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Analysis of the Recent Al for Pedestrian
Navigation with Wearable Inertial Sensors

Hanyuan Fu, Valerie Renaudin, Yacouba Kone, Ni Zhu

Abstiract— \Wearable devices embedding inertial sensors
enable autonomous, seamless, and low-cost pedestrian
navigation. Appealing it is, the approach faces several
challenges: measurement noises, different device-carrying
modes, different user dynamics, and individual walking
characteristics. Recent research applies Artificial Intelli-
gence (Al) to improve inertial navigations robustness and
accuracy. Our analysis Identifies 2 main categories of Al
approaches depending on the Inertial signals segmenia-
tlon: elther using human gait events (sleps or sirides) or
fixed-length inertial data segments. A theoretical analysis
of the fundamenial assumptions is carrled oul for each cat-
egory. Two state-of-the-art Al algorithms (SELDA, RaNIN},
representative of each category, and a gait-driven non-Al
method (SmartWalk) are evaluated In a 2,17 km long open
access dataset, representative of the diversity of pedes-
trians’ mobllity surroundings {open-sky, Indoors, forest,
urban, parking lot). SELDA is an Al-based stride length
estimation algorithm, RaMIN is an Al-based positioning
method, and SmartWalk is a galt-driven non-Al positioning
method. The experimental assessment shows the distingt
teatures in each category and their limits with respect to the
underlying hypotheses. On average, SELDA, RoNIN, and
SmartWalk achieve 8 m, 22 m, and 17 m average positioning
errors (RMSE) respectively, on six testing tracks recorded
with two volunteers in various environments.

Index Terms—Indoor positioning, inertial sensors,
pedestrian navigation, dead reckoning, Machine Learning,
Deep Learning

|. INTRODUCTION

HE development of pedestrian navigation solutions has

Been un active held of research for slmost 1w decades.
The first technology employed is the Global Navigation Satel-
lite System (GNSS) working in open-sky outdoor conditions.
Indoors, radio heacon-based technotogy is deployed to locate
pedestrians  with ringing or mapping of gignal [ootprints.
These technologies are now widely commercialized but oper-
ate only in equipped infrastructure involving high installation
and maintenance costs. Other approaches, aiming at fully
autonomous navigation, are still being developed. They rely
on image processing with SLAM, structure from motion or
odomelry methods, and inertial signals processing to infer
the pedestrian’s dynamics using wearahle sensors. Inertial
pedestrian navigation is very attractive becavse it doesn'l
require infrastructure, is operational with low-cost sensors that
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can be attached to several locations on the person’s body
(wrist, trousers pocket, etc.), and comply with the European
General Data Protection Regulation recommendation promot-
ing privacy by design technologies.

But pedestrian inertial navigation faces challenges. It accu-
mulates positioning errors over tme due 1o low-cosl sensor
noises. It lacks robustness when the pedestrian motion mode
changes (slow/normal/fast walking, staircases, stationary, efc.)
or when the wearable fixing point varies (handheld sensors, in
the trouser/vest pocket, ete.). It also fails to adapt to individual
walking gail characteristics (disability, injury). Artificial Intel-
ligence (Al) is interesting for simultaneously addressing all
these varying conditions and thus providing improved robust-
ness and positioning accuracy. Consequently, it is increasingly
applied to inertial pedestrian navigation research. Less explicit
than traditional physics-based approaches, it raises design and
hyper-parametrization 1550es,

This paper aims &t analysing the recently proposed ap-
proaches in the field ol pedestrian navigation with inertial
wearable sensors to identily the key leatures that contribute 1o
lhe: success or limitations of tobust and accurate posilioning.
It extends the previous conference proceeding [1}, which
classifies Al-based inertial pedestrian navigation methods into
two main categories depending on the inertial signals segmen-
tation. A detailed analysis of the fundamental hypotheses in
cach category, their likelihood, and their impact on position-
ing performance is conducted. A comparison with a non-Al
pedestrian navigation approach is added. The cxperimental
performance asscssment is conducted with handheld incrtial
sensars on a larger open-access datasct in three different
environments: urban, forest, and a shopping mall parking loL,
including indoor and outdoor parts and staircases,

Section 11 presents the Al-based pedestrian mavigation state-
ol-the-art methods: human gait and sampling {requency-drven
Al methods, along with their underlying hypotheses. The three
methods selected for cvaluation are described in section I11
Soction 1V is dedicated to the experimental evaluation and
comparison of the three selected methods on pedestrian tracks.
Section V concludes the article.

I|. STATE-OF-THE-ART ON CURRENT Al METHODS FOR
PEDESTRIAN INERTIAL NAVIGATION

Al-based methods for pedestrian incrtial navigation can be
classified into two classes [1]: (A) human gait-driven and
(B) sampling (requency-driven methods. The first category
is inspired by the nature of human walking and the inertial



signals are segmented with the user’s gait (step or stride)
events, whereas the sccond category segments inertial data into
fixed-length sequences, usually overlapped.

A. Human gait-driven Al methods

The inertial data sequences are segmented using the gait
evenls (step or stride instants) and processed to cstimate the
gait vector of each segment. Gait cvents are derived from
the cyclic inertial signals patterns. For instance, [2] considers
that a peak in the acceleration norm or a valley in the
angular rate norm represents a step instant, regardless of the
device’s location. However, gait detection under irregular hand
movements remains challenging.

Due to the dilferent features nceded to estimate the
step/stride length and the walking direction, they are often
treated separately.

1) Stride/step length estimation: Feature engincering is per-
formed to select the most informative features for stride/step
length estimation. According to 3], there arc four categories
of relevant features: statistical (mean, variance, amplitude,
etc.), time-domain (number of peaks, 7ero-crossing ratio, etc.),
frequency domain (dominant frequencies, spectrum energy,
etc.), and higher-level features based on empirical models.
Stride/step length can be regressed by different models: [4]
uses a convolutional neural network, [5] uses an OS-ELM
(Online Sequential Extreme Learning Machine) [6], [3] com-
bines 6 regressors: Extreme Gradient Boost (XGBoost) (7],
LightGBM (8], K-Nearest Neighbor (KNN) [9], Decision Tree
(DT) [10), AdaBoost [11], and Support Vector Regression
(SVR) [12].

An alternative o feature engineering is end-to-end re-
gression with a sequence of inertial measurcments over a
gait interval. Feature extraction is usually performed by a
deep network, [13] uses 2 stacked autoencoders, [14] uses a
Decp Believe Network (DBN) built with multiple Gaussian
Bernoulli Restricted Boltzmann Machines [15], [16] uses an
LSTM [17], we will detail the model is section III. The
regression task is done by one or several dense layers.

The main challenge of stride/step length estimation is the
changeable device locations, user dynamics, and different
individual walking characteristics. Classifying the device’s
location can improve robustness (3], [4]. Customizing the
model for each individual is another way to improve accuracy
[18].

2) Walking direction estimation: Estimating the user’s walk-
ing direction with wearable inertial sensor measurements is
4 complex problem because the misalignment between the
device's pointing dircction and the user’s walking direction
is not necessarily constant. A common stralegy is to express
the inertial measurcments in the navigation frame via device
attitude tracking.

[6] uses the device’s yaw angle and magnetometer measure-
ments as features to infer the user’s walking direction using an
OS-ELM network. [19] doesn’t need explicit device attitude
tracking, instead, it performs data augmentation and adaptive
alignment by a learnable Spatial Transformer Network (STN)
to make the model invariant to the inertial data’s rotation.

B. Sampling frequency-driven Al methods

This branch of AI methods considers pedestrian positioning
as an end-to-end problem. Inertial measurcment sequences
are segmented into fixed-length scgments, usually overlapped.
Deep networks are trained to infer the user’s average velocily
or change in position over a segment,

The constant sampling frequency of the incrtial measure-
ments is a necessary condition for this branch of methods. If
it is not the case, data interpolation and synchronization are
necded.

RIDI [20], the "ancestor" of this branch, considers only
strap-down configurations (leg pocket, in a bag, hand-held,
body mounted). Raw inertial measurements are corrected
thanks to a device attitude tracking algorithm and a neural
network, before being integrated twice to obtain the user’s po-
sition. The same team later proposed RoNIN [21], which can
operate beyond strap-down configurations, that we selected
for cxperimental evaluation (see Section III). IONet, another
pioneer of this category, regresses the user’s walking direction
change and displacement every time it receives a 200-frame
segment (200 Hz).

C. Hypotheses made for each Al category

The underlying hypotheses of each category arc listed and
analyzed.
1) Hypotheses for the Human Gait-Driven Al methods:

« Hypothesis GH1: Human walking is cyclic. A normal
cycle of human locomotion is illustrated in Fig. 1. In [22],
walking locomotion is described as a process in which the
erect, moving body is supported by first one leg, and then
the other. As the moving body passes over the supporting
leg, the other leg swings forward to preparc for its next
supporting phase.

. Hypothesis GH2: According to [23], The upper and the
lower body movements are correlated. During normal
walking, the head and the trunk move up and down as
the center of gravity follows the lower limbs’ periodic
movements, and arms flex and extend reciprocally. This
hypothesis makes gait event detection [rom inertial sig-
nals plausible.

« Hypothesis GH3: Human paces are regular and con-
strained. According to a statistical study presented by [31,
within 10145 strides of gait measurements of different
subjects and different walking dynamics, collected by a
foot-mounted device, 99.5% of strides were within 1.55
m and no stride exceeds 1,75 m. The mean and standard
deviation of stride lengths are 1.33 m and 0.18 m.

« Hypothesis GH4: Step/stride length and inertial signals
collected from different body parts are correlated. Empir-
ical models are developed based on hip or foot-mounted
sensors. Weinberg [24] found a correlation between the
hip’s vertical acceleration amplitude and stride length.
Ladetto [25] found a correlation between acceleration
variance and stride length. The hypothesis is plausible
considering the correlation between foot movements and
those of the rest of the body (GH2).



Fig. 1: Human gait cycle [20]

« Hypothesis GH5: A corollary of GHI, when the device
location remains the same, the user’s change in walking
direction over two consecutive steps shall be approxi-
mately the same as the change in the device’s pointing
direction.

GH1 and GH3 are obscrved during natural walking, certain
users such as senior citizens can easily break these assump-
tions. GH?2 is a simplification of reality since uscrs can move
freely their arms and hands while walking. As for GH4, even
if these correlations exist, they're likely to be significantly
diversified depending on the device carrying mode, which
explains the fact that most research works either consider a
single carrying mode ([14], [16]) or perform carrying mode
classification ([3], [4]). GHS can be easily corrupted by noisy
movements (swinging, device in pocket/bag).

2) Hypotheses for sampling frequency-Driven Al methods:

» Hypothesis FH1: The true kinematic of the user’s center
of mass is continuous and can be recovered from inertial
measurements collected from different body parts.

« Hypothesis FH2: Each fixed-length segment is indepen-
dent of the others. In other words, a segment contains
sufficient information to recover the user’s velocity or
change in position over the same time window.

» Hypothesis FH3: The inertial signals are sampled at a
constant sampling frequency.

This branch of methods is naturally suitable lor using deep
learning models which reguire lixed-length inputs, FH2 is
approximately true if we consider regular and ¢yclic move-
ments that the user's speed can be estimated with the signal’s
frequency and amplitude, However, the correlation belween
the user’s specd and the signal’s Irequency or amplitude can
vary from one individual o another. The same hypothesis
also implies that o segnient containg sufficiont information Lo
yicld a walking direction inference. According to @ survey [27]
i traditional methods for walking direction estimation with
an unconstrained device, existing methods such as Principil
Component Analysis (PCA), (28], {291, Forward and Lateral
Accelerations Modeling (FLAM) [20] and Fregquency anulysis
al Inertial Signals (FIS) [31], assume thal the wilking direc-
lion is observable with handheld ineriial sensors during one
stepfstride. As a resull, we especl noisy infercnces [rom (s
approach.

1. SELECTED METHODS FOR THE EXPERIMENTAL
ASSESSMENT: SELDA, RONIN, AND SMARTWALK

We selected the method [16]: pedestrian Stride-length Es-
timation based on LSTM and Denoising Autoencoders (titled

SELDA in the rest of the paper) among the gait-driven Al
methods. The latter is representative of the category with
sufficicnt implementation and data processing details, along
with a benchmarking dataset. RoNIN [21] is selected among
the sampling frequency-driven AI methods since the authors
published their implementation, trained model weights, and a
part of their datasct.

We would also like to evaluate a complete positioning
non-Al gait-driven method for comparison, thus we selected
SmartWalk. The method combines several techniques such as
machine learning, statistical model, and an Extended Kalman
Filter (EKF) to infer the user’s trajectory, moreover, some
parameters in the model are customized for each user.

A. SELDA: pedestrian Stride-length Estimation based on
LSTM and Denoising Autoencoders

The stride length estimation AT model proposed in [16]
takes as input stride segments of inertial measurcments: 3-
axis acceleration and angular rate, collected by a handheld
smartphone, along with higher-leve! featurcs from empirical
miodels (Weinberg [24], Ladetto [25], Scarlett [32], etc.) com-
puted with the acceleration segment.

SELDA requires the user to carry the device in "texting"
mode, in such a way that the z-axis of the device points to
the sky. Stride events for signal segmentation are detected by a
foot-mounted device. This setup is constrained and impractical
for deployment.

1) SELDA Dataset: publicly available [33], is collected
by 5 volunteers of different gender and height, holding the
smartphone horizontally in front of their chest.

The dataset covers both indoor and outdoor scenarios in-
cluding staircases.

the inertial signal sampled at 100 Hz is segmented by stride
instants provided by the foot-mounted reference tracker, which
also provides stride length ground truth.

2) Adaptation for experimental assessment: We usc only 4
higher-level features instead of 35 since only 4 definitions arc
available.

Among learning samples {rom the SELDA dataset, we only
consider the stride length range between 0.3m and 1.8m. The
original dataset is split into a 6319-sample training set and a
175-sample validation set.

Since SELDA only estimates stride length, for illustration’s
purpose, we pile up three modules namely stride detection,
SELDA, and heading estimation to build a positioning system.
Stride instants and walking directions are provided by our foot-
mounted reference tracker ([34] and [35D).

B. BoNIN: Robust Neural Inertial Navigation

RoNIN expresses acceleration and angular rate measure-
ments in the navigation frame, via the device attitude provided
by android’s Game Rotation Vector (GRY) and a spatial
alignment procedure. An Al model (RoMNIN ResNet) is rained
(o infer the user horizontal velocity (Va, Vi), given a fix-
length segment (200 frames) of acceleration and angular rate
cxpressed in the navigation frame. Tnferred velocities are
integrated to obtain the user’s trajectory. Both RoNIN dataset,



model implementation, and trained model weights arc publicly
available [30].

1) RoNIN dataset: is collected mainly in indoor environ-
ments by 100 volunteers and 3 android devices, covering
usual scenarios such as a smartphone in a bag, in the pocket,
handheld, walking, sitling, ctc.

The ground truth trajectories are provided by visual-inertial
SLAM performed by a tango phone attached to the volunteer’s
chest.

All measurements are synchronized and sampled at 200 Hz.

2) Importance of the Game Rotation Vector: Game Rotation
vector is a quaternion provided by android API, indicating the
device’s oricntation w.r.t some gravity-aligned reference frame
[37]. To better understand it, we compare it to a transparcnt
EKF device attitude tracking algorithm MAGYQ [38]. We
attach rigidly our "home-made" navigation device (see section
IV) ULISS and a smartphone on an aluminum plaie to align
their z axes (Fig. 2). We recorded 2 tracks.

e Track 1: slow and steady rotations.

« Track 2: random rotations during walking.

In Fig. 3a and Fig. 3b, We plot the Euler angles of the
smartphone given by GRV (lop figure) and those of the ULISS
given by MAGYQ (middle figure). The roll angle of ULISS
evolves in the same way as the pitch angle of the android
device and the pitch angle of ULISS evolves in the same way
as the android device’s roll angle. ULISS yaw angle is opposite
to the yaw angle of the android device. In the bottom figure,
we plot the variation of their angular offsets given by Eq.
1. The under-script "a" stands for android and "u" stands for
ULISS.

Ao = T0lly — rolly (t = 0) — (pitche — pitcha(t = 0)) (1)
Apiten = pitchy—pitchy(t = 0) = (rolly—rolla(t = 0)) @)
A yaw = yaw, — yawy(t = 0) + (yaw, — yaw,(t = 0)) (3)

Fig. 2. Experimental setup for studying the game rotation
vector

The figures show that the game rotation vector is good at
estimating roll and pitch (related to gravity). There is no large
difference between the game rotation vector and the MAGYQ
result. The offset between game rotation yaw and ULISS yaw
is almost constant during several minutes of recordings.

We observe punctual peaks in the bottom plots, which arc
due to are due to slight synchronization lags or the dilfercnce
in response time of the two devices.

We can conclude that the offset between the game rotation
vector and the device’s orientation, w.r.t to North-East-down
{rame, is approximately constant for several minutes. For this
reason, we replace the game rotation vector with MAGYQ in
our cxperiments to make the RoNIN more transparent.
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(b) Track 2: Euler angles of random rotations during walking

Fig. 3: Comparison of attitude angles estimated by android
game rotation vector and MAGYQ for two scenarios

3) Adaptation for experimental assessment: The article pro-
poses 3 variants based on different deep learning models:
ResNet [39], LSTM [17], and Temporal Convolutional Net-
work (TCN) [40] to estimate the user’s position. We only as-
sess RoNIN ResNet, since it yields the best results. We use the
published model implementation and trained model weights
for experimental assessment. We replace the game rotation
vector and the spatial alignment procedure with MAGYQ.

C. SmartWalk

It appeared interesting to make a comparison with an
older solution based on classical signal processing techniques
instead of recent Al tools: SmartWalk [41]. It is a pedestrian
positioning algorithm fusing data from a tri-axis accelerome-
ter, a tri-axis gyroscope, a tri-axis magnetometer, a barometer,
and a GNSS receiver. In this paper, GNSS raw data are
not included in the positioning algorithm to ensure a [air
comparison with the other Al-based solutions. Smartwalk
contains scveral modules:

1) Step detection, step length estimation and carrying mode
classification: This module processes the wearable raw accel-
eration and angular ratc readings at 200 Hz. The original step
detection module was replaced with SmartStep (2], [42]. Step
length s is estimated by a linear model [43]

s=hx{ax f+b+c ()




where h is the user’s height, f is the frequency of the
acceleration magnitude and a, b and c are universal parameters
learned on a group of users. A personalized calibration is as
well possible [44]. The device’s carrying mode is classificd
into cither texting or swinging mode. ITrregular and static
phases are also detected [43].

2) GMM for walking direction inference: This module adopts
a Gaussian Mixture Model (GMM) to model the misalign-
ment between the device’s pointing direction and the user’s
walking direction [45]. First, the device’s accelerations are
transformed into the local North-East-Down frame using the
Extended Kalman Filter-based device attitude tracking algo-
rithm: MAGYQ [38]. Then, the distribution of the horizontal
accelerations, when the user is walking toward the North ©°
heading), is modeled by a weighted sum of 2-D Gaussian
distributions:

face(z) = ZTkN(:c,mk,Pk) ®)

k=l

Where 7, is the weight of Gaussian component k, param-
eterized by mean my and variance . A GMM model is
learned for cach individual for a device handling mode, by
expectation maximization. Finally, the walking dircction of
a step is inferred by rotating the learned GMM by angle 0
to maximize the log-likclihood of the horizontal accelerations
cloud over one step. 0 is the inferred user heading for this
step.

3) Corrections: An EKF completes SmartWalk with the

following correcctions:

« Identify the stairs with a barometer and usc a fixed step
length (30cm) when the user is on stairways.

« Usec a fixed step length (50cm) in the propagation model
and the estimated step lengths as observations.

« Fuse the GMM’s inference with the device’s pointing di-
rection given by MAGYQ according to hypothesis GHS.
High confidence is given to the GMM at the beginning of
the trajectory to match the initial heading with the GMM
prediction.

Table I summarizes the inputs and outputs of the threc

selected methods.

SmartWalk
acceleration,
angular rate,

| SELDA RoMIN

| - acceleration,
stride instants,
angular rate,

acceleration, " . magnetic field,
Tngut, Bccaatallon altitude of the device mag L ﬁg
angular rate . the user’s height,
{magnetic ficld) -
pressure
[ Output stride length user’s position user’s position

TABLE |: Summary of the inputs and output of each selected
method

V. EXPERIMENTAL ASSESSMENT

A. Experimental setup

1) Hardware: The device ULISS, shown in Fig. 4(a), was
developed by the GEOLOC laboratory at University Gustave
Eiffcl and is used for the experiments. It is a state-of-the-art

(a) )

Fig. 4: (a) ULISS sensor; (b) Experimental setup: one ULISS
sensor is held in the user’s right hand and the other on the
user’s right foot

Inertial Navigation System containing an Xsens Mit-7 IMU-
Mag sensor, a barometer, and a GNSS receiver, providing
acceleration, angular rate, magnetic field, and atmospheric
pressure readings at 200 Hz, GNSS reading at 5 Hz, using GPS
timestamps. It is used for the experimental assessment instead
of a smartphone because the signal acquisition is controlled
and the sensors are calibrated. One ULISS is mounted on the
foot and is the reflerence solution, i.e. ground truth, with a
0.3% positioning error over the traveled distance [46]. It is
the winning solution of the 3-year French national competition
(MALIN) for the non-collaborative positioning of soldiers in
challenging indoor environments [35].

2} Spenarios: As shown in Fig. 4(b), the tesl person holds
one ULISS horizontally (the z-axis points to the sky) and
walks naturally, as requested by SELDA. All scenarios started
outdoors for the initialization of MAGYQ and the foot-
mounted reference solution. Both algorithms need a magne-
tometer calibration without strong artificial magnetic fields for
the initialization. For the sake of fairness, the ground truth
initial walking direction is given to all three implemented
positioning methods.

Four different surroundings, representing the diversity of
common pedestrian navigation contexts, were chosen for the
experiments. Fig. 5 shows the diversity of these environments.
Tests 1 to 3 were recorded on the campus of the university
by a healthy man (volunteer 1, 1.66 m height), and tests 4
to 6 in various environments (forest, city, and parking lot),
by another healthy man (volunteer 2, 1.80 m height). The six
recorded tracks are provided in open source (47]. They include
raw inertial signals, calibration parameters, and ground truth
trajectorics. Table II summarizes the main characteristics of
these six evaluation tracks.

B. Performance evaluation

Three metrics are selected to evaluate the horizontal trajec-
tories estimated by each selected method: the Scale Factor
(SF), the EndPoint error Rate (EPR), and the Root Mean
Square Error (RMSE).

1) The scale factor: is the ratio of the total length of the
estimated trajectory I, to the total length of the ground truth
trajectory {y;. The ratio is expected to be close to 1.

lES
SF=— ()
[



(b}

(e)

Fig. 5: Environments for experiments: (a) campus; (b) office building; (c) woods; (d) city; (e) parking lot in a shopping mall

()

Test | voluntcer location length (m) | wvutdowr | indoor 1 stairways | surface texturc | magnetic perturbation
1 ] campus 251 v v F concnzle ¥
| 5, I campus 230 v concrele v
3 | campus 288 v v Fi wierels v
4 ] woods 374 v soil/grass
5 ) city 563 v concrete v —
[ 2 parking lot in a shopping mall 464 v crcrele ¥

TABLE Il: Characteristics of the six tests in open access [47].

2) The endpoint error rate: is the ratio of endpoint error
(EPE) to the ground truth trajectory’s total length l,;.

EPE = '\f'lf{(zend - iend)Q - (yend - gend)Q] HI']

EPE

{ il

EPR = (®)

3) The Root Mean Square Error: measurcs the standard
deviation on the horizontal positioning accuracy.

o
= |- Tl I P— )
RMSE = ;[[: B TP 70 el R

where n is the number of points in the trajectory, (x;, ¥;) is
the user’s ‘ground truth position at time step i, and (Z;, §;) is
the predicted one.

The experimental results are reported in Table III Esti-
mated and ground truth trajectories are shown in Fig. 6 for
the on-campus datasets (volunteer 1) and in Fig. 7 for the
forest/urban/parking dataset (volunteer 2).

C. Analysis of the inertial pedestrian positioning
estimates

1) Walking distance: The scale factor (SF) evaluates the
quality of the estimated walking distances. Table I1I shows that
RoNIN always underestimates the walking distance. But the
standard variation of RoNIN’s scale factor (0.067 for volunteer
1 and 0.019 for volunteer 2) is smaller than the one of SELDA
(0.079 for volunteer 1 and 0.065 for volunteer 2), which over
or underestimates the walking distance. Globally, RoNIN is
able to better follow the pedestrian’s dynamics changes as
compared to SELDA. But important drifts are observed in the
RoNIN trajectories for Tests 2 and 3. These obscrvations are
further detailed in Fig. 8 to Fig. 11.

Fig. 8 and Fig. 9 show the stride lengths predicted by
SELDA (blue) against the ground truth (orange) for both
volunteers. To complete the analysis, stride lengths estimated
by the statc-of-the-art Weinberg model (green) are plotied over.

The "nearly flat” line of the SELDA’s predictions shows that
it fails to capturc the variations in the user’s movement, espe-
cially when the user is taking stairs (smaller strides). Weinberg

estimates, sharing one higher-level feature with SELDA, are
much better at tracking variations in walking dynamics. The
RoNIN’s velocity plots (Fig. 10 and Fig. 11) show better
performance in the tracking of walking changes: start, stop,
and taking stairs. But, as foreseen by the theorelical analyses
(FH2), the velocity estimates are noisy. The integration of the
inferred velocities smooths this noise.

Globally, the two categories of methods show completely
opposite behaviors. The failure of SELDA and the robustness
of RoNIN can be explained by their training datasets. All stride
length labels from SELDA’s training set and their distribution
are shown in Fig. 12. The mean and standard deviation of
SELDA stride length labels are 1.36 m and 0.078 m. Most
of the labels are close to the mean value, which is the
best guess that the model can achieve. On the other hand,
RoNIN rcgresses the two components of the velocity, whose
variations arc more important due to the infinity possibility of
the walking direction,

Thanks to the sampling frequency-driven data segmentation,
RoNIN is more data-intensive than SELDA for the same
amount of measurements. For example, if a normal walking
sequence lasts 12 s and is sampled at 200 Hz, only about 10
strides segments can be extracted from the track for SELDA.
An average gail cycle lasts about 1.2 s. On the other hand,
((12 x 200) — 200)/5 + 1 = 441 scgments can be extracted
for RoNIN, i.e. 200 measurement points in one segment, with
a stride of 5 frames.

For volunteer 1, SmartWalk tracks the best the user’s
dynamics (with a 0.038 standard variation), whereas it is
RoNIN (with a 0.019 standard variation) for volunteer 2. To
understand the observation, stride lengths estimated by the
SmartWalk’s step model without (orange) and with (green)
EKF correction are illustrated against the ground truth (blue)
in Fig.13 and Fig. 14. Step instants detected by processing
the handheld inertial sensors data are projected on the ground
truth to observe the derived stride (2 steps) length. Strides
larger than 2 m can be observed in the blue dots, illustrating
the under-detection of gait events in the SmartWalk approach.
Similar to SELDA, SmartWalk’s cstimations form a relatively
{lat (less than SELDA) line when there is no staircase. When
the staircase detection function is operational with the barome-
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Fig. 6: Volunteer 1 Estimated trajectories by

ter readings. SmartWalk outperforms both RoNIN and SELDA
in scenarios with staircases (Tests 1 and 3). Without a stairway,
RoNIN gives the best user dynamics racking. On the other
hand, SmartWalk can be sensitive (0 barometer Nnoises and
over-detect gtaircases. In Test 4, several tiny strides of 60cm
are inferred but 1o stairway 18 included in the track.

Despite SELDA’s failure of tracking the user’s dynamics
hy giving almost constant stride length inferences, its scale
factors arc closer 10 i than the othet (w0 methods, when stairs
arc not included in the rack ( Tests 2, 4, 5, and 6). Indeed,
the constant stride length estimated by SELDA corresponds
(G @ average learned (rom its {raining set. Because human
walking is regular and constrained, the deviation of a stride
lengih around the average is hounded.

2) Walking dirgction: Only RoNIN and SmartWalk are com-
pured for the walking direction estimation task since SELDA
does not predict the jatter. Noisy velocity inferences resull
in noisy walking directions estimated by RoNIN, SmartWalk
is beuer than RoMIM since the mean RMSE of SmartWalk
is smaller in both cases of volunteers 1 and 2, The EKF
correction module ig efficient herc.

smartWalk &

Test2
_ ; [ | — . .
-20 i 70 o —an -20 [ 0
x {m} x {m)

SELDA (red), RONIN (orange), SmartWalk (green) and the Ground truth (blue)

The henefit of gmartWalk's EKF correction 15 illusteated in
Fig. 15 lor Volupteer 2. Similar o RoNIN, GMM standalone
(orange) yields noisy walking dircetion estimations. On the
sther hand, the trajectories estimated with MAGY S yaw
angle (blug) have almost the same shape a8 ihe ground truth.
Under the hypothesis that when the carrying mode reIains
steady, the change in the user's walking direction over 1wo
consecutive SIEps chall be the same a5 the change in the de-
{Hypothesis GHS), The device’s yaw
results sinoe MAGYQ
fusion improves
especialtly for

viees pointing direction
angle can be utilized 10 correet GMM
resulls @are MOrE HCCUrate and smooth, The
significantly the walking direction estimation,
turnings (green).

. CONCLUSION
This article analyses the features of existng Al-based pedes-
trian inertiol positioning jechniques with wearnble SENSOTS
poth at the theoretical and experimental performance levels.
A 2-category classification, based on the incriial segmentation
strategy is prcscnted: either using the human gait analysis of
the incrtial signals sampling {requency-
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A theoretical analysis of the fundamental assumptions that
allow the two categories of Al-based methods Lo Fumnction prop-
erly is carried out. A state-ol-the-art algorithm from cach cal-
ppory (SELDA and RoNIN and & classicnl signal processing-
hased algorithm {SmuorlWalk) are detuiled and implemented
far the 2,17 km experimental assessment in §ix scenarios anl
cnvironments covering the diversily of pedestrians’ mobility
{ppen-sky, indoors, farest, urban, parking lot). The dataset is
open-access.

SFELDA uscs the lal-fool instants of a fool-mounted wracker
to segment inertial signals. It was found to he ingfhcient for
labeling wearables’ training datasets [42] and unrealistic in
real-life situations. To better capture the walking changes with
gait-driven Al methods, different walking dynamics (various
stride lengths) should be added to the training dataset, and
adopting a user-centric approach could be beneficial.

Compared {0 SELDA, the signal segmentation and labeling
drategies of RoNIN show better learning. It estimates the
walking distance up 1o 4 scale factor, which is found to be
stuhle for the same indlividual and different from one imudividual
1o gmother, In addition, noisy predicted velocities and lack of
precision m eslimating lurnings result in important positioning
drifts.

SmartWalk shows that gait analysis can provide ellicient
cotrections 1o trajectory estimation: better displacement esti-
mates on stairs, smooth walking direction on sirnight lines.
ancl correct (Ening angle estimation. It is worth noticing that
significant changes in the device's yaw angle can indicate
wrnings. However, hypothesis GHS still needs o be tested
under diverse scenarios other than the "texting” case.

Globally, SELDA, RoNIN, and SmartWalk achieve 8 m, 22
m, and 17T maverige [msitinn'mg errors (RMSE) respectively,
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Fig. 15 Volunteer 2. Effeciency of the EKF correction:
(green) and MAGYQ (red)

on 6 testing tracks recorded with 2 volunteers in various
crvironments, over @ 2,17 km walking distance.

Hoth categories are facing challenges, Gait-driven Al meth-
ads need o iMprove (heir robustness: (0 denl with dillerent
device poses and user dynamics. Sampling {requency-driven
Al methods need 1o reduce noises 10 their predictions. A
direction for improvement is 1o fuse the two approaches 10
capiure the user's dynamics with 4 fxed sampling frequency-
hpsed processing and correct the trajeclory using estimated
pail paramelers. Finally, customizing the medel parameters for
cach user is another promising stralcgy.
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