	Table 7 Table of request parameters and their accepted values.

