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[1] It has been speculated that the vegetation change and human land use have modulated
the dust sources in North Africa and contributed to the observed increase of desert dust
since 1960s. However, the roles of surface disturbances on dust generation are not well
constrained because of limitations in the available data and models. This study addresses
this issue by simulating the Total Ozone Mapping Spectrometer (TOMS) Absorbing
Aerosol Indices (AAIs) for model-predicted dust and comparing them with the
observations. Model simulations are conducted for natural topographic depression sources
with and without adding sources due to vegetation change and cultivation over North
Africa. The simulated AAIs capture the previously reported properties of TOMS AAI as
well as observed magnitude and spatial distribution reasonably well, although there are
some important disagreements with observations. Statistical analyses of spatial and
temporal patterns of simulated AAI suggest that simulations using only the natural
topographic source capture the observed patterns better than those using 50% of surface
disturbance sources. The AAI gradients between Sahara (north) and Sahel (south) suggest
that the best mixture of surface disturbance sources is 20–25%, while spatial and temporal
correlations suggest that the optimum mixture is 0–15% with the upper bound of 25–
40%. However, sensitivity studies show that uncertainties associated with meteorology
and source parameterization are large and may undermine the findings derived from the
simulations. Additional uncertainties will arise because of model errors in sources,
transport, and deposition. Such uncertainties in the model simulations need to be reduced
in order to constrain the roles of different types of dust sources better using AAI
simulation.

Citation: Yoshioka, M., N. Mahowald, J.-L. Dufresne, and C. Luo (2005), Simulation of absorbing aerosol indices for African dust,

J. Geophys. Res., 110, D18S17, doi:10.1029/2004JD005276.

1. Introduction

[2] Dust from the arid regions of North Africa is trans-
ported long distances and modifies the atmospheric radia-
tive budget [e.g., Miller and Tegen, 1998] as well as
biogeochemistry at a regional scale [e.g., Chadwick et al.,
1999; Martin, 1990]. However, current estimates of anthro-

pogenic impacts of mineral aerosols have large uncertainties
[Intergovernmental Panel on Climate Change, 2001]. These
large uncertainties are a product of uncertainties at micro-
scopic and macroscopic levels; the former includes miner-
alogy, size distribution, particle shapes, and state of mixing
with other species, and the latter includes spatiotemporal
distribution and the anthropogenic portion of dust.
[3] Atmospheric desert dust generated by disturbances to

the land surfaces such as the Sahel drought and anthropo-
genic land use change may represent an important part of
the present mineral dust from North Africa and may have
contributed to the observed large increase at Barbados
[Prospero and Nees, 1986; Tegen and Fung, 1995;
Mahowald et al., 2002]. However, Prospero et al. [2002]
argue that natural dry topographic depressions are the
dominant sources of mineral dust aerosol through analyses
of Total Ozone Mapping Spectrometer (TOMS) Absorbing
Aerosol Index (AAI) data [Herman et al., 1997; Torres et al.,
1998]. Mahowald et al. [2002] compare model simulations
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of dust mobilized from natural topographic depressions and
disturbed sources and show that they cannot be distinguished
over North Africa by TOMS-derived aerosol optical depths
(AODs) [Torres et al., 2002] or other available data. Luo et
al. [2003] extended this study and showed that differences in
model simulations due to meteorology or source parameter-
izations are more important than differences due to different
sources. Recently, Tegen et al. [2004] estimated by using
dust storm frequency that the land use source accounts for
<10% of the global dust load, while Mahowald et al. [2004]
using the same data show that 0–50% land use source is
statistically indistinguishable using a different model and
methodology.
[4] TOMS AAI is useful for observing absorbing aerosols

such as black carbon and soil dust since it detects these
aerosols over desert and vegetated land as well as over
ocean [Herman et al., 1997; Torres et al., 1998]. However,
as previously reported [Herman et al., 1997; Torres et al.,
1998; Hsu et al., 1999; Mahowald and Dufresne, 2004] and
demonstrated in section 3 of this paper, the value of TOMS
AAI depends on vertical profile of an aerosol in addition to
its column loading, size distribution and optical properties.
This characteristic has complicated the use of TOMS AAI
in its interpretation and application for diagnosis of model
simulated aerosols. For example, identification of source
regions of desert dust using TOMS AAI [e.g., Goudie and
Middleton, 2001; Prospero et al., 2002] may be sensitive to
the actual height of dust aerosol. Attempts to compare
TOMS AAI against model-derived AOD [e.g., Zender et
al., 2003a; Mahowald et al., 2003] have been hampered by
the nonunique relationship between AAI and AOD. Esti-
mates of AOD from TOMS AAI such as done by Torres et
al. [2002] rely on dust height prescribed by model and thus
no longer are model-independent quantities.
[5] In this study, as an alternative way to utilize TOMS

AAI and compare model simulations and observations, we
estimate TOMS AAI over North Africa by simulating the
radiances that the TOMS sensor would measure if dust were
present in the atmosphere as predicted by the model. Since a
three-dimensional (3-D) atmospheric transport model pro-
vides estimate of vertical profile, column loading and size
distribution of aerosol all together, this method determines
AAI uniquely for an assumed optical property and a model
simulated aerosol distribution without assuming any of
these parameters. Note that the 3-D aerosol distribution is
self-consistent as contrasted to the case of AOD estimated
from TOMS AAI in which the height of aerosol is, in
general, prescribed with a different model from the one to
be diagnosed. Bias in the model simulated AAI may be a
product of errors in the model used to simulate dust and
exogenously given optical properties but not an error in
other model. However, whether the bias in the simulation is
due to the column loading, the vertical profile, size distri-
bution, or assumed optical property of dust is not generally
clear. In this study, biases in simulated AAI are mainly
attributed to the bias of dust loading in order to derive the
spatial and temporal distribution of dust source while
considering other possibilities as well by analyzing the
simulations.
[6] Similar methods are used in recently published

papers. Ginoux and Torres [2003] derived empirical func-
tion of TOMS AAI with surface pressure, single scattering

albedo, optical depth and height of aerosol layer and
proposed applications of this method in validating simulated
dust distributions and in characterizing dust source areas.
Their daily empirical aerosol indices (AIs) correlate mod-
erately (correlation coefficients are between 0.3 and 0.6)
and monthly mean AI’s correlate well (between 0.6 and 0.9)
with TOMS AAI over dust source regions in North Africa.
Ginoux et al. [2004] calculated AAI using model-predicted
dust and radiative transfer calculation. This is basically the
same method as in this paper, and the differences are briefly
summarized in section 2.3. AIs are calculated over North
Africa and North Atlantic with these two methods for the
same model simulated dust field. They are shown to agree
well with each other and be capable to capture the magni-
tude and distribution of a specific dust plume observed in
TOMS AAI quite well.
[7] We conduct systematic comparisons between TOMS

and model simulated AAIs over North Africa over the
period of 1984 to 1990, during which TOMS measurements
were most stable [Cakmur et al., 2001; Torres et al., 2002;
R. D. McPeters et al., Nimbus 7 Total Ozone Mapping
Spectrometers (TOMS) data products user’s guide, 1996,
available at http://toms.gsfc.nasa.gov/datainfo/n7usrguide.
pdf, hereinafter referred to as McPeters et al., TOMS user’s
guide, 1996]. Our goal is to constrain the role of disturbances
on the land surface in modulating dust sources, and thus
we include natural topographic depression sources, dis-
turbed vegetation sources and land use sources. We conduct
several sensitivity studies to determine how important other
factors are in producing uncertainties and biases in our
results.
[8] In section 2, models, schemes, data and methods used

in this study are described. Section 3 shows general features
of the base case simulations that will help basic understand-
ing of AAI simulations. Section 4 presents sensitivity
studies to assess the errors due to assumptions used to
calculate monthly mean AAIs throughout this study in
comparison to calculations under more realistic conditions
with these assumptions relaxed. Section 5 investigates the
roles of different source processes through statistically
analyzing how well the simulations reproduce the observed
patterns. Sensitivity studies using different meteorological
data sets and mobilization schemes are conducted in
section 6 in order to further investigate the biases in
simulations seen in section 5 and evaluate uncertainties
involved in the simulations. Section 7 integrates the results
and analyses from previous sections and discusses the
biases in the simulations and the roles of different source
processes. Finally, section 8 concludes the study.

2. Methods

2.1. Dust Mobilization, Transport, and Deposition

[9] Model simulations described in detail by Mahowald
et al. [2002], Luo et al. [2003] and Mahowald et al. [2003]
as well as several new sensitivity studies described below
are used in this study. In the main part of this study, the
Model of Atmospheric Transport and Chemistry (MATCH)
[Rasch et al., 1997; Mahowald et al., 1997] is coupled with
Dust Entrainment and Deposition (DEAD) model [Zender et
al., 2003b] to simulate dust mobilization (entrainment),
transport, and deposition. National Center for Environmen-
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tal Prediction/National Center for Atmospheric Research
(NCEP) reanalysis data [Kalnay et al., 1996; Kistler et al.,
2001] are used to drive the coupled model at the T62
resolution (1.8� � 1.8�) and with 28 vertical levels. For
comparison, the MATCH transport model is also coupled
with the Georgia Tech/Goddard Global Ozone Chemistry
Aerosol Radiation and Transport (GOCART) mobilization
scheme [Ginoux et al., 2001; Luo et al., 2003] and driven by
the meteorological data set of the National Aeronautics and
Space Administration Data Assimilation Office (NASA
DAO) for 1995. Simulations using DAO data are conducted
at the same horizontal resolution but with 20 vertical levels.
[10] The DEAD mobilization scheme is based on the

friction velocity (wind stress at the surface), which is a
function of the wind speed, roughness length and the
atmospheric stability at the surface. The mass flux of
saltating particles depends on the excess of the wind friction
speed over the threshold wind friction velocity for saltation.
The saltating particle flux Fh was calculated by White’s
[1979] formulation:

Fh ¼ c
ra
g
U*3 1� Ut*

2

U*2

 !

where c is constant, ra is the atmospheric density, U* is the
wind friction speed, g is acceleration of gravity, and Ut* is
the threshold wind friction speed. The threshold velocity is
calculated by a semiempirical parameterization as a function
of particle density and diameter and air density [Iversen and
White, 1982], and modified for soil moisture following
Fecan et al. [1999]. We use the relation between the vertical
and horizontal flux from Marticorena and Bergametti
[1995]

log Fv=Fhð Þ ¼ 0:134 % clayð Þ � 6

and globally uniform value of clay fraction of 20%. The
mobilization is sensitive to wind velocity, atmospheric
stability and soil wetness.
[11] The dust mobilization in GOCART model is based

on empirical formulation by Gillette and Passi [1988]:

Fp ¼ CSspU
2
10 m U10 m � Utð Þ U10 m > Ut

Fp ¼ 0 otherwise

where C is a dimensional factor, S is source function, U10 m

is the horizontal wind speed at 10 m, Ut is the threshold
velocity, and sp is the fraction of each of seven size classes.
The threshold velocity depends on the particle size and soil
moisture. The threshold velocity was calculated with
modified Belly’s [1964] relationship as a function of surface
wetness, particle diameter and density, and air density
[Ginoux et al., 2001].
[12] We use four aerosol size bins with the diameter

ranges of 0.1–1.0, 1–2.5, 2.5–5.0, and 5.0–10.0 mm and
assume a lognormal size distribution within each size bin
[Zender et al., 2003b]. Because of the uncertainties in the
available soil texture data, we assume globally uniform
mass fractions in each bin at source to be 0.1, 0.3, 0.3,
and 0.3. (These mass fractions are the same as Tegen and
Fung [1994] and Ginoux et al. [2001], although our size

ranges are different from theirs so that we have more mass
in smaller size ranges. The sensitivity of assuming different
size distribution is examined in section 4.5.) The resulting
diurnal mean global dust distributions are averaged over
each month for the region of 10.5�N–39.0�N; 30.0�W–
30.0�E, which includes North Africa and eastern North
Atlantic but excludes low-latitude regions where biomass
burning aerosol (which is also detected by TOMS AAI) is
abundant. Since this does not guarantee the domain is free
from biomass burning aerosols and especially the southern
part of the domain may be prone to contamination of
biomass burning aerosols, however, an additional analysis
is conducted excluding winter months when biomass burn-
ing is active in section 5.4. The dust concentrations in the
simulations have been made smaller by 8% relative to the
globally tuned values in previous studies [Luo et al., 2003;
Mahowald et al., 2002] in order to match the TOMS AAI
over this region.

2.2. Source Regions

[13] Dry, unvegetated topographic depressions are con-
sidered as dust sources due to the input of fine soil particles
[Prospero et al., 2002; Ginoux et al., 2001] and used in our
base case (B) simulations. In order to explore the role of
surface disturbance, we look at ‘‘new desert (D)’’ and
‘‘cultivation (C)’’ source regions [Mahowald et al., 2002].
New desert regions are defined as ‘‘potential source areas’’
or dry and unvegetated areas in 1980–1984 but not in
1965–1969 using the BIOME3 equilibrium vegetation
model [Haxeltine and Prentice, 1996] (driven by precipita-
tion from Dai et al. [1996] and temperature and cloudiness
from NCEP reanalysis). New desert areas previously sup-
ported plants, which acted to hold down the soils. When the
plants are removed, there should be larger amounts of easily
erodible soils than in regions that have long been desert,
similar to the ‘‘Sahara Boundary Shift’’ source by Tegen and
Fung [1995]. Cultivation source regions have dry, unvege-
tated soils being cultivated or used for pasture and are
defined using the Matthews [1983] data set when there is a
desert as defined by the BIOME3 equilibrium vegetation
model. We are presuming that the land use would disturb
the soils and allow the soil particles to be more easily
mobilized [e.g., Saxton et al., 2000]. Therefore the sizes and
locations of new desert source and cultivation source,
shown by Mahowald et al. [2002, Figure 3], are sensitive
to any bias in BIOME3 model simulations. These sources
are used in combination with the topographic depression
sources in simulations (cases BD and BC) so that each type
of source accounts for 50% of the total dust mobilized in
North Africa. We also isolate the topographic depression
source in Lake Chad/Bodele Depression area for further
sensitivity studies (case BL), where the source in this area is
four times larger than in the original simulations and
accounts for 15% of total mobilization. Dust mobilization
from North Africa west of 40�E is tuned to be equal in all
these comparisons. Hereafter, BD, BC, and BL sources are
collectively referred to as ‘‘combination sources.’’

2.3. Simulation of TOMS AAI

[14] The presence of ultraviolet (UV) absorbing aerosol is
detected as AAI derived from TOMS measurements using a
spectral contrast method in the near UV region where the
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ozone absorption is very small [Herman et al., 1997; Torres
et al., 1998]. In cloud-free conditions, AAI depends on the
amount, size distribution, optical properties and height
of absorbing aerosols, the solar and viewing geometries
[Herman et al., 1997; Torres et al., 1998]. Here we estimate
a Nimbus 7 TOMS AAI by simulating the TOMS measure-
ments at two near UV bands through radiative transfer
calculations for a dust profile and atmospheric and surface
conditions given by the model.
[15] AAI is defined as [Herman et al., 1997]

AAI ¼ �100 * log10
Idst;Rs 340ð Þ
Idst;Rs 380ð Þ

� �
� log10

Iclr;Rm 340ð Þ
Iclr;Rm 380ð Þ

� �� �

where Idst;RAS are radiance at 340 and 380 nm at the top of
the atmosphere in presence of dust and surface reflectivity
Rs, which would be measured by TOMS sensor in the real
atmosphere and are to be simulated here. Iclr;Rm are radiance
that would be measured in absence of aerosols and
calculated as follows [Dave, 1978; R. D. McPeters et al.,
TOMS user’s guide, 1996]:

Iclr;Rm ¼ Iclr;Rs¼0 þ
Rm * T

1� S *Rm

The radiance Iclr;Rs=0 is computed assuming no aerosols and
no reflection at the surface. The reflectivity Rm is assumed
to be independent of wavelength and is calculated using
radiances at 380 nm:

Rm ¼ Rm 380ð Þ ¼ S 380ð Þ þ T 380ð Þ
Idst;Rs 380ð Þ � Iclr;Rs¼0 380ð Þ

� ��1

and T and S are transmission and atmospheric diffuse
reflectivity, respectively, and given

T ¼ Iclr;Rs¼1 � Iclr;Rs¼0

� �F#sfc
clr;Rs¼0

F
"sfc
clr;Rs¼1

S ¼ 1�
F
#sfc
clr;Rs¼0

F
"sfc
clr;Rs¼1

F
#sfc
clr;Rs¼0 and F

"sfc
clr;Rs¼1 are downward and upward surface

irradiance for the clear sky with surface reflectivity of 0 and
1, respectively.
[16] We use the Santa Barbara DISORT Atmospheric

Radiative Transfer (SBDART) model [Ricchiazzi et al.,
1998] to calculate the radiance and irradiance needed in
the AAI calculation above. It incorporates the LOWTRAN7
band models [Pierluissi and Peng, 1985] and the DISORT
discrete ordinate method [Stamnes et al., 1988]. Therefore
the simulated AAI is also called as MATCH-SBDART or
MS AAI as contrasted to TOMS AAI. The optical proper-
ties are obtained through Mie calculations using model
estimated particle size distributions and refractive indices
from Sinyuk et al. [2003] and O. Torres (personal commu-
nication, 2003). The resulting single scattering albedoes at
380 nm for the four size bins are 0.948, 0.883, 0.851, are
0.861, respectively. Our computations reproduce the pub-

lished results of Torres et al. [1998] if the optical properties
from that study are used. We use solar zenith angle
calculated for each month and latitude at local solar noon
since Nimbus 7 satellite has a Sun-synchronous orbit with a
noon equator crossing time (McPeters et al., TOMS user’s
guide, 1996). The viewing angle is assumed to be nadir.
[17] Ginoux et al. [2004] use very similar method to this,

in which they simulate radiance and flux using a radiative
transfer model to calculate AAI. There are a few differences
between our method and theirs. They use mass-weighted
average altitude of dust while we use the whole vertical
profile of dust predicted by the model. They calculate daily
AAI using realistic satellite viewing angles, which is not
done in this study because we calculate AAI for monthly
averaged data. The effects of using monthly averaged dust
and atmospheric variables and fixed viewing angle at nadir
are evaluated in section 4. They use optical properties of
dust in their seven size bins calculated through Mie theory
using refractive index from Colarco et al. [2002]. Their
method resolves optical properties in smaller sizes better
and leads to higher absorption in larger particles (our single
scattering albedo in 5.0–10.0 mm diameter range is 0.861
and their value in 6.0–12.0 mm range is 0.725 [see Ginoux
et al., 2004, Table 6]).

2.4. Comparisons With TOMS AAI Observations

[18] We calculate AAI for monthly averaged model-
predicted dust distribution and comparewithmonthly average
of Nimbus 7 TOMS AAI data over the period from 1984 to
1990, during which TOMS measurements were most stable
[Cakmur et al., 2001; Torres et al., 2002; McPeters et al.,
TOMS user’s guide, 1996]. TOMS measurements are avail-
able daily basis on a 1.25� by 1.0� grid but data may be
missing because of Sun glint or contaminated with cloud
[Torres et al., 1998; Cakmur et al., 2001]. We assume that
pixels with 380 nm reflectivity higher than 0.2 are contam-
inated with cloud and excluded them. This criterion is
chosen as the central value of the suggested range between
0.15 and 0.25 from Cakmur et al. [2001]. The data are then
interpolated into T62 grids by averaging TOMS data within
each T62 grid cell excluding the points of missing data. If
data are missing at all points within a T62 grid cell, this grid
cell is not given an effective value of TOMS AAI. A
monthly average is calculated only at points where TOMS
data are available on 10 or more days following the
suggestion by Cakmur et al. [2001]. However, as Cakmur
et al. [2001] suggest, detecting mineral dust by TOMS AAI
is thought to contain uncertainty. On the basis of the work
by Hsu et al. [1999], they suggest that uncertainty in daily
TOMS AAI is 	0.2 and that in monthly mean is 	0.1. The
uncertainty may be due to undetected subpixel clouds and
the presence of biomass burning aerosols. Possible bias in
monthly mean TOMS AAI due to cloud contamination of
data is also examined in section 4.2.

3. Analyses of Base Case Simulation

[19] Figure 1 shows the dependence of AAI (for an
amount of dust equivalent to unit AOD at 380nm) on the
vertical level of dust for each of four size bins (Figure 1a)
and dependence of AAI on AOD for different levels for the
bin 1 (diameter range of 0.1–1.0 mm) dust (Figure 1b). As

D18S17 YOSHIOKA ET AL.: DUST AAI SIMULATIONS

4 of 22

D18S17

 21562202d, 2005, D
18, D

ow
nloaded from

 https://agupubs.onlinelibrary.w
iley.com

/doi/10.1029/2004JD
005276 by C

ochrane France, W
iley O

nline L
ibrary on [31/05/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



previously reported [Hsu et al., 1999; Torres et al., 1998;
Mahowald and Dufresne, 2004], for a given AOD, AAI is
higher with dust at a higher altitude and of larger particles
and is nearly linear to height from the model’s bottom layer
to 500hPa (Figure 1a). (Both AOD and AAI are less
sensitive to large particles than small particles, but AAI is
more sensitive to large particles than AOD is.) For a given
level of dust, AAI is nearly linear to AOD also, with
different slopes for different height of dust (Figure 1b).
[20] The cross-sectional view of dust concentration and

AOD and AAI values from Bodele Depression source (near
18�N, 19�E) to the west-southwest in Figure 2 demonstrate
how AAI evolves as dust is carried away from its source
and higher in the atmosphere (the location of the cross
section is shown in Figure 3a, right)). It shows an increase
of AAI from 17�E to the west following the upward
transport of dust despite the almost constant AOD.
[21] Spatial distributions of MS AAI for January and July

1984 are shown in Figure 3a with corresponding AOD

distributions (Figure 3b), ratios between AAI and AOD
(Figure 3c), and mass weighted mean of dust height
(Figure 3d). Spatial distributions of MS AAI are similar to
those of AOD. However, the AAI/AOD ratio varies be-
tween 1.0 and 3.0 over North Africa, and the spatial pattern
of this ratio is similar to that of average height of dust
(correlation coefficients between AAI/AOD and dust height
for January and July 1984 are 0.80 and 0.86, respectively).
These AAI/AOD ratios correspond to the AAI sensitivity to
AOD of bin 1 dust at the middle to upper troposphere and
dust in other classes in lower troposphere (Figure 1a).
Figure 4 shows the spatial distribution of dust source areas
as ‘‘basin factor,’’ which is calculated from the topography
and indicates the source strengths (same as ‘‘preferential
source areas’’ of Mahowald et al. [2002]; Figure 4a) and
actual mobilization in January and July 1984 (Figures 4b
(left) and 4b (right)). Source areas along the Atlantic Coast
and in Bodele Depression are active in January, and sources
from southern Algeria to the west are active in July. It can

Figure 1. (a) Dependence of AAI on the vertical level (1000 times of sigma approximates pressure in
hPa) of each of four size bins of unit AOD equivalent dust and (b) dependence of AAI on AOD for
different levels of dust of size bin 1 (diameter range of 0.1–1.0 mm).

Figure 2. (a) Cross-sectional view of dust concentration (shading) and average height of dust (solid
line) and (b) the AOD (dashed line) and AAI (solid line) values from Bodele Depression source (18�N,
19�E) is to the southwest (June 1984). The location of the cross section is shown in Figure 3a, right.
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be seen in Figure 3 that although both AOD and AAI
become large downwind of the source regions (south in
January and west in July), AAI values tend to be larger
farther from the source, consistent with Figure 2.
[22] Monthly averages of satellite retrieved TOMS AAI

for January and July 1984 are shown in Figure 5, in which
regions where data are available on 9 days or fewer in each
month are blacked out. Comparisons of Figures 3 and 5
suggest that the model is capable of capturing the rough
spatial patterns of TOMS AAI, but it misses many features.

4. Evaluation of the Simplifications and
Assumptions Used in the Method

[23] In the analyses presented in sections 5 and 6, MS
AAI is calculated for monthly average of diurnal mean dust
distributions over all days within a month using fixed

satellite geometry to minimize the computation costs.
However, AAI calculated in this way may lead to a bias
when compared with monthly averaged TOMS AAI be-
cause of several factors. First of all, because of the
nonlinear nature of AAI, AAI calculated for monthly mean
dust distribution can be different from monthly average of
AAIs calculated for daily dust. Second, TOMS AAI is not
available for all days because of Sun glint and cloud
contamination as shown in Figure 5b. Third, TOMS
measurement is made once a day around local solar noon
(maximum difference is about 1 hour (before or after
noon) on the edges of the swath since the nodal period
of Nimbus 7 satellite is 104 min (NASA, The Nimbus 7
Spacecraft System, 2003, available at http://toms.gsfc.nasa.
gov/n7toms/nimbus7tech.html; British Atmospheric Data
Centre (BADC), The TOMS instrument and data products,
2002, available at http://badc.nerc.ac.uk/data/toms/

Figure 3. (a) Spatial distributions of simulated AAI, (b) AOD distributions (c), ratios between AAI and
AOD, and (d) average height of dust (sigma � 1000) for (left) January and (right) July 1984. The pink
thick line in Figure 3a (right) shows the location of the cross section shown in Figure 2.
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tomshelp.html). Fourth, the satellite zenith angle of
Nimbus 7 TOMS varies from 0 to 51�, but it is assumed
to be 0 (nadir) in the simulations. Additionally, sensitivity
of MS AAI to the assumed dust particle size distribution is
also demonstrated. The effects of these simplifications and
assumptions in calculating monthly average AAIs are
examined for January and July 1984 unless an effect is
larger or of more interest in other months.

4.1. AAI for Monthly Mean Dust and Monthly Average
of Daily AAI

[24] AAI calculated using monthly mean dust, atmo-
sphere, and solar geometry are compared with monthly

average of AAIs calculated for diurnal mean model results.
Figure 6 shows absolute difference (former minus latter;
Figure 6a) and relative difference (absolute difference
divided by latter; Figure 6b) in April (Figure 6, left) and
July (Figure 6, right). Differences are small in January (only
up to 0.05). The calculation with monthly mean dust and
other conditions overestimates AAI by up to 0.32 and 18%
in April and 0.44 and 11% in July where AAIs are high, and
underestimates it by up to 0.1 and 30% in April occur where
AAIs are relatively small (there is almost no underestimate
in July). The relative errors are largest in April in both the
maximum magnitude and frequency (i.e., number of grid
points). If we look at grid cells where AAI is larger than 0.5

Figure 4. (a) Dust source areas (basin factor (fraction) in dry unvegetated land that indicates the source
strength) and (b) actual mobilization (mg m�2 s�1) in (left) January and (right) July 1984.

Figure 5. (a) Monthly averages of TOMS AAI and (b) number of days for which TOMS measurements
with under-threshold cloud contamination are available for (left) January and (right) July 1984.
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(70.1% of all) to avoid small denominators, the maximum
relative errors are +18% and �12%, and number of grid
cells with relative errors exceeding ±10% are 	3% in April.

4.2. Monthly Averages for All Days and for Days When
TOMS Data Are Available

[25] Figure 7 shows the absolute (Figure 7a) and relative
(Figure 7b) differences between MS AAI calculated for
simple monthly average dust (using data of all days in a
month) and reconstructed (from data of days when TOMS
data are available) monthly average of dust and atmosphere

in January (Figure 7, left) and July (Figure 7, right) 1984. In
July, the simple average is larger than reconstructed average
by more than 0.3 (more than 10%) over large areas from the
peak AAI region (western Sahara; southwest or downwind
of the source region in Figure 4) to the west with the
maximum difference of 0.99 (64%) off the west coast of
North Africa. In January also, the simple average is larger
by more than 30% over north to central Sahara although the
difference in actual values are much smaller than in July.
However, over the Mediterranean in July, the simple
monthly average MS AAI is smaller by over 0.3 and

Figure 6. (a) Absolute (the former minus the latter) and (b) relative (absolute divided by the latter)
differences between MS AAI calculated for monthly mean dust and atmosphere and monthly average of
MS AAIs for daily dust and atmosphere in (left) January and (right) July 1984.

Figure 7. (a) Absolute and (b) relative differences between simple and reconstructed (average over days
when TOMS data are available at a given grid point) monthly averages of MS AAI for (left) January and
(right) July 1984.
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30%. Relative error exceeds 30% (positive or negative) in
3% in January and 8% in July of the grid cells with
reconstructed average AAI of over 0.5.
[26] These errors may be a result of cloud screening using

the reflectivity criterion and correlation between dust load-
ing and cloud amount. The reflectivity at 380 nm becomes
higher with higher column loading of dust. If reflectivity
criterion higher than 0.15 is chosen, this value is not
reached with maximum dust loading in the clear-sky con-
dition (similar to Cakmur et al. [2001]). However, reflec-
tivity of grid cells with high dust loading can exceed the
criterion with less subgrid clouds, and hence they can be
excluded from the average preferentially. This can lead to a
lower AAI in the reconstructed monthly averages excluding
pixels and days of high reflectivities. Another possibility is
that there tends to be less dust when TOMS data are
available (which is when there is less cloud). This may
suggest a positive correlation between dust and cloud
amounts over this region, as seen in the case of low thin
clouds by Mahowald and Kiehl [2003].

4.3. AAIs Calculated for Local Noon Dust and Diurnal
Mean Dust

[27] Since diurnal variabilities of dust mobilization and
vertical mixing are large [Luo et al., 2004], there expected
to be difference between AAI at local noon and AAI
calculated for diurnal mean dust. Figure 8 shows absolute
(Figure 8a) and relative (Figure 8b) differences between
AAIs calculated for monthly average of dust and atmo-
sphere at local solar noon (1200 UT in 5�W–5�E, 1120 UT
in 5–15�E and 1040 UT in 15–25�E) and monthly average
of diurnal mean dust and atmosphere in January (Figure 8,
left) and July (Figure 8, right). AAI calculated for monthly
average of diurnal mean data is smaller than that of local
noon data by more than 0.3 and 20% over Bodele Depres-
sion and northeastern Libya (maximum is 0.40 and 31%) in
January and by more than 0.5 and 10% (maximum 0.63 and
22%) in the high AAI region over southwestern Algeria and
northern Mali in July. This suggests that diurnal means
underestimate AAI in source regions (see Figure 4) and
sometimes overestimate it in nearby downwind regions
(e.g., south of Bodele Depression in January).

4.4. Difference Due to Satellite Viewing Angles

[28] AAIs are calculated with satellite zenith angles 0�,
15�, 30�, and 45� and corresponding solar zenith and
azimuth angles for satellite and solar positions and latitudes.
Figure 9 shows absolute (Figure 9a) and relative (Figure 9b)
errors associated with calculating AAI using a nadir satellite
viewing angle while the actual satellite zenith angle is 45� in
April (Figure 9, left) and July (Figure 9, right). The
calculated viewing angle at a given point in the domain is
approximated by 45� (i.e., falls between 37.5� and 51�, the
latter of which is the maximum viewing angle of the TOMS
satellite sensor (NASA, 2003, http://toms.gsfc.nasa.gov/
n7toms/nimbus7tech.html; BADC, 2002, http://badc.nerc.
ac.uk/data/toms/tomshelp.html)) from 	30% (at 40�N) to
45% (at 10�N) of the time depending on the latitude
(average for all latitudes is 39%).
[29] This analysis shows that for satellite viewing zenith

angles larger than zero, the error due to using viewing angle
of 0� is always negative and has small seasonal and spatial

structures. With satellite zenith angle of 45�, relative error
exceed 20% in 	3% of points where AAI is larger than 0.5,
with maximum of 24%. With satellite viewing angle of 30�,
errors are much smaller and points where relative error
exceeds 10% are 	5% of all points with AAI larger than
0.5, and the maximum relative error is 13%. The average
maximum relative error (weighted with the relative frequen-
cies with which the satellite viewing angle falls into the
ranges of the four given angles) is 	12% in both April and
July. Since the differences are one-sided (always negative)
and have small seasonal and spatial structures (Figure 9b),
and since the model has been tuned to give a desired
magnitude of AAI, some of these differences must have
already been compensated. Therefore their effects on com-
parisons between monthly averaged observed and simulated
AAIs are not thought to be large.

4.5. Difference Due to Assumed Particle Size
Distribution

[30] In this study, mass fractions of four size bins (0.1–
1.0, 1.0–2.5, 2.5–5.0, and 5.0–10.0 mm in ‘‘diameter’’) in
the source are assumed to be 0.1, 0.3, 0.3, and 0.3,
respectively. These fractions represent much more dust in
the smaller size fractions than other studies [e.g., Ginoux et
al., 2001]. Additionally, recent field observations suggest
that previous modeling studies may underestimate particle
sizes of transported African dust [Colarco et al., 2003;
Grini and Zender, 2004]. For this sensitivity study, AAI is
calculated using the source mass fractions of 0.03, 0.17,
0.41, and 0.39 for the same four size bins. These fractions
are calculated from the mobilization scheme incorporating
saltation-sandblasting dust production mechanism described
by Grini and Zender [2004] (this is the global result and
different from their results for Sahara shown in their paper
(C. S. Zender, personal communication, 2005)). Thus the
new estimates of appropriate size distributions give much
less dust in the smaller two size bins (1/3 to 1/2) and more
in the larger size bins compared with the size distribution
used in the base case.
[31] The values of AAI and AOD become nearly half of

the original values and as a result, the ratios of AAI/AOD
do not change very much (not shown). This is mainly due to
smaller radiative effects per unit mass (mass extinction
coefficient) of larger particles. Over North Africa, the
modified mass fraction case has slightly larger AAI/AOD,
due to the larger fraction of large particles close to the
source regions (Figure 1). Next we look at the impact of
changing the size distributions on the spatial distribution of
MS AAI (shown in Figure 10). These results show that there
are only small relative differences in the spatial distribution.
Thus changing the size distribution between different bins
changes the mean AAI, but not the spatial or temporal
distribution of the AAI.

4.6. Combined Effect

[32] Errors associated with the simplifications examined
in sections 4.1, 4.2, and 4.3 are spatially heterogeneous and
so they may impact our comparisons between model sim-
ulated and observed AAI distributions. Additionally, they
may add nonlinearly when included together, so here we
look at the combined impact of several of these sensitivities.
Figure 11 shows the errors when the effects in sections 4.1,
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4.2, and 4.3 are examined at the same time, that is, average
of AAI values calculated for dust and atmosphere at local
noon of days of the month on which TOMS data are
available. Effects of satellite geometry and particle size
distribution are not combined here because they are spatially
much less heterogeneous, combining them is technically
more complicated, and the significance of combining them
is not as clear. Note that Figure 11 does not have values
west of 5�W and east of 25�E due to the lack of local noon
model outputs in these regions. They look similar to super-
positions of the separate cases (compare Figures 11a (right)

and 11b (right) with those in Figures 6, 7, and 8), and no
strong nonlinearity is apparent. The absolute error is up to
�0.41 and 0.24 in January and �0.57 and 0.64 in July, and
the relative error is up to about �60% and 20% in both
January and July where AAI in combined sensitivity case is
over 0.5. Relative error exceeds 30% (positive or negative)
in 4% in January and 9% in July of all grid cells with AAI
over 0.5. These are comparable to the case of reconstructed
monthly average (section 4.2 and Figure 7). Combined
errors outside the region of Figure 11 are examined by
simply superposing the errors shown in Figures 6 and 8 (not

Figure 9. (a) Absolute and (b) relative differences between MS AAI calculated using nadir looking
viewing angle and using 45� viewing zenith angle in (left) April and (right) July 1984.

Figure 8. (a) Absolute and (b) relative differences between monthly averages of MS AAI calculated for
daily mean dust and atmosphere and MS AAI for dust and atmosphere at local solar noon in (left) January
and (right) July 1984.
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shown). It creates a region over western Sahara (west of
10�W) to the Atlantic in July where errors add up to a
maximum of a little over 1 (over 80%) over the ocean.
[33] The errors associated with simplifications in timing

of measurements and averaging are thought to introduce an
important level of uncertainty to our comparisons between
simulations and observations. Errors due to simplification in
satellite geometry and assumption of particle size distribu-
tion add the uncertainty to lesser degree. These uncertainties
are large, but not larger than the errors and uncertainties

seen in the later sections due to model and observational
differences.

5. Analyses of Different Source Processes

[34] As described in section 2, simulations are conducted
for four types of dust sources: 100% topographic depression
source (B), 50% of topographic depression source com-
bined with 50% of new desert source (BD) and with 50% of
cultivated land source (BC), and 85% of topographic

Figure 11. Combination of the effects examined in Figures 6, 7, and 8. (a) Absolute and (b) relative
differences between MS AAI calculated using simple monthly average of daily mean dust and
atmosphere and average of MS AAI calculated for dust and atmosphere at local noon on days of the
month for which TOMS data are available in (left) April and (right) July 1984.

Figure 10. (a) Absolute and (b) relative differences between MS AAI calculated using original particle
size distribution (mass fraction of 0.1, 0.3, 0.3, and 0.3 in four size bins) and modified one (0.0325,
0.174, 0.409, and 0.385 in the same bins) for (left) January and (right) July 1984.
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depression source with 15% source from Lake Chad and
Bodele Depression region (BL). AAIs and other quantities
are averaged over the whole domain (10.5 –39.0�N;
30.0�W–30.0�E) as well as Sahara (23.8 – 35.2�N;
15.0�W–30.0�E), Sahel (10.5–21.9�N; 20.6�W–30.0�E),
and Bodele (12.4–20.0�N; 13.1–20.6�E; within Sahel)
subdomains and are analyzed. We compare simulated AAI
with different types of sources against TOMS AAI in order
to assess which source type is most consistent with obser-
vations. Any bias in simulated AAI can be due to the biases
in either the column loading or the vertical profile of dust,
both of which are a result of mobilization, transport and
deposition processes. Atmospheric processes that may lead
to a bias in AAI are examined in section 6 through
sensitivity studies using a different input meteorology and
source scheme.

5.1. Spatial Distributions

[35] Figure 12 shows the distributions of AAIs from
TOMS observation (Figure 12a) and MS/B (case B
(Figure 12b)), MS/BD (Figure 12c), MS/BC (Figure 12d),
and MS/BL (Figure 12e) simulations averaged over all
months from 1984 to 1990. The TOMS AAI plots such
as Figures 12a, 5a, and 5b show local maxima of AAI over
several regions, which is consistent with dust source
regions identified by Prospero et al. [2002]. The correlation
coefficients of spatial distributions of simulated AAIs with
observation are between 0.79 (case BC) and 0.87 (case B)
(correlation coefficient in each case is given in the paren-
theses in Figure 12). Determining if these values are
statistically distinct from each other is made complicated

by the fact that dust loadings are spatially correlated
because of horizontal transport. The correlations of nearby
grid cells reduce the degree of freedom and hence lower the
probability that two correlation coefficients are statistically
distinguishable, however the factor by which it is reduced
is not obvious. In Table 1 we show the factors by which
we can reduce the degrees of freedom and still obtain
statistically significantly different correlations (i.e., they
are distinct exactly at 95% confidence level). We assume
that this factor must be great than five in our analysis, due to
spatial correlations. Even though the spatial correlation
coefficient of MS/B AAI with observation is a little higher
than those of other cases, the differences are statistically
insignificant and MS/B AAI is worse in terms of capturing
the observed strength of AAI over Bodele Depression and
western Sahel and generally overestimates AAI over
Sahara especially over southwestern Algeria and western
Sahara in July (Figure 5). As a result, case B simulation
underestimates the ratios of AAI values of Sahel and
Bodele to Sahara (Figure 13). The other three simulations
overcorrect these ratios (i.e., D, C, and L sources are too
strong), and therefore a linear combination of the different
sources can be selected to best match the observations. The
observed Sahel/Sahara ratio is obtained when D or C
sources are 	25% of the total dust source (not shown).
[36] As shown in Table 1, the spatial distribution of AAI

over Sahel is better reproduced in case B (correlation
coefficient with observation is 0.81) than other cases in
which the Sahel dust plume seems to be shifted to the south
(correlation coefficients in cases BD, BC and BL are 0.64,
0.42, and 0.69, respectively). The spatial correlation in case

Figure 12. Distributions of AAIs averaged over all months and years from (a) TOMS observation and
(b) MS/B (MATCH-SBDART case B), (c) MS/BD, (d) MS/BC, and (e) MS/BL simulations. The solid
line and pluses show the latitudes at which TOMS and MS AAI, respectively, maximize on each
longitude. Numbers in parentheses are correlation coefficients between MS and TOMS AAIs.
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BC is statistically significantly lower than in case B with the
reduced degree of freedom by factor of over 10. Dust
mobilizations with D (new desert only) and C (cultivation
only) sources (not shown) have local maxima about 1 to 2
grid boxes (1.8� to 3.6�) south of that with B source in the
Bodele subdomain. Also the southward bias is prominent
from November to May (not shown), which coincide the
seasons in which the combination sources (i.e., BD, BC,
and BL) overestimate AAI (discussed in section 5.2) and
northeasterly winds dominate in the lower troposphere over
Sahel. Therefore the southward biases seen in the annual
average simulated AAI distributions with combination
sources are considered as a product of the difference in
locations of dust source and the bias in seasonality of dust
mobilization.

5.2. Seasonality of AAI by Region

[37] Figure 14 shows the seasonal change of observed
and simulated AAIs averaged over all years (1984–90) over
the whole domain (Figure 14a), Sahara (Figure 14b), Sahel
(Figure 14c), and Bodele (Figure 14d) subdomains. Over
the whole domain, MS/B simulation overestimates AAIs in
March to May and underestimates in July to September.
This seems to be due to overestimates of AAIs over Sahara
in boreal winter to spring and underestimates in Sahel and
especially in Bodele in summer to early fall. The magni-
tudes of summertime underestimates in Sahel and Bodele
are large and the balance between these and the springtime
overestimate in Sahara is considered as the reason for the
bias in the Sahel/Sahara and Bodele/Sahara ratios in
Figure 13. While these annual average ratios are improved

by adding other sources (i.e., cases BD, BC, and BL), the
large deficiencies in summer along with the overestimates in
spring in Sahel and Bodele are made worse by addition of
sources as shown in Figure 14 and Table 1. Especially over
Sahel, the correlations of simulated monthly AAIs (aver-
aged over all years) with observed ones are statistically
significantly higher in case B than in cases BD and BC. The
seasonality of AAI is further analyzed using different wind
and dust schemes in section 6 in order to better understand
the uncertainties associated with these analyses.

5.3. Interannual Changes by Region

[38] Figure 15 shows the interannual changes of observed
and simulated AAIs averaged over all months. All simu-
lations show basically the similar patterns in terms of year-
by-year changes as well as increasing trends in the period,
and these patterns do not agree with those of observations.
Correlation coefficients between observations and simula-
tions are negative in all cases and regions (not shown), and
combination sources do not improve the correlations.
[39] Correlation coefficients of simulated AAIs of all

months in the 7-year period (seasonality is included) with
observed ones are significantly higher in case B than in
other cases over all regions except Sahara (Table 1).
However, all simulations fail to reproduce observed anoma-
lies of AAI (changes of monthly AAI with average season-
ality removed) (Table 1).

5.4. Optimum Source Mixture and Acceptable Range

[40] As shown above, the case BD and BC simulations
correlate with the observations statistically significantly

Table 1. Correlation Coefficients of Simulated Spatial Distributions, Seasonal Changes, Time Series, and Anomalies of AAI With

Observed Ones Over the Whole Domain and Subdomainsa

Case Domain B Threshold Correlationb BD BD 35% BD 25% BD 15% BC BC 35% BC 25% BC 15% BL

Spatial
Whole 0.87 0.84 0.87 0.88 0.89 0.79 0.85 0.88 0.89 0.84
Sahel 0.81 0.64 0.71 0.75 0.79 0.42 0.58 0.69 0.77 0.69
Threshold factorc 3.6 1.7 0.67 0.12 10. 5.2 2.0 0.28 2.0

Seasonal
Whole 0.92 0.59 0.57 0.71 0.79 0.85 0.59 0.73 0.81 0.86 0.69
Sahara 0.86 0.37 0.66 0.75 0.79 0.83 0.74 0.80 0.82 0.84 0.72
Sahel 0.89 0.46 0.45 0.59 0.68 0.77 0.43 0.58 0.68 0.78 0.55
Bodele 0.77 0.10 0.40 0.50 0.58 0.66 0.31 0.42 0.51 0.62 0.51

Time Series
Whole 0.79 0.64 0.50 0.61 0.67 0.73 0.52 0.63 0.69 0.74 0.53
Sahara 0.74 0.56 0.55 0.63 0.67 0.70 0.62 0.67 0.70 0.72 0.58
Sahel 0.76 0.60 0.41 0.51 0.59 0.66 0.39 0.51 0.59 0.67 0.43
Bodele 0.64 0.43 0.35 0.44 0.50 0.56 0.28 0.37 0.45 0.53 0.41

Anomaly
Whole 0.17 0.29 0.27 0.14
Sahara 0.09 0.20 0.18 0.07
Sahel 0.24 0.27 0.26 0.15
Bodele 0.26 0.17 0.16 0.13

aCorrelation coefficients of simulated spatial distributions are the correlated individual grid cells averaged over all years and months, seasonal changes
are the correlated 12 months averaged over all years, time series are correlated for all months in the 7-year period individually, and anomalies are correlated
for all months in the period but seasonality is removed. Numbers with percent indicate the fraction of second source (e.g., case BD35% is a mixture of 65%
topographic and 35% new desert sources), and it is 50% for BD and BC and 15% for B. The italic correlation coefficients are highest ones in the different
mixtures of the same combinations of sources. Bold indicates that the correlation coefficients are statistically distinct from those in case B with a 95%
confidence level. For spatial correlations, this judgment is made using reduced degree of freedom by factor of 5.

bThreshold correlation coefficient; a correlation smaller than this value is significantly smaller than the correlation in case B with a 95% level.
cThreshold factor of reduction of degree of freedom; the differences of the shown spatial correlations for Sahel from that in case B (0.81) become

insignificant with a 95% level if degree of freedom is reduced by more than this factor.
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worse than the case B simulations in spatial (BC only) and
temporal (seasonal and over all 84 months) comparisons. As
mentioned in section 5.1, simulations using lower fractions
of new desert and cultivation sources suggest that the
optimum mix of sources in terms of Sahel/Sahara ratio is
25% of new desert (D) or cultivation (C) (and 75% of
topographic (B)) sources. However, as summarized in
Table 1, it is 15% of D or C source in terms of spatial
correlation over the whole domain and 0% over Sahel.
Temporal (seasonal and time series) correlations are highest
with 100% B source over all regions. D and C sources need
to be less than 25% in order for the all correlations to be
statistically indistinct from case B.
[41] Even though the domain has been chosen to mini-

mize the influences of biomass burning smoke, its effects in
the seasonal comparisons cannot be ruled out. If December,
January, and February, when biomass burning is active near
the southern boundary of the domain [e.g., Menaout et al.,

1991; Stroppiana et al., 2000], are excluded, the time series
correlations of mixed source cases with observations be-
come higher by up to 0.13 over Sahel and Bodele sub-
domains, while those correlations do not change almost at
all with case B. In this case, the optimum mix is still 100%
topographic source, but the new desert and cultivation
sources can be up to 	35% to keep the time series
correlations indistinct from case B. However, we cannot
judge whether these changes happened due to biomass
burning or just by chance.

6. Sensitivities Studies Using Different Wind
Data Sets and Dust Mobilization Schemes

[42] Analyses in the previous sections are based on
simulations using NCEP reanalysis and the DEAD mobi-
lization scheme. In this section, sensitivity studies are
performed using different combinations of meteorological
data sets and dust mobilization schemes. The primary
purpose of these sensitivity studies is to examine how
robust the results in the previous section are to changes in
the model configuration. If the results from the sensitivity
studies are quite different from the original study (and this
is actually the case), the simulations are analyzed in detail
in attempt to identify the factors that cause the observed
differences.
[43] The sensitivity studies use the topographic depres-

sion source (case B), either NCEP or DAO meteorological
data set, and either DEAD or GOCART dust mobilization
scheme. A simulation using DAO wind and GOCART
scheme for mobilization but NCEP for transport is also
performed. Hereafter, these configurations are expressed as
B-NDN, B-DDD, B-DGD, and B-DGN, with letting the
first letter (B) indicate the topographic source, the first and
last letters after the hyphen the meteorological data set
(i.e., NCEP or DAO) used for mobilization and transport,
respectively, and the second the mobilization scheme (i.e.,
DEAD or GOCART). Additionally, the DGD simulation is
performed with 50% topographic depression and 50%
cultivation sources (case BC-DGD). All simulations are
conducted for February to November 1995 except B-NDN
which is simulated for all months in 1995. These simu-
lations correspond to those summarized by Luo et al.
[2003, Table 1]. Since TOMS AAI is unavailable in this
year for comparisons unfortunately, average TOMS AAIs
over 1984–1990 are used for comparisons. Comparing

Figure 13. Ratios of annual average AAI values of Sahel
(10.5–21.9�N; 20.6�W–30.0�E) and Bodele (12.4–20.0�N;
13.1–20.6�E) to Sahara (23.8–35.2�N; 15.0�W–30.0�E).
‘‘TS’’ indicates ‘‘TOMS,’’ and others are ‘‘MS’’ with
indicated source types.

Figure 14. Seasonal changes of TOMS and MS AAIs averaged over all years (1984–1990) over (a) the
whole domain (10.5–39.0�N; 30.0�W–30.0�E) and (b) Sahara (23.8–35.2�N; 15.0�W–30.0�E),
(c) Sahel (10.5–21.9�N; 20.6�W–30.0�E), and (d) Bodele (12.4–20.0�N; 13.1–20.6�E) subdomains.
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AAI simulated for 1995 with climatological TOMS AAI
should also be noted as a source of uncertainty.

6.1. Spatial Distributions

[44] Figure 16 shows the AAI distributions predicted by
these simulations averaged over February to November
1995. TOMS AAI averaged over February to November
and 1984 to 1990 minus and plus standard deviation of
interannual variability at each point are also shown in
Figures 16a and 16b, respectively, and these give the likely
range of TOMS AAI in 1995 if there is no trend in decadal
timescale. Figure 16c is the result of the same model
configuration as Figure 12b. All the simulations for 1995
(Figures 16c–16g) predict AAI larger than the higher limit
of the range based on mean and variability between 1984
and 1990 (Figure 16b) but by much higher degrees in cases
using DAO wind for mobilization (Figures 16d–16g) than
in case using NCEP wind (Figure 16c). The simulations
using DAO for mobilization also seem to produce spatially
less heterogeneous patterns of AAI than that using NCEP.
This may be due to less spatial variability in wind speed
in original DAO data and/or the interpolation of data from
2.5� � 2.5� grids [Luo et al., 2003]. The simulation using
50% cultivation source (Figure 16g) produces AAI distri-
bution highly concentrated over eastern Sahel.
[45] The spatial distributions of AAI with DAO mobili-

zation (cases B-DDD, B-DGD, and B-DGN) correlate with
observation (averaged over February to November 1984 to
1990) better (correlation coefficients are 0.86, 0.85, 0.84,
respectively) than with NCEP (0.78) but not in statistically
significant manner. The correlation in case BC-DGD is
lower (0.72) than in the case B-DGD, as we saw in section
5 that BC-NDN less correlates with observations than B-
NDN does in 1984–1990. The spatial correlation of DGD
simulation with the observation becomes highest (0.87)
when the mixture of C source is 15% and the correlation
becomes statistically significantly lower (0.79) than this
with 40% C source (when the degree of freedom is reduced
by factor of 5; see section 5.1). Sahel/Sahara and Bodele/
Sahara ratios are somewhat improved with DAO mobiliza-
tion but they are still lower than the observed values while
they are overestimated with BC source (Sahel/Sahara ratios
for TOMS, B-NDN, B-DDD, B-DGD, B-DGN, and BC-
DGD are 1.54, 1.02, 1.24, 1.27, 1.21, and 2.2, respectively,
and this ratio with DGD simulation matches the observation
when C source is 	20%). However, the observed AAI
distribution within the Sahel subdomain is best reproduced
in B-NDN simulation (correlation coefficients with B-NDN,

B-DDD, B-DGD, B-DGN, and BC-DGD are 0.81, 0.77,
0.75, 0.76, and 0.18, respectively) and the correlation with
BC-DGD is statistically significantly lower than other cases.
The correlation of DGD simulation is highest (0.75) with
0% C source (case B-DGD) and, assuming the distribution
of dust sources is the dominant cause of the bias in the
simulations, cultivation source needs to be less than 40% to
keep the spatial correlation within Sahel not significantly
worse than this case, and at this mixture the correlation
coefficient within Sahel is 0.51.

6.2. Seasonality of AAI by Region

[46] Figure 17a shows the seasonalities of AAI simulated
with different meteorological data sets and mobilization
schemes averaged over the whole domain and the three
subdomains (i.e., Sahara, Sahel, and Bodele). Also shown
are the seasonalities of TOMS AAI (with error bars for plus
and minus interannual standard deviations) and B-NDN
simulation for 1984–1990, but in order to focus on the
comparisons of seasonalities, both of their values (as well as
the standard deviations) are increased by 26% so that the
annual average AAI in B-NDN over the whole domain for
1984–1990 equals that for 1995. Notice that changing the
meteorology does not change the seasonality much (B-DDD
versus B-NDN), while changing the source scheme does
change the seasonality (B-DGD versus B-DDD).
[47] In the whole domain and all subdomains, simulations

using GOCART (B-DGD, B-DGN, and BC-DGD) do not
produce the large deficiency in summer that NDN simu-
lations with all source types (i.e., all simulations in section 5)
produce, even though B-DDD does produce it using the
same wind as B-DGD. Therefore the source parameteriza-
tion may be responsible for the deficiencies in summer time
AAI seen in section 5. On the other hand, simulations using
the GOCART source scheme with either set of winds tends
to overestimate AAI in fall and underestimate it in spring,
which is opposite to simulations using the DEAD scheme
with either DAO or NCEP winds—cases B-DDD or B-
NDN. These effects are thought to be combined with the
effects of combination sources to produce the seasonal
pattern seen in case BC-DGD, where the summer time
deficiency has disappeared and overestimates in fall to early
spring have become prominent in Sahel and Bodele. Al-
though the seasonal changes are not statistically analyzed
because of a small size of samples (i.e., number of months;
10) here, the seasonal pattern of BC-DGD simulation is
obviously the least consistent with the observed seasonal
pattern, as in the cases of combination sources in the

Figure 15. Interannual changes (averaged over all months) of TOMS and MS AAIs averaged over
(a) the whole domain and (b) Sahara, (c) Sahel, and (d) Bodele subdomains.
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previous section. However, this pattern is also very different
from those of the combination sources in the previous
section, suggesting the substantial dependence of AAI
seasonal patterns to meteorological data and source scheme
used in simulations.

6.3. Factors Determining AAI

[48] Before looking closer at the differences due to dif-
ferent wind and mobilization schemes in different regions, it
is helpful to look at the seasonal correlations between
simulated AAI and their possible determining factors.
Along with AAI, Figure 17 also shows seasonal changes
of AOD (Figure 17b), dust mobilization (Figure 17c),
surface wind speed (at reference height (10 m); Figure
17d), mass weighted average height of dust (Figure 17e),
and planetary boundary layer height (PBLH; Figure 17f)
(AOD and mobilization for B-NDN84-90 are increased by
26% as are AAIs). PBLH indicates the degree of turbulent
mixing and hence affects vertical transport of dust. Table 2
shows correlation coefficients between AAI and these quan-
tities in the Bodele subdomain. Seasonal changes of simu-
lated AAIs generally highly correlate with those of AODs,
and mobilizations highly correlate with surface wind speed.
However, correlation coefficients of AAIs and AODs with

mobilization and surface wind are not high, especially with
GOCART mobilization (i.e., B-DGD and B-DGN). This
may be due to greater importance of transport and smaller
seasonal change of GOCART mobilization as we shall see in
section 6.4. AODs are more highly correlated with mobili-
zation than AAIs in all cases, presumably due to the altitude
dependence of the AAI. Similar results are seen for the larger
region of the Sahel (not shown).
[49] Contrary to the cases of mobilization and surface

wind, AAI correlates well with average dust height with
GOCART mobilization and do not with DEAD mobiliza-
tion, suggesting the greater roles of mobilization in sim-
ulations with DEAD and transport in those with GOCART
in determining AAIs. Average dust heights highly correlate
with PBLH in simulations using NCEP transport but do
not in those with DAO transport. Therefore it can be said
that PBLH is representative of vertical mixing in NCEP
but something other than PBLH is more important in
DAO, and as seen in section 6.4, it may be moist
convection.
[50] Although seasonality of soil moisture content in-

versely correlates with mobilization quite well [see Luo et
al., 2003, Figure 7], soil moisture does not seem to play an
important role in controlling dust mobilization since it does

Figure 16. TOMS AAI averaged over 1984–1990 (a) minus and (b) plus standard deviation, and AAIs
predicted by simulations in cases (c) B-NDN, (d) B-DDD, (e) B-DGD, (f) B-DGN, and (g) BC-DGD in
1995, all averaged over February to November.

D18S17 YOSHIOKA ET AL.: DUST AAI SIMULATIONS

16 of 22

D18S17

 21562202d, 2005, D
18, D

ow
nloaded from

 https://agupubs.onlinelibrary.w
iley.com

/doi/10.1029/2004JD
005276 by C

ochrane France, W
iley O

nline L
ibrary on [31/05/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



not frequently become high enough to considerably inhibit
dust mobilization in Bodele and Sahel in the simulations.

6.4. Explanation of Seasonal Changes of AAI

[51] General qualitative features seen in Figure 17 are
summarized in Table 3, in which differences between B-
DDD and B-DGD and between B-DGD and B-DGN are
organized as differences by mobilization schemes and by
meteorological data sets used in transport. Figure 17c shows

that the GOCART scheme (used in B-DGD and B-DGN)
produces larger mobilizations in summer and smaller in
spring in Sahel and Bodele than DEAD (used in B-NDN
and B-DDD) does, so the former cases do not produce the
large summertime deficiency in these regions. Since the
surface wind minimizes in summer and maximizes in spring
in these regions (Figure 17d) (and the amplitude of seasonal
change of surface wind speed in DAO is about the same as
that of NCEP when normalized), this may be due to a

Figure 17. Seasonalities of (a) AAI, (b) AOD, (c) dust mobilization (mg m�2 s�1), (d) surface wind
speed (m s�1), (e) average height of dust (sigma � 1000 	 pressure in hPa), and (f) planetary boundary
layer height (km) averaged over the whole domain and Sahara, Sahel, and Bodele subdomains in
simulations with different combinations of meteorological data sets and mobilization schemes. For easier
comparisons, MS/B-NDN84-90 AAI values in the whole domain are adjusted (26% larger than the
original values) so that their annual average equals that of MS/B-NDN95 values. Also, MS/B-NDN84-90
AAI in other subdomains, AOD and mobilization for case B-NDN84-90, and TOMS84-90 AAI are
adjusted using the same factor. Error bars for TOMS84-90 show one standard deviation also adjusted
with the same factor.
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smaller sensitivity of GOCART mobilization to surface
wind speed compared with DEAD mobilization. The
smaller sensitivity of GOCART scheme to wind speed is
given by Luo et al. [2004, Figure 2], which shows that dust
mobilization occurs continuously with GOCART while it
occurs only in a short time of a day with DEAD and that
GOCART produces smaller diurnal and day-to-day varia-
tions than DEAD does. This seems due to lower threshold
wind speed and less sensitivity to wind speed of GOCART
mobilization beyond the threshold, both of which are
evident in the instantaneous (not diurnally or monthly
averaged) values of surface wind speeds and dust mobili-
zation in the domain in all seasons and all time of a day (not
shown).
[52] Since the average height of dust is greater in DAO

(B-DGD) than NCEP (B-DGN) transport in all regions and
seasons (Figure 17e and Table 3), the vertical mixing is
thought to be more efficient in DAO than NCEP simula-
tions, consistent with Luo et al. [2003, Figure 10]. This is
true even in summer in Bodele and Sahel where the
planetary boundary layer height (PBLH) is much lower in
DAO than in NCEP (Figure 17f). Since in boreal summer

MATCH predicts more convective precipitation with DAO
than NCEP while the resolved vertical advection is stronger
with NCEP (not shown), stronger moist convection is
considered responsible to the stronger vertical mixing in
simulations with DAO transport. B-DGD predicts similar
AAI values to B-DGN in summer even though it predicts
higher dust height since it predicts lower AOD, which is
likely due to differences in horizontal transport and wet
deposition. DAO predicts Intertropical Convergence Zone
(ITCZ) at the north of Sahel in summer and southerly wind
over Sahel, which is less dusty, while NCEP predicts ITCZ
just over Sahel and very weak meridional wind component
(not shown). B-DGD also predicts more wet deposition
following more precipitation in Sahel in summer than B-
DGN (not shown).
[53] Although further description of analyses of seasonal

changes are not presented here, most of the general features
seen in Figure 15 and Table 3 can be explained by weaker
sensitivity of GOCART mobilization to the surface wind
speed and more efficient vertical mixing with DAO. How-
ever, no single combination of mobilization scheme and
meteorological data sets used for mobilization and transport

Table 2. Correlation Coefficients Between Simulated Seasonal Changes of AAI, AOD, Mobilization, Surface Wind Speed, Average

Height of Dust, and PBLH Averaged Over Bodele Subdomaina

AAI-AOD AAI-Mobil AAI-Wind AOD-Mobil Mobil-Wind AAI-Height AAI-PBLH Height-PBLH

NDN84-90 0.98 0.33 0.20 0.53 0.96 0.11 0.59 0.85
NDN95 0.98 0.24 0.06 0.43 0.94 0.14 0.63 0.83
DDD95 0.96 0.48 0.42 0.68 0.93 �0.30 0.85 �0.12
DGD95 0.78 �0.30 �0.15 0.25 0.97b 0.51 0.65 0.08
DGN95 0.95 �0.62 �0.51 �0.40 0.97b 0.80 0.88 0.84

aBold indicates statistical significance of the correlation coefficients with a 95% level.
bSame value because DGD and DGN share both mobilization and surface wind.

Table 3. Summary of Seasonality of AAI and Its Determining Factors by Meteorological Data Sets for Transport and Mobilization

Schemes Used in Simulationsa

Sahara Sahel Bodele

Spring Summer Fall Spring Summer Fall Spring Summer Fall

AAI NDN
>DDD
>DGN
	DGD
>TOMS

DGD
	DGN
>DDD
>TOMS
>NDN

DGD
>DGN
>DDD
>NDN
>TOMS

DDD
>DGD
	NDN
	TOMS
>DGN

DGN
	DGD
>TOMS

DDD
>NDN

DGD
>DGN
>DDD
>NDN
	TOMS

DDD
>DGD
	NDN
>TOMS
	DGN

DGD
	DGN
>TOMS

DDD
>NDN

DGD
>DGN
>DDD
>TOMS
>NDN

By schemesb D > G D < G D < G D > G D � G D < G D > G D � G D < G
By data setsc N 	 D N 	 D N < D N < D N 	 D N < D N < D N 	 D N < D

AOD
By schemesb D > G D < G D < G D > G D < G D < G D > G D � G D < G
By data setsc N > D N > D N < D N 	 D N > D N < D N < D N > D N 	 D

Mobilization strong strongest weak strongest weak strong strongest weak strong
By schemesb D > G D > G D < G D > G D < G D < G D > G D � G D < G

Surface wind strong strongest weak strongest weak strong strongest weak strong
By data setsd N 	 D N 	 D N 	 D N 	 D N 	 D N 	 D N > D N < D N 	 D

Dust height variable high variable variable high variable variable high variable
By data setsc N < D N < D N < D N < D N < D N < D N < D N < D N < D

PBLH variable high low variable high low variable high low
By data setsc N > D N 	 D N > D N < D N > D N < D N < D N 
 D N < D
aSpring, summer, and fall represent from February to June, from July to September, and October and November, respectively. Symbols refer to generally

greater than, much greater than, smaller than, and at similar magnitude as.
bD and G refer to DEAD and GOCART schemes, respectively.
cData sets for transport only. N and D refer to NCEP and DAO data sets, respectively.
dComparisons for normalized surface wind speed. The actual values of surface wind are always stronger in DAO than NCEP data set.
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can be identified to predict the observed features better than
others.

7. Discussion

7.1. Summertime AAI Deficiency in Sahel

[54] Brooks [1999] and Brooks and Legrand [2000],
using their analysis of Infrared Difference Dust Index
(IDDI) over 1984–1993, show that dust mobilization
becomes highest in the 18–20�N from July to September
and sustains high in northern Sahel (15–20�N). The anal-
yses of visibility of N’Tchayi Mbourou et al. [1997] also
show similar seasonal patterns (although their data indicate
number of hours of reduced visibility and are not directly
comparable with dust mobilization). These patterns are
consistent with TOMS AAI (Figures 5a (right), 14c and
14d), but they are quite different from our simulation
results. All simulations including those using GOCART
mobilization scheme (B-DGD, B-DGN, and BC-DGD),
which do not produce the summertime AAI deficiency,
show distinctive minima in mobilization in summer in Sahel
and Bodele in response to the minimum mean surface wind
in summer. Station data of mean surface wind speed in
northern Sahel shown in Figure 18 (derived from NOAA
NCDC Daily Station, International Research Institute for
Climate Prediction, 2003, available at http://ingrid.ldeo.
columbia.edu/SOURCES/.NOAA/.NCDC/.DAILY/.
STATION.cuf/, averaged over 1994–1999) also tend to
minimize in August and September in this area.
[55] Brooks [1999] and Brooks and Legrand [2000] state

that the dust mobilization in summer in northern Sahel is
due to passages of ‘‘disturbance lines’’ or ‘‘convective
disturbances’’, which are active near ITCZ. They also state
that these disturbances effectively transport dust vertically,
which will also contribute to increased AAI values. Tegen
et al. [2002] points out the discrepancy between their
model-predicted dust and the observations are due to
underestimate of peak wind speeds in ECMWF used in
their model simulations, which is partly due to missing
wind gusts in squall lines. Pye [1987] also describes the
roles of disturbances associated with squall lines in dust
mobilization and transport in southern Sahara and Sahel in
boreal summer. METEOSAT visible and near infrared
images (EUMETSAT, 2005, available at http://www.
eumetsat.de/) show that convective clouds are not uncom-
mon over northern Sahel in August and September. Rowell
and Milford [1993] report that nearly 40% of all squall

lines in the central Sahel (2.5�W–14�E) in August 1985
were observed north of 14�N and over 15% were north of
16�N. On the other hand, MATCH simulations using both
NCEP and DAO analyses produce very little cloud water
over northern Sahel (column-integrated cloud water
amount averaged for 15–20�N is less than for 10–15�N
by over (NCEP) or nearly (DAO) one order of magnitude
in August and September). Therefore it is suspected that
the summertime AAI deficiency in our simulations is
caused because these disturbances are not well recreated
in our transport simulations. However, although compar-
isons between maximum and mean wind speeds in the
NOAA NCDC station observations and meteorological
data sets near the Bodele Depression (15 stations including
all in Figure 18 and 66 grid boxes in 12–22�N, 2–20�E)
suggest that meteorological data miss the variations of
wind speeds significantly (the ratio of maximum to mean
wind speeds is less than a half of observations), no
evidence is found that they miss maximum wind speeds
in summer more than in spring. Direct observations and
quantitative analysis are required to determine the reason
of summer time deficiency of modeled dust and the
possible roles of convective disturbances in dust mobili-
zation and transport.

7.2. Source Evaluation With Uncertainty

[56] In section 5, it is shown that inclusion of new desert
(D), cultivation (C), or enhanced Bodele (L) sources in the
simulations improves the agreement of the simulated Sahel/
Sahara ratio with the observed one. The optimum mixture in
terms of the Sahel/Sahara ratio is 	25% of D or C source.
However, adding these sources leads to southward bias of
the Sahel dust plume and lessens the spatial agreement of
AAIs with observation as a whole, although correlation
coefficients are usually not statistically distinct from each
other (except the case BC over Sahel). Adding sources does
not improve the agreements in interannual changes and adds
bias to seasonality to a degree of statistical significance in
many cases. Assuming the simulated vertical profile is
correct, the best mixture in terms of the spatial and temporal
correlations is 0–15% of D or C sources. In order for all
spatial and temporal correlations of case BD and BC
simulations with observation not to be statistically indistinct
from case B, D or C source needs to be less than 25% of
total dust amount. If we assume that biomass burning
obscures our wintertime signal and exclude these months,
up to 35% of new desert source or cultivation source are
statistically allowed.
[57] However, analyses in section 6 suggest that simu-

lations using different meteorological data sets and mobili-
zation schemes produce quite different patterns. Using DAO
data set for mobilization seems to somewhat improve the
spatial agreement with observation in the whole domain but
slightly deteriorate the correlation within Sahel. Even
though mobilization using GOCART scheme does not
produce the summertime deficiency, we cannot say
GOCART produces better seasonal agreement. Use of a
combination source in simulation with GOCART mobiliza-
tion and DAO data set (case BC-DGD) makes the simula-
tion worse in reproducing the observed seasonality
compared to the case with topographic depression source
(case B-DGD). The simulated Sahel/Sahara ratio suggests

Figure 18. Station data of surface wind speed in northern
Sahel averaged over 1994–1999 (derived from NOAA
NCDC Daily Station).
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the optimum mixture is 	20% of cultivation source. The
spatial correlations suggest that the simulation best repro-
duces the observation when cultivation source is 0–15%
and the upper bound of cultivation source is 40%. These are
very similar to the results of the analysis using NCEP data
set and DEAD scheme (i.e., B-NDN versus BC-NDN or
BD-NDN) described above.
[58] However, it should be noted that the seasonal pattern

produced in case BC-DGD is very different from the case
with the same source and different model configuration
(case BC-NDN). Therefore it is questionable if we can
conclude that the results about source mixture in both model
configurations are consistent and therefore likely correct.
The large difference in the results from different model
configurations suggests a large uncertainty in our results
due to uncertainties in the meteorology and source param-
eterization. As examined in section 4, our calculations of
monthly mean observed and simulated AAIs add a certain
degree of uncertainty. Biases may be present in other
assumed parameters such as simulated vertical profile and
optical properties of dust. As seen in section 2, the TOMS
observations themselves contain some uncertainties. Com-
paring simulations for 1995 with 1984–1990 climatology of
TOMS AAI also potentially introduces a large bias. These
uncertainties combined may surpass the difference in the
simulations due to different sources and hence we cannot
confidently conclude that the simulation using the optimum
mixture of sources derived in previous sections reproduces
the observed pattern significantly better than with other
sources.

8. Conclusions

[59] In this study, the TOMS Absorbing Aerosol Index
(AAI) is simulated for model-predicted dust distributions
using radiative transfer calculations. The previously
reported properties of AAI; linearity to the aerosol optical
depth (AOD) for a given height of dust, quasi-linearity to
height of dust for a given AOD, higher AAI for larger
particles for a given AOD, are reproduced. Vertical mixing
is important in determining AAI, and therefore AAI often
maximizes not over the region of maximum source strength
but over a downwind region with active vertical mixing,
which is unlike the case of AOD.
[60] Using this method, AAI is estimated on the basis of

model simulations of North African desert dust and com-
pared with observed TOMS AAI to evaluate the importance
of natural and anthropogenic disturbances on land surfaces.
The bias in simulated AAI is assumed mainly because of
dust source distribution although it may also be due to
modeled mobilization, atmospheric transport and assumed
optical properties of dust. The base case simulations are
conducted using MATCH transport model and DEAD dust
mobilization scheme driven by NCEP reanalysis data. AAIs
are calculated for monthly averaged diurnal mean dust,
atmosphere, solar geometry and fixed satellite position at
nadir. These simplification may lead to an error up to about
1 AAI unit when combined compared to calculations under
more realistic conditions, and a large error usually occurs
over the region of high AAI (dust loading). Change in the
assumed particle size distribution has a large effect on the
values of simulated AAI. In our sensitivity study where

mass fractions of dust particles are reduced in smaller sizes
and increased in larger sizes, the AAI as well as AOD
values become about a half of those with original size
distribution. Changing the size distribution did not, however,
change the spatial or temporal distribution of the simulated
distribution. Although these errors introduce an important
uncertainty in comparisons of observed and simulated AAIs,
they are not as large as the model observational errors seen in
the analysis, or uncertainties due to changing the model
formulation.
[61] The simulations are conducted for topographic de-

pression source, and three additional sources: new desert,
cultivation, and enhanced Bodele sources. The spatial
distributions of simulated AAI using topographic depres-
sion source capture the observed features generally well.
However, annual mean distribution overestimates AAI over
Sahara and underestimates over Sahel. The simulation
using a topographic depression source overestimates AAI
in spring over Sahara and significantly underestimates in
summer over Sahel and Bodele Depression. It also fails to
capture the interannual changes of AAI. Adding the new
desert source or the cultivation source, or enhancing the
Bodele Depression source improves the annual mean
Sahel/Sahara ratios, but leads to further overestimate of
AAI in spring and does not improve the large under-
estimates in summer. Adding other sources does not
improve the agreement of interannual changes either and
makes the AAI distributions in Sahel biased to the south.
The addition of the new desert source or the cultivation
source makes the resulting spatial and temporal correla-
tions with observations statistically significantly lower
compared to the case with topographic depression source
only. The optimum mixing of new desert or cultivation
sources is estimated to be 25% in terms of Sahel/Sahara
ratio and 0–15% in terms of spatial and temporal correla-
tions with observation. Dust from these sources needs to be
less than 25–35% of total dust loading in order to keep
them statistically indistinguishable.
[62] The sensitivity studies are performed using DAO

meteorology and GOCART mobilization scheme. Simula-
tions using different meteorological data sets and mobili-
zation schemes produce very different spatial and temporal
distributions of AAI. These differences are explained by
assuming smaller wind speed dependence of GOCART
mobilization and more efficient vertical mixing with trans-
port using DAO. The large underestimates of AAI in
summer in Sahel and Bodele are suspected to be due to
missing subgrid-scale disturbances in model simulations.
The simulation using DAO meteorology and GOCART
mobilization scheme for a combination source may be
interpreted in a qualitatively similar way to the base case
simulations; the addition of cultivation source makes the
simulation worse in terms of reproducing observed AAI
patterns, the optimum mixture of cultivation source is 20%
in terms of Sahel/Sahara ratio and 0–15% in terms of
spatial correlations, and it needs to be less than 40% to be
statistically indistinct from the optimum mixture. However,
these propositions about different source types may not be
able to be conclusive due to the large uncertainties in
simulations using meteorological data sets and source
parameterizations as well as in observed data. More
intensive analysis with other data sets is required to assess

D18S17 YOSHIOKA ET AL.: DUST AAI SIMULATIONS

20 of 22

D18S17

 21562202d, 2005, D
18, D

ow
nloaded from

 https://agupubs.onlinelibrary.w
iley.com

/doi/10.1029/2004JD
005276 by C

ochrane France, W
iley O

nline L
ibrary on [31/05/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



the relative roles of natural topographic depressions and
surface disturbances in dust generation.
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