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[1] Data assimilation aims to smoothly blend incomplete and inaccurate observational
data with dynamical information from a physical model, and has become an increasingly
important tool in understanding and predicting meteorological, oceanographic and climate
processes. As space-borne observations become more plentiful and space-physics models
more sophisticated, dynamical processes in the radiation belts can be analyzed using
advanced data assimilation methods. We use the Extended Kalman filter and observations
from the Combined Release and Radiation Effects Satellite (CRRES) to estimate the
lifetime of relativistic electrons during magnetic storms in the Earth’s outer radiation belt.
The model is a linear parabolic partial differential equation governing the phase-space
density. This equation contains empirical coefficients that are not well-known and that we
wish to estimate, along with the phase-space density itself. The assimilation method is
first verified on model-simulated data, which allows us to reliably estimate the
characteristic lifetime of the electrons. We then apply the methodology to CRRES
measurements and show it to be useful in highlighting systematic differences between
the parameter estimates for storms driven by coronal mass ejections (CMEs) and by
corotating interaction regions (CIRs), respectively. These differences are attributed to the
complex, competing effects of acceleration and loss processes during distinct physical
regimes. The technique described herein may be applied next to constrain more
sophisticated radiation belt and ring current models, as well as in other areas of
magnetospheric physics.

Citation: Kondrashov, D., Y. Shprits, M. Ghil, and R. Thorne (2007), A Kalman filter technique to estimate relativistic electron

lifetimes in the outer radiation belt, J. Geophys. Res., 112, A10227, doi:10.1029/2007JA012583.

1. Introduction

[2] The radiation belts were discovered by Van Allen et al.
[1958], but their structure is still poorly described, since
satellite observations are often restricted to single-point
measurements and thus have only limited spatial coverage.
Therefore to fill the spatiotemporal gaps in their description
and thus lead to a better understanding of the dominant
dynamical processes in the radiation belts, physics-based
models should be combined with data in an optimal way.
With more observational data coming from new and existing
spacecraft, application of advanced data assimilation techni-
ques finally becomes possible, by relying on the extensive
experience with data assimilation in other geosciences
[Bengtsson, 1975].
[3] In the classical terminology of data assimilation

[Bengtsson et al., 1981], the physical variables that charac-

terize the state of the system under observation, and
typically are functions of time and space, are referred to
as state variables, especially in the case of a discrete state
vector with only a few components, or as fields, when the
space dependence is important and the state vector has a
very large number N of components; in numerical weather
prediction, for instance, N = O(106–107). Determining the
distribution of the state variables is usually referred to as
state or field estimation. The evolution in time of the state or
field variables is governed by a dynamical model, usually
formulated as a discretized set of ordinary or partial differ-
ential equations. In a typical data assimilation scheme, the
observational data and dynamically evolving fields are
combined into the estimated fields by giving them weights
that are inversely related to their relative errors or uncer-
tainties. The fundamental properties of the system appear in
the field equations as parameters. These parameters can be
also included in the assimilation process; applying this
approach to the radiation belts is the focus of the present study.
[4] In this work, wewill use the Kalman filtering algorithm

[Kalman, 1960;Kalman and Bucy, 1961] to estimate the state
of the radiation belts, given by the phase-space density (PSD)
of relativistic electrons, and several parameters of a dynamic
model that governs the evolution of the belts in time. The
Kalman filter allows one to follow not only the evolution of
the system’s state and parameters, but it also propagates
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forward in time error estimates of state variables, thus
naturally accounting for the system’s evolving spatiotempo-
ral uncertainties. For example, within a spatial region or
during a time span in which the system is dynamically
active, it is natural to expect the uncertainties of the
estimated state to change fairly rapidly, compared to a
‘‘quiet regime,’’ when and where these uncertainties might
stay fairly constant. In the Kalman filter formulation, this
information is readily provided by the dynamical evolution
of time-dependent error covariance matrices. The use of a
dynamical model is of fundamental importance in the Kalman
filter, and sets it aside from other assimilation schemes and
ad-hoc data analysis techniques.
[5] The Kalman filter and its various generalizations have

been successfully applied in various engineering fields and
the geosciences, including autonomous or assisted navigation
systems, as well as atmospheric, oceanic and coupled ocean-
atmosphere studies [Ghil et al., 1981; Ghil and Malanotte-
Rizzoli, 1991; Ghil, 1997; Sun et al., 2002], reanalysis of
atmospheric data [Todling et al., 1998], and ionospheric
modeling [Richmond and Kamide, 1998; Schunk et al.,
2004]. This class of algorithms goes under the name of
sequential filtering or sequential estimation and they are
more and more widely used in operational weather and
ocean prediction [Brasseur et al., 1999; Kalnay, 2003].
Sequential filtering includes the possibility to constrain
uncertain parameters of the physical model [Ghil, 1997;
Galmiche et al., 2003; Kao et al., 2006]. Parameter estima-
tion is more challenging than mere state estimation due to
additional nonlinearities that arise in the estimation process.
[6] There have been only a few attempts so far to use data

assimilation methods to study the radiation belts. Rigler et
al. [2004] implemented the Kalman filter as part of an
adaptive identification scheme to determine time-dependent
coefficients of an externally forced empirical model. In that
study, the estimated state was solely composed of coupling
coefficients between electron fluxes and solar wind speed.
The model was adaptively adjusted at each time step,
according to the mismatch between its output from external
forcing and current values of model coefficients on the one
hand, and the observed fluxes on the other. In contrast, for this
study we apply the Kalman filter to estimate the dynamical
model’s physical fields; in our approach the estimated state
consists of the state variables but also may include a few
important model parameters, at a very low computational cost.
[7] Friedel et al. [2003] assimilated geosynchronous and

GPS data by directly inserting them into the Salammbo code,
which solves the modified Fokker-Planck equation for the
relativistic electron PSD. Direct insertion consists of replac-
ing the model forecast values by the observations, assuming a
priori that the observations are exact; the latter is, in general, a
very crude approximation of the actual state of affairs.
[8] Naehr and Toffoletto [2005] demonstrated first how

the Kalman filter can be applied for state estimation in a
physics-based radiation belt model driven by radial diffu-
sion; important loss processes, parameterized by the effec-
tive electron lifetimes, however, were not considered in
their work and they used only synthetic observations. In
contrast, our study uses real data from spacecraft observa-
tions in a more realistic radial diffusion model, which also
accounts for the combined effect of local sources and losses.
Moreover, we apply an extended Kalman filter to estimate

model parameters that describe the net effect of source and
loss processes, along with an estimation of the model state
composed of the relativistic-electron PSD.
[9] The observational data are taken from the Combined

Release and Radiation Effects Satellite (CRRES) spacecraft,
for 100 consecutive days, starting on 30 July 1990. This
time interval involves geomagnetic storms with distinctly
different behavior: 25 August, 11 September, and 9 October
in particular. Previous studies of these storms have provided
evidence of the complex nature of competing loss and
source processes that influence the radiation belts [Meredith
et al., 2002; Brautigam and Albert, 2000; Iles et al., 2006].
The three main processes are pitch angle scattering into the
atmosphere, radial diffusion, and energy diffusion, driven
by various wave-particle interactions. In the absence of
realistic time-dependent 3-D physical models to simulate
these processes, various simpler approximations, such as
radial transport models, are currently used instead.
[10] Of particular interest is the estimation of the parameters

of the acceleration and loss processes in such models. These
parameters can be computed directly from a quasi-linear
theory by wave-particle interactions [Lyons et al., 1972;
Abel and Thorne, 1998a, 1998b; Thorne et al., 2005a].
They can be also estimated by analyzing the population of
trapped and lost electrons in observational data [Thorne
et al., 2005b; Selesnick et al., 2003, 2004; Selesnick, 2006],
or by relying on multiple model simulations with various
parameter values, to obtain a better qualitative match with
the observations [Brautigam and Albert, 2000; Shprits et al.,
2005].
[11] Selesnick et al. [2003, 2004] used least squares

regression to estimate decay lifetimes that minimize the
misfit between the observations and model-simulated data
on electron pitch angle distributions. In contrast, we employ
a radial diffusion model, while approximating the diffusion
in pitch angle and energy by an effective lifetime parameter,
which accounts for the net effect of the loss and source
processes. Also, we rely on the Kalman-filter approach that
naturally combines the dynamically evolving uncertainties
in both observations and the model, in order to obtain an
estimate of electron lifetimes; this estimate is optimal within
the sequential-estimation framework that we describe in
Section 3 below. The results from both approaches will be
compared in Section 5.
[12] In the next section, we summarize key properties of

the radiation belts and describe the model used here to study
their variability; the parameters that need to be estimated are
introduced, too. In Section 3, we review the classical, linear
Kalman filter for state estimation and the extended Kalman
filter required by the nonlinear estimation of our model
parameters. The results appear in Section 4, first for
‘‘identical-twin’’ experiments in which the true evolution
of the system is known, and then for actual space-borne
observational data. The conclusions and future work are
discussed in Section 5.

2. Data and Model

2.1. Outer Radiation Belt Variability

[13] The radiation belts consist of electrons and protons
trapped by Earth’s magnetic field [Schulz and Lanzerotti,
1974]. Energetic protons form a single radiation belt, being
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confined to altitudes below 4 RE, where RE = 6400 km is the
nominal Earth radius. Electrons, on the other hand, exhibit a
two-belt structure. The inner electron belt is located typi-
cally between 1.2 and 2.0 RE, while the outer belt extends
from 4 to 8 RE. The quiet time region of lower electron
fluxes, between 2 and 3 RE, is commonly referred to as the
‘‘slot’’ region. The inner belt is very stable and is formed by
slow inward diffusion from the outer radiation zone, subject
to losses due to Coulomb scattering and losses to the
atmosphere due to pitch angle scattering by whistler mode
waves [Lyons and Thorne, 1973; Abel and Thorne, 1998a,
1998b]. Relativistic electron fluxes in the outer radiation
belt are highly variable; this variability is due to the
competing effects of source and loss processes, both of
which are forced by solar wind-driven magnetospheric
dynamics.
[14] The adiabatic motion of energetic charged particles

in the Earth’s radiation belts can be described by guiding
center theory [Roederer, 1970], and consists of three basic
periodic components: gyromotion about the Earth’s mag-
netic field lines, the bounce motion of the gyration center up
and down a given magnetic field line, and the azimuthal
drift of particles around the Earth, perpendicular to the
meridional planes formed by the magnetic polar axis and
the magnetic field lines. There are three adiabatic invariants,
each associated with one of these motions: m, J, and F,
respectively. Since adiabatic invariants are canonical varia-
bles [Landau and Lifshits, 1976], we can describe the
evolution of the particles PSD in terms of these invariants
and the corresponding phases, instead of the more usual
space and momentum coordinates. By averaging over the
gyro, bounce and drift motions, the PSD description can be
reduced to describing the evolution of the adiabatic invar-
iants only.
[15] Each adiabatic invariant can be violated when the

system is subject to fluctuations on timescales comparable
to or shorter than the associated periodic motion [Schulz and
Lanzerotti, 1974]. In the collisionless magnetospheric plasma,
wave-particle interactions provide the dominant mechanism
for violation of the invariants, and thus give rise to changes
in radiation belt structure. Ultra Low-Frequency (ULF)
waves have periods comparable to tens of minutes; the
associated violation of F leads to radial diffusion. When the
PSD of radiation belt particles exhibits a positive gradient
with increasing radial distance, radial diffusion leads to a
net inward flux and associated particle acceleration, provided
that the first two invariants, m and J, are conserved. Since
the power in ULF waves is considerably enhanced during
magnetic storms [Mathie and Mann, 2000], radial diffusion
is considered to be a potentially important mechanism to
account for the acceleration of energetic electrons during
storm conditions [Elkington et al., 2004; Shprits and
Thorne, 2004; Shprits et al., 2006a]. However, during the
storm’s main phase, losses to the magnetopause and con-
sequent outward radial diffusion may deplete the radiation
belts and cause a very fast loss of electrons [Shprits et al.,
2006b].
[16] Extremely Low-Frequency (ELF) and Very Low-

Frequency (VLF) waves cause a violation of the invariance
of m and J, leading to pitch angle scattering to the atmo-
sphere [Thorne and Kennel, 1971; Summers and Thorne,
2003], as well as local energy diffusion [Horne and Thorne,

1998; Summers et al., 1998; Miyoshi et al., 2003; Horne et
al., 2003, 2005]. These processes provide effective losses
and sources of relativistic electrons on timescales comparable
to those of radial diffusion. During storm-time conditions,
the power spectral density of ULF waves [Mann et al.,
2004], as well as that of ELF and VLF waves [Meredith et
al., 2000, 2003], are strongly enhanced, and all three
adiabatic invariants are violated simultaneously.
[17] Figure 1a shows the daily averaged relativistic

(1 MeV) electron fluxes measured by the MEA magnetic
electron spectrometer [Vampola et al., 1992] flown on the
Combined Release and Radiation Effects Satellite (CRRES)
mission, as a function of L*-shell, for 100 days starting on
30 July 1990, i.e., on the day-of-year (DOY) 210. The
variable L* is the distance (in Earth radii) in the equatorial
plane, from the center of the Earth to the magnetic field line
around which the electron moves at time t, assuming that
the instantaneous magnetic field is adjusted adiabatically to
a pure-dipole configuration. In this study, the Tsyganenko
[1989] T89 magnetic field model has been used to derive
electron fluxes at a particular L* value (from now on, we
drop the superscript and refer to this variable simply as L).
The Kp and Dst indices are commonly used as proxies for
geomagnetic activity and are shown in Figures 1b and 1c;
the data are taken from the World Data Center for Geo-
magnetism in Kyoto, Japan, http://swdcdb.kugi.kyoto-
u.ac.jp/aedir/. The T89 model is specified by Kp and is
valid only for relatively modest activity levels. Recent
improved models of magnetic field include parameterization
by Dst and solar wind measurements, though the latter is not
generally available for the CRRES time period.
[18] The black curve in Figure 1a is the estimated position

of the plasmapause, i.e., of the outer boundary of the
plasmasphere; the latter is a region of the inner magneto-
sphere that contains relatively cool (low-energy) and dense
plasma, populated by the outflow of ionospheric plasma
along the magnetic field lines. The plasmapause position
Lpp can be approximately estimated, according to Carpenter
and Anderson [1992], by

Lpp ¼ 5:6� 0:46Kp tð Þ; ð1Þ

where Kp(t) is the maximum of Kp over the 24 h preceding t.
As described in Section 3 below, distinct loss processes
operate inside and outside of the plasmasphere, and so we
account for them separately in the physical model.
[19] Even though relativistic electron fluxes in the outer

belt are highly variable, flux enhancements occur over a
broad range of L-values (3.5 � L � 6.5), suggesting that a
global acceleration mechanism operates over most of this
belt [Baker et al., 1994]. During the period under study
there were two very strong storms, as seen in Figure 1a for
235 � t � 240 DOY (26 August storm), and 282 � t �
290 DOY (9 October storm). These two storms are associ-
ated with coronal-mass ejections (CMEs); typically they last
only for several days but still produce intensifications down
to the slot region [Meredith et al., 2002; Brautigam and
Albert, 2000]. There are also recurrent storms associated
with high-speed solar wind streams that arise in corotating
interaction regions (CIRs). These storms may last for more
than a week and produce flux increases with a 27-day
periodicity; see, for instance, the episode at 255 � t �
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280 DOY, including the September 11 storm [Meredith et
al., 2002; Iles et al., 2006]), and at t� 300 DOY in Figure 1a.
[20] The response of the radiation belt fluxes to solar

wind variability is still poorly understood. Reeves et al.
[2003] showed that approximately half of all geomagnetic
storms either result in a net depletion of the outer radiation
belt or do not substantially change relativistic electron
fluxes as compared to pre-storm conditions, while the
remaining 50% result in a net flux enhancement. Losses
result from the pitch-angle scattering of electrons into the
loss cone, losses to magnetopause and outward radial
diffusion, while acceleration is the result of the inward
radial diffusion and local acceleration.

2.2. Radiation Belt Modeling

[21] Several research groups have developed numerical
codes with various levels of detail to study the governing
acceleration and loss mechanisms in the radiation belts [e.g.,
Bourdarie et al., 1996; Elkington et al., 2004; Selesnick and
Blake, 2000; Brautigam and Albert, 2000; Miyoshi et al.,
2003; Shprits et al., 2005, 2006a]. The time evolution of the
relativistic-electron PSD at a fixed m and J, f = f(L, t; m, J),
may be described by the following equation [Schulz and
Lanzerotti, 1974]:

@f

@t
¼ L2

@

@L
L�2DLL

@f

@L

� �
� f

tL
: ð2Þ

Here the radial diffusion term describes the violation of the
third adiabatic invariant of motion F, and the net effect of
sources and losses due to violations of the m and J invariants
is modeled by a characteristic lifetime tL.

[22] The parameters DLL and tL of Equation (2) depend
on the background plasma density, as well as on the spectral
intensity and spatial distribution of VLF and ULF waves; all
of these conditions are extremely difficult to specify accu-
rately from limited point measurements. In this study we
adopt an empirical relationship for the radial diffusion
coefficient DLL = DLL(Kp, L) [Brautigam and Albert,
2000] throughout the outer radiation belt:

DM
LL Kp;Lð Þ ¼ 10 0:506Kp�9:325ð ÞL10: ð3Þ

This empirical, data-derived parameterization quantitatively
agrees in the interior of the radiation belts with the
independent theoretical estimates of Perry et al. [2005].
[23] The specification for tL is more complicated, due to

several competing wave-particle interaction mechanisms.
Inside the plasmasphere, losses are mostly due to scatter-
ing by hiss waves, magnetospherically reflecting whistlers
and coulomb collisions [Lyons et al., 1972; Abel and
Thorne, 1998a]; these loss effects lead to lifetimes on
the scale of 5–10 days at MeV energies. Outside the
plasmasphere, chorus emissions produce fast pitch angle
scattering with lifetimes on the scale of a day [Horne et al.,
2005; Albert, 2005; Thorne et al., 2005b]. Electromagnetic
ion cyclotron (EMIC) waves could provide even faster but
very localized losses of electrons with energies �0.5 MeV
on the timescale of hours [Thorne and Kennel, 1971;
Summers and Thorne, 2003; Lyons and Thorne, 1972;
Jordanova et al., 2001].
[24] In the present study we use two different lifetime

parameterizations, inside and outside the plasmasphere;

Figure 1. Radiation belt observations. (a) Daily averaged fluxes of electrons with an energy of 1 MeV,
from CRRES satellite observations; values plotted are log10(flux) in units of (sr�keV�s�cm2)�1, with the
black curve being the empirical plasmapause boundary [Carpenter and Anderson, 1992]. (b) Kp index
(nondimensional), (this index is used to define the position Lpp of the plasmapause in panel (a)), and (c)Dst
index. Both indices are archived by the World Center for Geomagnetism (see text for details).
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inside we assume a time-constant tLI, while outside we
take

tLO ¼ z=Kp tð Þ: ð4Þ

The inner boundary for our simulation f(L = 1) = 0 is taken
to represent loss to the neutral atmosphere below. The
variable outer boundary condition on the PSD is obtained
from the CRRES observations at L = 7 [Shprits et al.,
2006a].
[25] Figures 2a–2c show simulated fluxes from the

numerical solution of Equation (2) using a few realistic
values of the parameters z and tLI in Equation (4) and DLL

given by Equation (3). It is quite obvious that not all
features of the observations can be adequately captured by
fixed model parameters, no matter what combination of
parameter values we try. Model results with both z and tLI
equal to 10 days (Figure 2b) globally overestimate fluxes at
all L, indicating that these values are unreasonably long.
Simulations with z = 3 days and tLI = 10 or 20 days
(Figures 2a and 2c) predict better the locations of the peak
fluxes and the inner boundary of the enhanced fluxes, but
fail to reproduce the duration of many storms.
[26] These simulations show that better estimates of

dynamical model parameters are very important for radia-
tion belt modeling. Running the model many times to find a
‘‘best match’’ with observations, by using various parameter
combinations, is not a practical way to achieve such
estimates, since these combinations cannot be exhausted
when the number of state variables or the number of
parameters is large. The results in Figure 2 thus indicate
the need for more accurate, automated techniques of esti-

mating the dynamical model parameters by using an opti-
mized combination of data and models. The Kalman filter
described in the next section is capable of providing such a
combination.

3. State and Parameter Estimation

3.1. State Estimation and the Kalman Filter

[27] The Kalman filter [Jazwinski, 1970; Gelb, 1974]
combines measurements that are irregularly distributed in
space and time with a physics-based model to estimate the
evolution of the system’s state in time; both the model and
observations may include errors. The estimate of the sys-
tem’s trajectory in its phase space minimizes the mean
squared error. We describe here briefly the Kalman filter
algorithm in discrete time, following Ghil et al. [1981] and
Ide et al. [1997].
[28] For a system of evolution equations, including dis-

cretized versions of a partial differential equation like
Equation (2), the numerical algorithm for advancing the
state vector x from time kDt to time (k + 1)Dt is:

x
f
k ¼ Mk�1x

a
k�1: ð5Þ

Here xk = x(k, Dt) represents a state column vector,
composed of all model variables: for our radiation belt
model (2) it is the PSD at numerical grid locations in L. The
matrix M is obtained by discretizing the linear partial
differential operator in Equation (2) and it advances the state
vector x in discrete time intervals Dt.

Figure 2. Simulated fluxes of 1-MeV electrons, plotted as log10(flux) in units of (sr�keV�s�cm2)�1. The
simulation uses different lifetime parameterizations outside (tLO = z/Kp(t)) and inside (tLI) the
plasmasphere: (a) tLI = 20 days, z = 3 days; (b) tLI = 10 days, z = 10 days; and (c) tLI = 10 days, z = 3 days.
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[29] Superscripts ‘‘f’’ and ‘‘a’’ refer to a forecast and
analysis, respectively, with xk

a being the best estimate of the
state vector at the time k, based on the model and the
observations available so far. The evolution of xt, where
superscript ‘‘t’’ refers to ‘‘true,’’ is then assumed to differ
from the model by a random error �:

xtk ¼ Mk�1x
t
k�1 þ �����k : ð6Þ

The ‘‘system’’ or ‘‘model’’ noise � accounts for the net
errors due to inaccurate model physics, such as errors in
forcing, boundary conditions, numerical discretization, and
subgrid-scale processes. Commonly, the column vector � is
assumed to be a Gaussian white-noise sequence, with mean
zero and model-error covariance matrix Q, E�k = 0 and
E�k�l

T = Qkdkl, where E is the expectation operator and dkl is
the Kronecker delta.
[30] The observations yk

o, where superscript ‘‘o’’ refers to
‘‘observed,’’ of the ‘‘true’’ system are also perturbed by
random noise �k

o:

yok ¼ Hkx
t
k þ �ok : ð7Þ

The observation matrix Hk accounts for the fact that usually
the dimension of yk

o is less than the dimension of xk
t , i.e., at

any given time observations are not available for all
numerical grid locations. In addition, Hk represents
transformations that may be needed if other variables than
the state vector are observed, as well as any required
interpolation from observation locations to nearby numer-
ical grid points.
[31] The observational error �o includes both instrumental

and sampling error. The latter is also called representative-
ness error and is often due to the measurements being taken
pointwise but assumed to be spatially averaged over a
numerical grid cell; for our purposes, significant errors
may also arise from inaccuracies associated with the mag-
netic field model. The observational error is also assumed to
be Gaussian, white in time, with mean zero and given
covariance matrix R, E�k

o�l
oT = Rkdkl. Moreover, one com-

monly assumes, unless additional information is available,
that model error and observational error are mutually
uncorrelated, E�k

o�k
T = 0.

[32] For our radiation belt model, the observed variable is
electron flux J, which is related linearly to PSD [Rossi and
Olbert, 1970]:

J E; Lð Þ ¼ f E; Lð Þp2: ð8Þ

Here E and p are kinetic energy and momentum of the
particles for any prescribed value of m; we assimilate J at
L � 5 and observed at numerical grid locations (see
Section 4).
[33] When no observations at all are available at time

kDt, Hk 
 0 and xk
a = xk

f. At so-called update times, when
observations are available, we blend forecast and observa-
tions to produce the analysis:

xak ¼ x
f
k þKk yok �Hkx

f
k

� �
: ð9Þ

The assumptions about the model and observational noise
allow us to follow the time evolution of the forecast-error
and analysis-error covariance matrices,

P
f ;a
k 
 E x

f ;a
k � xtk

� �
x
f ;a
k � xtk

� �T
; ð10Þ

this evolution is given by

P
f
k ¼ MkP

a
k�1M

T
k þQk;

Pa
k ¼ I�KkHkð ÞP f

k :
ð11Þ

[34] The optimal gain matrix Kk in Equation (9) is
computed by minimizing the analysis error variance trPk

a,
i.e., the expected mean square error between analysis and
the true state. This Kalman gain matrix represents the
optimal weights given to the observations in updating the
model state vector:

Kk ¼ P
f
kH

T
k HkP

f
kH

T
k þ Rk

� ��1

: ð12Þ

Equation (11) show that, after an update step, the analysis
errors Pk

a are reduced [Ghil et al., 1981; Ghil, 1997].
Moreover, Equation (12) shows that the variances of the
forecast and the observations are weighted, roughly speak-
ing, in inverse proportion to their respective variances [Ghil
and Malanotte-Rizzoli, 1991]. The Kalman filter minimizes
the expected error over the entire time interval, even though,
due to its sequential nature, the observations are discarded
as soon they are assimilated. When no observations are
available at time k, only the forecast step is performed and

Pa
k ¼ P

f
k : ð13Þ

[35] The Kalman gain is optimal when both the observa-
tional and model noise are Gaussian. If this is not so, which
is quite likely in our case, then the Kalman gain will
be suboptimal. Still, the identical-twin experiments in
Section 4.1 demonstrate that, even in this case, we can
obtain reliable and robust estimates of both the state and
parameters.

3.2. Parameter Estimation and the Extended
Kalman Filter

[36] The Kalman gain Kk is optimal for a linear system,
when both M(x) = Mx and H(x) = Hx, as in right-hand side
of Equations (5)–(7); in this case, under the assumptions
mentioned in Section 3.1, the gain is based on the correct
estimation of forecast error covariances from initial uncer-
tainties, model errors, and model dynamics. If either M(x)
or H(x) or both depend nonlinearly on the state vector x, the
sequential estimation problem becomes nonlinear.
[37] The extended Kalman filter (EKF) formulation in

Equations (11)–(12) uses the linearizations ~M and ~H of
M(x) and H(x), respectively, about the current state x = xk

f
to

propagate the error covariances and compute the Kalman
gain matrix:

~M
� �

ij
¼ @Mi xð Þ

@x j
; ~H
� �

ij
¼ @Hi xð Þ

@x j
; ð14Þ

A10227 KONDRASHOV ET AL.: A KALMAN FILTER TECHNIQUE

6 of 12

A10227

 21562202a, 2007, A
10, D

ow
nloaded from

 https://agupubs.onlinelibrary.w
iley.com

/doi/10.1029/2007JA
012583 by C

ochrane France, W
iley O

nline L
ibrary on [31/05/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



here indices i and j refer to a particular matrix and state
vector entry. The full nonlinear model is still used to advance
the state in Equation (6). The EKF is first-order accurate in
many situations but may diverge in the presence of strong
nonlinearities [Miller et al., 1994; Chin et al., 2006].
[38] A practical way to include estimation of model

parameters into the Kalman filter is by the so-called state
augmentation method [Gelb, 1974; Galmiche et al., 2003;
Kao et al., 2006], in which the parameters are treated as
additional state variables. For simplicity, let us assume that
there is only one model parameter m (not to be confused
with the adiabatic invariant of motion): M = M(m). By
analogy with Equations (5) and (6), we can define equations
for evolving the parameter’s ‘‘forecast’’ and ‘‘true’’ values,
by assuming, in the absence of additional information, a
persistence model:

mf
k ¼ ma

k�1;
mt
k ¼ mt

k�1 þ �mk :
ð15Þ

When additional information is available, Equation (15) can
be generalized to allow for more complex spatial and
temporal dependence; such dependence may include, for
instance, a seasonal cycle [e.g., Kondrashov et al., 2005].
[39] Next, we form an augmented state vector �x, model �M

and error ��:

�x ¼ x

m

� �
; �M ¼ M mð Þ 0

0 1

� �
; �� ¼ �

�m

� �
; ð16Þ

and rewrite our model equations for the augmented system:

�x f
k ¼ �Mk�1�x

a
k�1;

�xtk ¼ �Mk�1x
t
k�1 þ ��k :

ð17Þ

The situation of interest is one in which m itself is not
observed, so:

yok ¼ H 0ð Þ xtk
mt
k

� �
þ �0k ¼ �H�xtk þ �0k : ð18Þ

The Kalman filter equations for the augmented system
become:

�P
f

k ¼ �M
T

k
�P
a

k�1
�Mk þ �Qk ;

�Kk ¼ �P
f

k
�H
T

k
�Hk

�P
f

k
�H
T

k þ Rk

� ��1

:
ð19Þ

The analysis step for the augmented system involves only
observations of the state:

�xak ¼ �x f
k þ �Kk yok �Hx

f
k

� �
; ð20Þ

while the augmented error-covariance matrices involve
cross-terms between the state variables and the parameter.
Dropping from now on the time subscript k, we have

�P
f ;a ¼

P f ;a
xx P f ;a

xm

P f ;a
mx P f ;a

mm

 !
: ð21Þ

Using the definition of �H in Equation (18), we obtain:

�K ¼ P f
xxH

T

P f
mxH

T

� �
HP f

xxH
T þ R

� ��1
: ð22Þ

[40] The augmented model propagates the forecast error
of the parameter into the cross-covariance term Pmx

f . By
substituting Equation (22) into Equation (20), we can
readily see that this error propagation enables the EKF to
extract information about the parameter from the state
observations and to update the unobserved parameter at
the analysis step:

ma ¼ mf þ Pf
mxH

T HPf
xxH

T þ R
� ��1

yo �Hxf
� �

: ð23Þ

This formulation can be easily extended to the case when
several unknown parameters have to be estimated and m
then becomes a vector instead of a scalar [Ghil, 1997].
[41] We apply the Kalman filter to estimate the lifetime

parameters tLI and z in Equations (2) and (4). We did try to
estimate tLO directly as well, but experiments with synthetic
data (similar to those described in Section 4.1), showed that
successful estimation of tLO, along with tLI, requires
observations at a greater resolution in time than available
in the CRRES data.
[42] While the model in Equation (2) is linear in PSD, the

augmented system, including the lifetime parameters, is
nonlinear because of the loss term, in which tL divides
the PSD f(L, t); therefore our sequential estimation problem
becomes nonlinear. An additional nonlinearity arises due to
the time-dependent position of the plasmapause boundary,
as we will see in the next section. We adopt, therefore the
EKF approach, and linearize �M (as in Equation 14) around
the current values of the augmented state vector formed
by the PSD state vector and the two parameter values, tLI
and z.
[43] It is well known [e.g., Richtmyer and Morton, 1967]

that an implicit numerical scheme is best in order to solve
a ‘‘stiff’’ parabolic partial differential equation, like
Equation (2), with diffusion coefficients that vary rapidly
in space and time; see Equation (3). For such problems, to
achieve a given accuracy, it usually takes less computational
time to use an implicit method with larger time steps than
the explicit scheme, which requires much smaller time
steps. For our implicit scheme, linearization with respect
to the PSD is readily available and it follows from the
known coefficients of M. Linearization with respect to the
two lifetime parameters is more complex, because �M
depends implicitly on the location of the plasmapause. We
thus use small perturbations in the parameter values on the
right-hand side of Equation (2) and then apply numerical
differentiation.

4. Results and Discussion

4.1. Identical-Twin Experiments

[44] To test the parameter estimation scheme described in
Section 3.2, we first conduct identical-twin experiments in
which both the ‘‘true’’ solution, from which observations
are drawn, and the forecast are produced by the same model,
but with different lifetime parameter values. We obtain our
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‘‘true’’ electron fluxes from a model run with tLI = 20 and
z = 3 days (see Figure 2a), and form synthetic observations
by taking daily averages. Our goal is to recover the ‘‘true’’
parameter values by assimilating observations into a model
with the ‘‘incorrect’’ parameters: tLI = 10 and z = 10 days
(see Figure 2b). Numerical sensitivity experiments (not
shown) confirm that other combinations of ‘‘true’’ and
‘‘incorrect’’ parameter values did not produce any adverse
effects on the convergence of the parameter estimation
process.
[45] We start the forecast model with incorrect parameter

values and non-zero model error �m. The weights used in
updating the parameters are related to the model errors
assigned to the parameters; see Equations (16)–(23). The
model error in the parameters should be chosen according to
how much variation we are willing to allow the estimated
parameters to have, and also how much information is
needed from the observations. Since a smooth estimation
of the parameters is often required, small error values tend
to be a good choice: here we used 2% of their initial values.
Data was assimilated only at L � 5 to avoid large uncer-
tainties associated with higher L-values.
[46] In the standard formulation of the Kalman filter, the

noise covariances Q and R are assumed to be known
[Jazwinski, 1970; Gelb, 1974]. This rarely happens in
practice and usually some simple approximations are made
[Dee et al., 1985]. For this study, both Q and R are assumed
to be diagonal. Local values of the observation and model
errors are taken to be 10% of the variance of the observed
time series and the model-simulated ones, respectively. This
heuristic approach worked well in the present study. Further
development of adaptive filters, which estimate Q and R
from the data as well [Dee, 1995], is an active area of

research, and we expect to use them in future work on the
radiation belts.
[47] Figures 3a and 3c show both ‘‘true’’ and estimated

lifetimes tLI and tLO for our identical-twin experiment; a
48-h window is used in plotting tLO to avoid artificial spikes
due to the high temporal variability of Kp. The outer-belt
lifetime tLO converges to its ‘‘true’’ value at �235 DOY.
[48] The convergence for z, which ultimately determines

tLO and is shown in Figure 3b, seems to be influenced
strongly by the time-dependent plasmapause position; see
Equation (1). The value of z quickly drops from 10 days to
about 5 in the presence of a strong storm at the beginning of
the simulation, when the plasmapause is located at L � 4
(see Figure 1a). Subsequently, until t � 230 DOY, the
geomagnetic conditions are quieter, the plasmapause
expands above L = 5, and therefore z does not change
much. Its estimated standard deviation (i.e., the square root
of the Pzz

f component of the analysis-error covariance
matrix) gradually increases due to additive model error at
each forecast step, while there are no data to assimilate; see
Equation (11). Finally, when a strong storm arrives at t �
235 DOY, and the plasmapause drops to L � 3, z quickly
collapses to its ‘‘true’’ value, as observations become plen-
tiful and the uncertainty in z decreases; see Equation (23).
The convergence of the lifetime tLI, on the other hand, is
achieved a few days later, when the plasmapause recovers
back to L � 5 and only the tLI value can be changed by the
data (Figure 3a).
[49] Once convergence of the estimated parameters has

occurred, both z and tLI stay locked to their correct values
within the bounds of their estimated standard deviations
(square root of Pmm

a ), which become much smaller too (see
Figure 3b). This result shows the robustness of the EKF

Figure 3. Parameter estimation in an identical twin-experiment: (a) tLI; (b) z and its estimated
uncertainty range [Pzz

a ]1/2 (black dashed line); and (c) tLO = z/Kp (2-day running mean). Lifetimes are
shown as estimated (blue line) and ‘‘true’’ (red line).
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algorithm for estimation of highly variable, time-dependent
parameters, despite strong nonlinearities in the system.
[50] In Figure 4 we show how parameter estimation can

help prevent Kalman filter divergence, at least for identical-
twin experiments. In this case, the ‘‘true’’ solution is known,
and thus we can always compare the estimated error tr(Pa)

with the actual error. The black line in the figure shows the
actual mean square error for electron fluxes computed from
state estimation alone, in the model that uses ‘‘incorrect’’
parameter values. This error stays much larger than the
estimated error (blue line). On the other hand, the actual
error in the fluxes when using the EKF that estimates both
the state and the parameters (red line) converges to its
estimated value, as the model parameters converge to their
‘‘true’’ values (compare with Figure 3).

4.2. CRRES Data Assimilation

[51] Finally, we apply the EKF, including parameter
estimation, to the CRRES satellite data. Here we start on
purpose with unreasonable lifetime parameter values —
tLI = 1 day, and z = 20 days — to show that, even in this
highly nonlinear problem, convergence does not signfi-
cantly depend on the initial values of the parameters.
Figure 5a shows the estimated lifetimes tLI and tLO, the
latter being again averaged over a 48-h window; the
parameter z is shown in Figure 5b, while the assimilated
fluxes are displayed in Figure 5c.
[52] As in the case of the identical-twin experiment of

Figure 3, for the first 20 days it is tLI that changes by slowly
increasing in value as the plasmasphere fills the region
within which observations are being assimilated (Figure 5a).
The value of z changes little during this period, while its
estimated error [Pzz

a ]1/2 gradually increases due to the
addition of model error at each forecast step. The situation
changes with the arrival of a strong storm at t � 235 DOY,
when both z and tLI adjust dramatically to reach their
relatively constant values of z � 3 and tLI � 8 days.
[53] Electron fluxes obtained through data assimilation

are expected to be closer to their actual values than those

Figure 4. Root-mean-square (RMS) errors in the electron
fluxes for the identical-twin experiment of Figure 3. Black
and red lines are for actual errors without and with
parameter estimation, respectively; the blue line is an
estimated error given by [tr(Pk

f )]1/2.

Figure 5. Results for parameter estimation with CRRES observations. (a) Estimated lifetimes: outside
� tLO = z/Kp (2-day running mean, red line), and inside � tLI (black line) the plasmasphere; (b) z (blue
line) and its estimated uncertainty range [Pzz

a ]1/2 (black dashed line); and (c) daily log10(electron fluxes) at
1 MeV, in (sr�keV�s�cm2)�1. In panel (c) the black solid line is the plasmapause and the color scale is the
same as in Figures 1a and 2.
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resulting from either model simulations or observations
alone, since the assimilation process uses both model and
data, and it accounts for errors or uncertainties in both. This
fact explains certain differences between the assimilated
fluxes in Figure 5c and those in either Figure 1a or Figure 2,
even after the initial interval of parameter convergence, i.e.,
at t � 235 DOY.
[54] For the remainder of the assimilation run tLI remains

in a tight range of 7 � tLI � 9 days. The values of z, on the
other hand, undergo intriguing transitions. They increase
slowly to z � 7 days, when a moderate intensity storm starts
around t � 260 DOY, and remain at that level until a strong
storm at t � 285 DOY leads to downward adjustment to z �
3 days. The variations of z within the interval 260 � t �
280 DOY are even more apparent for tLO, which becomes
comparable in value to tLI at t � 270 DOY (see Figure 5a).
[55] The two regimes of behavior in the outer belt, for

240 � t � 260 DOY and 260 � t � 280 DOY, may be
associated with differences in lifetime parameters during
CME- and CIR- driven storms. Another possible explana-
tion for the increased values of both z and tLO during a CIR
storm is the neglect of a local acceleration source in
Equation (2). Such a source may be active during CIR-
driven storms, which are associated with increased convec-
tion of hot electrons with an energy of about 100 KeV
[Lyons et al., 2005]. If such a source is present and has not
been included in the model, it could be effectively captured
in data assimilation by smaller loss estimates.
[56] Still, the local acceleration by whistler chorus waves

is more effective at higher energies and higher pitch angles,
and loss is more effective at lower energies and pitch angles,
while we present results only for near-equatorial particles of
fixed energy. Ultimately, to distinguish between losses and
sources one can use theoretical estimates of the pitch angle
and energy scattering rates [Horne et al., 2005; Shprits et
al., 2006c] to parameterize the local source term and the
lifetime parameter and include both in the estimation
process. Using results for a modified version of Equation (2)
that would include such a source term, with various L-values
and statistical models for plasma density [Sheeley et al.,
2001] and wave intensity [Meredith et al., 2003], one may
also attempt to estimate the radial dependence of the source,
as well as the loss processes.
[57] In general, lifetime estimates based on the EKF do

depend on the assumed radial diffusion coefficients; see
Equation (3). These estimates will be most sensitive to the
values of the radial diffusion coefficients where timescales
for losses and radial transport are comparable, around L =
4.5. However, at higher L-values fast radial transport tends
to make distribution flat (diffusion-dominated region), while
at low L-shells losses take over radial diffusion (loss-
dominated region). In the heart of the radiation belts,
diffusion coefficients derived by Brautigam and Albert
[2000] agree well with the theoretical estimates of Perry
et al. [2005]. Diffusion coefficients can be included in the
parameter estimation procedure, and we plan to investigate
this possibility in the future.

5. Conclusions

[58] Our approach to estimating relativistic electron life-
times is based on recognizing that parameters of the phase-

space density (PSD) model (2), just like the model state
variables, are subject to uncertainties. In addition, using
model parameters tLI and tLO that are constant may not be
optimal when the system exhibits distinct physical regimes,
like CIR- and CME-driven storms in the radiation belts.
[59] Our identical-twin experiments with the extended

Kalman filter (EKF), using synthetic data (Figures 3 and 4),
show that model parameter estimation can be successfully
included in the data assimilation process by using the ‘‘state
augmentation’’ approach; the ‘‘incorrect’’ model parameters
can be driven toward their ‘‘correct’’ values very efficiently
by assimilating model state variables. Doing so reduces the
error in electron fluxes, with respect to the usual approach,
in which the state only is estimated, while the model
parameters are kept constant. The methodology described
and tested here is applicable to more sophisticated radiation
belt and ring current models, as well as in other areas of
magnetospheric physics. This methodology holds even
greater promise for the use of multiple-satellite measure-
ments, where using independent observations at different
L-shells should allow to make parameter estimation more
often, thus providing a finer temporal resolution.
[60] When applying the EKF to actual CRRES data, we

obtained lifetimes inside the plasmasphere on the scale of
5–10 days, which is consistent with previous theoretical
estimates [Lyons et al., 1972; Abel and Thorne, 1998a]. Our
results are also consistent with the independent studies of
observational data by Selesnick et al. [2003, 2004, 2006],
which do not depend on modeling assumptions concerning
radial transport and sources. In general, the intensity of
plasmasphere hiss and associated losses do depend on
activity levels (Kp), while our parameterization for tLI does
not. For low-activity periods, however, the decay rates in
the plasmasphere are exponential and can indeed be fitted
with a constant lifetime parameter �5 days, dependent only
on energy [Meredith et al., 2006].
[61] Since chorus waves outside the plasmasphere pro-

duce both local acceleration and local loss, the lifetime
parameter tLO introduced here should be interpreted as a
combined effect of local sources and losses, due to resonant
wave-particle scattering by various types of waves (e.g.,
chorus, EMIC, and possibly hiss waves in the plumes). Our
simulations indicate that observations are best reproduced
with an effective lifetime parameter tLO of 2–3 days, which
is comparable to the estimates of Thorne et al. [2005b].
Furthermore, our results are consistent with a claim that net
effect of sources and losses is different during CME- and
CIR-dominated storms. Quantifying these differences in
greater detail by using parameter estimation is left for future
research, where we plan to use multiple satellites during
different parts of the solar cycle and concentrate on more
accurate parameterizations of electron lifetimes at various
energies. These parameterizations may be used in particle
tracing codes that account quite accurately for the transport
of the particles, but cannot resolve the violations of the first
and second adiabatic invariants, m and J.
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