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ABSTRACT

In the field of critical systems, safety standards such as DO-
178C define Development Assurance Levels (DALs) for
software systems (or sub-systems). The higher the
consequence of a failure the higher DAL is required by
certification authorities. Developing a system at a DAL A
requires the use of formal description techniques and is thus
expensive. For lower DALs, standard software development
is accepted. While operating such systems, reaching a given
goal might require operators to perform tasks using sub-
systems of different DALs. Operations thus take place via
mixed-criticality systems developed using several different
techniques. In order to guarantee the effectiveness of the
developed systems, it is necessary to ensure the compatibility
of the operators’ tasks and the system (whatever technique
has been wused for its development). While DAL
identification is outside the scope of the paper, this article
presents a task-model based approach for addressing
multiple DALs for mixed-criticality interactive software.
That approach proposes a systematic process for engineering
mixed-criticality interactive applications. This process is
supported by a software modeling and development
environment integrating both formal description techniques
and standard software programming techniques. The process
and the development environment are illustrated with a case
study of a mixed-criticality interactive cockpit application.

Author Keywords
Interactive systems, task models, formal models, co-
execution, Development Assurance Levels, critical systems.

ACM Classification Keywords
D.2.2 [Software] Design Tools and Techniques - Computer-
aided software engineering (CASE).

INTRODUCTION

In the field of critical systems, safety standards such as DO-
178C or IEC 61508 define Development Assurance Levels
for software systems (or for functions of software systems).
These levels are based on the analysis of consequences or
effect of a malfunction. For instance, if a function failure has
high consequences such as multiple fatalities, it is called
catastrophic and certification authorities will require that the
system manufacturer will provide a Development Assurance
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Level A (DO-178C standard for aeronautics [11]). If
consequences are lower, the required level will decrease.
Developing a system of a DAL A is extremely resource
consuming and expensive and, as far as software is
concerned, the use of formal description techniques is
required [7]. In lower DALSs, such expensive approaches are
not required and for reaching levels such as DAL D rigorous
software engineering approaches are sufficient.

One of the key issues in the development of critical systems
is to identify the required level of DAL for each function
which is usually performed by safety analysts. Once this is
performed system designers have to apply development
approaches compatible with the identified DALs. In the area
of safety critical interactive systems, there is a lack of
methods for designing systems with functions of different
Development Assurance Levels. One of the key aspects of
operating such systems is that operator tasks are orthogonal
to Development Assurance Levels. This means that reaching
a given goal might require operators to perform tasks using
functions of different DALs. Ensuring the compatibility
between the description of tasks to be performed by operators
and the systems on which those tasks are performed is
necessary in order to assess the effectiveness of a system.
Beyond that, such compatibility provides additional benefits
such as construction of a training program based on task
descriptions, assessment of task complexity, and impact of
systems evolutions on workload (among others).

In this article, we present a task-model based approach for
addressing multiple DALs for the interactive software. Such
software is qualified as mixed-criticality software [27]. The
approach supposes that DALs have been previously defined
by safety analysts and proposes a process for the
development of mixed-criticality interactive applications as
well as a software modeling and development environment
supporting that process. It integrates both formal description
techniques and standard software programming techniques.
The process and the development environment are illustrated
with a case study of a mixed-criticality interactive cockpit
application.

The remainder of the paper is structured as follows. The next
section presents an overview of the Development Assurance
Levels for interactive systems, in order to highlight the main
principles of this classification, exemplify it, and provide
insights on the way it is used. The third section presents a
process for addressing multiple Development Assurance
Levels during the design and development of mixed-
criticality interactive applications. The fourth section



presents the main elements of the architecture of the CASE
tool supporting the proposed process. The fifth section
illustrates the process and the CASE tool with an excerpt
from a case study of an aircraft interactive cockpit
application.

DEVELOPMENT ASSURANCE
INTERACTIVE SYSTEMS

In the aviation industry, the criticality level of a system is
classified by means of five Development Assurance Levels
(DAL) introduced in the DO-178C standard [11] for software
components and in the DO-254 standard [12] for electronic
hardware components. These levels are directly linked to
failure condition categories defined by certification
authorities such as EASA (European Aviation Safety
Agency') or FAA (Federal Aviation Administration?). Table
1 presents the five Development Assurance Levels
associated with their failure condition category and its
description (summarized from the EASA CS-25 standard
[10]). As presented in the first row of Table 1, a failure
having catastrophic consequences (failure condition column)
must not occur more often than once per 10° hours of
functioning (failure rate column). Such software must be
developed following DAL A processes and methods as
defined in DO-178C [11].

LEVELS FOR

Development Fall'ufe Description of the failure| Failure rate
Assurance | condition . .
. conditions (failures/hour)
Level categories
. .. Extremely
A Catastrophic Il:zluz:;n;llctggﬁ e improbable
v 10-9 +fail safe
Failure has a large
negative impact or Extremely
B Hazardous |performance, Or reduces |remote
the ability of crew to 10-7
operate the plane
Failure is significant, but
. . Remote
C Major has lesser impact than
10-5
hazardous
Failure is noticeable, but Probable
D Minor has lesser impact than
. 10-3
Major
No safety  [No impact on
£ effect dependability Any range

Table 1. System Development Assurance Level for civil
aircrafts

According to this standard the first two rows of Table 1
(colored in grey) correspond to so-called critical systems
while systems in the lower rows are called non critical.

Requirements and costs for DALs

The last column of Table 1 presents the requirements of the
different DALs in terms of acceptable rates of occurrence of
failures as defined by certification authorities. At
catastrophic level (DAL A in first row), a Fail Safe
requirement is added to components in order to ensure that

! http://easa.europa.eu/
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no single failure can have catastrophic consequences on the
aircraft.

Table 2 presents the DALs with respect to what has to be
done at development time and who is in charge of assessing
what has been done. What has to be done is called Objectives
(see column 3 of Table 2) and if the objective has to be
assessed by an external body, it is listed in the column four
(“with independence”). For instance, in DO-178C, for DAL
A (row one of Table 2) 71 objectives have been identified
and 33 of them have to be assessed by external bodies.

Development Failure condition Objectives With
Assurance Level categories independence
A Catastrophic 71 33
B Hazardous 69 21
C Major 62 8
D Minor 26 5
E No Safety Effect 0 0

Table 2. Development Assurance Levels and their associated
number of objectives to satisfied (from DO-178C [11])

Figure 1 presents an example of those objectives that are
listed in the DO-178C. That objective refers to the need for
ensuring that high-level requirements have been taken into
account in the design. Such an objective is required with
assessment by an external body for DAL A and DAL B
software (see black dots in column “Applicability by
Software Level”). The white dot for DAL C software means
that such an objective does not require external body
assessment. DO-178C only identifies what has to be done
while annexes to that standard identify how thing have to be
done. For instance, DO-333 annex [7] (page 101) states that
high level requirements should be expressed in temporal
logic while low-level requirements should be expressed by
state-based description techniques. Compliance between
these two representations has to be done using model-
checking techniques.

>
I = Applicability by
Shlective E Software Level
Description Ref Ref A | B|C|D
Low-level
requirements comply
| with high-level 63221632 | ® | ® O
requirements.

Figure 1. Example of objectives from DO-178 C page 81

The main difference between critical and non-critical
software is that a lot of objectives (e.g. verification activities)
have to be satisfied with independence, thus leading to very
expensive software development. Identifying accurately the
correct DAL is thus very important in order to invest
adequately development resources (not overspend on low
DAL systems and not underspend on DAL A software).

2 http://www.faa.gov/



Example of interactive systems with different DALs

In a cockpit such as the one of Airbus A380, three types of
interactive systems co-exist: physical hardware panels
(composed of physical buttons, knobs and dials), numeric
displays and interactive numeric user interfaces (the crew
can interact with them using a keyboard and a track ball unit).

In current aircraft, all the critical interactive systems are of
the first two types only:

i) hardware panels such as the Flight Control Unit: a
physical panel enabling the command and control of the
auto-pilot parameters and which is categorized DAL A;

il) numeric displays such as the Primary Flight Display

(PFD) which is categorized DAL B and which is
associated with a monitoring software (categorized
DAL A), in charge of verifying correct functioning of
the display but only for some parameters identified as
critical. It is interesting to note that this system (even
though not interactive) involves mixed-criticality
software.

All interactive software in cockpits is categorized as DAL C
and thus can only be used for the command and control of
non-critical systems (e.g. the Flight Warning System in
charge of presenting alarms and their corresponding
procedures to the pilot).

Operations on mixed-criticality systems

As explained previously, the CS-25 standard [10] is the
standard for certification specification of the EASA for large
aeroplanes. This document identifies requirements dedicated
to the cockpit in the 1302 section called “Installed systems
and equipment for use of the flight crew”. Following this
standard, the cockpit must allow the crew to safely perform
all their tasks and avoid error prone behaviors.

However, during operations, some of the pilot tasks may
involve several aircraft systems with different DALs. For
instance, after perceiving an alarm on the ECAM display the
pilot might decide to decrease flight level. In that case, he
will successively use information displayed by the Flight
Warning System (DAL C) and trigger commands using the
Flight Control Unit (DAL A). In order to comply with CS 25
1302 it is thus important to develop methods and tools
capable of ensuring that goals can be reached and tasks can
be performed on systems of various DALs.

DEALING WITH LEVELS OF CRITICALITY
INTERACTIVE SYSTEM (RELATED WORK)

Many techniques exist to design and develop interactive
systems. In this section, they have been classified in two
main groups:

IN

e Formal methods in HCI: this group encompasses
techniques and approaches that provide support for
verification of wuser interfaces and interaction

techniques. The techniques belonging to this group

3 http://cadp.inria.fr/
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provide support for proving the correctness and
robustness of a design and are therefore very eligible to
be used for the development of critical parts of an
interactive system.

Non formal user interface management systems: this
group encompasses all user interface management
systems that are not focused on ensuring the correctness
and reliability of an interactive system.

Formal methods in HCI

Several contributions in the field of formal methods in HCI
provide support for dealing with criticality in interactive
applications. Paterno and Santoro [26] proposed an approach
based on formal model-checking (with CADP? toolset) of
LOTOS [16] specifications of dialogue between the user and
the system. Oliveira et al [25] presented how models
following a PAC architecture can be used to verify
ergonomics properties. The following set of cited approaches
are based on the formal verification of state charts. Campos
and Harrison [5] proposed an approach based on SMV [21]
model-checking of Interactor specifications. Kamel and Ait
Ameur [18] also propose an approach to verify properties for
multimodal interactions with the SMV model checker.
Combéfis et al. [9] propose to translate models into Java
programs which can then be verified using JavaPathFinder*
model checker. All of these approaches can target a wide
range of properties verification on models [15] and are very
suitable to describe and verify interactive applications with a
low number of states.

Other approaches based on the executability of formal
models provide augmented support for describing the
conceptual model of the system and for analysis and
verification at earlier stage in the process [14]. ICO-Petshop
[24] and APEX-CPN Tools [28] frameworks are examples
of these kind of approaches. ICO (Interactive Cooperative
Object) [24] is a formal description technique based on high-
level Petri nets which enables the specification of
interactions between the user and the system as well as the
system’s behavior. This notation is associated with a CASE
tool which provides editing facilities as well as a runtime
environment to execute the user interface with its underlying
ICO behavioral models (this formal notation and associated
tool and properties verification capabilities are detailed in the
third section). APEX-CPN Tools is a framework based on
colored Petri nets [17], which provides support for rapid
prototyping of ubiquitous environments and a predefined set
of algorithms for properties verification. All of these
contributions target the application of formal methods to the
whole interactive system, but do not provide explicit support
for designing and developing mixed-criticality interactive
applications.

4 http://babelfish.arc.nasa.gov/trac/jpf/
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Figure 2. A process for addressing multiple Development Assurance Levels in mixed-criticality interactive applications
Non formal user interface management systems A PROCESS FOR ADDRESSING MULTIPLE
Frameworks and tool suites dedicated to the design and DEVELOPMENT ASSURANCE LEVELS IN MIXED-

development of user interfaces have been available for
several decades [23]. A large set of these frameworks aim at
providing support for faster development of graphical
interfaces thanks to the introduction of graphical toolkits [4].
But they can also target specific types of user interfaces such
as distributed user interfaces [20] and/or specific contexts of
user interaction such as multimodal user interactions [6].

These frameworks and tool suites neither explicitly deal with
the integration of formal and non-formal techniques nor
target the development of mixed-criticality interactive
applications. In the field of software engineering, approaches
that integrate the use of formal and informal modeling
languages have been proposed such as the model driven
approach presented in [19]. In the field of dependable
computing, targeted systems embed critical components and
non-critical components, and a set of techniques take into
account the integration of both types of components at design
and development time such the one proposed in [27]. But
these two last types of solution are dedicated to non-
interactive software.
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CRITICALITY INTERACTIVE APPLICATIONS

The proposed process provides support for ensuring
completeness and consistency between a mixed-criticality
interactive application and users’ tasks. As depicted in Figure
2, preliminary task models and appropriate DALs are taken
for each software part of the interactive application. Three
main steps can be carried out in parallel (discs 1, 2 and 3 in
Figure 2)

e  Task modeling refining the models in order to identify
the tasks that are performed with critical parts of the
software. Several task models are produced (using
structuring mechanisms to handle large sets of users’
activities [13]) and they are reworked until they are

complete and consistent with each other.

Formal model-based design and development of the
critical parts of the interactive application.

Design and development of the software components
that do not require the application of formal methods.

Three types of artefacts are produced from these three steps:
task models, executable formal models and annotated code.



CIRCUS (Computer-aided-design of Interactive, Resilient,
Critical and Usable Systems), merges system modeling,
software programming and task modeling tools into a single
framework. Three types of artefacts can then be produced
with CIRCUS tool. While all the steps can be performed with
CIRCUS, they can be interactive manual activities (plain
rectangles with discs 1, 2, 3, 7 and 8 in Figure 2) or fully-
automated activities (dashed rectangles with discs 4, 5 and 6
in Figure 2). From the produced artefacts, automatic
extractions are performed on them:

e Interactive input and output tasks are extracted from the

task models.

Event sources and renderers are extracted from
annotated code.

User services and formal model nodes meta-events are
extracted from formal models.

A correspondence window containing the extracted
input/output elements can then be used to systematically
map:

e  Each interactive input task to an event source or a user

services,

Each interactive output task to a renderer or a formal
model node meta-event.

During this operation, if an interactive task cannot be
mapped to an input/output element of the mixed-criticality
interactive application or, in the other case, if an input or
output element of the mixed-criticality interactive
application cannot be mapped to an interactive task, it means
that there is a completeness issue. In the first case, this
completeness issue highlights the fact that, a function is
missing in the mixed-criticality interactive application and it
has to be updated (loop back from the “Check completeness”
rhombus to the relevant design and development step
according to the software DAL in Figure 2). In the second
case, this completeness issue highlights the fact that an
interactive task is missing in the task model, which has to be
updated (loop back from the “Check completeness” rhombus
to the task modeling step in Figure 2).

Once all the completeness issues have been solved, the
consistency between interactive tasks and DAL of the part of
the interactive application software with which the
interactive task is mapped is assessed. For example, if an
interactive input task is listed as having to be executed with
a critical part of the software, and that from the extracted
input elements of the interactive application, only a matching
event source is found instead of a user service, it means that
there is an error in the list of tasks that have to be performed
with critical parts of the software (loop back from the bottom
rhombus “Check consistency” going through artefact “Errors
in the list of tasks that are performed with critical parts of the
software” in Figure 2). In that case, the DAL of the related
software part has to be checked and depending on the
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outcome of this verification, the task models will be modified
or the mixed-criticality application will be modified.

Once all the mapping of the extracted elements have been
completed (i.e. is complete and consistent), the task models
can be co-executed with the mixed-criticality interactive
application. During this co-execution step, behavioral
inconsistencies can be detected between the sequence of
executed tasks and the behavior of the different software
parts of the mixed-criticality interactive application. If such
inconsistency is detected, either the task model will have to
be modified (loop back from the “Misfits in task models”
artefact in Figure 2) or the mixed-criticality interactive
application will have to be modified (loop back from the
“Misfits in mixed-criticality interactive application” artefact
in Figure 2).

AN ARCHITECTURE AND A MODELING AND
DEVELOPMENT ENVIRONMENT FOR ADRESSING
MULTIPLE DEVELOPMENT ASSURANCE LEVELS IN
MIXED-CRITICALITY INTERACTIVE APPLICATIONS

The architecture of the CIRCUS software environment that
supports the presented process allows both correspondence
editing and co-execution of task models and mixed-
criticality systems is presented on Figure 3.

AP

PetShop - ICO

eeeee

o~
Adapters

Correspondence

HAMSTERS Editor

Interpretor

AP

Task Models

Simulator

Non Critical part
of Interactive
Application

uogea||ddy sAoRIRIU| PHUAAH [EOBLID

Regular code
Annotated

Figure 3. Design time/ runtime architecture of the CIRCUS
environment.

Design time Architecture

This architecture is inspired by the work presented in [3]
where the integration of the tools relies on a specific API
provided by both HAMSTERS and PetShop, and since [21]
on the API provided for handling annotated code.

On the left side of Figure 3, the integration relies on the
Hamsters environment that provides a set of tools for
engineering task models. It allows the editing and the
simulation of task models this building interaction scenarios
from the task models:

e From task specification a set of interactive tasks (input
and output tasks) are extracted that represent a set of
manipulations that can be performed by the user on the

system and outputs from the system to the user.



While building a scenario (e.g. simulating the task
model) the Hamsters environment notifies the evolution
of this scenario through a dedicated application
programming interface (API) that allows data to be
received from the simulator.

Similarly, on the right side of Figure 3, the integration relies
on the ICO environment (PetShop) and on the annotated code
that provide means for editing (PetShop or Java IDE) and
executing the system (models played by PetShop and/or
execution of the code):

e  From the ICO specification we extract the activation and
rendering function that may be seen as the set of inputs

and outputs of the system model.

From the annotated code we extract the set of events and
graphical property changes produced by annotated
widgets.

While using the application (result of the execution of
the specification within the PetShop environment and/or
the annotated code) dedicated APIs provide the means
for the notification of the evolution of this execution.

The principle of editing the correspondences between the
two sides is to put together interactive input tasks (from the
task model) with system inputs (from the system model or
code) and system outputs (from the system model or code)
with interactive output tasks (from the task model).

Property Verification of the correspondences

As described in the process presented in the third section, the
CIRCUS framework provides support for verifying the
following properties:

e  Completeness: The former versions of the tool already
provide means to assess the task model coverage by
correspondences. For verification purpose, a particular
focus must be put on having a correspondence for each
critical task.

Consistency: As tasks may be critical, they should be
performed using a critical part of the application (higher
DALs), while standard tasks may be performed without
any particular attention put on the criticality of the
interactive software part they are performed with (lower
DALs).

Runtime Architecture
At runtime, a two way communication exists between the
task side and the system side.

Between HAMSTERS and the Simulation
Controller: on one side HAMSTERS notifies changes
in the current scenario to the Simulation. On the other
side the Simulation Controller is able to ask to perform
the corresponding task (according to the correspondence
provided by the Correspondence editor), simulating the
user action.

Between PetShop, annotated code and the
Simulation Controller: on one side the PetShop
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interpreter or the execution of the annotated code notify
the Simulation Controller with the evolution of the
current execution of the mixed-criticality application
(notifications come from rendering and activation
functions of the ICO models or the events triggered by
the execution of the code). On the other side, the
Simulation Controller fires the corresponding activation
adapter (according to the correspondence provided by
the Correspondence editor) simulating the user action.

As was the case in the previous version of the framework [3],
this proposed architecture allows the task model driven
execution of the system part (using PetShop or annotated
code), and it conversely allows system driven execution and
recording of the user actions in task based scenarios:

e In the case of task driven execution, executed tasks are
translated by the Simulation Controller into user actions
within PetShop (a sequence of transition firings) or the
annotated code (making widgets trigger events or

changing graphical properties).

In the case of system driven execution, user actions are
directly linked to the corresponding tasks from the task
model and the user’s action with the user interface of the
application is recognized and mapped to an interactive
task within the task model.

This runtime architecture behaves in the same way as
presented in [3, 21] and is not illustrated in the case study
section.

ILLUSTRATIVE EXAMPLE FROM ENGINEERING A
MIXED-CRITICALITY INTERACTIVE COCKPIT
APPLICATION

The presented example has been extracted from a case study
in the avionics application domain. The FCU Software is a
case study application that aims at allowing the aircraft crew
members to interact with the Auto-Pilot and to configure
flying and navigation displays. The FCU Software is a
mixed-criticality interactive application as it enables the pilot
to command and control DAL A software applications (such
as pressure configuration) as well as DAL C software
applications (such as waypoints display configuration).

The purpose of this section is to illustrate the main steps of
the proposed design and development process. The case
study presentation focuses on the engineering aspects of the
approach. The three first sub-sections (discs 1, 2, 3 in Figure
2) illustrate the production of models and of regular code.
Automatic extraction steps (discs 4, 5 and 6 in Figure 2)
outputs elements that are used during the correspondence
editing step (disc 7 in Figure 2) and presented in the
dedicated sub-section. The co-execution step (disc 8 in
Figure 2) is the same as that described in [3] and [21]. This
section highlights the architectural aspects of the mixed-
criticality FCU Software within the CIRCUS environment,
the artefacts produced during the process and the
correspondence edition step.



@EventSource (name="wpt", event="a66lEvtSelection")
@Renderer (name="wpt", property="pictureReference")

private PicturePushButton buttonWPT;

private void ppbWPTA661lEvtSelection (fr.irit.examples.a66l.swing.A66lEvtSelectionEvent evt) {

setND _Optionl (ND Optionsl.WPT);

Figure 4. Excerpt of regular code (widget declaration and event-handler)

Figure 5. EFIS control panel (with WPT button activated)

Presentation of the FCU Software

In the Airbus A380, the Flight Control Unit is a hardware
panel (i.e. several electronic devices such as buttons, knobs,
displays ...) providing two services: one managing aircraft
information called EFIS (Electronic Flight Information
System) and the other one managing the autopilot called AFS
(Auto Flight System). Several of the actions that can be
achieved by the pilot through the use of the Flight Control
Unit are critical. The FCU Software is considered as a
graphical interactive application for replacing the FCU
hardware panel by graphical interfaces.

Receive FL and haro

settings clearance Configure baro settings Configure FL

Inf : pressure unit Inf : pressurevalue Inf : atmospheric reference

Decide to check waypoints

Inf : Flightleve

The crew members can interact with the application via the
Keyboard and Cursor Control Units which gathers in a single
hardware component a keyboard and a trackball. The upper
part of the left panel of the EFIS (depicted in Figure 5) is
dedicated to the configuration of the barometer settings. The
top right panel of the EFIS page enables the display of
several navigation information (such as waypoints).

Task modeling of the start descent activities

In this illustrative example, we focus on the activities that

have to be carried out in order to start descent. The main

activities that have to be carried out by the aircraft crew

members to initiate a descent are a sequence of tasks that are

depicted in the task model in Figure 6:

e The pilot in charge first receives the clearance that
contains information about the flight level to be set and
the baro settings to be configured.

e The pilot then has to configure the barometer settings
(standard settings or particular settings corresponding to
the current atmospheric pressure of the area the aircraft
is entering) using the upper left part of the left panel in
the EFIS page.

e  S/he configures the flight level.
e  S/he decides to check waypoints.

e S/he configures the display of waypoints in the
Navigation Display by pressing the “WPT” button
widget in the upper left part of the right panel of the
EFIS_CP page.

e  S/he analyses the planned trajectory.

.\_\‘&;:
AR
Prass button widgat to configurs the display of [waypoints, WPT button]

Ay

g

Analyse flight trajsctary

Figure 6. “Start descent” task model



Structuring mechanisms (previously proposed in [8]) have
been used to produce all the task models of the case study. In
Figure 6, the task “Configure baro settings” is a subroutine,
meaning that it is composed of several tasks that are
described in another task model (that the reader can find in
Annex A). In Figure 6 as well, the task “Press button widget
to configure the display of [waypoints, WPT button]” is an
instance of a component task, meaning that it is composed of
a set of tasks that can be performed in the same way with all
the instances of a user interface component. This set of tasks
is described in the task model (presented in Annex A).
Concerning the “Start descent” activities, the task
“Configure baro settings” has to be performed with critical
functions of the avionics system, whereas the task “Press
button widget to configure the display of [waypoints, WPT
button]” has to be performed with a non-critical function of
the avionics system.

Design and development of the mixed-criticality
interactive application

Figure 8 presents the software architecture of this
application. The lower part of Figure 8 corresponds to the
Cockpit Display System (CDS) which is responsible for
handling both graphical element of widgets and user inputs.
This part of the application is considered reliable and is thus
out of the scope of the case study (not directly involved in
the correspondence editing). The upper part of Figure 8
corresponds to the mixed-criticality application involved in
initiating a descent. Left-hand side is critical, handled and
played using PetShop-ICO (management of baro settings),
while the right-hand part is not critical and is edited and
played as regular code (management of waypoints).
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PetShop - ICO
(Formal models
Executable)

Non Critical part of
Interactive
Application
(Regular code Annotated)

Baro settings Handle waypoints

| n | n
h 4 I A 4 I

Cockpit Display System (CDS)

Figure 8. A mixed-criticality application architecture

Formal model executable

The critical parts of the software are designed and developed
with using the ICO notation. ICO models are produced and
then connected to the static UI elements following a process
introduced in [24]. The right part of Figure 9 presents an
excerpt of the ICO model describing the behaviour of the
barometer control panel. In this excerpt, a token is present in
the place “InHg” and transition “switchTo HPA” is available.
This transition will be fired if the user clicks on the “InHG to
HPA” radio button.

Regular code annotated

The non-critical part of the software is designed and
developed using the Java language. Figure 4 presents an
extract of the Java code that defines the behaviour of the
waypoints display configuration. In this extract, the last line
is the declaration of the WPT button widget and the two
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Figure 7. Bird’s-eye view of the correspondence edition frame within the Circus Tool Suite.
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Figure 9. Correspondence editing between Hamsters model and ICO model

previous lines are the annotations that will be used by the
CIRCUS environment for preparing the correspondence
editing [21].

Correspondence editing between tasks and mixed-
criticality interactive system

Both the task models and the interactive application (ICO
models and the regular code) are handled within the Circus
tool suite as illustrated in Figure 7. The left part (numbered
1) in Figure 7 displays the project set of files of the
application (Java source files, Hamsters models, ICO models
and correspondence files). The right part (numbered 2) in
Figure 7 is the correspondence editing frame where the upper
part is dedicated to edit the input and output correspondences
between task models and the system part, and where the
lower part is dedicated to the models and files selection (left)
and to the correspondence coverage summary (right).

Editing correspondences between Hamsters models and the
mixed-criticality application is done thanks to a table
containing data extracted from task models, ICO models and
annotated code as presented in Figure 9 and Figure 10. Figure
9 illustrates the editing of the correspondence between the
task model “Configure baro settings” and the corresponding
ICO model. The two critical interactive input tasks are put
into correspondence with the two corresponding event

A\
o B

2
— g

Giiok an WPT button

&

Display new status of WPT button

handlers from the ICO model (Click on <hPa to InHg
button> corresponds to the event handler folnHg and Click
on <InHg to hPa button> corresponds to the event handler
tohPa). In Figure 10, this correspondence is done with the
widgets extracted from the annotated regular code (right
part) and the task model “Press button widget to configure
the display of [waypoints, WPT button]”. For instance, the
task Click on <WPT button> is put into correspondence with
the triggering of the event a661EvtSelection of the widget
called wpt (wpt#a661EvtSelection in the column Event

Handler of the input table). When editing such

correspondences, one could put into correspondence a

critical task and a regular code element as illustrated in

Figure 11. Putting inconsistent elements together triggers a

warning amongst three possible one (the three numbered

orange items in Figure 11):

1. In the first table, the orange background of the fourth
line is a visual cue for warning that a critical task has
been put into correspondence with a non-critical
element.

2. In the correspondence coverage panel, it is displayed
that some elements have not been used in a
correspondence (here the event handler from the ICO
model that should have been used instead of the regular
code element).

private PicturePushButton buttonWPT;

Q@EventSource (name="wpt", event="a66lEvtSelection")

@Renderer (name:"wpt" , property="pictureReference")

Event Handler

Interactive Input Tasks
lick on =WPT button=

|wpt#aB&1EvtSelection

‘ Interactive Output Tasks StateHolder

‘ ChangeObserved

[1|Display <WPT bulton= status €= [wpt € ——

|pictureReference €

Figure 10. Correspondence editing between Hamsters model and regular annotated code

116



¥
>>
.‘//’f/’//;?
Qo T

=8

b= |

@EventSource (name="wpt", event="a66lEvtSelection")
L

C:::::‘-\a\“\&_‘\\M“@Renderer(name="wpt",
Eo

private PicturePushButton buttonWPT;

[
property="pictureReference")

Click on INHG to HPa button  Edifing value in HPa

Click on HPa to-Ian button
J

Interactive Input Tasks.

| Event Handler

TTCHCR On =S 10 ChecRauTans oD
n <GNH ftoONH
on <InHg to hPa button> ftoHPA
on =hPato InHg. hulln!ﬁ‘ wptt#ash
[ [Type on Enter key# changeinHgTemp

[I[Type on Enter key#2

changehPaTemp

[1[Click an <WPT button=

(wpt#aG61EvtSelection

Interactive Output Tasks

StateHolder

ChangeObserved

<inHg te hPa butten= status Pa

en_a

<hPa to InHg button= status nHg

cen_a

<InHg pressure> nHg

(en_a

<hPa pressure> Pa

28|28

cen_a

splay <VWPT bulton= status wpt

Tasks | Systems APIs |

Used models
FCU_UA
FCu

Java | 1cO |

Available models

Correspondance coverage

Unused
tasks

Unused
ICO items

Interactive Input tasks 0 outof 7.
Interactive Output tasks 0 outof 5

Events Handlers 1outof 6
Rendering Events 0 outofd

Critical tasks coverage

Unmapped
critical
tasks

90 %

I

Interactive Input tasks 1outof 6
Interactive Output tasks 0 outof4

3

Figure 11. Correspondence editing with warnings: the critical task has been put into correspondence with a regular code
element (not critical)

3. In the critical tasks coverage pane, it is displayed that
one critical task has not been related to an ICO element.

The choice has been made here to only show warnings to the
engineer instead of displaying errors as it supports iterative
prototyping, making it possible to interact with the
application even if correspondence editing has not been done
in a complete manner. This section has presented: the
architectural aspects of the CIRCUS tool applied to the
mixed-criticality FCU Software, the artefacts produced
during the process (task models, ICO formal models and
regular code annotated), the correspondence editing step
(taking as inputs automatically extracted interactive tasks,
event sources, renderers, user services, formal model nodes
meta-events).

CONCLUSION

Ensuring the compatibility between the description of task to
be performed by operators and the systems on which those
tasks are performed is necessary in order to assess the
effectiveness of a system. Beyond that, such compatibility
provides additional benefit such as construction of a training
program based on the task descriptions, assessment of task
complexity, and impact of systems evolutions on workload
(among others). Previous work in the area of interactive
systems engineering have provided tools and methods for
ensuring such compatibility depending on how the
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underlying interactive system was built. [3] has presented a
task-based framework using the ICO formal description
technique while [21] has proposed a similar framework but
only for systems developed using standard programming
methods (extended with dedicated annotations). This paper
has presented the CIRCUS framework capable of dealing
with both approaches in a simultancous way. Such a
contribution is very relevant in the area of critical systems
where different criticality levels coexist and thus where
formal approaches and standard software engineering
development methods are used. More precisely, in this article
we have presented a task-model based approach for
addressing multiple DALs for the interactive software. We
have shown how this approach, composed of a process for
the analysis of mixed-criticality interactive applications as
well as a software modeling and development environment
supporting that process, provide support for integration of
and compatibility assessment between formal models,
regular code and task models. However, we only have
addressed systems offering WIMP interaction techniques
and much more work has to be done to encompass more
advanced interactive systems such as the one offering
multimodal and multi-touch interactions.
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