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The theory of orthonormal wavelet bases is a useful tool in multifractal analysis, as it provides a characterization of the different exponents of pointwise regularities (Hölder, p-exponent, lacunarity, oscillation, etc.). However, for some homogeneous self-similar processes, such as sums of random pulses (sums of regular, well-localized functions whose expansions and translations are random), it is easier to estimate the spectrum using continuous wavelet transforms. In this article, we present a new characterization of p-exponents by continuous wavelet transforms and we provide an application to the regularity analysis of sums of random pulses.

Introduction

In the mid-1980s, measurements of the speed of a turbulent flow [START_REF] Frisch | On the singularity structure of fully developed turbulence[END_REF][START_REF] Gagne | Etude expérimentale de l'intermittence et des singularités dans le plan complexe en turbulence pleinement développée[END_REF] highlighted signals that seemed irregular everywhere and whose irregularities seemed to vary from one point to another. The notion of pointwise regularity allows to characterize this type of behavior. For a function f ∈ L ∞ loc (R) the pointwise regularity at a point x 0 is most often measured via the Hölder pointwise exponent defined as follows.

Definition 1. Let f ∈ L ∞ loc (R). Let x 0 ∈ R and α ≥ 0. A function f belongs to C α (x 0 ) when there exists a polynomial P f,x0 of degree less than α and C, r > 0 such that ∀x ∈ (x 0 -r, x 0 + r), |f (x) -P f,x0 (x -x 0 )| ≤ C|x -x 0 | α .

The Hölder exponent of f at x 0 is h f (x 0 ) = sup{α : f ∈ C α (x 0 )}.

The Hölder exponent is well defined only when f is locally bounded. Calderón and Zygmund introduced a notion of pointwise regularity for functions that belong to L p loc (R), p ≥ 1, to study the regularity of solutions of certain partial differential equations [START_REF] Calderón | Local properties of solutions of elliptic partial differential equations[END_REF]. Definition 2. Let f ∈ L p loc (R) with p ≥ 1. Let x 0 ∈ R. A function f belongs to T p α (x 0 ) when there exist a polynomial P f,x0 of degree less than α and C, R > 0 such that ∀r ∈ (0, R),

1 r x0+r x0-r |f (x) -P f,x0 (x -x 0 )| p dx 1 p ≤ Cr α .
The p-exponent of f at x 0 is h p f (x 0 ) = sup{α : f ∈ T p α (x 0 )}.

Remark 1. If f ∈ L p (R) then for all x 0 ∈ R, f ∈ T p -1 p (x 0 ). So for all functions f ∈ L p (R), we will be interested only in knowing whether f ∈ T p α (x 0 ) for α ≥ -1/p. The polynomial P f,x0 is unique and note also that, if α ≤ 0, the polynomial is null. The condition for a function to belong to T p α (x 0 ) extends to values p ∈ (0, 1), in this case the spaces L p are replaced by Hardy spaces H p [START_REF] Jaffard | Pointwise regularity associated with function spaces and multifractal analysis[END_REF]. Note that when p = +∞, then h p f (x 0 ) = h f (x 0 ). The wavelet coefficients are known to be convenient tools to compute Hölder exponents and p-exponents [START_REF] Jaffard | Wavelet techniques in multifractal analysis[END_REF]. However, for some homogeneous self-similar processes, estimating some continuous wavelet transforms (with respect to its wavelet coefficients) turns out to be easier.

In this paper, our goal is to determine a characterization of Hölder pointwise exponents and p-exponents by the continuous wavelet transforms (CWT) and to apply it to determine the pointwise regularity of a class of stochastic processes. For C α (x 0 ) spaces, a characterizations of the Hölder exponent was proposed in [START_REF] Jaffard | Pointwise regularity associated with function spaces and multifractal analysis[END_REF][START_REF] Holschneider | Pointwise analysis of Riemann's "nondifferentiable" function[END_REF] while for T p α (x 0 ) spaces and p-exponents comparable results remain to be established. Such characterizations provide new tools to compute the multifractal p-spectrum of certain functions, processes or signals. 

D (p) f (h) = dim H E (p) f (h),
where the set E (p) f (h) is defined as

E (p) f (h) = {x ∈ R : h (p) f (x) = h},
and dim H is the Hausdorff dimension with the convention dim H (∅) = -∞.

In the case p = +∞, since h +∞ f (x 0 ) = h f (x 0 ) we recover the classical definition of the multifractal spectrum. Definition 4. Let f ∈ L ∞ loc (R). The multifractal spectrum D f : [0, +∞] → R + ∪{-∞} of f is the mapping defined for every h ≥ 0 by

D f (h) = dim H E f (h),
where the set E f (h) is defined as E f (h) = {x ∈ R : h f (x) = h}.

A classic example of a multifractal function is the Riemann series defined by

R(x) = +∞ n=1 sin(πn 2 x) n 2 , x ∈ R.
The multifractal spectrum associated with the Hölder exponents was studied by S. Jaffard [START_REF] Jaffard | The spectrum of singularities of Riemann's function[END_REF] and the author already made good use of the continuous wavelet transforms to do so. The spectrum he obtained is the following:

D R (h) =            4h -2 if h ∈ [ 1 2 , 3 4 ] 0 if h = 3 2 -∞ else.
On the other hand, the only known result related to the p-spectrum of the Riemann function concerns its extension

F s (x) = +∞ n=1 e 2iπn 2 x
n s , x ∈ R.

In [START_REF] Seuret | Local l 2 -regularity of Riemann's Fourier series[END_REF], S. 

Fs (h) = 4h + 2 -2s, h ∈ 0, s 2 - 1 4 ,
which leaves open the conjecture that the p-spectrum of these functions is independent of p and shifts by s when we operate a fractional derivation of order 1 opened. Another example of not locally bounded multifractal function is the Brjuno function. Its complex version was introduced in 1971 by A. Brjuno to give a condition for the function to be holomorphic in 0. The Brjuno function is defined for every x ∈ R\Q by

B(x) = +∞ n=0 xA(x) . . . A n-1 (x) log 1 A n (x)
,

where A is the Gaussian map which to an irrational x of (0, 1] associates A(x) = {1/x} the fractional part of 1/x. Moreover, S. Marmi, P. Moussa and J-C. Yoccoz showed in [START_REF] Marmi | The brjuno functions and their regularity properties[END_REF] that, B is not locally bounded and B ∈ L p (R) for all p < +∞ (and is even BMO). The multifractal analysis of this function (using p-exponents) was achieved by S. Jaffard and B. Martin in [START_REF] Jaffard | Multifractal analysis of the Brjuno function[END_REF], and they obtained

D (1) B (h) = 2h if h ∈ [0, 1 2 ] -∞ else.
As in the case of the Riemann function, the p-spectrum of the Bjruno function turns out to be independent of p. Note that a continuous wavelet transform technique was already used in the mentioned paper to obtain a lower-bound for the p-exponents of B.

In the two previous cases, the proofs rely on continuous wavelet transform estimates since orthonormal wavelet bases, based on a dyadic grid, are not suitable for the problem.

Continuous wavelet transforms are used to estimate the pointwise regularity of some processes [START_REF] Saës | Multifractal analysis of sums of random pulses[END_REF], functions [START_REF] Jaffard | The spectrum of singularities of Riemann's function[END_REF][START_REF] Jaffard | Multifractal analysis of the Brjuno function[END_REF] or signals [START_REF] Arneodo | Wavelet-based multifractal analysis[END_REF]. In the case of sums of random pulses introduced and studied in many papers (see [START_REF] Cioczek-Georges | Stable fractal sums of pulses: the cylindrical case[END_REF][START_REF] Cioczek-Georges | A class of micropulses and antipersistent fractional brownian motion[END_REF][START_REF] Cioczek-Georges | Alternative micropulses and fractional brownian motion[END_REF][START_REF] Lovejoy | Fractal properties of rain, and a fractal model[END_REF][START_REF] Mandelbrot | Introduction to fractal sums of pulses[END_REF]) in order to model rain fields and the volume of water over time [START_REF] Lovejoy | Fractal properties of rain, and a fractal model[END_REF]. In these different cases, the properties of almost sure convergence, continuity, stationarity and self-affinity have been studied. During his PhD., Y. Demichel [START_REF] Demichel | Analyse fractale d'une famille de fonctions aléatoires: les fonctions de bosses[END_REF] computed the uniform Hölder exponent of a large family of sums of pulses and was interested in obtaining some information about the structure of the graphs of such functions and in particular, in estimating their Hausdorff dimension. For the study of the pointwise regularity of such processes, a first multifractal analysis has been performed in [START_REF] Saës | Multifractal analysis of sums of random pulses[END_REF][START_REF] Saës | Sommes fractales de pulses : étude dimensionnelle et multifractale des trajectoires et simulations[END_REF], which will be the application case we will consider. This last model is defined as a sum of random dilatations and translations of a function arbitrarily chosen at start. Definition 5. Let (Ω, F, P) a probability space. Let (C n ) n∈N * be a real Poisson point process whose intensity is the Lebesgue measure on R + . Let S be an independent point process of (C n ) n∈N * whose intensity is the Lebesgue measure on R * + × [0, 1]. We write S = (B n , X n ) n∈N * where (B n ) n∈N * is an increasing sequence.

By construction, the three sequences of random variables (C n ) n∈N * , (B n ) n∈N * and (X n ) n∈N * are independent. Let us now recall the definition the sums of random pulses [START_REF] Saës | Multifractal analysis of sums of random pulses[END_REF] that we will later study. Definition 6. Let ψ : R → R a non-zero Lipschitz function with support equal to [-1, 1]. The sum of random pulses F α,η : R → R is the stochastic process defined by

F α,η (x) = +∞ n=1 C -α n ψ B 1 η n (x -X n ) , x ∈ R (1) 
If α > 0 and η ∈ (0, 1), the sample paths of F α,η are locally bounded and we represent on Figure 1 an example of such a trajectory.
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Fig. 1 Sample path of Fα,η with α = 0.5, η = 0.9 and ψ :

t → t(1 -t 2 ) 2 if t ∈ [-1, 1], 0 else (left)
and multifractal spectrum of Fα,η with α = 0.5 and η = 0.9 (right)

Unlike in the case of random series or lacunar wavelets series [START_REF] Aubry | Random wavelet series[END_REF][START_REF] Jaffard | On lacunary wavelet series[END_REF], the dyadic network is not privileged in the case of sums of random pulses and it is then not surprising that continuous wavelet transforms are more suited to estimate the multifractal properties in such cases. We emphasize that the proof of the following result obtained in [START_REF] Saës | Multifractal analysis of sums of random pulses[END_REF] already partially relied on estimates of some continuous wavelet transforms.

Theorem 1. Let ψ : R → R be a non-zero Lipschitz function supported on [-1, 1], α, η ∈ (0, 1) and let F α,η be the random series defined by [START_REF] Frisch | On the singularity structure of fully developed turbulence[END_REF]. With probability 1,

D Fα,η (h) = h α if h ∈ [αη, α] -∞ else.
The multifractal spectrum is plotted in Figure 1. The proof relies on a characterization of the Hölder exponent by continuous wavelet transforms. As it allows to choose wavelets that are "positioned" at any point, this tool is more flexible and convenient to use in the case of sums of random pulses as we can choose a wavelet suited to the location of our pulses. The main difficulty is to obtain a characterization of the p-exponents by continuous wavelet transforms. Section 2 presents a consistent definition of continuous p-leaders in terms of wavelet coefficients and Theorem 4, which together with Theorem 2 is the main result of this paper, yields a characterization of the T p α (x 0 ) spaces based on p-leaders. Section 3 proposes a proof of this theorem.

The only known examples of random processes for which one gets almost surely a p-spectrum are lacunary wavelet series [START_REF] Abry | Multifractal analysis based on p-exponents and lacunarity exponents[END_REF]. We will study the p-spectrum of F α,η processes for α < 0. Those are examples of processes whose sample paths are almost surely non-locally bounded. As such they are an interesting model since many signals cannot be modeled by locally bounded functions [START_REF] Jaffard | p-exponent and p-leaders, Part I: Negative pointwise regularity[END_REF][START_REF] Leonarduzzi | p-exponent and p-leaders, part ii: Multifractal analysis. relations to detrended fluctuation analysis[END_REF] and such situations are in general not well understood yet. The section 4 of the article proposes a proof of the following theorem Theorem 2. Let η ∈ (0, 1), α < 0 such that η -1 < αη and p ∈ (1, -1/(αη) + 1/α).

Let ψ : R → R a continuous lipschitzian function with support on [-1, 1]. Let F α,η : R → R the process defined by [START_REF] Frisch | On the singularity structure of fully developed turbulence[END_REF]. Then almost certainly, we have

D (p) Fα,η (H) = Hηp + η αηp + 1 if H ∈ αη, α + 1 -η ηp .
Finally, we emphasize also that the p-exponents can differ from the Hölder exponents and thus give additional information on the nature of the irregularities at a point, even in the case of processes with locally bounded sample paths. It is then natural to study new characterizations of T p α (x 0 ) spaces by continuous wavelet transforms. This was achieved by V. Perrier and C. Basdevant in their paper [START_REF] Perrier | Besov norms in terms of the continous wavelet transform. application to structure functions[END_REF] in the case of the space L p (using a result of Stein's book [START_REF] Stein | Harmonic Analysis : Real-Variable Methods, Orthogonality, and Oscillatory Integrals[END_REF]). We will start from this characterization to obtain the one of L p spaces as it has been done in the discrete case in the proof of S. Jaffard and C. Melot in [START_REF] Jaffard | Wavelet analysis of fractal boundaries. part 1: Local exponents[END_REF].

2 The continuous p-leaders, characterisation of T p α (x 0 )

Let α ∈ R be fixed and r ≥ ⌊max(1, α)⌋. Let ψ ∈ C r (R) be a non-zero even function which is called wavelet, with support included in [-1, 1], and having r + 1 vanishing moments, i.e.

R ψ(x)dx = R xψ(x)dx = • • • = R x r ψ(x)dx = 0. Definition 7.
The continuous wavelet transform of a function f ∈ L 2 (R) is defined in [START_REF] Antoine | Two-Dimensional Wavelets and Their Relatives[END_REF] (see also [START_REF] Meyer | Principe d'incertitude, bases hilbertiennes et algèbres d'opérateurs[END_REF][START_REF] Daubechies | Ten Lectures on Wavelets[END_REF]) by

W f (a, b) = 1 a R f (x)ψ x -b a dx.
There exists a constant c ψ > 0 such that the reconstruction formula is valid for f ∈ L 2 (R) with

f (x) = 1 c ψ R * + R 1 a 2 W f (a, b)ψ x -b a dbda, x ∈ R d ,
if the wavelet ψ verifies the following admissibility condition

R- | ψ(ξ)| 2 |ξ| dξ = R+ | ψ(ξ)| 2 |ξ| dξ < +∞,
which is the case for ψ under our assumption. Additionally it is possible to take another wavelet ϕ of class C N (R) where N > max(0, α) with this time (at least) the first vanishing moment such that the recomposition of f is

f (x) = R * + R 1 a 2 W f (a, b)ϕ x -b a dbda, x ∈ R, (2) 
(see for example [START_REF] Daubechies | Ten Lectures on Wavelets[END_REF][START_REF] Grossmann | Reading and understanding continuous wavelet transforms[END_REF][START_REF] Jaffard | Wavelet Methods for Pointwise Regularity and Local Oscillations of Functions[END_REF] for possible choices of ϕ). The reconstruction formula (2) holds almost everywhere if f ∈ L p (R) with p > 1. The choice of a reconstruction wavelet that differs from the analyzing wavelet offers an additional flexibility that will prove important in proving Theorem 4. Before stating the characterization of T p α (x 0 ) spaces by continuous wavelet transforms, we recall the definitions of wavelet coefficients and its associated quantities in an orthonormal wavelet basis. Definition 8. Let φ be a non-zero oscillating function, with support in [-1, 1], having a number r φ ≥ 1 of vanishing moments and of class C rφ-1 (R). The function φ is called a mother wavelet when {φ j,k (t) = 2

j 2 φ(2 j t -k)} (j,k)∈N×Z forms an orthonormal basis of L 2 (R). The discrete wavelet coefficients of a function f ∈ L 2 (R) are defined by c j,k = 2 j 2 R f (x)φ j,k (x)dx = 2 j R f (x)φ 2 j x -k dx, (j, k) ∈ N × Z.
For any (j, k) ∈ N × Z, let λ j,k be the dyadic interval defined by λ j,k = [k2 -j , (k + 1)2 -j ]. We will use the notation 3λ j,k for the union of λ j,k and the 2 intervals adjacent to

λ j,k , 3λ j,k = [(k -1)2 -j , (k + 2)2 -j ].
Finally, for all j ∈ N and x 0 ∈ R, let λ j (x 0 ) the unique dyadic interval λ j,k such that x 0 ∈ λ j,k . The wavelet leaders are defined as follows.

Definition 9. Let p ∈ R * + and f ∈ L p loc (R). If p = +∞, then the wavelet leaders of f are ∀(j, k) ∈ N × Z, l f (j, k) = sup λ j ′ ,k ′ ⊆3λ j,k j ′ ≥j {|c j ′ ,k ′ |}. If p < +∞, then the p-leaders of f are ∀(j, k) ∈ N × Z, l (p) f (j, k) =     λ j ′ ,k ′ ⊆3λ j,k j ′ ≥j |c j ′ ,k ′ | p 2 -(j ′ -j)     1 p .
In the case of continuous wavelet transforms, we define a continuous version of the p-leaders as a local L p -norm of coefficients W f (a, b). For this, we rely on a characterization of L p -spaces for p > 1 that V. Perrier and C. Basdevant [START_REF] Perrier | Besov norms in terms of the continous wavelet transform. application to structure functions[END_REF] (Theorem 3.1) have constructed.

Theorem 3. Let f ∈ L p loc (R) with p ∈ (1, +∞). Let α > -1/p. Let ψ be even function with support in [-1, 1] having r ≥ max(α, 1) vanishing moments and ψ ∈ C r (R). There exists C 1 , C 2 > 0, depending only on the wavelet ψ such that if N f = +∞ -∞ +∞ 0 |W f (s, t)| 2 ds s p 2 dt 1 p , then C 2 N f ≤ ∥f ∥ L p ≤ C 1 N f . Definition 10. Let f ∈ L ∞ loc (R). The continuous leaders of f are ∀(a, b) ∈ R * + × R, L f (a, b) = sup (s,t)∈(0,a)×B(b,a) |W f (s, t)|.
where

B(b, a) = (b -a, b + a). Let f ∈ L p loc (R). The continuous p-leaders of f are ∀(a, b) ∈ R * + × R, L (p) f (a, b) = 1 a B(b,a) a 0 |W f (s, t)| 2 ds s p 2 dt 1 p
.

This indicates that the notion of T p α (x 0 ) regularity can be related to p-leaders in the framework of continuous wavelet transforms. However for p = 1, one cannot obtain such a characterization since, for p > 1 their characterization is based on the characterization of L p -spaces, and L 1 cannot be characterized by wavelets (L 1 has no unconditional basis) [START_REF] Meyer | Ondelettes et Opérateurs[END_REF]. The result we will prove is the following.

Theorem 4. Let f ∈ L p loc (R) with p ∈ (1, +∞). Let α > -1/p and x 0 ∈ R. Let ψ be even function with support in [-1, 1] having r ≥ max(α, 1) vanishing moments and ψ ∈ C r (R). 1. For any f ∈ T p α (x 0 ), there exists C f > 0 such that for any a ∈ R * + small enough, |L (p) f (a, x 0 )| ≤ C f a α . (3) 2. Conversely, if α / ∈ N and (3) is verified, then f belongs to T p α (x 0 ).
Moreover, this theorem allows to determine the p-exponent in the following way.

Corollary 2.1. Let f ∈ L p loc (R) with p ∈ (1, +∞). If h p x0 (x 0 ) ≤ 1 then the p-exponent of f in x 0 is h (p) f (x 0 ) = lim inf a→0 + log(|L (p) f (a, x 0 )|) log(a)
.

The section 3 present a proof of theorem 4.

3 Proof of characterization of T p α (x 0 ) spaces

The Definition 10 of p-leaders is a continuous version of the discrete leaders defined using wavelet coefficients. We will check on an example the consistency of this definition with classical results on discrete p-leaders.

Consider the cusp function g α : x → |x| α with α > 0. When α is not an even integer and if we take the wavelet φ supported in [-1, 1], then the wavelet coefficients in (j, k) are given by a change of variable u = 2 j x -k by

c j,k = 2 j R |x| α φ(2 j x -k)dx = 2 -αj 1 -1 |u + k| α φ(u)du = 2 -αj w φ,α (k) where w φ,α (t) = 1 -1 |u + t| α φ(u)du. We deduce the p-leaders of g α by [l (p) gα (j, 0)] p = 2 j λ j ′ ,k ′ ⊆3λj,0 j ′ ≥j 2 -(1+αp)j ′ w φ,α (k ′ ) p = 2 -αpj λ j ′ ,k ′ ⊆3λj,0 j ′ ≥j 2 -(1+αp)(j ′ -j) w φ,α (k ′ ) p = C p α 2 -αjp
where

C α =     λ j ′′ ,k ′ ⊆3λj,0 j ′′ ≥0 2 -(1+αp)j ′′ w φ,α (k ′ ) p     1 p > 0
which is a well defined constant because α ≥ -1/p. As a conclusion, it is known [START_REF] Jaffard | p-exponent and p-leaders, Part I: Negative pointwise regularity[END_REF][START_REF] Jaffard | Exposants de hölder en des points donnés et coefficients d'ondelettes[END_REF] that the discrete p-leader l (p) gα (j, k) have a scaling law behavior 2 -αj in 0, i.e., there exists C α > 0 such that for any j ∈ N, l (p) gα (j, 0) = C α 2 -αj and from the discrete characterization of T p α (x 0 ) [START_REF] Jaffard | p-exponent and p-leaders, Part I: Negative pointwise regularity[END_REF], we have h

(p)
gα (0) = α. In the continuous case of p-leaders, it is therefore expected that their behavior follows the same a α scaling invariance. The continuous wavelet transform of the cusp for (a, b

) ∈ R * + × R is W gα (a, b) = R g α (x)ψ x -b a dx a = R g α (au+b)ψ(u)du = a α 1 -1 u + b a α ψ(u)du. Thus, W gα (a, b) = a α w ψ,α (b/a) où w ψ,α (t) = 1 -1 |u + t| α ψ(u)du.
The continuous pleaders of the cusp g α are computed by changing the variable t = t ′ /ad and s = s ′ /a in the following manner

L (p) gα (a, 0) p = 1 a a -a a 0 |s α w ψ,α (t/s)| 2 ds s p 2 dt = a αp 1 -1 1 0 s ′α w ψ,α t ′ s ′ 2 ds ′ s ′ p 2 dt ′ .
We obtain precisely the power law of the continuous p-leader with L (p) gα (a, 0) = Ka α where

K =   1 -1 1 0 s ′α w ψ,α t ′ s ′ 2 ds ′ s ′ p 2 dt   1 p
.

By integration by part, one easily checks that w is a regular and well-localized function so we deduce the same behavior as the p-leaders in the discrete case.

In a first step, we present a proof of part 1. of Theorem 4 and in a second step the proof of part 2.

Proof of point 1. of Theorem 4

We recall the hypothesis of Theorem 4. Let f ∈ L p loc (R) with p ∈ (1, +∞). Let α > -1/p and x 0 ∈ R. Let ψ be even function with support in [-1, 1] having r ≥ max(α, 1) vanishing moments and ψ ∈ C r (R).

In this section, we prove for any f ∈ T p α (x 0 ), there exists C f > 0 such that for any a ∈ R * + small enough, we have (3) holds. Proof. Since f ∈ T p α (x 0 ), there exist two constants C, R ∈ R * + and a polynomial P f,x0 of degree less than α such that (1) holds. Recall that if α ∈ [-1/p, 0], then the polynomial P f,x0 vanishes. Let r ∈ (0, R) and g be the function defined by

g(x) = [f (x) -P f,x0 (x -x 0 )]1 B(x0,r) (x), x ∈ R.
Thus from (1),

∥g∥ L p = x0+r x0-r |f (x) -P f,x0 (x -x 0 )| p dx 1 p ≤ Cr α+ 1 p . (4) 
According the Theorem 4, there exist C 1 , C 2 > 0 depending only on the wavelet ψ such that,

C 2 N g ≤ ∥g∥ L p ≤ C 1 N g . (5) 
Let r > 0. Since the wavelet

ψ is supported in [-1, 1], x → ψ x-t s is supported in B(t, s) and for all s ∈ 0, r 2 , t ∈ B x 0 , r 2 , W g (s, t) = 1 s B(x0,r)∩B(t,s) (f (x) -P f,x0 (x -x 0 ))ψ x -t s dx. If x ∈ B(t, s) then |x -x 0 | ≤ |x -t| + |t -x 0 | ≤ s + r 2 < r. Hence B(t, s) ⊆ B(x 0 , r) and W g (s, t) = 1 s B(t,s) f (x)ψ x -t s dx - 1 s B(t,s) P f,x0 (x -x 0 )ψ x -t s dx.
The function ψ has r ψ + 1 ≥ α + 1 vanishing moments and the polynomial P f,x0 is of degree less than α, hence

1 s B(t,s) P f,x0 (x -x 0 )ψ x -t s dx = 0.
Therefore,

∀s ∈ 0, r 2 , ∀t ∈ B x 0 , r 2 , W g (s, t) = 1 s R f (x)ψ x -t s dx = W f (s, t).
(6) Applying ( 6) with r = 2a for a small enough, and using (5), we found an upper bound for the L p -leaders (3) by writing

∥g∥ L p ≥ C 2 B(x0,a) a 0 |W g (s, t)| 2 ds s p 2 dt 1 p = C 2 B(x0,a) a 0 |W f (s, t)| 2 ds s p 2 dt 1 p = C 2 L (p) f (a, x 0 )a 1 p .
By applying (4), we deduce that there exists C ′ > 0 such that

L (p) f (a, x 0 ) ≤ 1 C 2 ∥g∥ L 2 a -1 p ≤ C ′ r α+ 1 p a -1 p ≤ C ′ a α .

Proof of point 2. of the Theorem 4

In this section, we proof if α / ∈ N and (3) is verified, then f belongs to T p α (x 0 ). Proof. Suppose that for α / ∈ N, there exists C f > 0 such that for all a ∈ R * + ,

|L (p) f (a, x 0 )| ≤ C f a α .
Let us show that f ∈ T p α (x 0 ). Since ψ is even, the admissibility condition (2) is verified. By the hypothesis (2.4.6) of [START_REF] Daubechies | Ten Lectures on Wavelets[END_REF] or (B.26) of [START_REF] Jaffard | Wavelet Methods for Pointwise Regularity and Local Oscillations of Functions[END_REF], we fix ϕ a wavelet different from ψ of class C N ψ (R) where N ψ > max(α, 0) and compactly supported on [-1, 1] with at least one vanishing moment and thus (2) is valid with this new wavelet.

We separate the cases α > 0 and α ∈ (-1/p, 0].

• For α > 0 : Let r ∈ (0, 1) and x ∈ B(x 0 , r). Let

C(x 0 , r) = {(s, t) ∈ R * + × R : |t -x 0 | < s + 2r} t s B(x 0 , 2r + s) x 0 B(x 0 , 2r) B(x 0 , r) r 1 - - D 1 (x 0 , r) D 2 (x 0 , r) D 3 (x 0 , r) D 4 (x 0 , r) Fig. 2 Cutting into 4 parts For all (s, t) ∈ R * + × R, we define V 1 (s, t) = W f (s, t) if (s, t) ∈ D 1 (x 0 , r) = C(x 0 , r) ∩ ((0, r) × R) 0 else V 2 (s, t) = W f (s, t) if (s, t) ∈ D 2 (x 0 , r) = C(x 0 , r) ∩ ([1, r) × R) 0 else V 3 (s, t) = W f (s, t) if (s, t) ∈ D 3 (x 0 , r) = C(x 0 , r) ∩ ([r, +∞) × R) 0 else V 4 (s, t) = W f (s, t) if (s, t) ∈ D 4 (x 0 , r) = R * + × R \C(x 0 , r) 0 else.
We decompose W f into the four integrals 2). For j = 1, 2, 3, 4, let

W f = V 1 + V 2 + V 3 + V 4 (see Figure
I j (x) = 1 c ϕ +∞ s=0 +∞ t=-∞ V j (s, t)   ϕ x -t s - ⌊α⌋ k=0 ϕ (k) x0-t s k! x -x 0 s k   dtds s 2 .
Thus,

I j (x) = 1 c ϕ Dj (x0,r) W f (s, t)   ϕ x -t s - ⌊α⌋ k=0 ϕ (k) x0-t s k! x -x 0 s k   dtds s 2
We will bound the quantities, ∥I j 1 B(x0,r) ∥ L p for j = 1, 2, 3, 4 in order to show that the Taylor-Lagrange polynomial does exist.

Estimation of I 1 : The proof of ( 5) provides the upper-bound of the norm L p of I 1 only based on the reconstruction formula (2) (indeed, this demonstration does not use that W f is a continuous wavelet transform). We deduce that

∥I 1 1 B(x0,r) ∥ L p ≤ C 1 +∞ 0 +∞ 0 |V 1 (s, t)| 2 ds s p 2 dt 1 p
Since 0 < s < r, one has B(x 0 , 2r + s) ⊆ B(x 0 , 3r) and so

∥I 1 1 B(x0,r) ∥ L p ≤ C 1 B(x0,3r) r 0 |W f (s, t)| 2 ds s p 2 dt 1 p ≤ C 1 (3r) 1 p L (p) f (3r, x 0 ).
From (3), we conclude that there exists C ′ 1 > 0 such that

∥I 1 1 B(x0,r) ∥ L p = C 1 (3r) 1 p (3r) -α ≤ C ′ 1 r α+ 1 p . ( 7 
)
Estimation of I 2 : According to the Taylor-Lagrange theorem applied to ϕ ∈ C ⌊α⌋+1 , there exists C > 0 such that

|I 2 (x)| ≤ C 1 s=r t∈B(x0,2r+s) |W f (s, t)| • x -x 0 s ⌊α⌋+1 dtds s 2 .
There exists a unique J ∈ N * such that 2 -J < r ≤ 2 -(J-1) . Thus,

|I 2 (x)| ≤ C|x -x 0 | ⌊α⌋+1 J j=1 B(x0,2r+2 -(j-1) ) 2 -(j-1) 2 -j |W f (s, t)| s 1 2 ds s ⌊α⌋+ 5 2 dt.
By Cauchy-Schwarz,

|I 2 (x)| ≤ C|x -x 0 | ⌊α⌋+1 J j=1 B(x0,2r+2 -(j-1) ) 2 -(j-1) 2 -j |W f (s, t)| 2 ds s 1 2 × 2 -(j-1) 2 -j ds s 2⌊α⌋+5 1 2 dt, so that |I 2 (x)| ≤ C|x -x 0 | ⌊α⌋+1 J j=1 2 (⌊α⌋+2)j B(x0,6•2 -j ) 6×2 -j 0 |W f (s, t)| 2 ds s 1 2
dt.

According to Hölder's inequality, for q > 0 such that 1/p + 1/q = 1,

|I 2 (x)| ≤ C|x -x 0 | ⌊α⌋+1 J j=1 2 (⌊α⌋+2)j   B(x0,6•2 -j ) 6•2 -j 0 |W f (s, t)| 2 ds s p 2 dt   1 p × B(x0,6•2 -j ) 1 q dt 1 q ≤ C|x -x 0 | ⌊α⌋+1 J j=1 2 (⌊α⌋+2)j • (6 • 2 -j ) 1 p • L (p) f (6 • 2 -j , x 0 ) • (2 • 6 • 2 -j ) 1 q .
From (3), there exists C > 0 such that

|L (p) f (6 • 2 -j , x 0 )| =   1 6 • 2 -j B(x0,6•2 -j ) 6•2 -j 0 |W f (s, t)| 2 ds s p 2 dt   1 p ≤ C(6 • 2 -j ) α .
We deduce that

|I 2 (x)| ≤ C|x -x 0 | ⌊α⌋+1 J j=1 2 (⌊α⌋+2)j C(6 • 2 -j ) α+ 1 p (2 • 6 • 2 -j ) 1 q .
Since 1/p+1/q = 1, there exists C ′ > 0 independent of J and x such that for α ∈ (0, 1)

|I 2 (x)| ≤ C ′ |x -x 0 | ⌊α⌋+1 J j=1 2 (1-α+⌊α⌋)j .
We conclude that there exists

C α > 0 such that |I 2 (x)| ≤ C α |x -x 0 | ⌊α⌋+1 2 (1-α+⌊α⌋)J .
But since x ∈ B(x 0 , r) and r ∈ (2 -J , 2 -(J-1) ], we have

|I 2 (x)| ≤ 2C α 2 -αJ ≤ 2C α r α .
So there is a constant C 2 = 2 1+1/p C α > 0 independent of r such that

∥I 2 1 B(x0,r) ∥ L p = x0+r x0-r |I 2 (x)| p dx 1 p ≤ 2C α r α (2r) 1 p = C 2 r α+ 1 p . (8) 
Estimation of I 3 : Since ϕ ∈ C α (R) and s > 1, there exists C > 0 such that

ϕ x -t s - ⌊α⌋ k=0 ϕ (k) x0-t s k! x -x 0 s k ≤ C x -x 0 s α ≤ C|x -x 0 | α . 14 
We note

C ′ = C c ϕ +∞ s=1 t∈B(x0,3+s) |W f (s, t)| dtds s 2 .
Thus, for all x ∈ B(x 0 , r), we have

|I 3 (x)| ≤ C c ϕ Dj (x0,r) |W f (s, t)||x -x 0 | α dtds s 2 ≤ C c ϕ r α +∞ s=1 t∈B(x0,2r+s) |W f (s, t)| dtds s 2 ≤ C ′ r α
from which, as for I 2 , we deduce directly that there exists C 3 > 0 such that

∥I 3 1 B(x0,r) ∥ L p ≤ C 3 r α+ 1 p . ( 9 
)
Estimation of I 4 : For all s ∈ R * + , one knows that supp(ϕ) ⊆ B(0, 1) and so for (s, t) → ϕ ((x -t)/s), supp(ϕ s,t ) ⊆ B(t, s). Thus, if t ∈ R\B(x 0 , 2r + s), then t / ∈ B(x 0 , s). Moreover, since x ∈ B(x 0 , r), it follows that

2r + s ≤ |t -x 0 | ≤ |t -x| + |x -x 0 | ≤ |t -x| + r and so |t -x| ≥ r + s ≥ s. We conclude that if t ∈ R\B(x 0 , 2r + s), then t / ∈ B(x 0 , s) ∪ B(x, s), and ϕ x0-t s = ϕ x-t s = 0. So I 4 (x) = 0. (10) 
In conclusion, for i = 1, 2, 3, 4, the functions x → I i (x)1 B(x0,r) belong to T p α (x 0 ) and so according to the wavelet reconstruction formula (2), we have

I 1 + I 2 + I 3 = f (x) -P f,x0 (x -x 0 ) with P f,x0 (x -x 0 ) = ⌊α⌋ k=0 +∞ s=0 +∞ t=-∞ W f (s, t) ϕ (k) x0-t s k! dtds s k+2 (x -x 0 ) k
Combining ( 7), ( 8), ( 9) and ( 10), there exists C > 0 such that

1 r B(x0,r) |f (x) -P f,x0 (x -x 0 )| p dx 1 p ≤ 1 r 1 p 4 k=1 ∥I k 1 B(x0,r) ∥ L p ≤ Cr α .
This shows that f ∈ T p α (x 0 ), i.e. item 1. of Theorem 4 for α > 0.

• For α ∈ (-1/p, 0] : Let r ∈ (0, 1) and x ∈ B(x 0 , r). Since α ≤ 0, we can take P f,x0 = 0, hence

f (x) = 1 c ϕ +∞ s=0 +∞ t=-∞ W f (s, t)ϕ x -t s dtds s 2 .
We have f (x) = I ′ 1 (x) + I ′ 2 (x) + I ′ 3 (x) + I ′ 4 (x), with for j = 1, 2, 3, 4,

I ′ j (x) = 1 c ϕ Dj (x0,r) W f (s, t)ϕ x -t s dtds s 2 .
We need to find an upper-bound for the L p -norm of x → |f (x)|1 B(x0,r) (x).

Estimation of I ′ 1 : The estimate leading to (7) remains valid. Estimation of I ′ 2 : Bounding ϕ by ∥ϕ∥ ∞ since it is continuous compactly supported, we obtain

|I ′ 2 (x)| ≤ ∥ϕ∥ ∞ c ϕ 1 s=r t∈B(x0,2r+s) |W f (s, t)| dtds s 2 .
Let J ∈ N such that 2 -J < r ≤ 2 -(J-1) . Thus, there exists C 2 > 0 such that

|I ′ 2 (x)| ≤ C 2 J j=1 B(x0,2r+2 -(j-1) ) 2 -(j-1) 2 -j |W f (s, t)| s 1 2 ds s 3 2 dt.
By Cauchy-Schwarz inequality,

|I ′ 2 (x)| ≤ C 2 J j=1 B(x0,2r+2 -(j-1) ) 2 -(j-1) 2 -j |W f (s, t)| 2 ds s 1 2 2 -(j-1) 2 -j ds s 3 1 2
dt.

The remaining part of the computation is the same as in the case α ∈ (0, 1) but with α ∈ (-1/p, 0), so there exists C 4 > 0 such that

|I ′ 2 (x)| ≤ C 4 J j=1 2 -αj .
Since α < 0, there exists C α > 0 such that |I ′ 2 (x)| ≤ C α 2 -αJ . Therefore there exists a constant C > 0 independent of r such that

∥I ′ 2 1 B(x0,r) ∥ L p = B(x0,r) |I ′ 2 (x)| p dx 1 p ≤ Cr α+ 1 p .
Estimation of I ′ 3 : The reconstruction formula by the continuous wavelet transform restricted to s ≥ 1 gives a function g defined by

g(x) = 1 c ϕ +∞ s=1 t∈R W f (s, t)ϕ x -t s dtds s 2 .
The function g is of class C N where N is the regularity of the wavelet ϕ [START_REF] Daubechies | Ten Lectures on Wavelets[END_REF]. Therefore, since α ∈ (-1/p, 0), 1 ≤ r α and therefore there exists C ′ > 0 such that

C ′ = ∥ϕ∥ ∞ c ϕ +∞ s=1 t∈R |W f (s, t)| dtds s 2 < +∞.
Thus, for all x ∈ B(x 0 , r), we have

|I ′ 3 (x)| ≤ ∥ϕ∥ ∞ c ϕ +∞ s=1 t∈R |W f (s, t)| dtds s 2 ≤ C ′ ≤ C ′ r α .
And it follows that there exists C 3 > 0 such that

∥I ′ 3 1 B(x0,r) ∥ L p ≤ C 3 r α+ 1 p .
Estimation of I ′ 4 : It is identical to the α > 0 case. Combining the 4 previous results, gives C > 0 such that

1 r B(x0,r) |f (x) -P f,x0 (x -x 0 )| p dx 1 p ≤ 1 r 1 p 4 k=1 ∥I ′ k 1 B(x0,r) ∥ L p ≤ Cr α .
We conclude that f ∈ T p α (x 0 ).

p-spectrum of sums of random pulses

Definition 6 yields locally bounded sample paths of sums of random pulses for α > 0 and η ∈ (0, 1/α) [START_REF] Saës | Multifractal analysis of sums of random pulses[END_REF]. However, in this part, it is also relevant to consider the nonlocally bounded case with α < 0. We will start by giving sufficient conditions for convergence of such series in L p . More precisely, we will show in a first step that, when α < 0, η ∈ (0, 1) and η -1 < αη, the sums of random pulses are in a space L p loc (R) for p ∈ [1, -1/(αη) + 1/α). In a second step, we will compute their p-multifractal spectra.

Recalls

We recall the notations [START_REF] Saës | Multifractal analysis of sums of random pulses[END_REF]. Let

A j = {n ∈ N * : 2 j-1 ≤ B 1 η n < 2 j } if j ̸ = 0 A 0 = {n ∈ N * : 0 ≤ B 1 η n < 1}
We also state preliminary lemmas whose proofs can be found in [START_REF] Saës | Multifractal analysis of sums of random pulses[END_REF] (see Lemmas 3.1, 3.2 and 3.3) see also [START_REF] Saës | Sommes fractales de pulses : étude dimensionnelle et multifractale des trajectoires et simulations[END_REF]. Lemma 4.1. Almost surely for j large enough and ε j = log 2 (j)/(ηj).

2 ηj(1+εj ) ≤ Card(A j ) ≤ 2 ηj(1+εj ) . Lemma 4.2. Almost surely, there exists K 1 , K 2 > 0 such that for all j ∈ N * and n ∈ A j ,

K 1 2 ηj(1-εj ) ≤ B n , C n ≤ K 2 2 ηj(1+εj ) .
For all x, r ∈ [0, 1], we note

T n (x, r) = 1 if B(X n , B
1/η n )∩B(x, r) ̸ = ∅ and T n (x, r) = 0 else. For r = 0, we write T n (x) = T n (x, 0). Lemma 4.3. Almost surely, there exists K > 0 such that for all x ∈ [0, 1] and J, j ∈ N with j ̸ = 0,

n∈Aj T n (x, 2 -ηJ ) ≤ Kj 2 max{1, 2 η(j-J) } et n∈Aj T n (x) ≤ Kj 2 .
Let p 0 be a sufficiently large integer such that ρ > 3-3α 1-αη . Let gamma ∈ (0, 1 η -1) and consider for all j ∈ N, the sets

A j = ⌊γj⌋ j ′ =⌊(1-ρηεj )j⌋ A j and I j = {n ∈ A j : ∀m ∈ A j , n ̸ = m, B(X n , B -1 η n ) ∩ B(X m , B -1 η m ) = ∅}.
We define the families of sets G δ and G ′ δ by

G δ = lim sup j→+∞ n∈Aj B(X n , B -δ n ) and G ′ δ = lim sup j→+∞ n∈ Aj B(X n , B -δ(1-εj ) n ) and
We prove the Theorem 2 which yields the multifractal analysis of random sums of pulses in the p-exponent framework.

When p = +∞, this result boils down to the results proved in [START_REF] Saës | Multifractal analysis of sums of random pulses[END_REF]. Let us notice that the sample paths of F α,η have the same p-spectrum as the random lacunar wavelets series studied [START_REF] Leonarduzzi | p-exponent and p-leaders, part ii: Multifractal analysis. relations to detrended fluctuation analysis[END_REF].

Suitable of p values for p-multifractal analysis

First, let us determine the spaces L p loc (R) to which the function f belongs according to the values of α < 0. Proposition 5. Let ψ : R → R a continuous lipschitzian function with support on [-1, 1]. Let η ∈ (0, 1), α < 0 such that η -1 < αη. Almost surely, for all p ∈ (1, -1/(αη)+1/α), the sample paths of the process F α,η : R → R defined by (1) belongs to L p loc ([0, 1]). Note that the condition η -1 < αη guarantees that -1/(αη) + 1/α > 1.

Proof. Let p ∈ [1, -1/(αη) + 1/α), and consider

F α,η (x) = +∞ j=0 F j (x) where F j (x) = n∈Aj C -α n ψ(B 1 η n (x -X n )).
We estimate separately the L p -norm of each F j . Applying the definition of T n and the Lemma 4.3, there exists K > 0 such that for all x ∈ R,

|F j (x)| ≤ K∥ψ∥ ∞ max n∈Aj {C -α n } n∈Aj T n (x) ≤ Kj 2 max n∈Aj {C -α n }1 n∈A j B(Xn,B -1/η n ) (x)
and

∥F j ∥ L p ≤ Kj 2 max n∈Aj {C -α n }∥1 n∈A j B(Xn,B -1/η n ) ∥ L p . But the Lebesgue measure of the support of n∈Aj 1 B(Xn,B -1/η n ) is bounded by Card(A j ) max n∈Aj {B -1/η n }, we deduce that ∥F j ∥ L p ≤ Kj 2 max n∈Aj {C -α n }Card(A j ) 1/p max n∈Aj {B -1 ηp n }.
By Lemmas 4.1 and 4.2,

∥F j ∥ L p ≤ Kj 2 j α 2 -αηj j 1/p 2 η p j j 1/ηp 2 -1 p j ≤ Kj C(α,η,p) 2 (-αη+ η p -1 p )j .
Finally,

j∈N ∥F j ∥ L p ≤ K j∈N j C(α,η,p) 2 (-αη+ η p -1 p )j .
By hypothesis, -αη + η/p + 1/p < 0. We conclude that almost surely the series j∈N |F j (x)| converges in L p for p ∈ [1, -1/(αη) + 1/α). So F j converges too and it converges to F α,η . Thus, F α,η ∈ L p for p ∈ [1, -1/(αη) + 1/α), as stated.

Study of p-exponents

Proposition 6. Let ψ : R → R be a continuous Lipschitz function with support on [-1, 1]. Let η ∈ (0, 1), α < 0 such that η -1 < αη. Consider the process F α,η defined by (1). Almost surely, for all p ∈ [1, -1/(αη) + 1/α), for all δ ∈ (1, 1 η ) and for all

x 0 / ∈ G δ , h (p) 
Fα,η (x 0 ) ≥ α δ + 1 -δη δηp = α + 1/(ηp) δ + 1/p.
Proof. Let x / ∈ G δ . By definition, there exists J x ∈ N depending on x such that for any integer j ≥ J x , for any n

∈ A j , x / ∈ B(X n , B -δ n ). The sum Jx j=1 F j
has a finite number of terms, so its global regularity is that of the wavelet. So, in estimating the regularity of F α,η in x, we can assume that the sum in F α,η is taken to j ≥ J x . We take r > 0 fixed. To estimate ∥F α,η ∥ L p (B(x,r)) , we decompose F α,η into j∈N F j as in ( 11) and we will determine first for which j the supports of the pulses indexed by elements of

A j can intersect B(x, r). Let j ≥ J x , n ∈ A j . Since x / ∈ G δ , |x -X n | ≥ B -δ n ≥ 2 -δηj . If B(x, r) intersects B(X n , B -1/η n ), it implies that r ≥ 1 2 B -δ n ≥ 1 2 2 -ηδj .
Let J ∈ N be the first integer such that 2 -ηJ ≤ (2r) 1/δ .

• If B n ∈ A j for j < J, then B(X n , B -δ n ) ∩ B(x, r) = ∅ and so ∥F j ∥ L p (B(x,r)) = 0. • If B n ∈ A j for j ≥ J, then Lemma 4.3 states that there are at most Kj 2 2 η(j-J) pulses in A j whose support intersects B(x, r). Moreover, at a given point, at most j 2 overlap. A computation similar to the proof of Proposition 5 gives

B(x,r) |F j (x)| p dx ≤ Cj 2p Kj 2 2 η(j-J) max n∈Aj C -α n p max n∈Aj B -1 η n . By Lemma 4.2, B(x,r) |F j (x)| p dx ≤ Cj 2p Kj 2 2 η(j-J) 2 -ηpαj 2 -j 2 -αηpjεj . Since 2 ηjεj = j, ∥F j ∥ L p (B(x,r)) ≤ Cj 2+ 2 p -α 2 (-ηα+ η-1 p )j 2 -η p J .
The series of norms converges since -αη + η-1 p < 0 ⇐⇒ p < 1 α -1 αη and thus

∃c 1 > 0, +∞ j=J ∥F j ∥ L p (B(x,r)) ≤ J c1 2 (-ηα-1 p )J ≤ 2 -(αη+ 1 p )J 2 c1ηJε J . Since 2 -J ≤ Cr 1/(δη) , +∞ j=J ∥F j ∥ L p (B(x,r)) ≤ Cr α δ + 1 pδη w(r)
with w(r) = r ε(r) where lim r→0 ε(r) = 0. Paying attention to the fact that the pexponent is in fact given by

h p Fα,η (x) = lim inf r→0 log 1 r B(x,r) |F α,η (t) -P x (t -x)dt| p 1 p log 1 r
and that for α < 0, we have P x = 0, we obtain by taking into account the factor 1/r before the integral

h p Fα,η (x) ≥ α δ + 1 pδη + 1 p = α + 1 ηp δ + 1 p . Proposition 7. Let ψ : R → R be a continuous Lipschitz function with support on [-1, 1]. Let η ∈ (0, 1), α < 0 such that η -1 < αη.
Let F α,η be defined by [START_REF] Frisch | On the singularity structure of fully developed turbulence[END_REF]. Almost surely, for all p ∈ [1, -1/(αη) + 1/α), for all δ ∈ (1, 1 η ) and for all

x 0 / ∈ G ′ δ , h (p) 
Fα,η (x 0 ) ≤ α δ + 1 -δη δηp = α + 1/(ηp) δ + 1/p.
Proof. We choose the wavelet function ϕ to compute the continuous wavelet transform to belong to C 1 (R), even and supported in [-1, 1] with at least one vanishing moment. We also impose that

1 -1 ϕ(u)ψ(u)du ̸ = 0
and by continuity of the continuous wavelet transform, there exists c ∈ (0, 1) such that for all ε ∈ [-c, c],

1 -1 ϕ u -ε 1 + ε ψ(u)du ̸ = 0. ( 11 
)
The existence of such a ϕ function is straightforward.

The continuous wavelet transform of the sums of random pulses F α,η , is, for any

(s, t) ∈ R * + × R W Fα,η (s, t) = 1 s R F α,η (x)ϕ x -t s dx = n∈N * C -α n d n (s, t),
where

d n (s, t) = 1 s R ψ n (x)ϕ x -t s dx with ψ n (x) = ψ(B 1 η n (x -X n )).
The lemma below, proved in [START_REF] Demichel | Analyse fractale d'une famille de fonctions aléatoires: les fonctions de bosses[END_REF] (Proposition 2.2.1), allows to obtain a upper-bound for the wavelet coefficients of F α,η .

Lemma 4.4. If ϕ has zero integral, then there exists K > 0 such that

∀(s, t) ∈ R * + × R, |d n (s, t)| ≤ K min{sB 1 η n , s -1 B -1 η n }T n (t, s). Let x 0 ∈ G ′ δ .
There exists sequences of integers (n k ) k∈N and (j k ) k∈N such that

n k ∈ I j k and x 0 ∈ n∈Ij k B(X n , B -δ(1-εj k ) n ). Let k ∈ N * with n k ∈ I j k and ε ∈ [-c, c]. We estimate the continuous wavelet transforms W Fα,η (B -1 η n k + εB -1 η n k , X n k + εB -1 η n k ). Let J k = ⌊(1 -ρηε j k )j k ⌋ and J k = ⌊γj k ⌋, where γ ∈ (0, 1/η) has been set. We decompose W F (B -1 η n k + εB -1 η n k , X n k + εB -1 η n k ) in W F (B -1 η n k + εB -1 η n k , X n k + εB -1 η n k ) = S 1 + S 2 + S 3 .
with

S 1 = J k -1 j=0 n∈Aj C -α n d n (B -1 η n k (1 + ε), X n k + εB -1 η n k ), S 2 = J k j=J k n∈Aj C -α n d n (B -1 η n k (1 + ε), X n k + εB -1 η n k ), S 3 = +∞ j= J k +1 n∈Aj C -α n d n (B -1 η n k (1 + ε), X n k + εB -1 η n k ).
The idea is find a lower-bound for W F . To do this, we show that the term S 2 is much larger than the two other terms S 1 and S 3 (which correspond to the high and low frequency terms).

Let us first consider the sum S 2 . By the definition of I j in [START_REF] Saës | Multifractal analysis of sums of random pulses[END_REF], there exists a

unique n k ∈ A j k such that x 0 ∈ B(X n k , B -1 η n k ). Thus n k = n k and S 2 = C -α n k d n k (B -1 η n k (1 + ε), X n k + εB -1 η n ).
We have

d n k (B -1 η n k (1 + ε), X n k + εB -1 η n k ) = B 1 η n k R ψ(B 1 η n k (x -X n k ))ϕ   x -X n k -εB -1 η n k (1 + ε)B -1 η n k   dx = R ψ(u)ϕ   B -1 η n k u -εB -1 η n k (1 + ε)B -1 η n k   du = R ψ(u)ϕ u -ε 1 + ε du.
The condition [START_REF] Saës | Multifractal analysis of sums of random pulses[END_REF] implies that for a constant K 2 > 0 (depending on ψ and ϕ only), we have according to the Lemma 4.2 with α < 0,

|S 2 | ≥ K 2 C -α n k ≥ K 2 2 -αη(1-εj k )j k ≥ 2 α(1-εj k ) K 2 B -α(1-εj k ) n k . So ∃K ′ 2 > 0, |S 2 | ≥ K ′ 2 B -α(1-εj k ) n k . (12) 
Then,by Lemmas 4.2 and 4.4 with α < 0, one has

|S 1 | ≤ J k -1 j=0 n∈Aj C -α n |d n (B -1 η n k (1 + ε), X n k + εB -1 η n k )| ≤ J k -1 j=0 n∈Aj C -α n min{(1 + ε)B -1 η n k B 1 η n , (1 + ε) -1 B 1 η n k B -1 η n } × T n (X n k + εB -1 η n k , (1 + ε)B -1 η n k ).
Since ε ∈ [-c, c] with c ∈ (0, 1),

T n (X n k + εB -1 η n k , (1 + ε)B -1 η n k ) ≤ T n (X n k , 2 -j k +2 ).
Therefore,

|S 1 | ≤ J k -1 j=0 2 -αηj(1+εj ) min{(1 + ε)B -1 η n k 2 j , (1 + ε) -1 B 1 η n k 2 -j+1 } n∈Aj T n (X n k , 2 -j k +2 ).
According to Lemma 4.3 and since j < (1 -ρηε j k )j k ,

∃K 1 , K 2 > 0, |S 1 | ≤ K(1+ε)B -1 η n k J k -1 j=0 j 2-α 2 (1-αη)j ≤ K 1 B -1 η n k j 3-α k 2 (1-αη)(1-ρηεj k )j k . Therefore j k = 2 ηεj k j k and that n k ∈ I j k , 2 j k ≤ 2B 1 η n k , ∃K ′ 1 > 0, |S 1 | ≤ K 1 B -1 η n k B (3-α)εj k n k B ( 1 η -α)(1-ρηεj k ) n k ≤ K ′ 1 B -α-(ρ-3+α-αηρ)εj k n k
.

By our choice of the integer ρ > 3-3α 1-αη , ρ -3 + α -αηρ > -2α. Thus

|S 1 | ≤ K ′ 1 B -α(1+2εj k ) n k . ( 13 
)
Now we bound S 3 in the same way as S 1 with Lemmas 4.2 and 4.4. Thus

|S 3 | ≤ +∞ j= J k +1 n∈Aj C -α n |d n (B -1 η n k (1 + ε), X n k + εB -1 η n k )| ≤ +∞ j= J k +1 n∈Aj C -α n min{(1 + ε)B -1 η n k B 1 η n , (1 + ε) -1 B 1 η n k B -1 η n } × T n (X n k + εB -1 η n k , (1 + ε)B -1 η n k ) ≤ +∞ j= J k +1 2 -αηj(1-εj ) B -1 2η n k min{B -1 η n k 2 j , B 1 η n k 2 -j+1 } n∈Aj T n (X n k , 2 -j k +2 ).
Therefore j > J k = ⌊γj k ⌋, the above minimum is reached at B 1 η n k 2 -j+1 . Then, according to Lemma 4.3, there exists a constant K > 0 such that the sum n∈Aj T n (X n , 2 -j k +2 ) is bounded by Kj 2 when j ≤ (j k -2)/η, and by Kj 2 2 η(j-j k /η) when j > (j k -2)/η. Thus by Lemma 4.2, there exists a constant K 3 > 0 (which can change value at each line but does not depend on k or other parameters) such that

|S 3 | ≤ K 3 1 + ε   ⌊j k /η⌋ j=⌊γj k ⌋ j 2-α 2 -αηj B 1 η n k 2 -j + +∞ j=⌊j k /η⌋+1 j 2-α 2 -αηj B 1 η n k 2 -j 2 η j-(j k -2) η   ≤ K 3 1 + ε B 1 η n k   ⌊j k /η⌋ j=⌊γj k ⌋ j 2-α 2 -(1+αη)j + 2 -j k +2 +∞ j=⌊j k /η⌋+1 j 2-α 2 (η-1-αη)j   .
Since (1 + αη) > η > 0 by hypothesis, the first sum above is bounded by

⌊j k /η⌋ j=⌊γj k ⌋ j 2-α 2 -(1+αη)j ≤ K 3 j 2-α k 2 -(1+αη)γj k
and the second sum by

2 -j k +2 +∞ j=⌊j k /η⌋+1 j 2+α 2 (η-1-αη)j ≤ K 3 2 -j k j 2-α k 2 (η-1-αη) j k -2 η ≤ K 3 j 2-α k 2 -j k η (1+αη) . As B 1 η n k ∼ 2 j k and j k = 2 j k ηεj k ∼ B εj k
n k and γ < 1/η, we obtain that

|S 3 | ≤ K 3 B 1 η n k j 2-α k 2 -(1+αη)γj k + K 3 B 1 η n k j 2-α k 2 -j k η (1+αη) ≤ 2K 3 B (2-α)εj k + 1 η -( 1 η +α)γ n k ≤ 2K 3 B (2-α)εj k -αηγ+γ-1 η n k . We notice that αηγ+γ-1 η -(2 -α)ε j k > α(1 + 2ε j k ). Indeed, γ(αη + 1) -1 η > α + (2 + α)ε j k . Thus, |S 3 | ≤ K 3 B -α(1+2εj k ) n k . (14) 
By comparing ( 12), ( 13) and ( 14), we obtain

|W Fα,η (B -1 η n k (1 + ε), X n k + εB -1 η n k )| ≥ KB -α(1-2εj k ) n k . ( 15 
)
So for all ε ∈ [-c, c], the inequality (15) holds. In particular, there exists K > 0 such that for all (s, t)

∈ [(1 -c)B -1 η n k , (1 + c)B -1 η n k ] × [X n k -cB -1 η n k , X n k + cB -1 η n k ], |W Fα,η (s, t)| ≥ KB -α(1-2εj k ) n k . (16) 
In order to conclude the proof, it remains to estimate

L (p) Fα,η (B -1 η n k , X n k ) =   B 1 η n k Xn k +B -1 η n k Xn k -Bn k   B -1 η n k 0 |W Fα,η (s, t)| 2 ds s   p 2 dt    1 p . Time t Scale s X n k B -1 η n k • X n k -cB -1 η n k X n k + cB -1 η n k (1 + c)B -1 η n k (1 -c)B -1 η n k X n k -B -1 η n k X n k -B -1 η n k On this domain |W Fα,η(s,t) | ≥ KB -α(1-2ε j,k ) n k Domain use to compute L (p) Fα,η (B -1 η n k , X n k ) Domain use to obtain a lower-bound of L (p) Fα,η (B -1 η n k , X n k ) Fig. 3 Decomposition time/scale to lower-bound L (p) Fα,η (B -1 η n k , Xn k )
From ( 16) (which can be visualized using Figure 3), we have

L (p) Fα,η (B -1 η n k , X n k ) ≥   B 1 η n k Xn k +cB -1 η n k Xn k -cBn k   B -1 η n k (1-c)B -1 η n k |W Fα,η (s, t)| 2 ds s   p 2 dt    1 p ≥ KB -α(1-2εj k )+ 1 ηp n k    Xn k +cB -1 η n k Xn k -cBn k   B -1 η n k (1-c)B -1 η n k ds s   p 2 dt    1 p = KB -α(1-2εj k )+ 1 ηp n k   Xn k +cB -1 η n k Xn k -cBn k (-ln(1 -c)) p 2 dt   1 p = Kc ln 1 1 -c 1/2 B -α(1-2εj k ) n k (17) Conclusion : Let ε ∈ R * + . Contradiction, we suppose that F ∈ T p α δ + 1-δη
δηp +ε (x 0 ). According to the characterization supplied by Theorem 4, there exists

K ′ > 0 such that |L (p) Fα,η (B -1 η n k , X n k )| ≤ K ′ B -1 η ( α δ + 1-δη δηp +ε) n k . ( 18 
)
According to the ( 17) and ( 18), 

KB -α(1-2εj k ) n k ≤ |L (p) Fα,η (B -1 η n k , X n k )| ≤ K ′ B -1 η ( α δ + 1-δη δηp +ε) n k . ( 19 

Computation of the multifractal p-spectrum

According to Theorem 4.1 of [START_REF] Saës | Multifractal analysis of sums of random pulses[END_REF] applied to the set G ′ 1 with this time ρ > (3 -3α)/(1 -αη) and α < 0, we have almost surely that G ′ 1 is a covering of [0, 1]. And so to conclude with the proof of the Theorem 2, we just have to apply the propositions to determine inclusions on p-isohölderian sets. According to the Propositions 6 and 7, almost surely, for all x ∈ [0, 1] and δ ∈ 1, 1 η :

• If h We deduce that almost surely, for all H ∈ R, According to the Definition 1 with the choice of the parameters η ∈ (0, 1), α ∈ (-∞, 0) such that η -1 < αη and p ∈ (1, -1/(αη) + 1/α ∈ (1/(αη)) in the Theorem 2, we necessarily have the support of the multifractal spectrum which is a non empty segment containing αη < 0 and α + 1-η ηp > 0. We represent on Figure 4, an example of p-multifractal spectrum.

Conclusion

In conclusion, we presented a characterization of p-exponents by continuous wavelet transforms and then gave an example with the sums of random pulses. On the probabilistic side, a model extensively used and studied is supplied by Lévy processes whose sample paths have locally bounded jumps and whose multifractal analysis has been performed in [START_REF] Jaffard | The multifractal nature of Lévy processes[END_REF]. The multifractal spectrum of fractional integrals of Lévy processes were computed by P. Balança in [START_REF] Balança | Fine regularity of Lévy processes and linear (multi)fractional stable motion[END_REF]. A subsequent natural problem is then to determine a multifractal spectrum of fractional derivatives of Lévy processes. Fractional Lévy derivatives have been considered and studied in several papers [START_REF] Jacob | Lévy-Type Processes and Pseudodifferential Operators[END_REF][START_REF] Schilling | On Feller processes with sample paths in Besov spaces[END_REF][START_REF] Fageot | On the Besov regularity of periodic Lévy noises[END_REF][START_REF] Fageot | Multidimensional Lévy white noise in weighted Besov spaces[END_REF][START_REF] Aziznejad | Wavelet analysis of the Besov regularity of Lévy white noise[END_REF] and [START_REF] Unser | An Introduction to Sparse Stochastic Processes[END_REF]. Since these processes have non-locally bounded sample paths, in order to study their pointwise regularities, it is natural to use continuous wavelets transforms.

The study of continuous wavelet transform was also originally motivated by the study of the p-spectrum of Davenport series, which, given a sequence (a n ) n∈N , is defined for every x ∈ R as D(x) = When a n = 1/n β with β > 2, S. Jaffard established that if s is a real in (0, 1) then the fractional derivative of order s belongs to L p (R) as soon as p < 1/s and that the result is optimal in the sense that there are examples where D is not in L p (R) when p > 1/s. These fractional derivatives are an interesting example of non-locally bounded functions for which the multifractal analysis remains open.

Definition 3 .

 3 Let f ∈ L p loc (R) with p ≥ 1. The multifractal p-spectrum D (p) f : [-1/p, +∞] → [0, 1] ∪ {-∞} of f is the mapping

1 p

 1 then x ∈ G δ . Thus, almost surely for all H ∈ R h (p) Fα,η (x) = H =⇒ x ∈

Fig. 4 2 D

 42 Fig. 4 Multifractal 1-spectrum of the sum of random pulses forα = -0.7, η = 0.5

n∈N a n

  {nx}where {x} = x -⌊x⌋ -1/2 if x / ∈ Z 0 otherwise.

  ≥ αη + ε ≥ αη because 1 -δη ∈ [0, 1 -η].But the last inequality implies that which contradicts[START_REF] Saës | Sommes fractales de pulses : étude dimensionnelle et multifractale des trajectoires et simulations[END_REF] since (ε j ) j∈N * tends to 0. Therefore, F α,η / ∈ T

	But δ ∈ [1, 1/η), so				
	α δ	+ + ε 1 1 -δη δηp η α δ + 1 -δη δηp	+ ε > α,
						(p) α δ + 1-δη δηp +ε (x 0 ) for
	all ε > 0 which proves that				
		h (p) Fα,η (x 0 ) ≤	α δ	+	1 -δηp δηp	.
						)

  Conversely, according to the Propositions 6 and 7, almost surely for any H ∈ R,

			G δ \		G ′ δ .
			αηp+1		αηp+1
		δ<	ηp H+ 1 p	δ>	ηp H+ 1 p
	G ′ α H \		G	
		αηp+1	
	δ>	ηp H+ 1 p	

E Fα,η (H) ⊂ δ ⊆ E Fα,η (H).
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