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Introduction

En 2008, M. Filaseta, A. Granville et A. Schinzel [START_REF] Filaseta | Irreducibility and greatest common divisor algorithms for sparse polynomials[END_REF] ont montré qu'il existe un algorithme qui permet de calculer le pgcd de deux polynômes f , g ∈ Z[x] de degré au plus D ≥ 2 en 1 O N,h (log D) opérations binaires sous l'hypothèse qu'au moins l'un des f et g n'ait pas de facteur cyclotomique. La constante implicite dans O dépend du nombre N des coefficients non nuls de f et g et du maximum H de la valeur absolu de leur coefficients. L'hypothèse que f ou g n'est pas divisible par un polynôme cyclotomique est cruciale, comme a été déjà remarqué dans [11, p. 157]. Soient a et b deux entiers naturels premiers entre eux. Alors on a : pgcd x ab -1, (x a -1)(x b -1) = (x a -1)(x b -1)

x -1 .

Ensuite 2015, F. Amoroso, L. Leroux et M. Sombra [START_REF] Amoroso | Overdetermined systems of sparse polynomial equations[END_REF] ont précisé l'algorithme de [START_REF] Filaseta | Irreducibility and greatest common divisor algorithms for sparse polynomials[END_REF]. Ils ont montré qu'il existe un algorithme qui permet de déterminer la partie non-cyclotomique du pgcd de f et g en au plus O N,h (log D) opérations binaires, même si f et g ont des facteurs cyclotomiques. On va énoncer leur résultat. On note V (f, g) l'ensemble des racines communes de f, g dans Q. Le symbole µ ∞ désigne l'ensemble des racines de l'unité de Q. 

p 1 | pgcd(f, g), V (p 1 ) \ µ ∞ = V (pgcd(f, g)) \ µ ∞ et V (p 2 ) = V (pgcd(f, g)) ∩ µ ∞ ,
en au plus O N,h (log D) opérations binaires.

L'algorithme correspondant au théorème 1.1 se compose de deux procédures :

1) la recherche de la partie non-cyclotomique p 1 ;

2) la recherche de la partie cyclotomique p 2 . L'algorithme est décrit et analysé dans [START_REF] Amoroso | Overdetermined systems of sparse polynomial equations[END_REF]Algorithm 4.3]. Sa complexité est de au plus O N,h (log D) opérations binaires. Si la dépendance en N et h de la complexité de la recherche de la partie cyclotomique est explicite et peut être déduite du théorème 2.2 de L. Leroux dans [START_REF] Leroux | Computing the torsion points of a variety defined by lacunary polynomials[END_REF], celle qui concerne la recherche de la partie non-cyclotomique utilise une estimation non explicite qui provient d'une ex-conjecture de Schinzel [START_REF] Schinzel | Polynomials with special regard to reducibility[END_REF]Conjecture 1].

Théorème 1.2. Soit n ≥ 1 un entier. Soient F, G ∈ Z[x 1 , • • • , x n ] tels que pgcd(F, G) = 1. Alors il existe B(F, G) > 0 satisfaisant la propriété suivante. Soient a = (a 1 , • • • , a n ) ∈ Z n , ζ = (ζ 1 , • • • , ζ n ) ∈ µ n ∞ et ξ ∈ Q * \ µ ∞ . Si F (ζ 1 ξ a 1 , • • • , ζ n ξ an ) = G(ζ 1 ξ a 1 , • • • , ζ n ξ an ) = 0
alors il existe un vecteur non nul b ∈ Z n orthogonal à a de norme L ∞ satisfaisant :

b ∞ ≤ B(F, G).

A. Schinzel [18, Theorem 45] avait énoncé et donné une preuve de cette conjecture dans le cas particulier n ≤ 3 (et pour

ζ 1 = • • • = ζ n = 1).
Ensuite, elle a été démontré pour n quelconque (mais toujours pour [START_REF] Schinzel | Polynomials with special regard to reducibility[END_REF]Appendix] et, avec une méthode partiellement différent et en toute généralité, par E. Bombieri, D. Masser et U. Zannier [START_REF] Bombieri | Anomalous subvarietiesstructure theorems and applications[END_REF]Theorem 1.6]. Ces preuves sont effectives mais pas explicites (voir la discussion après [START_REF] Filaseta | Irreducibility and greatest common divisor algorithms for sparse polynomials[END_REF]Theorem 2]). Une preuve qui explicite la dépendance de B(F, G) permettrait de rendre effectif l'algorithme du théorème 1.1 pour la partie non-cyclotomique.

ζ 1 = • • • = ζ n = 1) par E. Bombieri et U. Zannier
On présente ici une nouvelle méthode pour démontrer le théorème 1.2 en explicitant la dépendance en le degré et en la taille des coefficient de F et G. Le résultat obtenu n'est cependant pas explicite en n. Cette méthode s'inspire de l'approche de S. Checcoli, F. Veneziano et E. Viada dans [START_REF] Checcoli | On torsion anomalous intersections[END_REF], où les auteurs ont démontré un théorème analogue au théorème 1.2 dans le cas de produit de courbes elliptiques. L'idée principale consiste à utiliser le théorème de Bézout arithmétique de P. Philippon et une version fonctorielle du théorème de Dobrowolski généralisé.

Pour F ∈ Z[x ±1 ] on note F 1 la norme L 1 de son vecteur des coefficients. Notre résultat principal est le théorème suivant :

Théorème 1.3. Soient n ≥ 2 et s ≥ 2 deux entiers positifs et ε ∈]0, 1]. Soient F 1 , • • • , F s ∈ Z[x ±1 ], a ∈ Z n \{0}, ξ ∈ Q * et ζ ∈ µ n ∞ . On suppose que la sous-variété V de G n m définie par F 1 = • • • = F s =
0 soit de codimension au moins 2 en α := ζξ a . Alors il existe un vecteur non nul b ∈ Z n orthogonal à a tel que :

ξ a,b = 1, et b ∞ ≤ c(n, ε) max(h 1 /D n , 1) 1+ε D 2n 2 , où c(n, ε) > 0, D = max 1≤i≤s deg(F i ) et h 1 = max 1≤i≤s log F i 1 .
Pour expliciter la dépendance en n et ε de c(n, ε), il faudrait expliciter la méthode de transfert de G. Rémond [START_REF] Rémond | Généralisations du problème de Lehmer et applications à la conjecture de Zilber-Pink. Around the Zilber-Pink Conjecture/Autour de la conjecture de Zilber-Pink[END_REF] qui permet de déduire cette version fonctorielle du théorème de Dobrowolski généralisé à partir de la version relative de E. Delsinne [START_REF] Delsinne | Le probleme de lehmer relatif en dimension supérieure[END_REF].

Hauteur projective

Rappelons d'abord la notion de hauteur de Weil dans l'espace projectif P n . Soit α = (α 0 : α 1 : • • • : α n ) ∈ P n et soit K un corps de nombre qui contient les α j . On pose :

h(α) = 1 [K : Q] v n v log |α| v (2.1)
où la somme est sur les places (finies et infinies) de

K, n v = [K v : Q v ] est le degré local et |α| v = max(|α 0 | v , . . . , |α n | v ).
Cette definition ne dépend pas du choix de K ni du choix de coordonnées projective de α. Soit V une sous-variété geometriquement irréductible de P n . P. Philippon dans [START_REF] Philippon | Sur des hauteurs alternatives[END_REF], [START_REF] Philippon | Sur des hauteurs alternatives[END_REF] at [START_REF] Philippon | Sur des hauteurs alternatives III[END_REF], définit à l'aide de la théorie des formes éliminantes, une notion de hauteur de V , notée h Pn (V ). La définition de hauteur d'une variété s'étend par additivité à un cycle de Chow S = [l i ]V i (V i irréductibles) à coefficients l i ∈ N, par : h Pn (S) = i l i h Pn (V i ).

Nous remarquons que dans [START_REF] Philippon | Sur des hauteurs alternatives III[END_REF] l'auteur considère des sous-variétés projectives définies sur un corps de nombre K et qui sont implicitement supposée K-irréductibles (au moins on peut se réduire à ce cas en considérant le cycle des conjugués galoisiens de chaque variété). Ici, nous utiliserons le mot sousvariété de P n pour se référer à une intersection ensembliste de sous-variétés géométriquement irréductibles de P n . Comme on le fait usuellement, nous noterons aussi par V ∩ W l'intersection ensembliste de V et W . Soient I et J les idéaux homogènes définissant V et W ; on peut alors identifier cette intersection au cycle ZR(I + J) (voir [START_REF] Philippon | Sur des hauteurs alternatives III[END_REF], dernière paragraphe à p. 347) supporté sur les composantes irréductibles de l'intersection et avec coefficients 1. Remarquons que dans op. cit. en revanche le cycle V ∩ W = Z(I + J) n'est pas en général réduit et qui peut même avoir des composantes immergées.

Pour un point α = (α 0 : α 1 : • • • : α n ) ∈ P n , la hauteur de la sous-variété projective V = {α} coïncide avec la hauteur "L 2 " de α, définie en prenant dans (2.1) 

α v = (|α 0 | 2 v + • • • + |α n | 2 v ) 1/
h(F ) = 1 [K : Q] v [K v : Q v ]
h Pn (Z) = h(F ) + deg(F ) 2 n-1 i=1 i j=1 1 j .
(2.4)

Théorème de Bézout

Nous utiliserons la version suivante du théorème de Bézout (géométrique et arithmétique) de P. Philippon ([16, théorème 3]).

Théorème 2.1. Soient V et W deux sous-variétés de P n définie sur un corps de nombre K et K-irréductibles. Notons X 1 , . . . X g les composantes irréductibles (isolées) de l'intersection ensembliste V ∩ W . On a alors :

g i=1 deg(X i ) ≤ deg(V ) deg(W ) g i=1 h Pn (X i ) ≤ h Pn (V ) deg(W ) + h Pn (W ) deg(V ) + c deg(V ) deg(W ) où c = 1 2 dim V i=0 dim W j=0 1 i + j + 1 + log 2 2 (codim(V ) + codim(W )).
Démonstration. On considère le cycle intersection V.W , son degré et son hauteur (voir [16, sous-section B), p. 353]). Toute composante irréductible (isolée) de V ∩ W apparaît comme composante isolée du cycle intersection V.W (cf. op. cit., paragraphe avant l'énoncé du théorème 3), et donc, par définition de degré et hauteur du cycle intersection,

g i=1 deg(X i ) ≤ deg(V.W ) et h Pn ( g i=1 deg(X i )) ≤ h Pn (V.W ).
On applique alors [16, théorème 3]. On pourra également se référer à [12, Theorem 3, p. 455], où cependant la valeur de la constante c est moins précise.

Le corollaire suivant permet de majorer la hauteur d'une variété en fonction de la hauteur et du degré de ses générateurs.

Corollaire 2.2. Soient l ≥ 1 un entier et Z 1 , • • • , Z l des hypersurfaces dé- finies sur un corps de nombre K . Soit V une composante K-irréductible (isolée) de Z 1 ∩ • • • ∩ Z l . Alors, deg(V ) ≤ D codim(V ) et h Pn (V ) ≤ nhD codim(V )-1 + n 2   n i=1 i j=1 1 j   D codim(V ) , où D = max 1≤i≤s deg(Z i ) et h = max 1≤i≤s h(Z i ).
Démonstration. On applique [16, Corollaire 5, p. 357] avec S = P n , δ = D et η = h, en tenant compte des notations introduites au milieu de op. cit. p. 347. Notons cependant que dans op. cit. Z i est supposée définie sur un corps de nombre K et K-irréductible ; on peut se réduire à cette situation par linéarité et en négligeant les éventuelles multiplicités. On a alors, en tenant compte du fait que deg(

P n ) = 1 et h Pn (P n ) = 1 2 n i=1 i j=1 1 j (cf [16], avant-dernière paragraphe), d(S l ; D) ≤ d(P n ; D) = D n ; h(S l ; D) ≤ h(P n ; D) + nh d(P n ; D) = 1 2   n i=1 i j=1 1 j   D n+1 + nhD n .
Les composantes irréductibles

V i de Z 1 ∩• • •∩Z l sont des composante irréduc- tibles du cycle intersection S l . En particulier, en négligeant les multiplicités d'intersection et les composantes de codimension = k, d(S l ; D) ≥ i deg(V i )D deg(V i ) ≥ deg(V )D dim(V ) ; d(S l ; D) ≥ i h Pn (V i )D dim(V )+1 ≥ h Pn (V )D dim(V )+1 .

Hauteur normalisée dans G n m → P n

On considère le plongement ι n : G n m → P n défini par

ι n (α 1 , • • • , α n ) = (1 : α 1 : • • • : α n ).
Soit V une sous-variété de G n m . Par abus de notation, on note h Pn (V ) la hauteur de la clôture de Zariski de ι n (V ) dans P n . D'après [START_REF] Philippon | Sur des hauteurs alternatives III[END_REF], on définit la hauteur normalisée de V (par rapport au plongement ι n ) par :

h(V ) = lim m→+∞ h Pn ([m]V ) deg(V ) m deg([m]V ) (2.5) où [m] est le morphisme de multiplication par m définie par [m](x 1 , • • • , x n ) = (x m 1 , • • • , x m n )).
On peut vérifier que la hauteur h(α) de α ∈ G n m coïncide avec la hauteur de Weil h(ι n (α)) de l'image de α dans P n . Rappelons également ( [START_REF] Zhang | Positive line bundles on arithmetic surfaces[END_REF]) qu'une variété géométriquement irréductible est de hauteur normalisée nulle si et seulement si elle est une variété de torsion, i.e. un translaté d'un sous-tore de G n m par un point de torsion. D'après [9, Proposition 2.1, p. 497], on a la relation suivante entre h(V ) et h Pn (V ) :

h(V ) -h Pn (V ) ≤
On définit ensuite le minimum essentiel de V , noté μess (V ), par :

μess (V ) = inf θ > 0 | V (θ) = V où V (θ) = {α ∈ V (Q * ) | h(α) ≤ θ}.
Le minimum essentiel de V est donc le seuil de la hauteur à partir duquel les points de V deviennent denses dans V . La hauteur normalisée et le minimum essentiel sont liées par des inégalités de S. Zhang [22, théorème 5.2] :

h(V ) (dim(V ) + 1) deg(V ) ≤ µ ess (V ) ≤ h(V ) deg(V ) .
(2.7)

Théorème de Dobrowolski généralisé

Le problème de Lehmer et le théorème de Dobrowolski se généralisent en dimension supérieure. On dit que V est une variété de torsion si V est une réunion finie de translatés de sous-tores de G n m par des points de torsion. Rappelons que μess (V ) = 0 si et seulement si V est une variété de torsion. Le problème de determiner de bonne minoration pour le minimum essentiel d'une variété qui n'est pas de torsion a donne lieu à plusieurs travaux.

Dans ce but, F. Amoroso et S. David ([3, Définition 1.1, p. 337]) ont introduit la notion d'indice d'obstruction :

Definition 2.3 (Indice d'obstruction). Soient V W deux sous-variétés irréductibles de G n m et soit K ⊆ Q un corps. On appelle indice d'obstruction de V relatif à W sur K, noté ω K (V, W ), le minimum de 2 deg(Z) deg(W ) 1/ codim W (Z)
où Z parcourt les sous-variétés strictes de W définies sur K et contenant

V . Lorsque K = Q, on omet l'indice Q et lorsque W = G n m , on notera simplement ω K (V ) l'indice d'obstruction ω K (V, G n m ).
On peut maintenant énoncer une des généralisations de la conjecture de Lehmer en dimension supérieure. 

μess (V ) ≥ c(n) ω Q (V, W ) .
Dans le cas d'une sous-variété irréductible V faiblement transverse (i.e. qui n'est contenue dans aucune sous-variété de torsion stricte de G n m ) cette conjecture est démontrée à un ε près ([2, corollaire 1.2 p. 239]). En généralisant l'approche de [START_REF] Amoroso | Le problème de Lehmer en dimension supérieure[END_REF] et [START_REF] Amoroso | A relative Dobrowolski lower bound over abelian extensions[END_REF], E. Delsinne [START_REF] Delsinne | Le probleme de lehmer relatif en dimension supérieure[END_REF] a montré (toujours à un ε près) une version relative de la conjecture 2.4, toujours pour V faiblement transverse, en remplaçant l'indice d'obstruction sur Q par celui sur Q ab , extension maximale abélienne de Q. Nous énonçons une version simplifié de son résultat principal (op. cit., Corollaire 1.7) : Théorème 2.5. Soit V une sous-variété irréductible de G n m . On suppose que V est faiblement transverse. Alors, pour tout ε > 0, on a :

μess (V ) ≥ c(ε, n) ω Q ab (V ) 1+ε où c(n, ε) > 0 est explicite.
On s'intéresse maintenant à la version fonctorielle du théorème 2.5 qui consiste à enlever l'hypothèse faiblement transverse, quitte à faire intervenir dans l'indice d'obstruction la plus petite variété de torsion contenant V . Le théorème suivant a été déduit par G. Rémond à partir du résultat de E. Delsinne : Théorème 2.6 ([17], Théorème 3.7, p. 261). Soit V une sous-variété irréductible de G n m . Soit W ⊆ G n m la plus petite sous-variété de torsion contenant V . Alors, pour tout ε > 0, il existe une constante c(n, ε) > 0 tel que :

μess (V ) ≥ c(n, ε) ω Q ab (V, W ) 1+ε deg(W ) ε .

Résultats auxiliaires

Dans cette section on démontre les résultats auxiliaires dont nous aurons besoin pour la preuve de notre résultat principal.

Comme conséquence du théorème 2.1 et du corollaire 2.2, on obtient une majoration de la hauteur de l'intersection d'une sous-variété de G n m avec une sous-variété de torsion de G n m , i.e. un translatés d'un sous-tore par un point de torsion.

Proposition 3.1. Soient F 1 , • • • , F s ∈ Z[x ±1 ] et notons D = max 1≤i≤s deg(F i ) et h 1 = max 1≤i≤s log F i 1 . Soit V une composante Q-irréductible de la sous-variété de G n m définie par F 1 = • • • = F s = 0 et soit B ⊆ G n
m une sous-variété de torsion. Notons par X 1 , . . . X g les composantes Q-irréductibles de l'intersection ensembliste V ∩ B. On a alors :

g i=1 deg(X i ) ≤ D codim(V ) deg(B) g i=1 h Pn (X i ) ≤ (nh 1 /D + c)D codim(V ) deg(B) où c = 1 2 dim V i=0 dim B j=0 1 i + j + 1 + log 2 2 (codim(V ) + codim(B)) + n   n i=1 i j=1 1 j   + 7 2 (dim B + 1) log(n + 1).
Démonstration. On applique le théorème 2.1, en choisissant comme K le corps de définition de B. On en déduit :

g i=1 deg(X i ) ≤ deg(V ) deg(B) et g i=1 h Pn (X i ) ≤ h Pn (V ) deg(B) + h Pn (B) deg(V ) + c 0 deg(V ) deg(B) (3.1) où c 0 = 1 2 dim V i=0 dim B j=0 1 i + j + 1 + log 2 2 (codim(V ) + codim(B)). (3.2) 
On majore deg(V ) et h Pn (V ) à l'aide du corollaire 2.2. On peut supposer les polynômes F i dans Z[x] ; en choisissant comme Z i les hypersurfaces définies par les homogénéisés des F i on obtient alors : 

deg(V ) ≤ D codim(V ) (3.3) et h Pn (V ) ≤ nhD codim(V )-1 + n 2   n i=1 i j=1 1 j   D codim(V ) , où h = max 1≤i≤s h(Z i ).
h(F i ) ≤ log F i 1 + deg(F i ) 2 n i=1 1 i , et h ≤ max 1≤i≤s   h(F i ) + deg(F i ) 2 n-1 i=1 i j=1 1 j   ≤ h 1 + D 2 n i=1 i j=1 1 j .
On a alors : Le lemme suivant permet de déterminer explicitement les équations de translatés de sous-tores contenus dans une sous-variété de G n m . La preuve repose sur [19, Lemma 4]. Soit F ∈ Q[x ±1 ]. On note Supp(F ) ⊂ Z n le support de F i.e. l'ensemble des exposants des monômes de F correspondant aux coefficients non nuls. On note également :

h Pn (V ) ≤ nh 1 D codim(V )-1 + n   n i=1 i j=1 1 j   D codim(V ) . ( 3 
D(F ) = {λ 1 -λ 2 | λ 1 , λ 2 ∈ Supp(F )}. Lemme 3.2. Soient F 1 , • • • , F s ∈ Q[x ±1 ] et V la sous-variété de G n m définie par F 1 = • • • = F s = 0.
Soit αT un translaté de sous-tore contenu dans V , de codimension codim(T ) = r < n, maximale par rapport à l'inclusion parmi les translatés vérifiant cette propriété . Alors il existe µ 1 , • • • , µ n formant une base de Z n telle que µ 1 , • • • , µ r est une base du réseau définissant T et :

         pour k = 1, • • • , r : µ k = c k,1 λ 1 + c k,2 λ 2 + • • • + c k-1,1 λ k-1 + c k λ k , pour k = r + 1, • • • , n : µ k = c k,1 λ 1 + • • • + c k,r λ r + c k,r+1 f r+1 + • • • + c k,k-1 f k-1 + c k f k , (3.6) où λ 1 , . . . , λ r ∈ i D(F i ) et f r+1 , .
. . , f n sont des vecteurs de la base standard (1, 0, . . . , 0), . . . , (0, . . . , 0, 1) de Z n , et où :

les c k,i (k = 1, • • • , n ; i = 1, • • • , k -1) et les c k (k = 1, • • • , n) sont des nombres rationnels tels que c k,i ∈ [-1/2, 1/2[ et c k ∈]0, 1].
(3.7) 

Démonstration. Le fait que αT ⊆ V est maximal implique que T ⊂ α -1 V est maximal. La variété α -1 V est définie par les équations G i (x) = 0 avec G i (x) := F i (αx) pour i = 1, • • • , s. On a alors Supp(G i ) = Supp(F i ) pour tout i = 1, • • • , s. Soit Λ le sous-groupe saturé de Z n de rang r qui définit T . Comme T ⊆ α -1 V est maximal, d'après [19, Lemme 4], Λ est engendré par λ 1 , • • • , λ r ∈ Z n avec λ j ∈ D(F i j ) pour un certain i j ∈ {1
, • • • , µ n forment une base de Z n . Les vecteurs µ 1 , • • • , µ r appartiennent à QΛ car les vecteurs λ 1 , • • • , λ r ∈ Λ et les coefficients c k,i , c k sont des nombres rationnels. On a alors M ⊆ Λ sat = Λ. Comme rang(Λ) = rang(M ), on en déduit que Λ = M .
4 Preuve du résultat principal.

Soient n ≥ 2 et s ≥ 2 deux entiers. Soient F 1 , • • • , F s ∈ Z[x ±1 1 , • • • , x ±1 n ]. On note W la sous-variété de G n m définie par F 1 = • • • = F s = 0. Soient a ∈ Z n un vecteur primitif et ζ ∈ µ n
∞ . On note T 1 le sous-tore de dimension 1 définit par :

T 1 = {ξ a = (ξ a 1 , • • • , ξ an ) ∈ G n m , ξ ∈ G m } . (4.1) 
On s'intéresse aux points α ∈ W ∩ ζT qui ne sont pas de torsion et tels que W est de dimension au plus n -2 en α. On se propose de montrer que pour tout tel point α, il existe un vecteur non nul b ∈ Z n orthogonal à a et dont la norme est majorée par une constante ne dépendant que de n et des F i . On note W a la réunion des translatés de sous-tores de

G n m contenus dans W et W o = W \ W a .
Pour démontrer théorème 1.3, on suppose d'abord, dans la proposition 4.1, α ∈ W o . On se réduira ensuite à ce cas dans la preuve du théorème par un procédé qui reprend l'approche de [7, preuve du théorème 4.1, p.21].

Proposition 4.1. Soient n ≥ 2 et s ≥ 2 deux entiers positifs et ε ∈]0, 1]. Soient F 1 , • • • , F s ∈ Z[x ±1 ]. On note W la sous-variété de G n m définie par F 1 = • • • = F s = 0. Soient a ∈ Z n \{0}, ζ ∈ µ n ∞ et ξ ∈ Q * . On note α = ζξ a .
Si W est de codimension ≥ 2 en α et α ∈ W o alors il existe un vecteur non nul b ∈ Z n tel que :

ξ a,b = 1, et b ∞ ≤ c(n, ε) max(h 1 /D, 1) 1+ε D 2n , où c(n, ε) > 0 et où l'on a noté : D = max 1≤i≤s deg(F i ) et h 1 = max 1≤i≤s log F i 1 .
Démonstration. On définit T 1 comme dans (4.1) et on note V la composante Q ab -irréductible de W qui passe par α, qui est de codimension k ≥ 2. On a alors α ∈ V ∩ ζT 1 . On note dans la suite c 1 , . . . des fonctions strictement positives qui dépendront des variables indiqués.

Soit {b 1 , • • • , b n-1 } une base réduite de a ⊥ telle que b 1 2 ≤ b 2 2 ≤ • • • ≤ b n-1 2 . Pour i ∈ {1, • • • , n -1}, le sous-groupe de Z n engendré par les vecteurs b 1 , • • • , b i est primitif.
On note T i le sous-tore de G n m de codimension i défini par :

T i = {x ∈ G n m | x b 1 = • • • = x b i = 1}.
On pose aussi T 0 = G n m . On a donc la suite de sous-tores suivante :

T 1 = T n-1 ⊂ T n-2 ⊂ • • • ⊂ T 1 ⊂ T 0 = G n m .
D'après [START_REF] Bertrand | Sous-groupes algébriques de groupes algébriques commutatifs[END_REF], le degré de T i est égal au maximum des valeurs absolues des déterminants des mineurs i × i de la matrice formée par les vecteurs b

1 , • • • , b i . Comme {b 1 , • • • , b n-1 } est une base réduite, pour i = 1, . . . , n -2 on a : c 1 (n) i j=1 b j 2 ≤ deg(T i ) ≤ c 2 (n) i j=1 b j 2 (4.2) 
où 2 désigne la norme L 2 . Pour U sous-variété de G n m on note aussi dim α (U ) la dimension de la réunion des composantes irréductibles de U passant par α.

Pour i ∈ {0, 1, • • • , n-2}, on a dim α (V ∩ζT i+1 ) ≤ dim(ζT i+1 ) = n -i -1. Si dim α (V ∩ ζT i+1 ) = n -i -1 alors ζT i+1 ⊆ V et ceci contredit le fait que α ∈ V o . Ainsi, pour i ∈ {0, 1, • • • , n -2}, on a : dim α (V ∩ ζT i+1 ) ≤ n -i -2. (4.3) 
En particulier pour i = n -2, on a dim α (V ∩ ζT n-1 ) = 0 = n -i -2. On peut donc définir m ∈ {0, • • • , n -2} comme le plus petit entier vérifiant :

dim α (V ∩ ζT m+1 ) = n -m -2.
Par minimalité de m, on a dim α (V

∩ ζT i ) ≤ n -i -2 pour i ∈ {1, • • • , m} et cela est aussi vrai pour i = 0 car dim(V ) ≤ n -2. En particulier, dim α (V ∩ ζT m+1 ) = dim α (V ∩ ζT m ) = n -m -2. (4.4) Soit Y une composante Q-irréductible de V ∩ ζT m+1 de dimension n -2 -m et contenant α. D'après l'égalité (4.4), Y est également une composante irréductible de V ∩ ζT m . On note Q ab (Y ) le corps de définition de Y sur Q ab et [Q ab (Y ) : Q ab ] son degré sur Q ab . Pour tout σ ∈ Gal(Q/Q ab ) on a : σ(Y ) ⊆ σ(V ∩ ζT m ) ⊆ V ∩ ζT m car V et T m sont définis sur Q et ζ ∈ Q ab .
On obtient alors : 

Ŷ := σ∈Gal(Q/Q ab ) σ(Y ) ⊆ V ∩ ζT m . ( 4 
deg( Ŷ ) = [Q ab (Y ) : Q ab ] deg(Y ) ≤ D k deg(T m ) (4.6) h Pn ( Ŷ ) = [Q ab (Y ) : Q ab ]h Pn (Y ) ≤ (nh 1 /D + c 3 (n))D k deg(T m ).
ω Q ab (Y, ζT m+1 ) = min Z deg(Z) deg(T m+1 ) 1/ codim ζT m+1 (Z)
où Z parcourt les sous-variétés strictes de ζT m+1 , définies sur Q ab et contenant Y . La variété Ŷ définie dans (4.5) est une sous-variété de ζT m+1 définie sur Q ab et de dimension = n -m -2. Comme dim(ζT m+1 ) = n -m -1, l'inclusion Ŷ ⊂ ζT m+1 est stricte. On a donc :

ω Q ab (Y, ζT m+1 ) ≤ deg( Ŷ ) deg(T m+1
) .

On pose :

ε = ε 1 + (n -2)(1 + ε) . (4.8) 
Soit ε ∈]0, 1] comme dans l'énoncé. D'après le théorème 2.6, il existe une constante c 4 (n, ε) strictement positive telle que :

μess (Y ) ≥ c 4 (n, ε) ω Q ab (V, ζT m+1 ) 1+ε deg(T m+1 ) ε ≥ c 4 (n, ε) deg(T m+1 ) deg( Ŷ ) 1+ε
.

En utilisant les inégalités de Zhang (2.7), on majore le minimum essentiel de Y en fonction de la hauteur normalisée :

c 4 (n, ε) deg(T m+1 ) deg( Ŷ ) 1+ε ≤ μess (Y ) ≤ ĥ(Y ) deg(Y ) .
À l'aide de la relation (2.6), on majore ĥ(Y ) en fonction de h(Y ) :

c 4 (n, ε) deg(T m+1 ) deg( Ŷ ) 1+ε ≤ h Pn (Y ) deg(Y ) + 7 2
(dim Y + 1) log(n + 1).

On majore h Pn (Y ) à l'aide de l'inégalité (4.7) :

c 4 (n, ε) deg(T m+1 ) deg( Ŷ ) 1+ε ≤ (nh 1 /D + c 3 (n))D k [Q ab (Y ) : Q ab ] deg(Y ) deg(T m ) + 7 2 (n -2) log(n + 1) En simplifiant par deg( Ŷ ) = [Q ab (Y ) : Q ab ] deg(Y ), on a : c 4 (n, ε) deg(T m+1 ) ≤ (nh 1 /D+c 3 (n))D k deg( Ŷ ) ε deg(T m )+ 7 2 (n-2) log(n+1).
On majore ensuite deg( Ŷ ) par l'inégalité (4.6) :

deg(T m+1 ) ≤ c 5 (n, ε)(h 1 /D + 1)D (1+ε )D k deg(T m ) 1+ε .
Par l'inégalité (4.2) on a :

deg(T m ) ≤ c 2 (n) m i=1 b i 2 et deg(T m+1 ) ≥ c 1 (n) m+1 i=1 b i 2 . En simplifiant par m i=1 b i 2 et en majorant ensuite m i=1 b i 2 par b m+1 m 2 , on obtient donc : b m+1 1-mε 2 ≤ c 6 (n, ε)(h 1 /D + 1)D k(1+ε ) .
Comme m ≤ n -2 et par définition (4.8) de ε on a

1 -mε ≥ 1 -(n -2)ε = n -1 1 + (n -2)(1 + ε) > 0. Donc : b m+1 1-(n-2)ε 2 ≤ c 6 (n, ε)(h 1 /D + 1)D k(1+ε ) .
Toujours par définition (4.8) de ε , on a :

1 1 -(n -2)ε = 1 + n -2 n -1 ε ≤ 1 + ε, 1 + ε 1 -(n -2)ε = 1 + ε ≤ 2. Donc b m+1 2 ≤ c 7 (n, ε) (h 1 /D + 1)D k(1+ε 1/(1-(n-2)ε ) = c 7 (n, ε)(h 1 /D + 1) 1 1-(n-2)ε D k(1+ε ) 1-(n-2)ε ≤ c 7 (n, ε)(h 1 /D + 1) 1+ε D 2n . Enfin, puisque ζξ a ∈ ζT 1 ⊆ ζT m+1 , on a ξ a ∈ T m+1 et donc ξ a,b m+1 = 0. On choisit donc b = b m+1 . Démonstration du théorème 1.3. Soit ε ∈ (0, 1). Si α ∈ V o alors, d'après la proposition 4.1, il existe c(n, ε) > 0, et un vecteur b ∈ Z n ortho- gonal à a tels que : b ∞ ≤ c(n, ε)(h 1 /D + 1) 1+ε D 2n .
ce qui donne une majoration plus précis de celle annoncé.

Supposons donc α ∈ V a . On note dans la suite c 1 , . . . des fonctions strictement positives qui dépendront des variables indiqués. Par hypothèse, il existe un sous-tore T de G n m de dimension non nulle tel que αT ⊆ V . On choisit un tel T de maximale et on note r sa codimension. On va construire un automorphisme ϕ de G n m tel que ϕ(T

) = {y ∈ G n m | y 1 = • • • = y r = 1}. D'après le lemme 3.2, il existe n vecteurs µ 1 , • • • , µ n formant une base de Z n tels que T est défini par x µ 1 -1 = • • • = x µ r -1 = 0 et max 1≤i≤n µ i ∞ ≤ n max 1≤j≤s deg(F j ) ≤ nD. (4.9) 
On note M la matrice dont les colonnes sont formées par les vecteurs µ

1 , • • • , µ n . Par construction, M ∈ GL n (Z). On considère l'automorphisme ϕ de G n m dé- fini par : ϕ : G n m -→ G n m x → x M = (x µ 1 , • • • , x µ n ).
On a alors, toujours par construction,

ϕ(T ) = {y ∈ G n m | y 1 = • • • = y r = 1} .
Maintenant, on effectue le changement de variable x = ϕ -1 (y) = y M -1 et on écrit pour i ∈ {1, • • • , s} :

F i (ϕ -1 (y)) = t j=1 F i,j (y 1 , • • • , y r )y θ j,r+1 r+1 • • • y θ j,n n (4.10) pour certains F i,j ∈ Z[y ±1 1 , • • • , y ±1 r ], pour certains θ j,r+1 , • • • , θ j,n ∈ Z et t ∈ N. On renomme les polynômes F i,j par : {F i,j | i ∈ {1, • • • , s}, j ∈ {1, • • • , t}} = {G 1 , • • • , G s } .
On considère la sous-variété W de G r m définie par :

W = {(y 1 , • • • , y r ) ∈ G r m | G j (y 1 , • • • , y r ) = 0, ∀j ∈ {1, • • • , s }}.
On vérifie que : 

W = {(y 1 , • • • , y r ) ∈ G r m | ∀(y r+1 , • • • , y n ) ∈ G n-r m , (y 1 , • • • , y n ) ∈ ϕ(V )}.
dim β (W ) + n -r = dim β (W × G n-r m ) ≤ dim β (ϕ(V )) = dim α (V ) ≤ n -2.
Cela implique que W ⊆ G r m est de codimension k ≥ 2 en β . On remarque également que si aµ 1 = 0 alors on a la conclusion de la proposition avec b = µ 1 car µ 1 ∞ ≤ nD d'après (4.9). On suppose dorénavant que aµ Références
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 1111222322 1 = 0. Ainsi le vecteur (aµ 1 , • • • , aµ r ) est non nul. Puisque β = (ζ µ 1 ξ aµ 1 , • • • , ζ µ r ξ aµ r ) et ξ n'est pas une racine de l'unité, d'après la Proposition 4.1, il existe une constante c 1 (n, ε), qui ne dépend que de ε et n, et un vecteur non nul η ∈ Z r orthogonal à (aµ 1 , • • • , aµ r ) tels que :η 2 ≤ c 1 (n, ε) max(h 1 /D n , 1) 1+ε D 2(n-1) i ) et h 1 = max 1≤i≤s On considère ensuite le vecteur b défini par b = η 1 µ 1 + • • • + η r µ r . Puisque (η 1 , • • • , η r ) est non nul et µ 1 , • • • , µ r sont linéairement indépendants, b est aussi non nul. Comme (η 1 , • • • , η r ) ∈ Z r est orthogonal à (aµ 1 , • • • , aµ r ), on a ab = 0. On va déterminer une majoration de la norme de b en fonction de D et h.Les exposants des monômes de G j sont donnés par les vecteurs M -1 ν où ν parcourt Supp(F i ). D'après l'inégalité de Hadamard, la valeur absolue des coefficients de M -1 est majorée par :(n -1) (n-1)/2 max 1≤i≤n µ ≤ n 3(n-1)/2 D n-1 .Par suite, on a :D ≤ n (3n-1)/2 D n . Par ailleurs : h 1 ≤ max 1≤i≤s En remplaçant D et h 1 par ces majorations dans (4.11) (on remarquera que le membre de droite dans (4.11) est une fonction croissante de D ) on obtient : η 2 ≤ c 2 (n, ε) max(h 1 /D n , 1) 1+ε D 2n(n-1) . Par définition de b et par (4.9), Donc, en majorant 2n(n -1) + 1 par 2n 2 , b 2 ≤ c 3 (n, ε) max(h 1 /D n , 1) 1+ε D 2n 2 .

  2 au places archimedienne à la place de |α| v . Comme pour les points, on dispose également d'une formule explicite pour la hauteur h Pn (V ) d'une hypersurface V . Soit K un corps de nombres et soit F ∈ K[x].

	En suivant P. Philippon
	([16], p. 346, en particulier le dernière paragraphe en prenant p = 1 et m 1 =
	m) on définit une hauteur de F par

  On en déduit en particulier la majoration annoncée pour la somme des degrés des X i . Pour montrer celle pour la somme des hauteurs, on remarque que, pour P ∈ C[x 1 , . . . , x n ] et en notant h P son homogénéisé, M ( h P ) ≤ P 1 (cf définition (2.3)). Donc, en tenant compte des définitions (2.2), (2.4) et du fait que F i est à coefficients entiers,

  , • • • , s}. Par le théorème de la base incomplète, ils existent des vecteurs f r+1 , . . . , f n de la base standard de Z n tels que λ 1 , λ 2 , • • • , λ r , f r+1 , . . . , f n soient linéairement indépendants. D'après [20, Theorem 18], il existe des vecteurs µ 1 , • • • , µ n ∈ Z n formant une base de Z n tels que (3.6) et (3.7) soient satisfaites. Le sous-groupe M de Z n engendré par les vecteurs µ 1 , • • • , µ r est primitif car les vecteurs µ 1

Hauteurs, théorèmes de Bézout et de Dobrowolski généraliséDans cette section on énonce les définitions et les résultats de géométrie diophantienne qui nous serons utiles. Dans la sous-section 2.1 on rappellera la définition de hauteur projective, et dans la sous-section 2.2 le théorème de Bézout arithmétique. La sous-section 2.3 sera consacrée au rappel de la définitions de hauteur normalisée. Dans ces trois sous-sections, on suivra l'approche développé par P. Philippon dans[START_REF] Philippon | Sur des hauteurs alternatives[END_REF],[START_REF] Philippon | Sur des hauteurs alternatives[END_REF] et[START_REF] Philippon | Sur des hauteurs alternatives III[END_REF]. Enfin, dans la sous-section 2.4, on donnera une version effective et fonctorielle du théorème de Dobrowolski généralisé (théorème 2.6) qui provient des travaux de F. Amoroso, S. David, E. Delsinne, G. Rémond et U. Zannier.

(dim V + 1) deg(V ) log(n + 1).(2.6)

où codimW (Z) = dim(W ) -dim(Z)

Dans op. cit. V est supposé Q-irréductible et W est une réunion de variétés de torsion. On vérifie facilement que les deux énonces sont équivalents.