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ABSTRACT

This research aimed: (i) to evaluate on-farm (FARM data) multiparametric models developed under con-
trolled experiment (INRAE data) and based on non-invasive indicators to detect subacute ruminal acido-
sis (SARA) in dairy cows. We also aimed to recover high discrimination capacity, if needed, by (ii) building
new models with combined INRAE and FARM data; and (iii) enriching the models increasing from 2 to 5
indicators per model. For model enrichment, we focused on indicators determinable on-farm by quick
and inexpensive routine analysis. Fifteen commercial dairy farms were selected to cover a wide range
of SARA risk. In each farm, four Holstein early-lactating healthy primiparous cows were selected based
on their last on-farm recording of milk yield and somatic cell count analysis. Cows were equipped with
a reticulo-rumen pH sensor. The pH kinetics were analysed over a subsequent 7-day period. Relative pH
indicators were used to classify cows with or without SARA. Milk, blood, faeces, and urine were collected
for analysis of the indicators included in the models developed by Villot et al. (2020) on INRAE data that
were externally evaluated using FARM data. Then, new models based on the same indicators were devel-
oped combining INRAE and FARM data to test whether a possible loss in performance was due to a lim-
ited validity domain of model by Villot et al (2020). Finally, the models developed combining INRAE and
FARM data were adapted to the on-farm application and enriched by increasing indicators from 2 to 5 per
model using linear discriminant analysis and leave-one-out cross-validation. The sensitivities (true-
positive rate) in external evaluation on FARM data were substantially lower than those from cross-
validation by Villot et al. (2020) (range: 0.1-0.75 vs 0.79-0.96, respectively), and the specificities
(true-negative rate) showed a larger range with lower minimum values (range: 0.18-1.0 vs 0.62-0.97,
respectively). The sensitivities of new models developed combining INRAE and FARM data ranged from
0.63 to 0.77. Models involving blood cholesterol, p-hydroxybutyrate, haptoglobin, milk and blood urea,
and models involving milk fat/protein ratio, dietary starch proportion, and milk fatty acids had the high-
est performances, whereas models including sieved faecal residues and urine pH had the lowest.
Enriching models to three indicators per model improved sensitivity and specificity, but the inclusion
of more indicators was less or not effective. Larger field trials are required to validate our results and

to increase variability and validity domain of models.
© 2023 The Author(s). Published by Elsevier B.V. on behalf of The Animal Consortium. This is an open
access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Implications

with diet, blood, milk, urine and faeces indicators monitored by
inexpensive routine analysis. Our results confirm the potential of

Subacute ruminal acidosis is a diffuse disorder causing impor-
tant economic losses in intensive dairy farming. Its on-farm detec-
tion is challenging, and we lack routinely applicable tools for this
purpose. To detect subacute ruminal acidosis, we tested on-farm
models, previously developed in controlled experiments, based
on multiparametric non-invasive indicators. Models were built
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combinations of indicators in the on-farm detection of subacute
ruminal acidosis in dairy cows, but model validation on a larger
farms and cow number is recommended.

Introduction

Over the last few decades, dairy farming systems have been
intensified to meet the rapidly growing worldwide demand for
dairy products. In intensive dairy farms, cows are commonly fed
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diets with disproportion between a high concentration of rapidly
fermented carbohydrates (mainly starch) and low physically effec-
tive NDF to meet the energy requirements associated with their
high milk yields. However, such diets may cause impaired ruminal
health through variation in volatile fatty acid concentrations and
decreased ruminal fluid pH, which lead to subacute ruminal acido-
sis (SARA) (Plaizier et al., 2008). There is no characteristic symp-
tom in SARA-affected cows (Abdela, 2016), but several non-
specific clinical signs may be present, like decreases in milk yield
and milk fat content, lameness, reduction in feed intake, beha-
vioural disturbances (i.e. drop of rumination, altered lying and
ingestion time), etc. (Plaizier et al., 2008; Abdela, 2016;
Zschiesche et al., 2022). Additionally, those non-specific clinical
signs are often delayed and the cow’s health is already altered
when clinical signs become detectable. Some authors have also
highlighted the correlation between SARA and several biomarkers
of physiological status alteration or chronic inflammation: protein
content and composition (i.e. haptoglobin), and mineral (like cal-
cium, phosphorous, iron), glucose, urea, gas (like bicarbonate,
CO, and 0O,), hormones (like cortisol) and enzyme (like alanine
aminotransferase, aspartate aminotransferase, gamma-glutamyl
transferase) contents in blood (Plaizier et al., 2018; 2022;
Antanaitis et al., 2019); pH and consistency in faeces (Abdela,
2016; Plaizier et al., 2018); pH, and NH4+ in urine (Vagnoni and
Oetzel, 1998). Changes in milk fat, protein and urea contents, fat/
protein ratio (FPR), as well as in milk fatty acid (FA) composition
have been linked to SARA (Comino et al., 2015; Jing et al., 2018;
Zschiesche et al., 2022). Even though the association between SARA
and the large range of indirect indicators previously illustrated has
been consolidated, few studies have tried to use them to predict
the occurrence of SARA in dairy cows. Recently, Khorrami et al.
(2021) developed models using single indicators of milk and diet
composition, but only milk urea content among the tested milk
constituents seemed to be correlated with ruminal pH.
Mensching et al. (2020) developed multiparametric models
describing the relationship between reticulo-ruminal pH parame-
ters (average pH, time at pH < 5.8 and ApH) and several indicators
of milk composition (i.e. fat, protein, lactose contents) and of diet
composition (ether extract, starch, physically effective NDF). Only
Villot et al. (2020) have developed predictive models from beha-
viour (DM intake, drinking acts, rumination time), blood (choles-
terol, bicarbonate, B-hydroxybutyrate (BHBA), glucose), urine pH,
milk (FPR, urea, FA composition), and faeces (pH and sieving resid-
uals) aiming at discriminating cows affected or not by SARA. Villot
et al. (2020) developed 18 different models combining 2-3 indica-
tors from different matrices. Models by Villot et al. (2020) were
logit function predicting the probability (y) of a cow to be affected
or not by SARA (y > 0.5 = SARA occurrence); they were able to accu-
rately detect SARA with high sensitivity and specificity (respec-
tively ranging from 79 to 100% and from 61.5 to 100%, depending
on the model). The best-performing models (precision > 90%)
included variables from blood (bicarbonate and BHBA), milk (milk
urea, FPR), and particularly FA composition (n-6 FA and C18:1tran-
s10/C18:1trans11 ratio) and behaviour (DM intake (DMI) and the
number of drinking acts) (Villot et al., 2020). However, the models
by Villot et al. (2020) were developed using data from SARA
induced experimentally with a unique and specific diet. A wide
range of diets with a high risk of SARA are used on-farm and indi-
viduals fed the same diet can differ in SARA susceptibility, due to
metabolic specificity or feeding behaviour and social hierarchy
(Khiaosa-ard et al., 2018). We hypothesised that the models devel-
oped by Villot et al. (2020) have a lower discrimination capacity
when applied on-farm probably because the calibration dataset
(controlled experiment) and the evaluation dataset (on-farm) are
heterogeneous, as the on-farm data would probably be out of the
validity domain of the models by Villot et al., (2020). Therefore,
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one aim of our research was (i) to evaluate on-farm the models
developed by Villot et al. (2020) based on combinations of indica-
tors used to detect SARA in dairy cows under controlled trial con-
ditions. We also aimed at recovering high discrimination capacity,
(ii) by building new models with data merged from controlled
experiment and on-farm trial, to extend their validity domain
and (iii) by enriching such new models by increasing the number
of indicators from 2 to 5. For model enrichment, we focused on
indicators determinable on-farm and by quick and inexpensive
routine analysis.

Material and methods
Animals, diets and experimental procedure

The present study was carried out using data from one con-
trolled experiment (INRAE) and one trial on commercial farms
(FARM) carried out between 2016 and 2017 in which, dairy cows
were housed in free stall barns and had free access to water. The
first experiment (INRAE; described in detail by Villot et al., 2018;
2020) was conducted at the dairy cow research facilities of the
farm of Herbipbéle (INRAE, Theix, France, https://doi.org/10.
15454/1.5572318050509348E12). Eleven primiparous Holstein
dairy cows (mean + SE: 135 £ 7 days in milk; 27.5 + 2.3 kg/day milk
yield at the beginning of the experiment) were fed successively a
low starch diet (13% of diet DM) or a high starch diet (35% of diet
DM) as described by Villot et al. (2018 and 2020).

The second trial (FARM) was carried out on commercial farms
for two weeks.

This trial was conducted on 15 commercial dairy farms of the
Holstein cows located in the north-west of France, aiming to cover
a large variability of farming practices similar to those observed in
literature for the same territory (Hurtaud et al., 2014). Their risk of
SARA was evaluated according to the parameters proposed by
Sauvant and Peyraud (2010): FPR (<1.2), urea of tank milk
(<250 mmol/mL) from the last milk control recording; percentage
of concentrate in the diet (>50% DM), NDF (<35% DM) and rumen
digestible starch proportion (>25% DM) in dairy cow diet. As we
aimed to cover a wide range of risks of observing cows with SARA,
in relation to farming practices, we privileged farms with parame-
ters below or above these thresholds. The characteristics of the
selected farms are given in Table 1. Early-lactating primiparous
cows were considered to be the most susceptible to SARA
(Humer et al., 2015); thus, in each farm, four of them were ran-
domly selected (Microsoft Excel “random” function) from among
those in the first part of their lactation (days in milk [DIM]
between 20 and 159, only three of them were below 30 DIM).
Based on the monthly veterinarian inspection, the selected cows
were healthy and had not presented any apparent clinical health
status alteration, in particular lameness during the last 6 months
or mastitis (somatic cell count was used as an indicator) during
ongoing lactation. The characteristics of the selected cows are
given in Table 1.

Sampling and analysis

Diet

Diet composition was established by the experimental protocol
in INRAE experiment and was characterised by on-farm survey in
FARM trial. In INRAE experiment, the total mixed ration was
offered twice a day (in the morning and the afternoon), whereas
in the FARM trial, the total mixed ration was offered between 1
and 3 times a day, depending on the farm. In each study, two rep-
resentative sub-samples of the offered total mixed ration were col-
lected once a week for INRAE experiment and only once on the day
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Table 1
Characteristics of the farms investigated and of the monitored primiparous dairy cows (FARM data).
Item Average Median Min Max SD
Characteristics of the 15 farms
Dairy cow, n 73 62 33 135 274
Age at first calving, month 26 27 24 30 1.6
Milk yield, x1 000 L/year 695 670 174 1200 272.2
Return rate, %' 33.6 35.0 17.0 50.0 8.70
Culling rate, % 34.2 35.0 20.0 50.0 8.77
Meals, n/day 1.3 1.0 1.0 3.0 0.59
Lameness, n/year 19.4 12.0 0.0 77.0 22.44
Mastitis, n/year 20.0 20.0 3.5 50.0 12.18
Particle size of diet, %
Sieve 5 mm 41 44 22 56 10.6
Sieve 2 mm 39 38 24 64 11.2
Sieve 1 mm 18 18 13 26 4.1
Pan 2 2 0 6 1.5
Ingredients (% DMI)
Maize silage 53.0 55.6 28.5 69.2 11.38
Grass silage 123 12.0 0.0 40.8 10.08
Hay 2.5 0.0 0.0 20.5 5.26
Straw 2.0 0.0 0.0 13.3 3.78
Pasture 0.9 0.0 0.0 12.9 334
Total forage 72.6 73.9 52.1 80.7 7.42
Minerals 1.5 1.8 0.0 2.5 0.69
High moisture corn silage 4.0 43 0.0 113 4.32
Cereal grains 2.5 0.0 0.0 115 4.06
Extruded legume oilseeds 7.7 6.5 0.0 213 8.61
Commercial concentrate mix 224 243 7.6 30.8 7.14
Total concentrates 274 26.1 193 47.9 7.42
Diet DM (%) 53.0 55.6 28.5 69.2 114
Diet nutrient composition (%, DM)?
CcP 14.4 14.2 11.7 17.8 1.8
NDF 37.6 373 32.8 40.4 2.0
Physically effective NDF > 8 mm 15.3 16.0 8.6 225 4.0
Physically effective NDF > 2 mm 30.1 30.6 26.4 335 23
Physically effective NDF > 1 mm 36.9 37.0 32.7 39.6 2.0
ADF 20.5 20.2 17.7 224 27.00
Starch 233 22.7 20.2 28.1 23.04
Other carbohydrates 6.6 6.1 5.9 7.4 9.80
Characteristics of the 59 monitored primiparous cows
DIM 85 85 20 159 40.1
Milk yield, Kg/cow*day 30.8 30.8 18.6 432 4.78
Milk fat content, g/Kg 38 38 23 57 6.7
Milk protein content, g/Kg 30 31 24 37 2.5
FPR 1.3 1.2 0.8 2.2 0.25
Somatic cell count, n x 1 000/mL 69 44 11 442 77.7
Milk urea, mmol/L 4.7 4.8 1.2 7.2 14

Abbreviations: DIM = days in milk; DMI = DM intake; FPR = fat/protein ratio.
T Return rate = ratio of number of heifers / number of productive dairy cows.
2 Determined by laboratory chemical analysis.

of sampling for the on-farm trial. One sample was analysed to
determine DM (60 °C for 48 h), NDF, ADF (Van Soest et al., 1991),
CP (method 968.06; AOAC, 2005) and starch (Faisant et al., 1995)
contents. The other sample was wet sieved to evaluate particle size
proportions as detailed by Villot et al. (2020). The physically effec-
tive NDF was estimated by multiplying the NDF concentration of
the total mixed ration by the proportion of particles: >8 mm,
>2 mm, and >1 mm (Kononoff et al., 2003), as follows: [NDF (%D
M)/100] x [particle size of the diet > n mm (%)/100]; in which
n=38§,2o0r1 mm.

Kinetics of reticulo-rumen parameters and drinking acts
Reticulo-rumen (RR) pH and temperature were monitored con-
tinuously throughout both INRAE and FARM studies using a wire-
less sensor (eCow, Exeter, UK), as described by Villot et al. (2018).
The sensors were calibrated by heating in a water bath at 39 °C and
calibrating against pH 4 and 7 standard buffers before insertion.
Calibration was checked overnight using a pH 6.86 buffer. Each
RR sensor was set up to record mean pH over 15 min. The RR sen-
sor was orally administered to the animals on sampling day, just

after sampling of blood, faeces and urine, before the total mixed
ration morning feeding. The pH kinetics were analysed over the
following seven consecutive days, and daily relative RR pH indica-
tors were calculated. Signal processing was applied to raw pH val-
ues in order to calculate relative pH indicators (NpH) by filtering
and normalising data to remove inter-individual variability, sensor
drift and sensor noise (Villot et al., 2018). Both the sensitivity and
specificity of NpH indicators by Villot et al. (2018) ranged between
0.82 and 0.88. Accordingly, a cow was considered as SARA positive
(SARA+) if NpH decreased by more than 0.3 for more than 50 min,
and NpH range varied by more than 0.8 and/or its SD was above
0.2.

The number of daily drinking acts was estimated based on a
drop in RR temperature of at least 0.2 °C compared to the individ-
ual daily mean RR temperature (Gasteiner et al., 2015) within a 30-
min interval (Villot et al., 2020).

Milk
Milk yield was recorded automatically at each milking in each
farm either via a milking robot (four farms) or in a milking parlour



M. Coppa, C. Villot, C. Martin et al.

(11 farms + INRAE experimental farm). Milk samples were col-
lected over two consecutive milkings (evening and morning) the
day after the oral administration of the RR sensor. A fresh subsam-
ple was stored at +4 °C with potassium dichromate (Merck Chimie
SAS, Fontenay-sous-Bois, France) and analysed for fat, protein and
urea content and somatic cell count by mid-infrared spectroscopy
(MilkoScan 4000; Foss Electric A/S, Hillerod, Denmark; IDF, 2008;
2013) within 24 h of sampling. Daily milk composition was calcu-
lated based on the individual milk yield of morning and evening
milking. A second subsample without preservative was freeze-
dried (Thermovac TM-20, Froilabo S.A., Meyzieu, France) for FA
analysis by gas chromatography according to Ferlay et al. (2010).

Blood

Blood samples were individually collected once on the day of
the oral administration of the RR sensor from the jugular vein into
a lithium heparinised 10-mL tube (Elvetec Services, Meyzieu,
France) before the total mixed ration morning feeding (Hussein
et al., 2020), to make them homogeneous with those collected dur-
ing INRAE experiment (Villot et al., 2020). Blood pH and blood
gases were immediately measured with a blood gas analyser
(ABL5, Radiometer, Copenhagen, Denmark). Another 10-mL blood
sample was collected at the same time using EDTA-collecting tubes
(Elvetec Services, Meyzieu, France), and plasma was separated
immediately after sampling by centrifugation (3 500g, 15 min,
+4 °C). Plasma samples were frozen at —20 °C until analysis. Urea,
BHBA, NEFA (Kit NEFA-HR2, Fujifilm WAKO), glucose, aspartate
aminotransferase, gamma-glutamyl transferase and alkaline phos-
phatase were determined in plasma on an Arena 20XT (Thermo
Scientific, Vaanta, Finland) automated analyser as described by
Villot et al (2020). Cholesterol, interleukin-1p, interleukin-6, min-
erals, protein composition (total protein, albumin, globulin, biliru-
bin and haptoglobin) and oxidative status (advanced oxidation
protein product, reactive oxygen metabolites, ferric-reducing
antioxidant power, paraoxonase) were analysed at 37 °C by means
of a clinical autoanalyser (ILAB 650, Wefen, Instrumentation Labo-
ratory, Lexington, MA, USA). The red and white blood cell count,
platelet count, haemoglobin, haematocrit, mean corpuscular vol-
ume, lymphocytes, monocytes, granulocytes and eosinophils were
analysed at 37 °C by means of a clinical autoanalyser (ScilVet ABC,
Scilvet, France) specific for cattle.

Faeces and urine

Collection of urine and faecal samples (500 mL each) was syn-
chronised with blood collection. Faecal samples were collected
from the rectum of each animal, and faecal pH was immediately
measured with a digital pH-meter (VWR pH100) with a precision
of 0.1 unit, calibrated with standard solutions (pH = 4, 7 and 10).
Faecal density was calculated by weighing a 425 mL faecal sample,
which was then wet sieved to evaluate faecal particle size propor-
tions as detailed by Villot et al. (2020). Urine was collected during
spontaneous urination before the morning feed distribution, and
pH was immediately recorded using the same instrument and pro-
cedure as described for faeces.

Statistical analysis

A total of 79 variables were obtained from seven different
matrices (diet, behaviour, rumen, faeces, blood, milk, and urine)
and then statistically treated using SAS (Version 9.4; SAS Institute,
2009). When necessary, data were log-transformed before analysis
(details given in Supplementary Table 1). The main steps of our
work with the related statistical procedures are summarised in
Fig. 1. The SAS code of the statistical procedure applied is reported
in the Supplementary Material 1.
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Step 1: Evaluation of models developed by Villot et al. (2020) using
FARM data

The models by Villot et al. (2020) are detailed in the Supple-
mentary Table 1. An external evaluation of the multiple logit func-
tions models published by Villot et al. (2020) was performed with
Excel (Microsoft Office 365®, 2013) by applying them to the FARM
data only to predict the probability (y) of a cow to be affected by
SARA (y > 0.5). Models 1, 3, 6, 8 and 17 by Villot et al. (2020 includ-
ing DMI as an indicator were not tested as it was not possible to
measure DMI on-farm.

Step 2: Development of new models using combined INRAE and FARM
data, and based on indicators from Villot et al. (2020)

In an attempt to understand whether a possible lower dis-
crimination capacity was due to (i) non-robust indicators
included in the models, or (ii) heterogeneity in datasets because
FARM data would be out of the validity domain of the models by
Villot et al. (2020), a principle component analysis (“proc prin-
comp” of SAS) was first performed on the combined controlled
INRAE and FARM data. The principle component analysis was
based on the indicators used for the external evaluation of the
models by Villot et al. (2020). Hotelling’s T 2 test was performed
during the principle component analysis, selecting a 95% confi-
dence region. Secondly, the same indicators included in each
model by Villot et al (2020) were used to build new models. A
linear discriminant analysis (“proc discrim” of SAS) with leave-
one-out cross-validation on the combined INRAE and FARM data
was performed.

Step 3: On-farm adaptation and enrichment of the models

To test if it was possible to further improve discrimination
capacity, the LDA models from step 2 were also enriched by
increasing the number of variables from 2 or 3 to 4 and 5. The
enriched models obtained by LDA were adapted to the on-farm
application by using only indicators quickly determinable on-
farm during a visit or through inexpensive and rapid routine anal-
ysis, using two types of variables (referred to the individual cow or
giving information related to the herd diet, as a further risk factor).
Additional variables to be added to the initial models of Villot et al
(2020) were selected following three steps:

1. an ANOVA (“proc glm “ of SAS) was applied to each indicator,
using the SARA group (SARA+ or SARA-) as a fixed factor to
determine whether it was affected or not by SARA. A first and
broad selection of variables was performed by retaining only
those showing differences in P-value < 0.10.

2. a second selection of the most discriminant variables was made
by combining two approaches: (i) correlation matrix (“‘proc
corr of SAS) to establish the correlations between variables,
(ii) a partial least squares discriminant analysis (“proc pls
method = pls cv = one” of SAS) to rank the importance of the
variables in the discrimination of SARA+ and SARA— cows, fol-
lowing the same procedure used by Villot et al. (2020). Variable
importance in projection scores of the partial least squares dis-
criminant analysis estimates the importance of each variable in
the projection to the latent structure. Only those with the high-
est variable importance in projection among variables from the
same matrix correlated with Pearson’s r > |0.7| were kept for the
further steps of model enrichment. Furthermore, only variables
with variable importance in projection close to or higher than 1
were considered. The last criterion for variable selection was
feasibility on farm, so an indicator was kept if measurable using
inexpensive routine laboratory analysis. Therefore, the milk FA
profile was not used for model enrichment since its acquisition
by gas chromatography is time-consuming. Only saturated FA
(SFA) milk concentration was kept, as its estimation by mid-
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X Step 1: Villot et al. (2020) : 18 models developed using data from a controlled experiment (INRAE)
Evaluation of models developed Specificity 61-100 %, sensitivity 79-100 %
by Villot et al. (2020) (n =77 individual data)
using a commercial farm dataset l

Hypothesis 1:
Models developed under
experimental controlled

conditions are not adapted to m
commercial farms Models applicable Specificity and Specificity and

on farm <:| sensitivity > 85 % . sensitivity < 85 %

External evaluation of 13 models with data from commercial farms trial (FARM)
(n =59 individual data from 15 farms; 2-3 indicators/model)

Developmesr:tesfzr;ew models Combination of (INRAE + FARM) data
using data from controlled (n =136 individual data)
experiment (INRAE) and l
commercial farms trial (FARM),
and based on indicators from Test of data heterogeneity
Villot et al. (2020) Principal component analysis,

Hotelling’s T 2 test
Heterogeneous INRAE Homogeneous INRAE
vs. FARM data vs. FARM data

Hypothesis 2:

Combining INRAE + FARM data —
will extend the validity domain Development of new models based on indicators

of the models and increase their from Villot et al. (2020)

discrimination capacity Q Linear
' discriminant

analysis
Models - Specificity and No significant New indicators
8 Specificity and P \ ' c e !
applicable ser?sitivityi o,  sensitivity increased,  increase in specificity required
on farm but remained < 85 % and sens';hwty =

Step 3: l 1

On farm adaptation and Selection of additional indicators among those analysed by

enrichment of the models villot et al. (2020) using the combined (INRAE + FARM) data
(Coppa et al., this paper) (n = 136 individual data)

ANOVA + Correlation +
Partial least square discriminant analysis
Enrichment of models with selected indicators

Hypothesis 3: (from 2-3 to 5 indicators/model)
Increasing the number of

indicators in the models will Linear discriminant analysis l %

improve their discrimination

capacity Specificity and No significant A4
sensitivity increased, increase in specificity
but remained < 85 % and sensitivity
Need to increase Further
|_| |_| the number of studies
V> cows and farms required

Fig. 1. Summary of the main steps of this work and the related statistical procedures used for the on-farm evaluation of multiparametric models to predict subacute ruminal
acidosis in dairy cows.

Table 2
External evaluation using on-farm data (FARM) of the models developed under controlled trial conditions by Villot et al. (2020) to detect subacute ruminal acidosis using non-
invasive indicators in dairy cows.

Model Villot et al. Model variables On-farm external evaluation (%)’
(2020)
No. Matrix Var 1 Matrix Var 2 Matrix Var 3 Se Sp Pr Ac
2 Blood Cholesterol, mmol/L Milk  n-6 FA g/100 g FA 27+18 921 66+4.2 6712
4 Blood HCO3, mmol/L Milk  Urea, mmol/L 57+27 732 61+29 66+1.6
5 Blood HCO3, mmol/L Milk  FPR 65+24 59+21 51+27 61+14
7 Blood BHBA, mmol/L Milk Urea, mmol/L 15+1.6 100+0.0 95+49 622
9 Blood BHBA, mmol/L Blood Glucose, mmol/L Urine pH 14+17 100£0.0 95+49 62+19
10 Milk Urea, mmol/L Urine pH 48+27 70+18 5626 60+1.7
11 Behaviour Drinking act, No/day Faeces pH Milk  Urea, mmol/L 63+2.0 78+14 68+24 71x1.0
12 Behaviour Drinking act, No/day Faeces pH Milk  SFA, g/100g 100+ 0.0 0 0.0 39+19 39+19
FA
13 Faeces pH Blood BHBA, mmol/L 10+14 100+00 95+49 64+19
14 Faeces pH Milk  Urea, mmol/L 31+£22 84+12 59%25 6116
15 Faeces pH Milk  C18:1 tr10/tr11, log g/100 g 39+18 80+19 57+27 6416
FA
16 Faeces pH Milk  FPR 53+25 79+14 63+£23 69+1.1
18 Faeces Sieving residue, Urine pH 76+22 18+18 38+19 4116
5+2mm,%

Abbreviations: BHBA = B-hydroxybutyrate; C18:1 tr10/tr11 = C18:1 trans10/C18:1trans11 ratio; FA = fatty acids; FPR = fat/protein ratio; SFA = saturated FA Var = variable.
1 Se = sensitivity; Sp = specificity; Pr = precision; Ac = accuracy; Mean from bootstrap procedure # SE.
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infrared spectroscopy gives results similar to those of gas chro-
matography (Coppa et al.,, 2017).

3. Enriched LDA (“proc discrim” of SAS) models were built by add-
ing 1, 2 or 3 indicators to those proposed in the models of Villot
et al. (2020). As results, LDA models with 3, 4 or 5 variables
were tested.

Models performance evaluation

For the evaluation of the discrimination capacity of all models,
the sensitivity (calculated as the true-positive rate), specificity
(calculated as the true-negative rate), precision (calculated as the
true positives over the true + false positives), and accuracy (calcu-
lated as the ratio between the true positives + the true negatives
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and the total samples) were used, according to Fawcett (2006).
Accordingly, in the current study, the sensitivity and specificity
express the error rate within a group to be discriminated (SARA+
or SARA-, respectively), whereas the precision expresses the
capacity of the model to detect the samples, respecting a criterion
over all samples, and the accuracy expresses the reliability of the
model (Fawcett, 2006). The SE of sensitivity, specificity, precision
and accuracy of both the external evaluation of the model by
Villot et al. (2020) and the calibration and cross-validation of each
new linear discriminant model were estimated using a bootstrap
resampling procedure (“proc surveyselect” of SAS). In particular,
a random resampling with substitution (“outhits method = urs”
of SAS) of a sample of the same extent as the original dataset
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Fig. 2. Representation of the distribution of the individuals from three principal components analysis performed on the indicators of diet, behaviour, milk, blood, urine and
faeces used for the development of models to predict subacute ruminal acidosis in dairy cows. EXPE = data from the controlled experiment (INRAE) conducted at the
experimental farm; Ferme = data from commercial farms (FARM). The ellipse represents the 95% confidence region determined by Hotelling’s T 2 test.
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Table 3

Performance of subacute ruminal acidosis detection in dairy cows of linear discrimination models developed combining controlled experiment (INRAE) and on-farm trial (FARM) data based on the indicators included in the models of

Villot et al. (2020).

Leave-one-out cross-validation

Model coefficients

Linear discriminant model variables

Model Villot et al. (2020)

Villot, C.

performance of the models (%)'

Se

Pr Ac

Sp

X2 X3

X1

Var 3

Matrix

Matrix Var 2

Var 1

Matrix

No.

Martin et al.

1.5

80+19
75 £

78+16 78+18 77+14
69+22 73+18 74116

81+19 78+21

71+20 88+18 85%23

76 £1.5
9+1.1

-162 202 69+16 5919 64+16 6415

68 £1.5

2.59
0.59
2.61
0.82

-0.33
0.23
0.26
1.36

-4.28

-9.12
-10.6

-4.13
-16.5
-18.0
-15.0
-234
-15.7

n-6 FA, g/100 g FA
Urea, mmol/L

FPR
Urea, mmol/L

Milk
Milk

Milk

Milk

Cholesterol, mmol/L

HCO3, mmol/L
HCO3, mmol/L
BHBA, mmol/L
BHBA, mmol/L

Blood
Blood
Blood
Blood

2.85
1.76

0.18

pH

Urine

Glucose, mmol/L

Blood

Blood

82+1.0
72+ 1.6
71 £09
78+ 1.0

81+13

7523 7919 80+23 77%20
72+09 7516 73+1.7 73+1.0

82+12 83+1.0 85+1.1
77+14 8010 79+1.0 7909

69+09 7413 72+13
63+1.8 5820 61+14 6116

69+09 85%1.1

257 010 69+14 74+19 74+21
8
5

1.66 0.76

93

8

70
0.57

0.
3.
3

0.002
1.92
1.67
-1.94
2.06
0.07

-13.7

119
-17.0
-29.1

Urea, mmol/L
SFA, g/100 g FA

Milk
Milk

C18:1 tr10/tr11, log g/100 g FA

= 4
==
£
E
=]
- E
<.
o]
Tz ISR
aaamDuUT
v 3o )
C 00 QMMM &
ECO0EEEE
SEEM===D
B
£
E
~N
+
T T n
== <
==}
=}
= =
Erurv 15
50 b =
EEE 00
P~ el £
TEE= S
[ iy} T L
jmialya o n
-
33
=888 88
X2 T © O 0000
TEE2225%
= mm @R R s

fat/protein ratio; K = constant; SFA = saturated FA; Var = variable; Xn = coefficient of variable n.

fatty acids; FPR =

B-hydroxybutyrate; C18:1 tr10/tr11 = C18:1 trans10/C18:1trans11 ratio; FA

Abbreviations: BHBA

1 Se = sensitivity; Sp = specificity; Pr = precision; Ac = accuracy; Mean from bootstrap procedure * SE.
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was generated 20-fold. For each subsampled dataset, the external
evaluation or calibration and cross-validation procedure was iter-
ated and the average sensitivity, specificity, precision and accuracy
and their SE were calculated (Efron and Tibshirani, 1993). For each
step, the target for each model was to reach values > 85% for both
sensitivity and specificity, considered a reasonable threshold to
allow a possible careful use for individual screening on farm (De
Marchi et al., 2014; Villot et al., 2020; Coppa et al., 2021).

Results

Reticulo-rumen parameters and rumen, faeces, blood, milk, urine,
behaviour, and diet indicators

Descriptive statistics for rumen, faeces, blood, milk, urine, beha-
viour, and diet indicators from combined INRAE and FARM data are
presented in Supplementary Table 2. The NpH times spent
below < —0.3 and below < —0.5 ranged from 0 to 539 min and from
0 to 285 min, respectively. The NpH range varied from 0.3 to 1.12
and the NpH SD from 0.09 to 0.39. Forage/concentrate ratio ranged
from 80/20 to 46/54 and starch proportion from 13 to 35% of diet
DM. Variability in rumen NpH and in cow diet was reflected by a
large variability in most of the blood, milk, faeces and behaviour
indicators. For instance, milk FPR ranged from 0.49 to 2.15, urea
from 1.20 to 7.16 mmol/L and SFA from 47.3 to 75.3 g/100 g FA.
In blood, bicarbonate and BHBA ranged from 16.0 to 39.0 and from
0.15 to 1.49 mmol/L, respectively. In faeces and urine, pH ranged
from 5.6 to 7.3 and from 7.1 to 8.7, respectively.

Evaluation of models developed by Villot et al. (2020) using FARM data

Among the 59 cows monitored on farms, 22 were classified as
SARA+ and 37 as SARA-, based on the NpH indicators (Villot
et al., 2018).The prevalence of SARA based on NpH indicators

Table 4

Variable importance in projection scores of each indicator calculated with partial least
squares discriminant analysis used to rank the importance of the variables in the
detection of subacute ruminal acidosis in dairy cows.

Matrix Indicator Variable importance
in projection
Diet Forage, % DM 2.0
Diet Starch, % DM 2.0
Milk n-6 FA, g/100 g FA 1.6
Blood HCO3, mmol/L 1.6
Blood pH 1.6
Milk C18:1 trans10/ trans11, log g/100 g FA 1.5
Milk SFA, g/100 g FA 14
Blood BHBA, mmol/L 1.2
Milk FPR 1.2
Urine pH 1.1
Blood Hp, log g/L 1.0
Milk Urea, mmol/L 1.0
Blood Urea, mmol/L 1.0
Faeces Density, kg/m> 1.0
Blood Platelets, log n/mL 0.7
Faeces pH 0.6
Blood Cholesterol, mmol/L 0.6
Milk Somatic cell count, log n x 1 000/mL 0.6
Blood Globulin, g/L 0.5
Blood Cl, mmol/mL 0.5
Blood Aspartate aminotransferase, n/L 0.5
Blood Glucose, mmol/L 0.4
Blood Albumin, g/L 0.4
Milk Iso-FA, g/100 g FA 03
Blood Alkaline phosphatase, log n/L 0.3
Blood Monocytes, 10°/mm?> 0.2
Blood Partial pressure of CO,, mm Hg 0.2

Abbreviations: BHBA = B-hydroxybutyrate; FA = fatty acids; Hp = haptoglobin;
FPR = fat/protein ratio; SFA = saturated FA.
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Table 6
Model performances of subacute ruminal acidosis detection in dairy cows of using linear discriminant analysis combining controlled experiment (INRAE) and on-farm trial (FARM) data enriched with four indicators measurable by
inexpensive routine analysis.

Model Villot Enriched model Linear discriminant model variables Model coefficients Leave-one-out cross-validation

et al. (2020) performance of the models (%)’

No. No. Matrix Var 1 Matrix Var 2 Matrix Var 3 Matrix? Var 4? K X1 X2 X3 X4 Se Sp Pr Ac

4 4B1 Blood HCO; mmol/L Milk  Urea, mmol/L Blood BHBA, mmol/L Milk FPR -9.53 0200 0424 0890 121 78+18 8516 86+14 81+1.2
4B2 Blood HCO;, mmol/L Milk Urea, mmol/L Blood BHBA, mmol/L Urine pH -10.0 0.203 0446 1.29 0.178 78+13 86+13 83+12 82+1.1
4C1 Blood HCO; mmol/L Milk  Urea, mmol/L Blood Hp, log g/L Milk FPR -10.2 0203 0372 -0.848 169 81+1.1 85%13 86+12 83+08

5 5B1 Blood HCOs3;, mmol/L Milk FPR Blood Hp, log g/L Faeces  Density, kg/m> -5.53 0.226 230 -0950 453 73+18 8412 82+15 79+1.1

7 7B1 Blood BHBA, mmol/L Milk Urea, mmol/L Diet Starch, % DM Milk FPR —-3.03 -0.222 -0.234 0.156 0226 80+17 85%11 8510 82%1.2
7B2 Blood BHBA, mmol/L Milk  Urea, mmol/L Diet Starch, ¥ DM Urine  pH -0.520 -0.279 -0.216 0.153 -0.286 79+1.7 88+1.0 89+0.9 83+1.2
7B3 Blood BHBA, mmol/L Milk Urea, mmol/L Diet Starch, ¥ DM Faeces Density, kg/m> -3.52 -0.254 -0230 0.153 0828 79+1.6 809 8 +0.8 82+1.1
7C1 Blood BHBA, mmol/L Milk Urea, mmol/L Milk FPR Urine pH -19.2 0917  0.691 1.66 176 7917 89+13 90+12 8314
7D1 Blood BHBA, mmol/L Milk Urea, mmol/L Blood Urea, mmol/L  Urine pH -16.2 2.24 1.01 -0363 154 77+16 8521 87+17 81+15

9 9A1 Blood BHBA, mmol/L Blood Gluc, mmol/L Urine pH Diet Forage, % DM -11.1 -0.857 420 -0.112 0.151 72+16 96+0.7 95+0.8 83+09
9A2 Blood BHBA, mmol/L Blood Gluc, mmol/L Urine pH Milk Urea, mmol/L -18.1 1.64 0.640 1.69 0.771 77+15 82+22 84+18 8017

10 10A Milk Urea, mmol/L  Urine pH Diet Starch, % DM Milk FPR 1.53 -0.236 -0.637 0.157 0539 81%15 83+1.1 8+1.0 82+1.2
10A Milk  Urea, mmol/L Urine pH Diet Starch, ¥ DM Blood = BHBA, mmol/L -0.520 -0216 -0286 0.153 -0279 79+1.7 88+10 89+09 83+12
10A Milk  Urea, mmol/L Urine pH Diet Starch, ¥ DM Milk SFA, g/100 g FA 135 -0.250 -0.279 0.148 -0.027 80+15 85+0.9 87+0.9 82+1.1
10B Milk Urea, mmol/L  Urine pH Milk FPR Blood  BHBA, mmol/L -19.3 0.691 1.76 1.66 0917 79+1.7 8915 90+x13 83+14

Abbreviations: BHBA = B-hydroxybutyrate; FA = fatty acids; FPR = fat/protein ratio; Gluc = Glucose; Hp = haptoglobin; K = constant; SFA = saturated FA; Var = variable; Xn = coefficient of variable n.
! Se = sensitivity; Sp = specificity; Pr = precision; Ac = accuracy; Mean from bootstrap procedure * SE.
2 Variable added to the corresponding model presented in Table 5.

Table 7
Model performances of subacute ruminal acidosis detection in dairy cows using linear discriminant analysis combining controlled experiment (INRAE) and on-farm trial (FARM) data enriched with five indicators measurable by
inexpensive routine analysis.

Model Villot  Enriched Linear discriminant model variables Model coefficients Leave-one-out cross-validation

et al. (2020)  model performance of the models (%)’

No. No. Matrix Var 1 Matrix Var 2 Matrix Var 3 Matrix Var Matrix> Var 5° K X1 X2 X3 X4 X5 Se Sp Pr Ac

4

7 7B2a Blood BHBA, mmol/L Milk  Urea, Diet Starch, % Urine pH Faeces Density, -1.90 -0.256 -0.207 0.152 -0247 1.03 80+14 87+1.1 89+09 84+1.1

mmol/L DM kg/m?
7Cl1a Blood BHBA, mmol/L Milk  Urea, Milk FPR Urine pH Blood Urea, -18.3 1.70 0.937 1.32 1.683 —-0346 77+16 87+3.1 88+13 8114

mmol/L mmol/L

Abbreviations: BHBA = B-hydroxybutyrate; FPR = fat/protein ratio; K = constant; Var = variable; Xn = coefficient of variable n.
! Se = sensitivity; Sp = specificity; Pr = precision; Ac = accuracy; Mean from bootstrap procedure * SE.
2 Variable added to the corresponding model presented in Table 6.
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- milk urea), specificity increased from 66 to >78%, reaching 95%
with diet forage proportion (in this case, however, to the detriment
of sensitivity, which dropped from 79 to 75%). Similarly, precision
and accuracy also increased. Three models originating from model
7 by adding a fourth indicator showed equivalent or slightly
improved specificity and precision, although model 7D1 (model
7D urine pH) showed a lower sensitivity than model 7D. Only
two models enriched with five indicators originating from model
7 maintained their discrimination, although without further
improvement. The addition of diet forage proportion (model 9A1)
or milk urea (model 9A2) increased specificity, precision, and accu-
racy, as well as sensitivity in model 9A1 (77 vs 69%). The addition
of diet starch proportion (model 10A) or FPR (model 10B) to model
10 (milk urea - urine pH) improved specificity, precision and accu-
racy. Sensitivity was also higher in model 10A than in model 10 (80
vs 75%). Adding blood BHBA (10A2), to model 10A or adding blood
BHBA (10B1) to model 10B resulted in slightly increased speci-
ficity, precision and accuracy. Finally, adding diet starch proportion
(model 14A) or milk SFA (model 14B) to model 14 (faeces pH -
milk urea) improved model specificity, precision and accuracy.
The enrichment with a third and fourth indicator improved preci-
sion and accuracy for all the models, but this was not the case for
the model enriched with five indicators.

Discussion

Evaluation of models developed by Villot et al. (2020) using com-
mercial FARM data

When evaluating on-FARM data, the models built by Villot et al.
(2020) in experimentally induced SARA, the discrimination capac-
ity of the models decreased, meaning that their robustness was
low. This low robustness can be due to a lack of homogeneity
between the calibration and external evaluation datasets (Shenk
and Westerhaus, 1995), as shown by their segregation in principle
component analysis (Fig. 1), because of the FARM data were out of
the validity domain of the models by Villot et al (2020). In the
research by Villot et al. (2020), SARA was experimentally induced
by a specific diet, and the SARA+ and SARA- groups were fed
two contrasted diets (different forage/concentrate ratio, maize
silage vs. grass silage, etc.). Such contrasting diets may have
increased the amplitude of differences for some indicators (i.e.
milk FA composition; faeces physical appearance/sieving, beha-
viour, etc. Cabiddu et al., 2022; Abdela, 2016; Humer et al,,
2018). Occurrence of on-farm SARA in cows fed the same diet
depends on the individual susceptibility of the cows (Khiaosa-ard
et al., 2018). Furthermore, data collected on-farm usually cover
intermediate situations to which the models developed in con-
trolled trials are not usually confronted to. This means that the
dataset on which the models of Villot et al. (2020) were calibrated
for a specific range of response could be different from those from
commercial farms.

Even if the indicators used by Villot et al. (2020) were fully bio-
logically justified for the detection of SARA, another hypothesis to
explain the low robustness of their models could be that the con-
trasting dietary conditions used in the experiment to induce SARA
might have generated significant differences in the indicators, not
primarily due to the occurrence of SARA. Some of the indicators in
the models of Villot et al. (2020) might have been more sensitive to
diet change than to SARA, like some FA (i.e. SFA, MUFA; PUFA, n-6
FA), which are greatly sensitive to cow feeding (Cabiddu et al,,
2022). Discrimination models developed on the same indicators
combining INRAE and FARM datasets gave both sensitivity and
specificity superior to 70%. These results, as well as the principle
component analysis (Fig. 2), seem to confirm our hypothesis that
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the low robustness could be due to heterogeneous calibration
and external evaluation datasets, as these last data were out of
the validity domain of the models by Villot et al. (2020).

Models development, adaptation and enrichment combining INRAE
and FARM data

Model adaptation and enrichment combining INRAE and FARM
data revealed new indicators relevant in discriminating between
SARA+ and SARA- cows: blood haptoglobin, faecal density, and
forage and starch proportions in the diet. Haptoglobin is a com-
monly reported inflammatory biomarker in plasma that is mainly
involved in subacute or chronic inflammatory conditions
(Horadagoda et al., 1999; Ametaj et al., 2011), and high plasma
haptoglobin content has been associated with SARA (Zebeli et al.,
2012). Changes in faecal density, with increasing frequency of diar-
rhoea, are observed in herds affected by SARA (Abdela, 2016). Low
forage and high starch proportions in dairy cow diets are known to
underlie SARA (Humer et al., 2018; Plaizier et al., 2018). On the
other hand, the residue (5 + 2 mm) of sieved faecal material was
not significant when including on-farm data. This could be due
to the contrasted diets fed in the controlled trial by Villot et al.
(2020) to induce SARA: their different fibre and grain contents
led to a divergent distribution in sieving sizes (Abdela, 2016).
When SARA occurs in cows fed the same diet (i.e. in a given farm),
the distributions of sieved faecal material may be too close to dis-
criminate between SARA+ and SARA— cows.

In general, when increasing the number of indicators per model
from 2 to 3, the sensitivity in some cases and the specificity, preci-
sion and accuracy in almost all the models increased. Some
increases in specificity and precision were observed when the
models were enriched with 3-4 indicators. This confirms the
hypothesis advanced by Plaizier et al. (2018), who reported that
combining clinical examinations of cows including milk, blood
urine and faeces indicators as well as diet characteristics would
help to accurately detect SARA. However, the improvement was
inconsistent when five indicators were used for the discrimination.
Furthermore, the improvement in sensitivity and specificity was
small when comparing models using four as opposed to three indi-
cators and limited to only some of the models. Considering that
sampling, analysis, and costs would be more consistent with a
higher number of indicators, it would probably not be advisable
to use more than three indicators for routine application of the
models. The models developed in the present paper showed a
potential for routine screening application as several of them had
a sensitivity or a specificity close to or higher to the targeted
threshold of 85%. However, at present, care in the application of
our model for individual diagnosis of SARA is recommended as
none of the models reached value >85% for both specificity and
sensitivity, which can be considered a reasonable threshold to
allow a possible use for on-farm screening (De Marchi et al.,
2014; Villot et al., 2020; Coppa et al., 2021). A careful interpreta-
tion of the predicted results (i.e. by cross-checking the general
health status of the animal) is also recommended since the indica-
tors we used might also be sensitive to other diseases or to alter-
ation in animal status (Abdela, 2016). Improvement of model
reliability would probably be possible by enlarging the dataset,
with more cows monitored on several different farms (for both
NpH and indicators), with a view to increasing the variability of
cow characteristics (i.e. including multiparous cows, different
breeds, lactation stages, etc.) and reference data. Furthermore,
external evaluation would also be needed.

In conclusion, the discrimination models developed by Villot
et al. (2020) in controlled conditions were not robust enough when
used in environments or timeframes different from those in which
they were developed. Combining controlled experiment and on-
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farm trial data and enriching each model from 2 to 3 indicators
allowed to partially recover the discrimination capacity between
SARA+ and SARA— cows, confirming the relevance and the poten-
tial of combinations of indicators measurable on-farm by inexpen-
sive routine analysis for the detection of the risk of SARA at
individual scale in a dairy herd. Therefore, enlargement of the data-
sets with more farms and cows i to develop the models, in order to
increase variability and validity domain, is recommended to vali-
date our results and further increase models performance in dis-
criminating SARA. This would be probably preferable to adding
further indicators to the models. Further research is needed to con-
firm this hypothesis. In addition, the use of models discriminating
situations at risk of health problems is essential to reduce the num-
ber of experimental animals in line with the objective of the 3R
approach (Refine, Reduce, Replace experimental animals; Vessier
et al,, 2021).
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