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[1] Neural network techniques have proved successful for many inversion problems in
remote sensing; however, uncertainty estimates are rarely provided. This study has
three parts. In this article, we present an approach to evaluate uncertainties (i.e., error
bars and the correlation structure of these errors) of the neural network parameters, the
so-called ‘‘synaptic weights’’ on the basis of a Bayesian technique. In contrast to more
traditional approaches based on ‘‘point estimation’’ of the neural network weights (i.e.,
only one set of weights is determined by the learning process), we assess uncertainties on
such estimates to monitor the quality of the neural network model. Uncertainties of the
network parameters are used in the following two papers to estimate uncertainties of the
network output [Aires et al., 2004a] and of the network Jacobians [Aires et al., 2004b].
These new theoretical developments are illustrated by applying them to the problem of
retrieving surface skin temperature, microwave surface emissivities, and integrated water
vapor content from a combined analysis of microwave and infrared observations over
land. INDEX TERMS: 0933 Exploration Geophysics: Remote sensing; 3260 Mathematical Geophysics:

Inverse theory; 3210 Mathematical Geophysics: Modeling; 3399 Meteorology and Atmospheric Dynamics:

General or miscellaneous; KEYWORDS: remote sensing, uncertainty, neural networks

Citation: Aires, F. (2004), Neural network uncertainty assessment using Bayesian statistics with application to remote sensing:

1. Network weights, J. Geophys. Res., 109, D10303, doi:10.1029/2003JD004173.

1. Introduction

[2] Neural network techniques have proved very suc-
cessful in developing computationally efficient algorithms
for geophysical applications, in particular for remote
sensing applications. Since the late 80s, the number of
applications has been steadily increasing. First applica-
tions concerned classification (Key et al. [1989]; see also
the review paper in the work of Paola and Showengerdt
[1995]). Clustering techniques were also developed
[Gualtieri and Whithers, 1988; Wilkinson et al., 1993],
and a recent application for the characterization of veg-
etation using multisource satellite observations can be
found in the work of [Prigent et al., 2001]. We are
interested in this study in the application of the neural
networks (NN) for remote sensing of surface and atmo-
spheric variables where the inverse radiative transfer
function is represented by a NN nonlinear multivariate
regression [Kamgar-Parsi and Gualtieri, 1990; Escobar et
al., 1993]. NN are well adapted to solve nonlinear
problems and are especially designed to capitalize more
completely on the inherent statistical relationships among

the input and retrieved variables (output variables). Fur-
thermore, the NN models the inverse radiative transfer
function in the atmosphere once and for all (i.e., global
inversion), where some classical methods use an inversion
procedure for each observation (i.e., local inversion).
Until recently, neural network techniques did not use first
guess a priori information to regularize the solution, this
was a major handicap of this technique compared to
classical iterative methods. A study showing that it is
possible to introduce in the neural network inversion
scheme such important information was presented in the
work of [Aires et al., 2001].
[3] As an application of the inverse theory, remote

sensing requires the estimation of geophysical variables
from indirect measurements by applying the inverse radia-
tive transfer function to radiative measurements. A rigorous
statistical approach requires not only good estimation of the
inverse model, but also an uncertainty estimate of the model
parameters (i.e., individual uncertainties plus correlation
structure of these uncertainties). This is the common way
of investigating the reliability of an inversion model. Until
now the uncertainty of anNN statistical model has rarely been
provided, probably because of the lack of adequate tools.
[4] In this paper, we present uncertainty estimate tools for

real-world applications. First of all, this approach provides
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uncertainty estimates for the parameters of the neural
network (i.e., the network weights) which are determined
by the learning procedure. A similar approach is but in a
simpler presentation (i.e., monovariate case) used for ex-
ample in the work of Bishop [1996], Neal [1996], or Nabney
[2002]. Any rigorous determination of a parameterized
model should evaluate how robust its parameters are
[Saltelli et al., 2000]. The robustness of the NN parameters
is assessed via the Hessian matrix (second derivative) of the
log likelihood with respect to the NN weights. This Hessian
matrix can also be used for a variety of applications
including ‘‘weight pruning’’ algorithms to improve the
learning regularization, ‘‘automatic relevance detection’’
for selecting the more informative inputs or ‘‘novelty
detection’’ to monitor outliers.
[5] Our approach not only provides uncertainty estimates

for the parameters of the neural network but can also be
used for the determination of a variety of other probabilistic
quantities related to the overall uncertainty of the NN
model. These applications can, first, use theoretical deriva-
tions when they are available. One such analytical applica-
tion provides uncertainty estimates of the network output
(error bars plus their correlation structure). This is the
subject of Aires et al. [2004a].
[6] Second, when a theoretical derivation is too complex

to be obtained, another possible application of weight
uncertainty is based on an empirical estimation by using
modern Bayesian statistics. One such application uses
Monte Carlo (MC) simulations [Gelman et al., 1995] that
take into account the stochastic character related to param-
eter uncertainty. Such MC simulations are called ‘‘margin-
alizations.’’ This will be the subject of Aires et al. [2004b].
The intensive computations required by MC simulation
were the limiting factor for Bayesian analysis of real-world
applications until computers became fast enough to make
possible such approaches.
[7] Our technological developments are illustrated by

application to a neural network inversion algorithm for
remote sensing over land. Such NN methods have
already been used to retrieve columnar water vapor, liquid
water, or wind speed over ocean using Special Sensor
Microwave/Imager observations [Stogryn et al., 1994;
Krasnopolsky et al., 1995, 2000]. Our scheme includes
for the first time the use of a first guess to retrieve the
surface skin temperature Ts, the integrated water vapor
content WV, the cloud liquid water path LWP, and the
microwave land surface emissivities Em between 19 and
85 GHz from SSM/I and infrared observations. A database
is carefully designed to train and test the neural network
with special attention to its statistical representativeness on
a global basis. It is derived from a global collection of
coincident surface and atmospheric parameters from the
combination of National Center for Environmental Predic-
tion (NCEP) reanalysis, the International Satellite Cloud
Climatology Project (ISCCP) data [Rossow and Schiffer,
1991], and the microwave emissivity atlases previously
calculated.
[8] The NN technique is described in section 2. The

theoretical formulation of a posteriori distributions for the
NN weights is developed in section 3. Section 4
describes the remote sensing application as an example
to illustrate some first results of the application of our

weight uncertainty analysis (section 5). Section 6 con-
cludes this study by highlighting potential applications of
this technique.

2. Multilayer Perceptron

2.1. Model

[9] The multilayer perceptron (MLP) network is a non-
linear mapping model composed of parallel processors
called ‘‘neurons.’’ These processors are organized in distinct
layers: The first ‘‘layer’’ x = (xi; i 2 S0) of the mapping.
(The group of input neurons in S0 is not called a layer in the
classical terminology. In this article, vectors will be in
lowercase/bold and matrices will be in capital/bold. Nota-
tions are summarized in the Notation section.) The last layer
SL represents the output mapping y = (yk; k 2 SL). The
intermediate layers Sm (0 < m < L) are called the ‘‘hidden
layers.’’ These layers are connected via neural links [Aires
et al., 2001, Figure 1b]: Any neurons, i and j, in two
consecutive layers are connected with a synaptic weight wij.
[10] Each neuron j executes two simple operations. First,

it makes a weighted sum of all of its inputs zi: This signal is
called the activity of the neuron

aj ¼
X

i2Inputs jð Þ
wij � zi: ð1Þ

Then it transfers this signal to its output through a so-called
‘‘activation function,’’ often a sigmoid function such as s
(a) = tanh (a). The output zj of neuron j in the hidden layer
is then given by

zj ¼ s aj
� �

¼ s
X

i2Inputs jð Þ
wij zi

0
@

1
A: ð2Þ

Generally, for regression problems, the output units have no
activation function (s (a) = a). For example, in a one-
hidden-layer MLP, the kth output xk of the network is
defined as

yk xð Þ ¼
X
j2S1

wjks aj
� �

¼
X
j2S1

wjk s
X
i2S0

wij xi

 !
: ð3Þ

We represent the output vector using

y ¼ gw xð Þ; ð4Þ

where the MLP with weights w is a function gw. Equation (3)
is the only computation required in the operational mode
(once the synaptic weights have been determined by the
learning procedure). A bias term for each neuron has been
deliberately omitted to simplify the notation, although it is
used in the neural network. It has been demonstrated
[Hornik et al., 1989; Cybenko, 1989] that any continuous
function can be represented by a one-hidden-layer MLP
with sigmoid functions s.

2.2. Quality Criterion

[11] In this section, we present a general matrix formu-
lation of the problem and link our derivation to the
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‘‘classical’’ literature on Bayesian error estimation often
introduced with a scalar formulation [MacKay, 1992;
Bishop, 1996]. The first and main term in the quality
criterion used to train a neural network is related to the
theory of statistical inference [Vapnik, 1997]: This ‘‘data’’
term is expressed using the difference between the target
data and the neural network estimates as measured by a
particular distance. Many distance measures can be used
but it is often supposed that the differences follow a
Gaussian Probability Distribution Function (PDF) which
means that the appropriate distance metric is the Mahala-
nobis distance [Crone and Crosby, 1995]: this distance
uses the covariance matrix that characterizes the Gaussian
PDF. The ideal covariance matrix for the Gaussian PDF,
denoted Cin = Ain

�1, is called the ‘‘intrinsic noise’’ (or
natural variability) of the physical variables y to retrieve.
If this matrix is estimated using a database B = {(x(n),
t(n)); n = 1, . . ., N} of N matched input/output couples,
then it represents observation or simulation noise, depend-
ing on how B is generated. If the data set B is based on
colocated measurements (satellite radiance measurements
and geophysical variables), then Cin includes all the
sources of variability between the satellite measurements
and the geophysical radiance variables, e.g., colocation
errors, spatial resolution differences, observational errors,
or nonuniqueness of the satellite measurements for the set
of geophysical variables due to insufficient spectral reso-
lution (i.e., null space errors). If the data set B is based on
geophysical variables and the corresponding satellite
measurements are calculated with a forward radiative
transfer code, then the sources of discrepancies specified
by Cin include transfer model errors but not the colocation
or resolution errors. Note that Cin takes into account only
the intrinsic variability and not the error associated to the
retrieval scheme itself: this makes this measure coherent
physically. The information encoded in Cin is difficult to
obtain a priori, we will see in the work of Aires et al.
[2004a] how to estimate this quantity, but we suppose
here that it is known.
[12] When fixed, Cin can be used as a discrepancy

measure to evaluate differences between desired, t, and
retrieved, y = gw(x), outputs. The ‘‘data’’ quality term
becomes:

ED wð Þ ¼ 1

2

XN
n¼1

E nð Þ
y

h iT
� Ain � e nð Þ

y ; ð5Þ

where Ey
(n) = (t(n) � y(n)) is the output error and the index (n)

indicates the sample number in database B. This
criterion leads to a weighted least squares when the matrix
Cin is just diagonal. When no a priori information is
available, Cin = I and the criterion becomes the classical
least squares:

ED wð Þ ¼ 1

2

XN
n¼1

XSL
k¼1

tk
nð Þ � yk

nð Þ
� 
2

; ð6Þ

where tk is the kth desired output component, yk
(n) is the kth

component of the neural network output vector y(n) =
gw(x

(n)), and SL is the output layer of the neural network.

[13] In order to link the classical NN learning theory with
Bayesian statistics, we introduce here minus the log likeli-
hood which is defined by:

� log P tjx;wð Þð Þ; ð7Þ

where the probability P(tjx, w) is the likelihood of target t
given input variable x and model parameter w. Minimizing
(7) is equivalent to maximizing the likelihood. If the
distribution of P is Gaussian, minus the log likelihood is
equal to the term in equation (5). This means that
minimizing the errors in the discrepancy measure of
equation (5) using the Mahalanobis distance is equivalent
to maximizing the likelihood P(t|x, w) used in Bayesian
statistics.
[14] In order to regularize the learning process, a regu-

larization term is sometimes added to the ‘‘data’’ term in the
quality criterion. The ‘‘weight decay’’ [Hertz et al., 1991] is
probably the most common regularization technique for
NN. It implies that we choose a Gaussian distribution of
weights as a priori information for NN weight uncertainty.
This constrains network weights wi to avoid large absolute
values which are often the consequence of unstable learning
and result on bad generalization properties of the NN. The
weight decay term is expressed by:

Er wð Þ ¼ 1

2
wT � Ar � w; ð8Þ

where Cr = Ar
�1 is the covariance matrix of the Gaussian a

priori distribution for the network weights. This matrix
associates a different variability to each weight wi and
describes a structure of correlation between them. Having
different a priori distributions for the different weights can
be important, especially for MLP networks where the
weights from the input to the hidden layers and the weights
from the hidden to the output layers can be in fundamentally
different ranges. If such knowledge is not available for a
particular structure of network weights, the matrix Ar in
equation (8) is set to the identity matrix and the weight
decay term is simplified to:

Er wð Þ ¼ 1

2

XW
i¼1

wi
2; ð9Þ

where W is the dimension of w. This simple regularization
technique avoids over-fitting of the NN by penalizing large
absolute values of the NN weights.
[15] The overall quality criterion that is minimized during

the learning stage is the sum of the ‘‘data’’ and the
regularization terms:

E wð Þ ¼ ED wð Þ þ Er wð Þ: ð10Þ

[16] The two matrices Ain and Ar are called ‘‘hyper-
parameters.’’ They are generally simplified in the classical
literature by using two scalars instead, respectively b and a,
so that the general quality criterion becomes E(w) = b ED +
aEr where ED and Er are the simplified forms in
equations (6) and (9). In this formulation, b represents the
inverse of the observation noise variance for all outputs and
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a is a weight for the regularization term linked to the a
priori general variance of the weights. This is obviously
poorer and less general than our matrix formulation in (10),
but the ‘‘hyperparameters’’ Ain and Ar are difficult to guess
a priori. A method to estimate this very important informa-
tion will be presented in section 3.
[17] In order to train the NN, we use the conjugate

gradient descent (i.e., a gradient descent with improved
search directions) to minimize E(w). See Bishop [1996] for
a detailed description of this optimization algorithm. The
learning of the NN is done using a database of samples B
but an additional independent data set is used to test the
ability of the NN to generalize its behavior. This will ensure
that the overfitting problem (fitting too well the learning
database but generalizing badly to other samples) is avoided
[Geman et al., 1992].

3. Posterior Distribution of Network Weights

[18] The developments described in the work of Bishop
[1996, section 10.1.4] are adopted here but generalized to
the multiple output case using full covariance matrices,
instead of scalars, to weight the information from the data
and the a priori information in E(w). The following develop-
ments are general and do not depend on the use of the NN
statistical model and could be applied to other statistical
nonlinear models.

3.1. Intrinsic Uncertainty of Targets

[19] The conditional probability P(tjx, w) represents the
variability of target t for input x and network weights w, due
to a variety of sources like the errors in the model linking x
to t in B or the observational noise on x. This variability
includes all sources of uncertainty unless those from the
inversion model, represented by uncertainties on the net-
work weights w, that are fixed in the conditional probability.
[20] If the neural network gw fits the data well (after the

learning stage), the intrinsic variability is evaluated by
comparing the target values, t, matched with each input x
in the data set B to the NN outputs y. Generally, this
distribution can be approximated locally to first order by a
Gaussian distribution with zero mean and a covariance
matrix Cin = Ain

�1. In other words:

P tjx;wð Þ ¼ 1

Z
e�

1
2Ey

T � Ain � Ey ; ð11Þ

where Z is a normalization factor. The likelihood of the
parameters w, given the inverse model structure g of the
trained NN gw is expressed by evaluating this probability
over the database the trained NN gw, is B that includes D =
{t(n); n = 1, . . ., N}, the set of output samples:

P Djx;wð Þ ¼
YN
n¼1

P t nð Þjx nð Þ;w
� 


ð12Þ

¼
YN
n¼1

1

Z
e�

1
2E

nð Þ
y

T
�Ain �E nð Þ

y ð13Þ

¼ 1

ZN
e
�1

2

PN
n¼1

E
nð Þ
y

T
�Ain � E nð Þ

y

ð14Þ

that we simplify by:

P Djx;wð Þ ¼ 1

ZN
e�ED ; ð15Þ

using the definition of ED in (5). The smaller ED is the
likelier the output data sample D is (i.e., the closer all y are
to target t).
[21] The conditioning of the previous probabilities like in

equation (12) is dependent on the input x; but since the
distribution of x is not of interest here, this variable will be
omitted in the following notation for simplicity.

3.2. Theoretical Derivation of Weight PDF

[22] In classical regression techniques, a ‘‘point estimate’’
of the parameters w is searched for (i.e., only one estimate
of the weight vector w is evaluated). In the Bayesian
context, an uncertainty of w described by a PDF P(w) can
also be characterized. This distribution of the weights
conditional on a database is given by Bayes theorem:

P wjDð Þ ¼ P Djwð ÞP wð Þ
P Dð Þ : ð16Þ

P(D) does not depend on the weights and the prior P(w) is a
uniform distribution in this application (since there is no
prior information on w), meaning that no regularization term
Er(w) is used in equation (10). So we can use for P(wjD) the
expression for P(Djx, w) from equation (15), the other terms
in equation (16) being considered as constant normalization
factors.
[23] Laplace’s method is now used: it consists in using a

‘‘local quadratic approximation’’ of the log-posterior distri-
bution. A second-order Taylor expansion of ED(w

?) is
performed, where w8 is the set of the final optimized
network weights (parameters of the neural network regres-
sion) found at the end of the learning process:

ED wð Þ ¼ ED w8ð Þ þ bT � 4wþ 1

2
4wT �H � 4w; ð17Þ

where Dw = w � w?, b is the Jacobian vector given by:

b ¼ rjw ED wð Þð Þ;

and H is the Hessian matrix given by:

H ¼ rjw rjw ED wð Þð Þ
� �

(see section 3.3). The linear term bT � Dw disappears
because we are at the optimum w? which means that the
gradient b is zero. For the ‘‘local quadratic approximation’’
to be valid, w? must be a real optimum (at least locally in the
weight space) otherwise the gradient b cannot be neglected
anymore and the matrix H might not be positive definite
which will make its use difficult for subsequent uncertainty
estimates.
[24] The second-order approximation leads to:

P wjDð Þ ¼ 1

ZN
e�ED w?ð Þ � 1

24wT � H � 4w ð18Þ

/ e�
1
2
4wT �H � 4w: ð19Þ

This means that the a posteriori PDF of the neural network
weights follows a Gaussian distribution with mean w? and
covariance matrix H�1. This probability represents a
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‘‘plausibility’’ (in the Bayesian sense) for the weight w, not
the probability of obtaining the weight w when using the
learning algorithm.
[25] If a regularization term, such as the one described in

equation (8), is used, then this probability becomes:

P wjDð Þ / e�
1
2
4wT � H þ Arð Þ � 4w : ð20Þ

These two terms are used to weight the contribution to the
variability of the weights due to the network model and the
variability of the weights due to the Gaussian distribution of
the a priori information on the weights. What is interesting
about this formula is that to obtain the covariance matrix on
the weights, we invert H + Ar instead of H only, which is
more robust (see section 5.1) since Ar is the inverse of a
positive definite matrix.
[26] It is worth noting here that the posterior distribution

of network weights has some important possible applica-
tions. In the work of [MacKay, 1992], the estimate Hessian
matrix H is used to compare the efficacy of different
network topologies or different cost functions used to train
the network. This is done by evaluating the ‘‘evidence,’’
P(DjA, R), of data, D, given a neural architecture, A, and a
generic regularizer,R. This ‘‘evidence’’ framework allow to
compare totally different models in the light of the data.

3.3. Hessian Matrix for a One-Hidden-Layer Network

[27] The Hessian, H, of the previously defined log
likelihood, is a matrix of dimension W � W (W is the
dimension of w) whose components are defined by:

Hij xð Þ ¼ @2E wð Þ
@wi@wj

����
x

; ð21Þ

where wi and wj are two weights from the set w. The
Hessian is obviously dependent on NN weights w but we
will omit this when refering to H for simplicity of notations.
The Hessian of minus the log likelihood can be used for
many purposes [Bishop, 1996]: (1) in several second-order
optimization algorithms; (2) in adaptative learning algo-
rithms (i.e., learning when a small additional data set is
provided after the main learning of the network is done);
(3) for identifying parameters (i.e., weights) not significant
in the model as indicated by small diagonal terms Hii (this is
used by regularization processes like the ‘‘weight pruning’’
algorithm); (4) for ‘‘automatic relevance determination’’
which is able to select the most informative network inputs
and eliminate the negligible ones; (5) to give a posteriori
distributions of the neural weights as we do here.
[28] There are many ways of estimating the Hessian

matrix, some are generic methods, some are specific to
the multilayer perceptron [Bishop, 1996]. In this work, it is
possible to retrieve a mathematical expression for the
Hessian based on the neural network model. This theoretical
Hessian is less demanding computationally, its scaling is
O(W2) (where W is the number of weights in the neural
network), than the previous approximation by finite differ-
ences which scales like O(W 3).

4. A Remote Sensing Example

[29] A neural network inversion scheme, including first
guess information, has been developed to retrieve surface
temperature (Ts), water vapor column amount (WV) and

microwave surface emissivities at each frequency/polariza-
tion (Em), over snow- and ice-free land from a combined
analysis of satellite microwave (SSM/I) and infrared Inter-
national Satellite Cloud Climatology Project (ISCCP) data
[Aires et al., 2001; Prigent et al., 2003a]. See [Prigent et al.,
2003b] for the snow covered land case. The present study
aims, in part, to provide uncertainty estimates for these
retrievals. Both cloudy and clear-sky versions of this
retrieval scheme have been developed but only the clear-
sky case will be discussed here as an application example.

4.1. Neural Network Model With First Guess

[30] To avoid nonuniqueness and/or instability in an
inverse problem, it is essential to use all a priori information
available: The chosen solution is then constrained so that it
is physically more consistent [Rodgers, 1976]. Introduction
of a priori first guess information into a neural network
model was first proposed by Aires et al. [2001]. With the a
priori information included in the input of the classical MLP
network, the neural transfer function becomes:

y ¼ gw yb; x�
� �

; ð22Þ

where y is the retrieval (i.e., retrieved physical parameters),
gw is the neural network with parameters w, yb is the first
guess for the retrieval of physical parameters, and x the
observations. In this approach, the first guess is considered
to be an independent estimate of the state obtained from
sources other than the indirect measurements (here the
satellite observations). These are sometimes called ‘‘virtual
measurements’’ [Rodgers, 1990].

4.2. Learning Algorithm With First Guess

[31] The error back-propagation algorithm [Rumelhart et
al., 1986] is the learning algorithm that estimates the
optimal network parameters w by minimizing a cost func-
tion E(w), approaching as closely as possible the desired
function (i.e., inverse of the radiative transfer equation). The
data term usually used to derive w is in the form

ED wð Þ ¼ 1

2

Z Z Z
D t; gw t þ Eb; xþ Hð Þð Þ2P xð ÞPh hð ÞPeb Ebð Þ;

ð23Þ

where D is a distance between t the desired output, and y =
gw (t + E, x + H), the network output. We used here a
continuous formulation in contrast to equation (5). D, the
Euclidean or Mahalanobis distance for example, is im-
plicitly here in the space of the physical parameters t (same
dimension as SL). P(t) is the probability distribution
function of the physical variables t that depends on their
natural variability. Ph(H) is the probability distribution
function of the observation noise H (i.e., a Gaussian
distribution with covariance matrix E). PEb

(Eb) is the
probability distribution function of the first guess error
Eb = yb � t. A Gaussian distribution with covariance matrix
B is used here. This is generaly what has been used in
traditional approaches like variational assimilation. How-
ever, if a more complex first guess error model is known a
priori, like a state-dependent first guess error, then this
model can be used during the learning of the neural
network. Since results obtained with simulated and
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observed data are similar, the error specifications that we
use seem to be valid.
[32] To minimize the criterion of equation (23), and more

generally in equation (10), we create a learning database

B ¼ x� nð Þ; t nð Þ; yb
nð Þ

� 

; n ¼ 1; . . . ;N

n o
ð24Þ

that samples as well as possible all the probability
distribution functions in equations (23) or (10) (see next
section). Then, the practical criterion used during the
learning stage is given by:

ED wð Þ ¼ 1

2

XN
n¼1

D t nð Þ; gw yb nð Þ; xo nð Þ
� 
� 
2

: ð25Þ

[33] To sample the probability distribution function, P(t),
we select geophysical states tn that cover all natural combi-
nations and their correlations and by calculating x(n) =
RTM(t(n)) with a Radiative Transfer Model (i.e., physical
inversion). Alternatively, we could obtain these relation-
ships from a ‘‘sufficiently large’’ set of colocated and
coincident values of x and t (i.e., empirical inversion). To
sample the first guess variability with respect to state t (i.e.,
sampling P(ybjt)), we use a first guess data set {yb(n)}; n = 1,
. . ., N}. This data set can be a climatological data set or a
6-hour prediction (which might have better statistics of the
errors, but would add model dependencies). The balance
between reliance on the first guess and the direct measure-
ments is then made automatically and optimally by the
neural network during the learning stage.
[34] Once trained, the neural network gw represents the

inverse of the radiative transfer equation statistically. The
neural network model is then valid for all observations (i.e.,
global inversion), where iterative methods, such as varia-
tional assimilation, have to compute an estimator for each
observation (i.e., local inversion). For more details see
[Aires et al., 2001].

4.3. Neural Network Learning Stage

[35] The extensive learning database used in this study,
together with the characteristics of the a priori first guess
information and related background errors, are presented in
the work of Aires et al. [2001].
[36] The database is produced from global clear-sky data

collected from a whole year of data, sampled every 3 hours,
from July 1992 to June 1993 over land between 60�S and
80�N. Cloudy, snow- and ice-covered pixels are not con-
sidered (see [Aires et al. [2001] and Prigent et al. [2003b]
for these cases). Over the 9,830,211 samples we have used
only N = 20,000 samples, chosen randomly, to construct the
learning database B. We limit the number of samples
because the computation of Hessian matrices are time
consuming. Among the 20,000 samples, 15,000 are used
for the training stage, and 5000 for the generalization test.
The number of neurones in the hidden layer is estimated by
monitoring the generalization errors of the NN for different
choices, the optimal one is kept.
[37] The architecture of the neural network is a MLP with

17 inputs coding the seven SSM/I observations, and the first
guess for Ts, Ta,WV and the 7 emissivities. The hidden layer
is composed of 30 neurons. The output layer uses 9 neurones

to represents the 9 physical variables to retrieve: Ts, Ta, WV
and the 7 emissivities (see Table 1). The seven SSM/I
channels have a Gaussian instrumental noise with 0.6 K
standard deviation. First guess errors are described in the
first column of Table 1. Inputs and outputs are first centered,
and then normalized. The weights of the NN are initialized
prior to training using a uniform distribution between �1
and 1.
[38] The learning algorithm and the network architecture

are able to infer the inverse radiative transfer equation with
the N = 20,000 samples. Among this data set, 3/4 are used for
the learning data set, the other 1/4 is used as a validation data
set to test the generalization properties of the neural network.
All the learning errors decrease extremely fast and stabilize
after few thousand iterations (each iteration involving the
whole learning database B). Training is stoped when the
RMS errors in the training data set and in the generalization
data set stabilize. Over-training is avoided by controling the
generalization curves. This shows how fast and efficient the
conjugate gradient optimization algorithm is. This learning
stage determines the optimal weights w?.
[39] In Figure 1, the first guess and the retrieved quanti-

ties are compared to the target data. For each of the
9 outputs, the neural network is able to concentrate the
scatterplot toward the diagonal which means that the RMS
errors of the retrieved variables are reduced compared to
those of the first guess. This is summarized in Table 1 that
gives the RMS scores for the first guesses and the retrievals.
For each output, the retrieval is a considerable improvement
compared to the first guess.

5. Posterior Distribution of Network Weights

[40] A rigorous model parameterization should always be
followed by a sensitivity analysis [Saltelli et al., 2000]. It
can only be trusted and used when its sensitivity to all the
hypotheses used is known. We propose, in this section, to
perform this sensitivity analysis by estimating the uncer-
tainty of the parameters of the neural network, i.e., the
network weights.

5.1. Neural Network Hessian Regularization

[41] Figure 2 illustrates the Hessian H computed using
the data set B. The grey scaling goes from black to white,
where black and white are, respectively, for minimum and
maximum values in H. The features of this matrix are
related to the neural network structure. The network weights
between the input and hidden layer are more related than
those between the hidden and output layer. Once this matrix
is inverted, H�1 (not shown) becomes the covariance matrix

Table 1. First Guess, Linear, and Neural Network (NN) Retrieval

Root Means Square (RMS) Errors

First Guess Linear Retrieval NN Retrieval

Ts, K 3.52 1.74 1.46
WV, Kg m�2 7.99 4.94 3.83
Em19V 1.50 10�2 0.58 10�2 0.49 10�2

Em19H 1.84 10�2 0.59 10�2 0.49 10�2

Em22V 1.66 10�2 0.62 10�2 0.56 10�2

Em37V 1.43 10�2 0.58 10�2 0.49 10�2

Em37H 1.80 10�2 0.59 10�2 0.50 10�2

Em85V 1.76 10�2 0.77 10�2 0.68 10�2

Em85H 2.14 10�2 0.95 10�2 0.82 10�2
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of the network weights w. The structure of H shown in
Figure 2 means that the uncertainty of the weights between
the hidden and output layer is larger than the uncertainty of
the weights between the input and hidden layer. Of course,
this matrix should always be symmetric.
[42] A few comments about the inversion of H are

required. This matrix can be very large when the neural
network considered is big (W, the size of H and the number
of parameters in the NN can reach a few thousand). This
means that the inversion can be sensitive to numerical
problems. As a consequence, the estimation of H needs to
be done with enough samples from B, otherwise the
subspace spanned by the samples describing H might be
too small, the eigen-values of H too close to zero or even
negative, making the inversion numerically impossible.
[43] We commented already in section 3.2 that the gradi-

ent b in equation (17) is supposed to be zero, otherwise the
local quadratic approximation is not good enough, implying
that the Hessian matrix H is not positive definite. As a
consequence, it is very important that the learning of the
neural network converges close enough toward the optimal
solution w?. Monitoring the convergence algorithm could be
enhanced by checking in parallel the positive definite
character of the corresponding Hessian of the network.
[44] Even when enough samples from B are used to

estimate H and when the learning convergence is reached,
numerical problems can still exist. This situation can be
related to an inconsistency between the complexity of the
NN versus the complexity of the desired function to be
estimated: too many degrees of freedom in the neural
network can produce an ill-conditioned Hessian matrix H.
A possible solution is to introduce a diagonal regularization
matrix: H is replaced by H + lI, where l is a small scalar
and I is the identity matrix. The regularization factor l is
chosen to be small enough not to change the structure in H

but big enough to allow the inversion: a compromise must
be found.
[45] To determine the factor l representing the right

trade-off, we use three regularization criteria together with

Figure 1. Scatterplot of the nine network outputs: first guess (gray) or retrieved (black) against actual
variables.

Figure 2. Hessian matrix of the log likelihood with respect
to network weights: The gray scaling goes from black to
white, where black and white are for the minimum and
maximum value in H, respectively.
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a discrepancy measure between the nonregularized H and
the regularized matrix H + lI. The regularization criteria
are: the condition number with respect to inversion (the
lower the better), the P number which is a positive integer if
the matrix is not positive definite and zero otherwise (the
lower the better), and the number of negative diagonal terms
in the matrix (the lower the better). For the discrepancy
measure between H and H + lI, we use the RMS differ-
ences between the square roots of the positive diagonal
elements of the matrices (the lower the better). This latter
quantity measures the differences that the regularization has
introduced in the standard deviations of the two covariance
matrices.
[46] In Figure 3, the variations of these four quantities for

an increasing l, from 0 to 50, are shown. The good
compromise is found to be l = 12.0: the regularization
criteria are satisfactory (positive definite matrix, all diagonal
terms positive, minimum condition number) while the
discrepancy measure is still small.
[47] The validity of the Gaussian approximation is a

key point in this work [Neal, 1996]. The high number of
samples in our experiment is important and could explain
our good and coherent results [Thodberg, 1996]. The
main condition is that the weights of the NN are close
to the optimal weights W?. This might not be enough
because the problem is so complex and the parameters
interdependent, that the weights after the learning can be
optimum for most of the weights but not for some of them.
In that case, the weights can be in the saddle point of the
error function instead of a perfect global minima. The fact
that we need to regularize the Hessian matrix by adding a
diagonal term in order to obtain a definite positive matrix is

a signal that the approximation is not totally satisfying. We
think that this issue is related to the approximation of the
hyperparameter matrix Ar that could regularize the Hessian
matrix H (they are added together in the technique). We will
investigate these points in a future study on the estimation
of the hyperparameters (through integration, maximum
likelihood, or our simple iterative scheme). This will
provide another solution for the regularization of H,
probably preferable, by using a regularization term in the
quality criterion as already mentioned in this paper in
section 2.2. Other regularization techniques could be used,
some are statistical, other are more physically oriented
[Tikhonov and Arsenin, 1977; Badeva and Morosov, 1991;
Aires et al., 1999, 2002]. This will be the subject of future
work.

5.2. PDF of Network Weights

[48] To complete the analysis of the uncertainties due to
the inversion algorithm, the posterior distribution of the
network weights needs to be determined. As previously
stated, this PDF represents a ‘‘plausibility’’ of weights w,
not a probability of finding the particular weights. We saw
in section 3 that this distribution follows a Gaussian PDF
with mean w? and covariance matrix H�1.
[49] In Figure 4, the optimum weights w? are shown

together with ± two standard deviations. As previously
noted, weights between the hidden and the output layers are
more variable than weights between the input and the
hidden layers. This is due to the fact that the first processing
stage of the NN, at the hidden layer level, is a high-level
processing that includes the nonlinearity of the network.
The second processing stage of the NN, from the hidden

a b

c d

Figure 3. Quality criteria for variable l: (a) the number of negative diagonal terms in the matrix,
(b) RMS differences between the square root of the positive diagonal elements of the matrices, (c) the
condition number with respect to inversion, and (d) the P number which is a positive integer if the matrix
is not positive definite and zero otherwise. See text.
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layer to the output layer, is just a linear postprocessing of
the hidden layer.

5.3. Interpretation of Weight Uncertainty

[50] It is possible to know much more than just the output
estimates of a NN. From the distribution of weights,
samples {wr; r = 1, . . ., R} of NN weights can be chosen.
Each of the R samples wr represent a particular NN.
Together, they represent the uncertainty on the NN
weights. These samples can be used later on to integrate
under the PDF of weights in a Monte Carlo approach. For
neural networks, the number of parameters (i.e., size of w)
is big so it is preferable to use an advanced sampling
technique [Aires et al., 2004b, Appendix A].
[51] Figure 5 presents a few samples from this simula-

tion using the eigen-decomposition-based sampling ap-
proach. Even if these samples are included within the
large variability of the two standard deviations envelope,
correlation constraints avoid random oscillations from
noise by imposing some structure on them. The weights
have a considerable latitude to change, but their correla-
tions constrain them to follow a strong dependency
structure. This is why different weight configurations
can result in the same outputs. The most important for
network processing is the structure of these correlations.
For example, if the difference of two inputs is a good
predictor, as long as two weights linked to the two inputs
perform the difference, the absolute value of the weights
is not essential. Another source of uncertainty for the
weights is the fact that some permutations of neurons have
no impact on the network output. For example, if two
neurons in the hidden layer of the network are permuted,
the network answer would not change. The sigmoid
function used in the network is saturated when the neuron
activity entering is too low or too high. This means that a

change of a weight going to this neuron would have a
negligible consequence.
[52] These are just a few reasons to explain why the

network weights can vary and still provide a good general
fitting model. Variability of the network weights is consid-
ered as a natural variability, inherent to the neural technique.
Furthermore, what is important for the NN user is not
directly the variability of the weights but rather the uncer-
tainty that this variability produce in the network outputs
[Aires et al., 2004a] or in even more complex quantities
such as the network Jacobians [Aires et al., 2004b].

6. Conclusion and Perspectives

[53] This study advances the use of neural networks
beyond the black box conception often associated with
them by proposing a way to provide insight into how the
NN model actually works and how the NN outputs are
estimated. These developments draw the NN technique
closer to better understood classical methods, in particular
linear regressions. With these older techniques, estimation
of uncertainties of the statistical fit parameters is standard
and is completely mandatory before the use of the regres-
sion model. Having at our disposal similar statistical tools
for the NN establishes it on a stronger theoretical and
practical basis so that neural networks can be a natural
alternative to traditional regression methods, with its par-
ticular advantage of nonlinearity. An important application
of the posterior distribution of network weights is that
different neural network models can be compared in the
light of the observations available [MacKay, 1992].
[54] As a consequence, this study also draws the NN

inversion method closer to classical inversion techniques.
Such links were already investigated in the work of Aires et
al. [2001], introducing a priori first guess information into

Figure 4. (top) Mean network weights w? ± 2 standard deviation: the first 100 NN weights
corresponding to input/hidden layer connections, and (bottom) all 821 NN weights with weight 510 to
819 for hidden/output layer connections.
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the neural network. The parameter uncertainty estimate,
together with the applications developed in the work of
Aires et al. [2004a, 2004b], are additional bridges between
neural networks and techniques like variational assimila-
tion. This should benefit a large community of neural
network users in meteorology/climatology. Furthermore,
the tools that we have developed are generic and have been
used, or can be used, for other nonlinear models in the
context of statistical inference. Its generality will allow
future development like a Bayesian estimation of the
hyperparameters.
[55] Many applications can be derived from this study. A

few suggestions for future developments were mentioned in
the section 3.3. We also saw that the regularization of the
Hessian matrix is essential if one wants to use it. A
regularization solution is given in this paper but for some
purposes a few other techniques can also be used and we
will comment on some of them in the next two companion
papers.
[56] These results about the characterization of the NN

weight uncertainties are very important and will be used in
the work of Aires et al. [2004a, 2004b]. The uncertainty of
the weights can be large but, as we saw, the complex
structure of correlation constrains this variability so that
the NN outputs are a good statistical fit to the desired
function. In the Bayesian approach, the prediction (estima-
tion of the NN output) does not use just a specific estimation
of the weights w? but rather integrates the outputs over the
distribution of weights P(w), the ‘‘plausibility’’ distribution.
This approach is different in the sense that the prediction is
given in terms of the PDF instead of the mode value [see
Aires et al., 2004a]. Interestingly, even if the PDF of the NN
weights is Gaussian, the PDF of outputs can be non-
Gaussian since the NN is nonlinear. The second application
of the weight PDF will be the estimation of neural network
Jacobians uncertainty. This will be useful when the NN is

used for diagnostic purposes: a regularization technique will
be proposed to extract realistic Jacobians.

Notation

y vector of physical variables to retrieve, outputs of
the NN.

t target vector of physical variables in data set B.
a weight for the regularization term linked to the a

priori general variance of the weights.
b inverse of the observation noise variance for all

outputs.
yb first guess a priori information for x, inputs of the

NN.
Ev generic error symbol for variable v.
x observations vector, inputs of the NN.

x(y) = RTM(y), radiative transfer function for the
physical variable x (also a vector).

x� SSM/I brightness temperature observations.
H SSM/I instrumental noise.
Pv generic probability measure for variable v.
B = hEbT � Ebi, covariance matrix of the first guess

errors.
E = hHT � Hi, covariance matrix of the measurement

errors.
C0 (= A0

�1), covariance matrix of total error on
retrieved physical variables y.

Cin (= Ain
�1), covariance matrix of intrinsic noise on

physical variables y, equivalent to 1/b in traditional
Bayesian formulation.

Cr (= Ar
�1), covariance matrix for weight regulariza-

tion, equivalent to 1/a in traditional Bayesian
formulation.

A generic inverse matrix of associated covariance
matrix.

I identity matrix.

Figure 5. (top) Mean network weights w? plus five simulation samples from the weights a posteriori
distribution: NN weights corresponding to input/hidden layer connections, and (bottom) weights
corresponding to hidden/output layer connections.
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b = rjw (ED(w)).
H = rjw (rjw (ED(w))), the Hessian matrix of the log

likelihood.
�T transposition operator.

d(�) Kronecker operator.
D generic distance.
A generic neural architecture.
R generic regularizer.
ai activity of neuron i.
s sigmoid function of the neural network.
zi output of the neuron i.
Si number of neurons in network layer i.
L number of layers in the network network.
gw neural network model, or transfer function for our

application.
w {wi; i = 1, . . ., W}, the vector of the network

weights.
W dimension of w.
R number of samples in {wr; r = 1, . . ., R}, the

sample of network weights.
B learning database, that includes outputs D.
D target or network output database.
N number of samples in D and B.

E(w) quality criterion for classical neural network
learning phase.

ED(w) data term of the quality criterion.
Er(w) regularization term in the quality criterion.

l regularization factor for the inversion of H.
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atmosphériques à l’aide de sondeurs verticaux satellitaires, C. R. Acad.
Sci. Paris, 317(2), 911–918.

Gelman, A. B., J. S. Carlin, H. S. Stern, and D. B. Rubin (1995), Bayesian
Data Analysis, Chapman and Hall, New York.

Geman, S., E. Bienenstock, and R. Doursat (1992), Neural networks and
the bias-variance dilemma, Neural Comput., 1(4), 1–58.

Gualtieri, J. A., and J. Whithers (1988), Goddard researchers simulate
neural networks using parallel processing, NASA Inf. Syst. Newslett.,
15, 12–15.

Hertz, J., A. Krogh, and R. C. Palmer (1991), Introduction to the Theory of
Neural Computation, Santa Fe Institute Studies in the Sciences of Com-
plexity: Lecture Notes, vol. 1, Addison-Wesley-Longman, Reading,
Mass.

Hornik, K., M. Stinchcombe, and H. White (1989), Multilayer feedforward
networks are universal approximators, Neural Networks, 2, 359–366.

Kamgar-Parsi, B., and J. A. Gualtieri (1990), Solving inversion problems
with neural networks in Proceedings of the International Joint Confer-
ence on Neural Networks, vol. III, pp. 955–960, Int. Neural Net Soc.,
Inst. of Electr. and Electron. Eng., New York.

Key, J., A. Maslanic, and A. J. Schweiger (1989), Classification of merged
AVHRR and SMMR arctic data with neural network, Photogramm. Eng.
Remote Sens., 55(9), 1331–1338.

Krasnopolsky, V. M., L. C. Breaker, and G. H. Gemmill (1995), A neural
network as a nonlinear transfer function model for retrieving surface wind
speeds from the special sensor microwave imager, J. Geophys. Res., 100,
11,033–11,045.

Krasnopolsky, V. M., G. H. Gemmill, and L. C. Breaker (2000), A neural
network multiparameter algorithm for SSM/I ocean retrievals: Compar-
isons validations, Remote Sens. Environ., 73, 133–142.

MacKay, D. J. C. (1992), A practical Bayesian framework for back-propa-
gation networks, Neural Comput., 4(3), 448–472.

Nabney, I. T. (2002), Netlab: Algorithms for Pattern Recognition, Springer-
Verlag, New York.

Neal, R. M. (1996), Bayesian Learning for Neural Networks, Springer-
Verlag, New York.

Paola, J. D., and R. A. Showengerdt (1995), A review and analysis of
backpropagation neural networks for classification of remotely sensed
multi-spectral imagery, Int. J. Remote Sens., 16(16), 3033–3058.

Prigent, C., F. Aires, W. B. Rossow, and E. Matthews (2001), Joint char-
acterization of the vegetation by satellite observations from visible to
microwave wavelengths: A sensitivity analysis, J. Geophys. Res., 106,
20,665–20,685.

Prigent, C., F. Aires, and W. B. Rossow (2003a), Land surface skin tem-
peratures from a combined analysis of microwave and infrared satellite
observations for an all-weather evaluation of the differences between air
and skin temperatures, J. Geophys. Res., 108(D10), 4310, doi:10.1029/
2002JD002301.

Prigent, C., F. Aires, and W. B. Rossow (2003b), Retrieval of surface and
atmospheric geophysical variables over snow and ice from satellite
microwave observations, J. Appl. Meteorol., 42, 368–380.

Rodgers, C. D. (1976), Retrieval of atmospheric temperature and composi-
tion from remote measurements of thermal radiation, Rev. Geophys., 14,
609–624.

Rodgers, C. D. (1990), Characterization and error analysis of profiles re-
trieved from remote sounding measurements, J. Geophys. Res., 95,
5587–5595.

Rossow, W. B., and R. A. Schiffer (1991), ISCCP cloud data products, Bull.
Am. Meteorol. Soc., 72, 2–20.

Rumelhart, D. E., G. E. Hinton, and R. J. Williams (1986), Learning
internal representations by error propagation, in Parallel Distributed
Processing: Explorations in the Microstructure of Cognition, vol. I,
Foundations, edited by D. E. Rumelhart, J. L. McClelland, and the
PDP Research Group, pp. 318–362, MIT Press, Cambridge, Mass.

Saltelli, A., K. Chan, and E. M. Scott (2000), Sensitivity Analysis, John
Wiley, Hoboken, N. J.

Stogryn, A. P., C. T. Butler, and T. J. Bartolac (1994), Ocean surface wind
retrievals from special sensor microwave imager data with neural net-
works, J. Geophys. Res., 99, 981–984.

Thodberg, H. H. (1996), A review of Bayesian neural networks with an
application to near infrared spectroscopy, IEEE Trans. Neural Networks,
7(1), 56–72.

Tikhonov, A., and V. Arsenin (1977), Solutions of Ill-Posed Problems, V. H.
Vinsten, Washington, D. C.

Vapnik, V. (1997), The Nature of Statistical Learning Theory, Springer-
Verlag, New York.

Wilkinson, G. G., C. Kontoes, and C. N. Murray (1993), Recognition and
inventory of oceanic clouds from satellite data using an artificial neural
network technique, in Demethylsulphide: Oceans, Atmosphere and Cli-
mate, Proceedings of the International Symposium, pp. 392–399, Kluwer
Acad., Norwell, Mass.

�����������������������
F. Aires, Department of Applied Physics and Applied Mathematics,

Columbia University/NASA Goddard Institute for Space Studies, 2880
Broadway, New York, NY 10025, USA. (faires@giss.nasa.gov)

D10303 AIRES: NEURAL NETWORK UNCERTAINTIES, 1

11 of 11

D10303

 21562202d, 2004, D
10, D

ow
nloaded from

 https://agupubs.onlinelibrary.w
iley.com

/doi/10.1029/2003JD
004173 by C

ochrane France, W
iley O

nline L
ibrary on [31/05/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense


