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Abstract—Long-term forecasting problem for time series has
been actively studied during the last several years, and preceding
Transformer-based models have exploited various self-attention
mechanisms to discover the long-range dependencies. However,
the hidden dependencies required by the forecasting task are not
always appropriately extracted, especially the nonlinear serial
dependencies in some datasets. In this paper, we propose a novel
Transformer-based model, namely Rankformer, leveraging the
rank correlation function and decomposition architecture for
long-term time series forecasting tasks. Rankformer outperforms
four state-of-the-art Transformer-based models and two RNN-
based models for different forecasting horizons on different
datasets on which extensive experiments were conducted.

Index Terms—Time Series, Forecasting, Transformer, Rank
Correlation, Nonlinear Dependencies

I. INTRODUCTION

Time series forecasting is a process for predicting the future
values of a given time series based on its historical behavior by
developing a model describing its underlying characteristics
and extrapolating into the future. It has been widely used
in many applications, such as weather forecasting [1], GDP
prediction [_2], traffic forecasting [3]], and energy consumption
prediction [4]]. It has been dominated for a few decades by
statistical methods such as AutoRegression Integrated Moving
Average (ARIMA), ExponenTial Smoothing (ETS), and Theta
method [5]-[8[]. In the past few years, deep learning has
been applied to time series forecasting and achieved great
success [9]-[12]]. The most popular deep learning models for
time series forecasting include Convolutional Neural Networks
(CNNs), Recurrent Neural Networks (RNNSs), and Transformer
models. CNNs and RNNs have been widely exploited in fore-
casting tasks due to their ability to capture sequential/temporal
dependencies in the time series [13|]. Some representative
works include LSTNet [[14], DeepAR [15], and TCN [16].

Since its first birth in 2017, Transformer models have be-
come increasingly popular and applied successfully in various
fields, including machine translation, computer vision, and text
generation, to list a few [17]-[20]. In the time series domain,
Informer [21] was the first work that introduced Transformer
for time series forecasting with a ProbSparse self-attention
calculation and a self-attention distilling mechanism to handle
the quadratic computational complexity. Autoformer [22]] sub-
stitutes the self-attention block with an AutoCorrelation mech-
anism to discover the period-based dependencies and adopts a
decomposition structure to separate the long-term stationary
trend and the seasonal patterns. Other Transformer models

were also applied to time series forecasting tasks, such as
Reformer [23]], which employed locally sensitive hashing self-
attention, and LogTrans [24f], which uses a heuristic method
to reduce the complexity of the self-attention mechanism.

Nevertheless, the formerly mentioned Transformer models
have not been able to exploit the long-range dependencies in
time series fully, especially the nonlinear serial dependencies.
Informer applied the ProbSparse self-attention mechanism to
reduce the computational complexity, but the hidden long-
range dependency was not extracted properly. Autoformer used
the AutoCorrelation mechanism to discover the period-based
dependencies. However, the AutoCorrelation used in the model
is based on the Pearson correlation function, which supports
only linear correlation even on an NN basis, while in some
time series, the long-term dependencies are nonlinear.

In this paper, we propose Rankformer, a novel Transformer
model for long-term forecasting tasks, leveraging the rank
correlation function and a decomposition architecture for
time series forecasting tasks. Rankformer outperforms other
Transformer-based models in extensive experiments on four
forecasting benchmark datasets for four forecasting horizons.

The rest of the paper is organized as follows. Sec.
introduces the proposed Rankformer model. We then present
the experimental setups and configurations in Sec. The
comparison and discussions based on the results are given in
Sec. Finally, Sec. [V] concludes the paper.

II. METHODS

In this section, we introduce the architecture of Rankformer
and its two key components, i.e., the Rank Correlation and
Multi-Level Decomposition modules.

A. Rankformer Architecture

As shown in Fig. |1} Rankformer has an encoder-decoder
architecture per Autoformer [22]. The encoder is composed
of a stack of IV identical layers, each containing one multi-
head Rank Correlation (RankCorr) block, two Multi-Level
Decomposition (MLDecomp) blocks, and one Feed-Forward
(FF) block. The decoder is a stack of M identical layers, each
of which is composed of two multi-head RankCorr blocks,
three MLDecomp blocks, and one FF block. Combining the
outputs of the last MLDecomp block and the refined trend-
cyclical part in the decoder composes the final prediction.
The architecture of Rankformer is detailed in the following
contents.
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Fig. 1. The architecture of Rankformer.
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1) Encoder: With the RankCorr and MLDecomp blocks,
the encoder decomposes the series into seasonal and trend-
cyclical parts. With the latter being neglected during the
modeling process, the encoder mainly models the seasonal
component. The output of the [-th encoder layer can be
summarized as X, = Encoder(X!~1) and the process in one
encoder layer is expressed as follows:

84!, _ = MLDecomp (RankCorr (X)) + X5 1),

en » —
Sh2 — MLDecomp(FF(Siﬁl) + Sér’ll)’

en ) —

6]

where S4' denotes the seasonal component after the i-th
MLDecomp block and X!, = Sk le {1,2,...,N}.

2) Decoder: The decoder in Rankformer has two streams,
i.e., the trend-cyclical stream and the seasonal stream. While
the seasonal stream continuously refines the seasonal part of
the time series, the trend-cyclical stream focuses on modeling
the trend-cyclical component. With a similar notation as per
encoder, we can summarize the process in one decoder layer as
XL, TL = Decoder(X.t, 7.7") and formalize it as follows:

Scllél,ﬂle’l = MLDecomp (RankCorr(Xé;l) + X5;1)7

842 Th? = MLDecomp (RankCorr(Sﬁ;}, N+ Ségl),

S, Th? = MLDecomp (FF(Séf) + ij),
7&=ﬁf+Whﬁf+Wmﬁf+m5m?(m

where S&;’ and 7;18’ are the seasonal and trend-cyclical compo-
nents respectively, and W; 1, Wj o, W) 3 are trainable weights.

The outputs of the [-th decoder layer are two fold: the refined
seasonal patterns X, = Séf’, and the multiple level trend-
cyclical patterns 7., where [ € {1,2,..., M}.

3) Model Inputs and Outputs: We denote the input length
as I, the output length as O, and the model dimension as d.
There are three inputs for Rankformer:

o The encoder input are the last I time steps in the time

series: A, € RIxd,

o The seasonal stream input concatenates the latter half
of the encoder’s decomposed input and a length-O
placeholder with zeros: Xgs = concat(Xens, Xp) €
R(G+0)xd

o The trend-cyclical stream input also consists of the latter
half of the decomposed A, and a placeholder filled
by the average of Ap: Xge1 = concat(Xen,T,Xavg) €
R(%+O)Xd.

The relationship between the inputs can be formalized as

follows:

I
Xen,s> Xen,r = MLDecomp <Xen [2 : I] >,

Xde,s = COHCat(Xen,Sv XO)’
Xge,r = concat (Xen, T, Xavg)-

3)

The final output of the model is a combination of the sea-
sonal and the trend-cyclical streams in the decoder: Ws X +
TM | where Wy is a trainable weight to project X into the
target dimension.

B. RankCorrelation Block

The Pearson correlation coefficient, also known as Pearson’s
p, is widely used to measure the linear correlation between two
variables. Given two random variables X and Y, Pearson’s p
defined as follows:

cov(X,Y)
o(X)o(Y)'
The AutoCorrelation Function (ACF) adopts the Pearson

correlation function to measure the correlation between two
distant time points in a stationary time series y;:

pp(X,Y) = “)

cov(Ye—r, Yt)

Ach):pA%—m%J:(ﬂ%,wawg

, k=0,1,2,...,Vt.

4)
However, in some time series, the long-term dependencies
are not linear. In this case, the nonlinearity can cause a low
Pearson’s p and thus result in an erroneous dependencies
measurement. To address this issue, we propose to use the
Rank Correlation Function (RCF), more generally known
as Spearman’s p [25]], to measure the nonlinear correlation.
Spearman’s p is defined as follows:

cov(R(X), R(Y))

o(R(X))o(R(Y))’
where R(X) and R(Y") are the ranks of X and Y. p denotes
the usual Pearson correlation coefficient but is applied to the

rank variables, which is leveraged to compute the Ranked ACF
(RACF). ps is defined in [—1, 1], where —1 indicates a perfect

pS(X, Y) =

(6)



negative monotonic relationship, 0 indicates no monotonic
relationship, and 1 indicates a perfect positive monotonic re-
lationship. py is invariant to monotonic transformations of the
variables and is robust to outliers. Therefore, it is more suitable
for stationary time series with nonlinear serial dependencies.
Our RACF is defined as:

RACF (k) = ps(yt—k,yt), k=0,1,2,...,Vt. @)

In our implementation, the RACF is computed by ex-
ploiting the FFT, which accelerates the Fourier transform to
O(N log N), and the Wiener-Khinchin theorem, which states
that the ACF of a stationary time series can be computed
by the Fourier transform of its power spectrum. The ranking
procedure is supported by the torchsortﬂ library, which
offers an efficient O(N log N') sorting operator [26]]. Thus,
the RACF is computed by ranking the time series and then
computing the ACF of the ranked time series. The total
computational complexity of calculating the RACF is thus
O(NlogN).

C. Multi-Level Decomposition Block

We adopted a multi-level decomposition block to decom-
pose the input time series into the seasonal and trend-cyclical
components. The block consists of Multiple Moving Average
(MMA) filters with varying kernel sizes to yield different trend-
cyclical components, rather than just one fix-length MA filter
in Autoformer. The MLDecomp block is formalized as:

K
)(trend—cyclical = Z Wdecomp,k : MMA('X}nputv k); (8)
k=1

where K is a set of kernel sizes, Waecomp, x 1S a trainable weight
tensor, and MMA are multiple moving average filters. The
output of the MLDecomp block is a weighted sum of the
trend-cyclical components.

III. EXPERIMENTS

This section presents our experimental settings and results.

A. Datasets

Rankformer was tested with other state-of-the-art methods
on four well-known datasets:

o Electricity Transformer Temperature (ETT) [21]]: Oil tem-
perature and six power load features recorded every 15
minutes from July 2016 to July 2018 in two Chinese
counties.

. Exchange—RateE} Daily exchange rates of eight coun-
tries, i.e., Australia, British, Canada, China, Japan, New
Zealand, Singapore, and Switzerland, from 1990 to 2016.

. Weathe 10-minute level local climate data containing
21 meteorological features for 2020 collected by Max-
Planck-Institut fiir Biogeochemie, Jena.

Uhttps://github.com/teddykoker/torchsort
Zhttps://github.com/laiguokun/multivariate-time-series-data
3https://www.bgc-jena.mpg.de/wetter/

TABLE I
DATASET DESCRIPTION

Dataset ETT Exchange Weather ILI
Length 69680 7588 52696 966
Dimension 7 8 21 7
Frequency 15 min 1 day 10 min 1 week
Engle’s test | 5 5e16 | <22e-16 | <22e-16 | 08126
p-value
ARCH effect Significant | Significant | Significant | Insignificant

o Influenza-Like Illness (ILI Weekly ILI patients data
from the U.S. Centers for Disease Control and Prevention
between 2002 to 2021, containing the ratio of ILI patients
and the total number of patients.

All datasets were separated into train/validation/test sets in
chronological order with a 7/1/2 split, except for the ETT
dataset, which was split into 6/2/2, as per Autoformer [22]]
and Informer [21]]. The datasets’ statistics are listed in the
first four rows of Tab. [

We also evaluated the significance of the nonlinearity
in the serial dependencies by performing Engle’s Lagrange
Multiplier Test [27] on the four datasets. It assesses the
significance of autoregressive conditional heteroskedasticity
(ARCH) effects in a time series. A significant result reveals
nonlinear serial dependencies in the series. The test results are
listed in the last two rows of Tab. [l

B. Experimental Settings

We kept the same number of encoder-decoder layers as
Autoformer: two encoder layers and one decoder layer. Rank-
former was trained using the Mean Square Error loss and the
Adam optimizer [28]] with an initial learning rate of 1074
The batch size was set to 32. The model was trained for ten
epochs with a learning rate scheduler that reduces the learning
rate by a factor of 0.5 when the validation loss plateaus. The
model was implemented in PyTorch [29] and trained on a
single NVIDIA Tesla V100 GPU.

IV. RESULTS AND DISCUSSION

We compared Rankformer with the following state-of-the-
art methods: Autoformer [22], Informer [21]], LogTrans [24],
Reformer [23]], LSTNet [14], and LSTM [30]. We used the
Mean Square Error (MSE) and the Mean Absolute Error
(MAE) as the evaluation metrics, and we fixed the input
length to 36 for ILI and 96 for others as per Autoformer.
The results are presented in Tab. The best results are
highlighted in bold, and the second-best results are highlighted
with underscores.

Overall, Rankformer outperforms the other methods on the
ETT, Exchange-Rage, and Weather datasets and is slightly
weaker than Autoformer on the ILI dataset. Particularly, under
the Input-96-Output-96 setting, Rankformer yields 13.3%

4https://gis.cdc.gov/grasp/fluview/fluportaldashboard.html


https://github.com/teddykoker/torchsort
https://github.com/laiguokun/multivariate-time-series-data
https://www.bgc-jena.mpg.de/wetter/
https://gis.cdc.gov/grasp/fluview/fluportaldashboard.html

TABLE II
FORECASTING RESULTS FOR DIFFERENT MODELS ON DIFFERENT FORECAST HORIZONS

Models Rankformer Autoformer [22] Informer [21] LogTrans [24] Reformer [23] LSTNet [[14] LSTM [30]
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
24 0.149 0.258 | 0.153 0.261 0.173 0301 | 0.211 0332 | 0.333 0.429 | 1.101 0.831 | 0.580 0.572
E 48 0.183 0.281 | 0.178 0.280 0.303 0409 | 0427 0487 | 0.558 0571 | 2.619 1393 | 0.747 0.630
m 96 0.221  0.302 | 0.255 0.339 0.365 0453 | 0.768 0.642 | 0.658 0.619 | 3.142 1.365 | 2.041 1.073
288 | 0314 0.357 | 0.342 0.378 1.047 0804 | 1.090 0.806 | 2.441 1.190 | 2.856 1.329 | 0.969 0.742
° 96 0.162 0.290 | 0.197 0.323 0.847 0.752 | 0.968 0.812 | 1.065 0.829 | 1.551 1.058 | 1.453 1.049
%ﬁ 192 | 0.251 0.365 | 0.300 0.369 1.204 0.895 | 1.040 0.851 | 1.188 0.906 | 1477 1.028 | 1.846 1.179
é 336 | 0.428 0.486 | 0.509 0.524 1.672  1.036 | 1.659 1.081 | 1.357 0.976 | 1.507 1.031 | 2.136 1.231
Mo 720 | 1157 0.837 | 1.447 0.941 2478 1310 | 1.941 1.127 | 1.510 1.016 | 2285 1.243 | 2.984 1427
- 96 0.263 0.332 | 0.266 0.336 0.300 0.384 | 0.458 0.490 | 0.689 0.596 | 0.594 0.587 | 0.369 0.406
§ 192 | 0.298 0.356 | 0.307 0.367 0.598 0.544 | 0.658 0.589 | 0.752 0.638 | 0.560 0.565 | 0.416 0.435
g 336 | 0.350 0.390 | 0.359 0.395 0.578 0.523 | 0.797 0.652 | 0.639 0.596 | 0.597 0.587 | 0.455 0.454
720 | 0430 0435 | 0.419 0.428 1.059 0.741 | 0.869 0.675 | 1.130 0.792 | 0.618 0.599 | 0.535 0.520
24 3.556 1.319 | 3.483 1.287 5764 1.677 | 4480 1444 | 4400 1.382 | 6.026 1.770 | 5914 1.734
- 36 2.821 1.112 | 3.103 1.148 47755 1467 | 4799 1467 | 4783 1448 | 5340 1.668 | 6.631 1.845
= 48 2.907 1.144 | 2.669 1.085 4763 1469 | 4800 1468 | 4.832 1465 | 6.080 1.787 | 6.736  1.857
60 3.232  1.239 | 2.770 1.125 5264 1564 | 5278 1.560 | 4.882 1.483 | 5.548 1.720 | 6.870 1.879

MSE reduction on ETT and 17.5% on Exchange-Rate, com-
pared to Autoformer. It also outperforms Autoformer on the
Weather dataset, but the difference is not significant.

The results on the Exchange-Rate dataset are particularly
impressive. Despite the fact that Exchange-Rate is a very chal-
lenging dataset without any notable periodicity, Rankformer
still gives the best improvement over Autoformer. We attribute
this to the nonlinear serial dependencies in the dataset being
captured more properly by Rankformer than by Autoformer.

On the contrary, due to the high linear correlation in the ILI
dataset, Rankformer is not able to outperform Autoformer. In
fact, the p-value of Engle’s Lagrange Multiplier test of the
ILI dataset is 0.8126 (> 0.05), which means that there are
statistically significant linear serial dependencies inside the ILI
series that can be handled more appropriately by Autoformer.

On the other hand, thanks to the FFT and Wiener-Khinchin
theorem, Rankformer achieves an O(N log N) complexity.
It is not only a huge advantage in the computing speed
compared to the original Transformer’s O(NN?) complexity but
also brings the convenience of nonlinear serial dependencies
measurement to Autoformer without augmenting the time
complexity. This makes Rankformer much more efficient than
the Transformer, especially when the input sequence is long,
and also more appropriate for forecasting time series with
nonlinear serial dependencies.

Rankformer and Autoformer are very similar in terms of
their measurement of correlation. The only difference is that
Rankformer uses a rank-based ACF, i.e., the RACF, while
Autoformer uses a value-based ACF, which means, with an
optimized sorting and ranking operator, the RACF can be
easily integrated into Autoformer and enables it for nonlinear-

time-dependencies-measurement. Nonetheless, a small differ-
ence in the dependencies measurement can leverage a decent
improvement in the forecasting performance, especially for the
datasets with nonlinear serial dependencies.

V. CONCLUSION

In this paper, we propose a novel method, Rankformer,
for forecasting time series, especially those with nonlinear
serial dependencies. Rankformer is based on the Transformer
architecture and uses a rank-based ACF to measure the non-
linear serial dependencies. We show that Rankformer out-
performs Autoformer, a state-of-the-art method with linear
serial dependencies measurement, on three real-world datasets.
We also show that Rankformer is more efficient than the
original Transformer in terms of both computing speed and
memory usage. Furthermore, we show that the RACF used
by Rankformer can be easily integrated into Autoformer to
improve its performance on datasets with nonlinear serial
dependencies. In fact, in most nonlinear serial dependencies
cases, the series shows an ARCH effect, which can be captured
by the RACF. Therefore, we believe that Rankformer can
be a good alternative to Autoformer for forecasting time
series with nonlinear serial dependencies. In the future, we
plan to investigate: 1) the robustness of Rankformer in the
presence of perturbation; 2) the possibility of integrating other
nonlinear serial dependencies measurement methods and the
general ARCH (GARCH) characteristics to further improve
the performance of Rankformer.
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