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[1] The methodology to generate members of an
ensemble is an important issue in operational forecasting;
currently a number of procedures are followed at different
operational centres. In the present work we propose and
evaluate a methodology where a dynamically consistent set
of initial conditions is generated through 4D-Var
assimilation procedure. The perturbations are generated
through 4D-Var assimilation with different information
(observation) content, either through a variation in the
frequency of observations or a variation in the length of
assimilation window. We adopt a representative non-linear
system, viz. the three-variable Lorenz system and show
that ensemble forecasts generated through 4D-Var
assimilation show less error than those generated from
initial conditions (with similar amplitude of perturbation)
adopted arbitrarily. Another advantage of the procedure is
that it provides a (variable-specific) estimate of the
maximum allowed amplitude and spread of perturbations.
Citation: Goswami, P., K. C. Gouda, and O. Talagrand (2005),
Ensemble initial conditions through 4D-Var assimilation,
Geophys. Res. Lett., 32, L21801, doi:10.1029/2005GL022542.

1. Introduction

[2] Ensemble forecasting has emerged as an indispens-
able tool in meteorological forecasting since its introduc-
tion in the early nineties [Molteni and Palmer, 1993;
Buizza, 1997; Toth and Kalnay, 1997]. The basic philos-
ophy of ensemble forecasting is to generate a set of
forecasts, such that the average of the ensemble of the
forecasts is more accurate than a single deterministic
forecast. Besides, the spread in the ensemble contains
quantitative information about the reliability of forecasts,
and provides a basis for probabilistic forecast. An
ensemble forecasting, however, should be able to (non
linearly) filter errors for it to be considered good, or
useful for forecasting. A critical issue in ensemble
forecasting is thus how to create a good ensemble, that
is, how to create a set of initial perturbations that would
result in a better forecast.

[3] A number of techniques and methodologies have
evolved since early nineties to generate perturbations for
creating an ensemble. One method is to use singular vectors,
the linear perturbations of a control forecast that grow
fastest within a certain time interval called the optimization
period [Lorenz, 1965], for a given norm to measure their
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size. An ensemble forecasting based on initial perturbations
based on singular vectors with a total energy norm was
operationalised at ECMWF [Molteni and Palmer, 1993;
Molteni et al., 1996; Buizza, 1997; Palmer et al., 1998].The
Bred vector method, on the other hand, uses a non-linear
generalization of the method to obtain the sustained fastest
growing perturbations (Leading Lyapunov vectors [Toth
and Kalnay, 1993, 1997]). The bred vectors represent
forecast perturbations and unlike singular vectors they are
independent of the norm. The bred vector method has been
implemented at NCEP in 1992 and later at NCMRWF, India
and South African Meteorological Weather Services.
Variants of bred vector method have also been used by
Japanese Meteorological Agency [Kyouda and Kusunoki,
2002]. Another methodology, proposed by Houtekamer et
al. [1996], uses an ensemble of assimilation systems
using perturbed observations. However, the ensemble
assimilation system introduces perturbations in the best
estimate of the initial condition; as such the individ-
ual perturbed forecasts (being different from the best
estimate) may have less skill than the control forecast,
although the ensemble average can be better than the
control forecast. Further the random perturbations of
the observations are carried out in conformity with
the observational error statistics to ensure that the
perturbed analyses are not (statistically) far from the
control analysis. The methodology for generating ensem-
ble initial conditions is still evolving and currently
different centres use their own procedure.

[4] In this work we propose a methodology to generate
a set of initial conditions using Four Dimensional
Variational assimilation (hereafter 4D-VAR). Instead of
considering perturbations to a best estimate as in an
ensemble assimilation system, we generate a number of
best estimates by taking advantage of certain features
of 4D-VAR assimilation system as discussed below.
Similarly, the observations are not perturbed, but the
number of observations (information) assimilated is
slightly varied to generate different estimates; we shall
call this informational perturbation to distinguish it from
ordinary (random or systematic) perturbation to the fields
themselves. The use of 4D-VAR assimilation to generate
the estimates ensures that each member is as close an
approximation to an allowed model solution as possible, a
property unlikely to be shared by a randomly perturbed
estimate. As mentioned, this is possible because of the
mathematical structure of 4D-Var assimilation.

[s] 4D-VAR is now an established and powerful tool for
assimilation of data in meteorology and oceanography fol-
lowing a number of works which showed its applicability to
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Table 1. Values of Parameters for Different Regimes

Parameters
Set [ 3 v Dynamical Regime
1 100 27 10.6 chaotic
2 10 23 2.66 non-chaotic
3 28 46.92 4 chaotic
4 16 40 3.66 chaotic
5 10 13.92 2.66 non-chaotic
6 10 24.5 2.66 chaotic
7 10 28 2.66 chaotic

realistic situations [Ghil and Malanotte-Rizzoli, 1991;
LeDimet and Talagrand, 1986; Talagrand and Courtier,
1987]. Briefly, 4D-VAR attempts a direct explicit
minimization of some scalar function to seek a (non-
linear) best estimate of the flow. The scalar function, or
the objective function, J, to be minimized is some
representation of misfit between the observations X,
and the model solution; typically, J is the sum of squared
differences between observations and the corresponding
model solutions X, weighted by the inverse covariance
matrix R of the observational errors [Talagrand, 1997].
The estimate (or the optimum) value of X, is then the
value of X that minimizes J. The gradient of the objective
function with respect to the initial condition X(0) for a
forecast is given by

Vo = X(0) (1)

where X is obtained by integrating the adjoint of the
forecast equation (in practice the adjoint code) backward in
time; a term involving (X — X,) appears as a forcing in the
adjoint equation. The basic principle of 4D—VAR assimila-
tion is to determine X (t = 0) that will minimize the gradient
of the objective function.

[6] Let us consider an objective function of the form

N
T =5 D100~ Xolo)) P e)
n=1

where N represents the total number of discrete
observations.

[7] Tt is clear that a variation in the amount of informa-
tion, through a variation in N will change J, which, in turn,
will change the estimated state, at least in principle. A
typical 4D-VAR assimilation experiment is carried out
with a given length of assimilation interval or window
(hereafter AI) and a given frequency of observations
(hereafter OF). While the later is generally constrained
by the observation schedule, the former can be varied
relatively easily. A change in either Al or in OF would
mean a change in N. We may call such a variation an
informational perturbation (with respect to a reference
initial state) which will affect the corresponding forecasts;
for strongly non-linear systems like the atmosphere and
the ocean these effects can be significant. A set of 4D-Var
assimilations, with N varied in an optimal range, will thus
produce a set of estimates (initial conditions) which are
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dynamically consistent, with a spread that is also deter-
mined in an objective and dynamically consistent manner.
We investigate this issue using a representative non-linear
system, viz. The Lorenz system with three variables,
described by the equations:

):(] = ()L(Xz —Xl)
X=X - X - XX 3)
X3 = X1X2 — BZ

Where «, 3 and y are real, positive parameters. The Lorenz
system is highly representative of the atmospheric and
oceanic dynamics in terms of its strong sensitivity to initial
conditions. It has also been used to investigate generation of
initial conditions [Anderson, 1996]. It is well known that
this system can represent different dynamical regimes
depending on the values of the parameters, especially (3.
Table 1 gives the seven sets of parameters that were
considered in this study.

[8] The 4D-Var assimilation experiments in the present
case were designed as follows: First, ‘observations’ were
created by integrating the Lorenz model from a given initial
condition. Next, 4D-Var assimilation was carried out for a
given Al and OF; the Al was changed in steps of 6 time
steps up to a maximum of 120 time steps. Although a longer
Al implies more (observational) information incorporated
into the assimilation cycle, it also implies a longer integra-
tion of the model. The latter may offset gain due to the
former due to growth of model error; an optimum Al,
therefore, has to be chosen for each assimilation system.
The OF was changed between 1-3; for OF = 1 an
observation is assimilated every step, while for OF = 3 an
observation is assimilated every third time step. The
minimization of the objective function was carried out using
a variable- storage quasi-Newtonian algorithm [Gilbert and
Lamarechal, 1989]. In general terms, the method uses
information from the past iterations to approximate the
inverse of the Hessian matrix. The inputs to the minimiza-
tion algorithm are the objective function J, and the gradient
of J with respect to the control variable (initial conditions)
which must be computed accurately through the adjoint
code. This procedure was carried out for a number of
dynamical regimes of Lorenz system, represented in
terms of o, B and vy, as shown in Table 1. For each
dynamical regime, a number of realizations of observa-
tions were created by adopting different initial condi-
tions; the five initial conditions used in this study are
given in Table 2. In what follows, we shall mostly
present results from realization average from these five
set of “observations”.

Table 2. Set of Initial Conditions

Variables
SET X, X, X3
1 8.53 1.95 32.89
2 5 5 35
3 1 0 1
4 —4.5 0.69 239
5 2 5 20
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Figure 1. Normalized anomaly (as percentage of ensemble
mean) for three variables X, X, and X5 of Lorenz equation.
The left panel is for a non-chaotic regime while the right
panel is for a chaotic regime.

[o] Let X(7, j), i = 1,2,3 be the estimate for X; with the
jth 4D-Var assimilation experiment. We can define the
ensemble average initial condition as

1L
:N;X(Z,J) 4)

Where N is the size of the ensemble.
[10] We can then formally define a perturbation for each
iandj as

X'(i.j) = X (i) — X (5)

Ensemble1(Ne=20) Ensemble2(Ne=40) Ensemble2(Ne=60)
X1 X1
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Figure 2. Cumulative growth of forecast error as a
function of forecast time (integration step) for the three
variables of Lorenz equation for informational perturbation,
IP (thick line) and arbitrary perturbation, AP (thin line). The
results represent average of five realization of observations
for a chaotic regime (o = 100, 3 = 27, and y = 10.66).
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Figure 3. Same as Figure 2 for a non chaotic regime
(=10, 3 =23 and vy = 2.66).

The informationally constructed members of the ensemble
can then be formally represented as

Xi(.)) = X (i) + X] (i.j) (6)
In contrast, the non-informationally constructed (arbitrary)
members of the ensemble may be represented as

Xa(i,j) = X (@) + (r)X[ (i.)) )
Where r is a random number between —0.8 and 0.8.In
constructing the arbitrary perturbations, it is assumed that
the knowledge of the ensemble average is available from
previous statistical analysis of the system. The amplitude of
the random perturbations are constrained to be < = 0.8 to
keep X, (i, j) close to X; (i, j) in magnitude.

[11] Figure 1 shows the nature of these perturbations in
the three variables in terms of percentage of the ensemble
mean for different members of the ensemble (x-axis). The
spread in X3 is rather small (a few percents of the ensemble
mean) while the spread in X, can be as much as 20% or
more of the ensemble mean.

[12] We next evaluate relative performance of informa-
tional and arbitrary ensemble forecasting in terms of
normalized forecast errors, defined as

ei(/,1) ZIXA 5,7)(1) = Xoi(1)| x 100/Xo,(2) ~ (8)

N,
eIt Z |)(1 7]

— Xoi(2)| x 100/ Xo;(¢) 9)

2. Results and Conclusions

[13] Figure 2 shows the cumulative forecast error,
expressed as percentage of the corresponding observa-
tion, for three variables of Lorenz system; the thick line
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Figure 4. Ratio of time-averaged forecast errors for
individual members of the ensemble and ensemble average
forecasts for the three variables of the Lorenz system. The
left panels represent a non-chaotic regime (a = 10, 3 = 23
and y = 2.66) while the right panels represent a chaotic
regime (o= 16, 3 =40 and y = 3.66). The X-axis indicates
ensemble member.

represents result for informational perturbation (IP) while
the thin line shows the corresponding results for arbi-
trary perturbation (AP). The three columns in Figure 2
represent three ensembles characterized by, respectively,
Al = 20, OF = 1; Al = 20, OF = 2 and Al = 20, OF =
3. As mentioned earlier, the results represent average of
five realizations of observations obtained by integrating
the Lorenz system (for the given regime) with the five
initial conditions given in Table 2. It is clear that use of
IP can significantly reduces forecast error in comparison
to AP.

[14] Figure 3 shows the results corresponding to those
in Figure 2 for a non-chaotic regime of Lorenz system,
characterized by o = 10, 3 = 23, and vy = 2.66. Once
again initial conditions generated through IP provide
about 50% less forecast errors than those generated by
AP. 1t is clear from Figures 2 and 3, however, that the
comparative performance also depends on the dynamical
regime.

[15] A basic requirement of a successful ensemble
forecasting is that the ensemble average forecast is
more accurate than forecasts with individual members
of the ensemble in general. We examine this aspect for
the present methodology in terms of the following
quantity:

Where
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and

1 N
e = 3y Pl = oo

Here X (j, n) is the forecast with initial condition from the
jth member of the ensemble and at time step n, and X, () is
the ensemble average forecast; X, (n) represents the
observations.

[16] Figure 4 shows the structure of E(j) for a 60-member
ensemble and 20 time steps for two dynamic regimes. It
is clear that the ensemble forecast is much more accurate
(E(j) > 1) than the individual forecasts for a large fraction of
the ensemble members. However, for both the dynamical
regimes there appears to be a class of members (and
hence Al and OF) for which the performance is far superior
(E(j) > 1); these issues need careful reexamination, with
other models.

[17] The main purpose of the present work has been to
formulate and evaluate a methodology for generating
members for an ensemble forecasting through 4D-Var
assimilation; the basic premise has been that initial con-
ditions generated through informational perturbations will
be dynamically consistent with the total flow in terms of
nature of individual members and the spread of the ensem-
ble. This is verified in terms of forecast errors from initial
conditions generated through arbitrary perturbations. An
important issue is the applicability of the present results
with the Lorenz model to multi-scale systems with interact-
ing scales like the atmosphere and the ocean. While the
Lorenz model is a good representative of non-linearity and
sensitivity of forecast to initial conditions, the ocean and
atmosphere have additional complexities such as a wide
spectrum of interacting scales and complex boundary forc-
ing. Thus the present conclusions need to be checked with
more comprehensive models of atmosphere and ocean. It
should also be emphasized that the proposed method is a
computationally expensive one for operational numerical
weather forecasting as it involves a number of assimilation
experiments to generate the IP. However, growing comput-
ing power and demand for improved forecast may make
such a methodology implementable in near future. Still, a
comprehensive and quantitative comparison of skill of the
present methodology with methodologies that are relatively
cheaper computationally, such as one proposed by Anderson
[1996] and others, needs to be carried out.

[18] Acknowledgment. This work was supported by a research grant
from Indo-French Centre for Promotion of Advanced Research, India.
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