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Abstract5

This paper deals with finite strain isotropic thermo-elasticity without any specific Ansatz regarding the

Helmholtz free energy. On the theoretical side, an Eulerian setting of isotropic thermo-elasticity is developed,

based on the objective left Cauchy-Green tensor along with the Cauchy stress. The construction of the elastic

model relies on a particular invariants choice of the strain measure. These invariants are built so that a

succession of elementary experiments, in which the invariants evolve independently, ensures the complete

identification of the Helmholtz free energy and thus of the thermo-elastic constitutive law. Expressions

idealizing these experimental tests are proposed. A wide range of hyperelastic models are found to be a

special case of the model proposed herein.

Keywords: Finite strain thermo-elasticity, experimental identification6

Introduction7

Elasticity is probably one of the most extensively discussed topics in the analytical mechanics literature8

over the last few centuries. Since Robert Hooke’s linear relationship linking the current Cauchy stress σ to9

the linearized strain ε, many authors studied small strain but also non-linear elasticity, the latter beeing well10

suited to study materials, such as polymer, which undergo large deformations. The fundamental ground of11

this phenomenon, which can preceed more complexe non linear events, is now a very well assessed subject,12

both theoretically [3, 9, 25] and experimentally.13

14

However, specific Ansatz are still commonly used concerning the Helmholtz free energy from which the15

elastic constitutive law is derived. Classical small-strain elasticity, linking the second Piola-Kirchoff tensor16

π to the right Green-Lagrange strain tensor E relies on a quadratic expansion of the Helmholtz free energy17

with respect to the small strain E. As regards finite strain elasticity, where such series expansion are no18

longer valid, the construction is based on a choice of the Helmholtz free energy according to invariants19

of the deformation tensor. Two main categories are often distinguished, depending on the state variables20
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chosen. On the one hand, Neo-Hookean[20], Mooney-Rivlin [22], or Yeoh [36] models postulate a polynomial21

expansion of the free energy with respect to the fundamental invariants of a strain tensor. The coefficients22

involved in the polynomial expansion are fitted to reproduce experimental data. On the other hand, stretched23

based models, such as Ogden’s which develop the Helmholtz free energy as a power series, retain the positive24

eigenvalues of the right Cauchy-Green tensor C. Ogden models have been found to be very efficient for large25

strain elasticity of rubber like material [6]. Many articles have offered reviews of these different models and26

their respective pros and cons [7, 10, 19, 23].27

The first objective of this paper is to present a choice of a triplet of kinematically significant invariants,28

allowing for the rigorous identification of the Helmholtz free energy, through a succession of simple elementary29

experiments and without a posteriori adjustment. These invariants are chosen so that they can evolve30

independently.31

In Section 1, we will recall the main lines of construction of the finite strain isotropic thermo-elastic32

behavior. In Section 2, we will present the invariants of the left Cauchy-Green deformation tensor used for33

the construction of the elastic model and the resulting constitutive law. Then, we will study, Section 3, the34

successive elementary experiments which allow the identification of the Helmholtz free energy. Physically35

realistic expressions for the experimental data required to build the model will then be proposed in Section36

4.37

1. Reminder of finite strain elasticity38

This section briefly presents the fundamental assumption of finite strain isotropic thermo-elasticity within39

an Eulerian setting. The formulation of the general theory is given in the thermodynamic framework by40

introducing the Helmholtz free energy as a function of a finite strain measure, and by exploring both the41

first and the second law of thermodynamics.42

1.1. Framework43

Let Dm
0 ∈ R3 be a material domain corresponding to the reference configuration of a continuous medium.44

Particles labeled by x0 ∈ Dm
0 are transported in the current configuration to xt ∈ Dm

t by a one-to-one45

mapping φt. Let us note F the deformation gradient of this mapping.46

Let us consider two observers (reference frames) R and R̃. We denote Q0 the orthogonal transformation47

linking these two reference frames at the initial time and Qt the orthogonal tensor linking these same two48

observers in the current configuration. A second-rank tensor, Y for the observer R, equal to Ỹ for the49

observer R̃, is called invariant (or “objective Lagrangian”) [21] if:50

Ỹ = Q0 ·Y ·Q⊤
0 Q0 ∈ SO(3);∀t. (1)
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Similarly, we will call “objective” any second-rank tensor X satisfying the following equality:51

X̃ = Qt ·X ·Q⊤
t Qt ∈ SO(3). (2)

The invariance or objectivity property of a tensor is intrinsic and comes either from its mathematical52

definition or from a physically motivated assumption. The first step in the construction of a constitutive53

law is the choice of a deformation measure, which cannot be simply F , among two large families:54

• On the one hand, strain tensors based on the product C = F⊤ ·F or its related tensors of the form55

Y =
1

n
(Un − 1) with U =

√
C (pure stretch). These deformation tensors are often called “right56

strain mesure”, “Lagrangian” or “invariant” because they obey the relation (1). These strain measures57

are used to close the mechanical problem by relating the first or second Piola-Kirchoff stress tensor P ,58

π (which are also postulate invariant) to the displacement field u.59

• On the other hand, strain measure, called “left”, “Eulerian” or “objective”, and based on the left Cauchy-60

Green deformation B = F ·F⊤ (subsequently called “Finger tensor”) are more rarely considered to61

build elasticity models. These deformation measurements effectively link the objective Cauchy stress62

σ to the displacement field.63

1.2. Elastic behavior64

The finite-strain isotropic elastic behavior is based on the following three assertions:65

1. Temperature and a strain measure are the only state variables.66

2. The stress measure is a state function.67

3. In all evolutions, the intrinsic dissipation is null.68

The first assumption 1) forbids the presence of additional internal variables which could be the witness of69

phenomena such as plasticity, damage etc... But also anisotropy through a structural tensor [4, 37]. The70

second assumption 2 excludes viscous effects and a possible strain rate D (D denotes the symmetric part of71

the spatial velocity gradient) dependency of the Cauchy stress. The last assumption 3 ensures reversibility72

in the sense that the entropy production other than thermal is zero. To satisfy these three requirements,73

most treatises devote the so-called “Lagrangian” approaches and relate the second Piola-Kirchoff tensor to74

the right Green-Lagrange deformation tensor. Eulerian formulations of elasticity are rarely considered (see75

nevertheless [24, 31]), especially since the Cauchy stress cannot be written as the simple derivative of a76

potential with respect to a strain measure.77
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1.3. Eulerian finite strain isotropic elasticity78

Here, we choose to catch the motion with the left Cauchy-Green objective strain tensor B which we79

relate to the Cauchy stress σ whose physical meaning is perfectly clear.80

81

The isotropy of the material σ(T,B) = Qt ·σ ·Q⊤
t (T,Qt ·B ·Q⊤

t ) and the Rivlin-Ericksen theorem [25]82

implies that the Cauchy stress necessarily expands as a quadratic polynomial of the strain measure:83

σ = KB
0 1+KB

1 B +KB
2 B2. (3)

The coefficients KB
i are scalar functions of the temperature, but also of a triplet of B invariants. Their84

expressions, as a function of the free energy, can be deduced from the nullity of the intrinsic dissipation (see85

[35] p.295) written on the current (spatial) configuration:86

Φ = −ρ
(
ψ̇m + Ṫ sm

)
+ σ : D = 0. (4)

For an isotropic material, the Helmholtz massic free energy is an isotropic function [4, 32] ψm(T,B) =87

ψm(T,Qt ·B ·Q⊤
t ), ∀Qt ∈ SO(3) so that there exists fBψ such that:88

ψm(T,B) = fBψ (T,BI, BII, BIII), (5)

where the fundamental invariants (BI, BII, BIII) denote the coefficients of the characteristic polynomial of B89

(main invariant). Note that any other triplet of invariants bijectively related to (BI, BII, BIII), is legitimate.90

Thus, the “principal” invariants defined by Bi =
1
iTrB

i are often used to construct elastic laws as their91

partial derivatives with respect to the strain measure are straightforward. In the following, we will retain92

invariants whose kinematic meaning is clear.93

According to the fundamental invariants (BI, BII, BIII), the isotropic finite strain thermo-elastic law94

reads, (see Appendix A but also [16, 31]):95

σ =
2ρ0√
BIII

(
BIII∂BIIIf

B
ψ 1+ (∂BIf

B
ψ +BI∂BIIf

B
ψ )B − ∂BIIf

B
ψ B2

)
. (6)

1.4. Elastic model based on volumetric split96

Most materials exhibit completely different volumetric and isochoric responses so that we make use of

the isochoric-volumetric commutative split of the gradient F [13, 30]:

F =
(
J

1
31
)

·
(
J

−1
3 F

)
=
(
J

1
31
)

·F , (7)

⇒ B = (J
2
31) · (J

−2
3 B) = Bsph ·B. (8)

Bsph is a spherical tensor whose only invariant is the volume expansion J :97

J = detF =
√
detB =

√
BIII. (9)
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The isochoric Finger tensor B satisfies detB = 1 and is therefore represented by two invariants. We98

note, without any ambiguity, BI and BII the two fundamental invariants of the isochoric Finger tensor.99

These invariants are trivially related to those of B by:100

BI = J− 2
3BI = B

− 1
3

III BI and BII = J− 4
3BII = B

− 2
3

III BII. (10)

One can find a function f̃Bψ of the invariants (T,BI, BII, BIII) coinciding with the Helmholtz massic free101

energy:102

ψm(T,B) = fBψ (T,BI, BII, BIII) = f̃Bψ (T,BI, BII, BIII). (11)

The partial derivatives of the new function f̃Bψ are then obtained by simple algebraic calculations. The103

elastic law (6) is then transformed to give (see Appendix B):104

σ =
2ρ0√
BIII

(
BIII∂BIII f̃

B
ψ 1+ ∂BI

f̃Bψ DevB − ∂BII
f̃Bψ Dev

(
B

2 − Tr
(
B
)
B
))

,

σ =
2ρ0√
BIII

(
BIII∂BIII f̃

B
ψ 1+

∂BI
f̃Bψ

B
1
3

III

DevB −
∂BII

f̃Bψ

B
2
3

III

Dev
(
B2 − Tr (B)B

))
.

(12)

DevX = X −
(
1
3TrX

)
1 refers to the deviatoric (trace-less) part of a second-order tensor.105

(12) emphasizes the deep link between the isochoric strain and the deviatoric part of the stress.106

2. Construction of the thermo-elastic model107

The invariants used so far are natural, but inefficients for the identification of the Helmholtz free energy,108

as they evolve simultaneously in classical experimental tests. The corner-stone of the subsequent section is109

the choice of independent invariants associated with simple elementary experiments, allowing them to evolve110

one after the other.111

2.1. State variables112

First invariant of the isochoric Finger tensor. We introduce a first invariant γs of the isochoric Finger tensor113

B, defined by:114

γs =

√
BI − 3 =

√
BI

B
1
3

III

− 3, (13)

γs is bijectively related to the maximum distortion δmax (see [15]):115

γs =
√
3

√
(δmax)

2
3 − 1 with δmax = max

Q∈SO(3)

1

|det (Q ·ut,Q ·u′
t,Q ·u′′

t )|
, (14)

where (ut,u
′
t,u

′′
t ) denotes an initially orthogonal material direction triplet (at t = 0, det (u0,u

′
0,u

′′
0) = 1).116

The maximum distortion δmax reflects the maximum decrease of the solid angle formed by three initially117
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orthogonal material directions. Moreover, in an isochoric simple shear test, defined by the transformation118

field (see Figure 1):119

xt = φ(x0, t) = J
1
3 (x0 + γY ex), (15)

simple algebra yield γs = γ, so that γs equalized the motion magnitude.

Figure 1: Isochoric planar simple shear kinematics

120

Second invariant of the isochoric Finger tensor. We propose to construct a second invariant of B which121

remains null in any isochoric simple shear test. Thus, one may clarify the dependence of the Helmholtz122

massic free energy with respect to this new invariant. The isochoric Finger tensor associated with the123

motion (15) reads:124

B = (1 + γ2) (ex ⊗ ex) + γ (ex ⊗ ey + ey ⊗ ex) + ey ⊗ ey + ez ⊗ ez. (16)

Set γ⊥ = 0 and e = 1 in (D.3) shows that the two fundamentals invariants of (16) stay equal BII = BI.125

We define the invariant γt, identically zero in any spherical evolution and in a simple shear test, by:126

γt =

√
BI − 3−

√
BII − 3 = γs −

√
BII

J
4
3

− 3, (17)

γt is always well defined (i.e. the terms under the roots are always positive) by concavity of the logarithm.127

A closed form of its variations’ domain is given in Appendix C.128

2.2. Constitutive law with the new invariants set129

The list of reduced state variables retained is thus (T, J, γs, γt) (9), (13), (17). The relations are inversed130

in:131

J = B
1
2

III; γs =

√
BI − 3; γt = γs−

√
BII − 3 ⇔ BIII = J2; BI = γ2s +3; BII = (γs−γt)2+3; (18)

The generic elastic law (12), expressed in terms of the principal invariants (T,BI, BII, BIII) is transformed132

by applying the chain rule:133

σ = ρ0

(
∂J f̃ψ1+

1

γsJ
5
3

(
∂γs f̃ψ + ∂γt f̃ψ

)
DevB +

∂γt f̃ψ

(γs − γt)J
7
3

Dev
(
B2 − Tr(B)B

))
. (19)
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This is the most general isotropic thermo-elastic law, formulated with respect to the variables (T, J, γs, γt).134

Postulating that the free energy does not depend on the γt invariant, i.e. ∂γt f̃ψ = 0, reduces (19) to the135

elastic law used by [24, 26, 29, 31]. It should be noted, however, that in these papers, the expression136

of the free energy is presented as a hypothesis and is not deduced from experimentally assessed stresses.137

These models, being limited to the triplet (T, J, γs), choose not to distinguish energetically two different138

deformations which would share the same maximum distortion δmax and thus the same invariant γs.139

3. Experimental identification140

The thermodynamic construction presented herein follows the generic method presented by Guarrigues141

[16, 17].142

Let f̃ψ denote the free energy variation within the non-isothermal thermo-elastic process from a reference143

configuration, E0 = (T0, 1, 0, 0) for which the free energy is set to zero, to an arbitrary configuration given144

by the state variables (T, J, γs, γt):145

ψm = f̃ψ(T, J, γs, γt). (20)

To define the Helmholtz massic free energy at any point (T, J, γs, γt) of the state space, we define a particular

path

E0 = (T0, 1, 0, 0)
P(1)

−→ E1 = (T, 1, 0, 0)
P(2)

−→ E2 = (T, J, 0, 0)
P(3)

−→ E3 = (T, J, γs, 0)
P(4)

−→ Et = (T, J, γs, γt)

such that f̃ψ is additively found, given the energy variation in every path:146

ψm = g(1)(T ) + g(2)(T, J) + g(3)(T, J, γs) + g(4)(T, J, γs, γt). (21)

- g(1)(T ) is the Helmholtz massic free energy variation within P(1) (strain-locked heating):147

Ṫ ̸= 0; J = 1; J̇ = 0; γs = 0; γ̇s = 0; γt = 0; γ̇t = 0; (22)

- g(2)(T, J) is the Helmholtz massic free energy variation within P(2) (isothermal spherical motion):148

Ṫ = 0; J̇ ̸= 0; γs = 0; γ̇s = 0; γt = 0; γ̇t = 0; (23)

- g(3)(T, J, γs) is the Helmholtz massic free energy variation within P(3) (isochoric simple shear test):149

Ṫ = 0; J̇ = 0; γ̇s ̸= 0; γt = 0; γ̇t = 0; (24)

- g(4)(T, J, γs, γt) is the Helmholtz massic free energy variation within P(4) (isothermal isochoric iso-150

trace motion):151

Ṫ = 0; J̇ = 0; γ̇s = 0; γ̇t ̸= 0; (25)
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with the initial conditions:152

g(1)(T0) = 0; g(2)(T, 1) = 0, ∀T ; g(3)(T, J, 0) = 0,∀(T, J); g(4)(T, J, γs, 0) = 0, ∀(T, J, γs); (26)

which leads to cancel the following partial derivatives:153

∂T g
(2)(T, 1) = 0; ∂T g

(3)(T, J, 0) = ∂Jg
(3)(T, J, 0) = 0 ∀ T, J ;

∂T g
(4)(T, J, γs, 0) = ∂Jg

(4)(T, J, γs, 0) = ∂γsg
(4)(T, J, γs, 0) = 0 ∀ T, J, γs.

(27)

The general form of the massic entropy is given by the Helmholtz relation:154

sm = −∂T f̃ψ = −∂T g(1) − ∂T g
(2) − ∂T g

(3) − ∂T g
(4). (28)

The massic internal energy is deduced from the definition of the Helmholtz free energy:155

em = f̃ψ + Tsm = g(1) + g(2) + g(3) + g(4) − T (∂T g
(1) + ∂T g

(2) + ∂T g
(3)∂T g

(4)). (29)

3.1. Elementary evolutions156

The identification of the four unknown functions g(1)(T ), g(2)(T, J), g(3)(T, J, γs) and g(4)(T, J, γs, γt)157

comes down to experimental measures in a few experiments carried under the following ideal experimental158

conditions:159

1) body forces are negligible;160

2) state variables (T, J, γs, γt) are uniform across the specimen.161

3) experimental data are evaluated in a quasi-static setting so that the kinetic energy can be neglected;162

g(1)(T ) will be determined by a simple energy balance whereas direct integration of experimental stress data163

shall clarify the rest of the Helmholtz free energy.164

3.1.1. Strain-locked pure heating165

The first evolution P(1) is a pure heating, strain locked, experiment: B = 1, J = 1, J̇ = 0, γs = 0,166

γ̇s = 0, γt = 0, γ̇t = 0. We measure the algebraic massic heat qm (1)
exp (T ) supplied to the system to go from T0167

to T . The conservation of energy between the states E0 and E1 is written (quasi-static evolution: ∆emc = 0,168

no deformation: wmext = 0):169

em1 − em0︸︷︷︸
0

= qm (1)
exp (T ), (30)

which leads to the differential equation in g(1) from (29):

g(1)(T )− T (∂T g
(1)(T ) + ∂T g

(2)(T, 1) + ∂T g
(3)(T, 1, 0)) + ∂T g

(4)(T, 1, 0, 0)) = qm (1)
exp (T ),

⇔ g(1)(T )− T∂T g
(1)(T ) = qm (1)

exp (T ) see (27),

⇔ g(1)(T ) = −T
∫ T

T0

q
m (1)
exp (T̃ )

T̃ 2
dT̃ . (31)
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This experimental measurement is very difficult to perform, especially when the samples tend to contract170

(usually during cooling). We will see later, Section 3.1.5, that this ideal experiment can be replaced by a171

free thermal expansion followed by an isothermal spherical motion.172

3.1.2. Spherical motion173

In the second path P(2), the deformation is purely spherical (B = J
2
31, γs = 0, γ̇s = 0, γt = 0, γ̇t = 0)174

and isothermal (Ṫ = 0). The elastic law (19) proves that stress tensor must also be spherical:175

σ(2) = ρ0∂J f̃ψ1, (32)

and is thus completely characterized by its mean stress.176

In this experiment, we measure the pressure p(2)exp(T, J) which is the opposite of the uniform normal stress177

applied on the boundary if the hypothesis 2) p.8 holds:178

p(2)exp(T, J) = −Trσ(2)

3
= −ρ0∂Jg(2)(T, J) see (27). (33)

The second contribution to the Helmholtz massic free energy variation then follows naturally.179

g(2)(T, J) = − 1

ρ0

∫ J

1

p(2)exp(T, J̃)dJ̃ . (34)

In the shock-wave mechanics community, the determination of this pressure with respect to the volumetric180

change (or equivalently to the mass density ρ) and the temperature, is often referred to as the “equation of181

state (EOS)” [1].182

3.1.3. Isochoric iso-T planar simple shear test183

To perform an isochoric isothermal planar simple shear [18] in the (ex, ey) plane with an initial volume184

expansion J , we impose the following position field on the particles:185

xt = J
1
3 (x0 + γY ex), (35)

where x0 = Xex + Y ey + Zez is the reference position of a particle. The Finger tensor B = F ·F⊤ in the186

orthonormal basis (ex, ey, ez) for this isochoric motion have already been given (16). The strain tensor is187

uniform in the specimen ∂x0B = 0 so that γs is uniform as well and satisfies: γs =
√
BI − 3 =

√
γ2 = ±γ.188

Stress tensor in the P(3) evolution. The general thermo-elastic law reads:189

σ = ρ0

(
∂J f̃ψ1+

1

γsJ
5
3

(
∂γs f̃ψ + ∂γt f̃ψ

)
DevB +

∂γt f̃ψ

(γs − γt)J
7
3

Dev
(
B2 − Tr(B)B

))
. (36)

Given the equalities γt = 0, ∂γsg(4)(T, J, γs, 0) = 0, simple calculations show that the tangential stress190

τ
(3)
exp(T, J, γs) = σ

(3)
12 within this evolution is directly related to ∂γsg(3) by:191

τ (3)exp =
ρ0
J
∂γsg

(3)(T, J, γs). (37)
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In this experiment, we measure the tangential stress τ (3)exp as a function of γ and we deduce by a simple192

integration the value of the function g(3):193

g(3) =
J

ρ0

∫ γs

0

τ (3)exp(T, J, γ)dγ. (38)

3.1.4. Iso-γs iso-T isochoric double shear test194

P(4) is an isothermal, isochoric, iso-γs experiment. Several tests grants this triple condition. For the195

sake of simplicity, we introduce herein the “double shear test”, eventhough this experiment does not scan196

the whole domain of variation of γt. In the Appendix D, we will present a wider two-parameter test family,197

which include the present “double shear experiment”, and which browse the whole domain for the variable198

γt.199

Isochoric double shear test. Consider the motion defined by the following transformation (see also Figure200

2):

Figure 2: Double shear kinematic

201

xt = J
1
3 (x0 +

√
γ2s − γ2⊥Y ex + γ⊥Zey), (39)

where x0 = Xex + Y ey + Zez is the reference position of a particle, J is the volume dilatation prior from202

path P(2) and constant in path P(3) and P(4), γs is the slip prior from path P(3) and constant in path203

P(4). The components of the Finger tensor B = F ·F⊤ in the orthonormal basis {ex, ey, ez} for this204

isochoric motion are:205

F = J
1
3


1
√
γ2s − γ2⊥ 0

0 1 γ⊥

0 0 1

 ⇒ B =


1 + γ2s − γ2⊥

√
γ2s − γ2⊥ 0√

γ2s − γ2⊥ 1 + γ2⊥ γ⊥

0 γ⊥ 1

 ⇒ BI = γ2s + 3. (40)

This test continuously shifts the deformation from a simple shear test in the (ex, ey) plane to the same state206

in the (ey, ez) plane while keeping the first invariant γs constant.207

Stress tensor in the double shear test. Injecting the strain measure deduced from (39) in (36), one can see that208

the out of plane shear stress σ(4)
13 is directly related to the derivative of the Helmholtz massic free energy with209

10



respect to γt. Indeed, B
2

13 given by (D.2) and (36) proves that the tangential stress τ (4)exp(T, J, γs, γt) = σ
(4)
13210

in this evolution equalized:211

τ (4)exp(T, J, γs, γ⊥) =
ρ0

J(γs − γt)
∂γtg

(4)(T, J, γs, γt)γ⊥

√
γ2s − γ2⊥ with γt = γs −

√
γ2s + γ2⊥(γ

2
s − γ2⊥) see (D.9),

τ (4)exp(T, J, γs, γt) =
ρ0

J(γs − γt)
∂γtg

(4)(T, J, γs, γt)
√
(γs − γt)2 − γ2s .

(41)

The expression for the massic free energy g(4) is obtained once more by integrating the experimental data:212

g(4)(T, J, γs, γt) =
J

ρ0

∫ γt

0

γs − τ√
(γs − τ)2 − γ2s

τ (4)exp(T, J, γs, τ)dτ. (42)

When γ⊥ evolves in the interval
[
0,
γs√
2

]
, the invariant γt takes its values in γt ∈

[
γs

(
1−

√
1 +

γ2s
4

)
, 0

]
213

(see Appendix D).214

Note that this out-of-plane shear-stress σ(4)
13 is purely “non-linear” in the sense that it arises from the215

quadratic term of the strain measure, therefore, it cannot be predicted by any “linearized” versions of the216

elastic law or by any model neglecting the contribution of the second strain invariant BII.217

218

The “double shear experiment” is not a standard laboratory test but can be performed using an efficient219

hexapod machine (Stewart machine [11, 34]).220

3.1.5. Free thermal expansion (P(5))221

A direct measurement of the massic heat qm (1)
exp in the first path P(1) (strain-locked heating) is rather222

difficult. This experiment can be replaced by a free-stress thermal expansion (p(2)exp(T, J
(5)
exp(T )) = 0, ∀T ),223

followed by an isothermal spherical deformation which brings the volume expansion J (5)
exp(T ) back to 1.224

225

Writing the conservation of energy for this evolution between the initial state (T0, 1, 0, 0) and the freely

expanded state (T, J
(5)
exp, 0, 0), it follows: em5 = q

m (5)
exp (T ). Moreover, the massic internal energy in the freely

expanded state (T, J
(5)
exp, 0, 0) is also given by (29):

em5 =qm (1)
exp (T )− 1

ρ0

∫ J(5)
exp

1

p(2)exp(T, J̃)− T∂T p
(2)
exp(T, J̃)dJ̃ , (43)

⇒ qm (1)
exp (T ) = qm (5)

exp (T ) +
1

ρ0

∫ J(5)
exp

1

p(2)exp(T, J̃)− T∂T p
(2)
exp(T, J̃)dJ̃ . (44)

(44) proves that given the experimental pressure p2exp(T, J) and the free-stress expansion massic heat226

q
m (5)
exp (T ), one may determine qm (1)

exp (T ). The function (31) is then finally written:227

g(1)(T ) = −T
∫ T

T0

q
m (5)
exp (T̃ )

T̃ 2
dT̃ − T

ρ0

∫ T

T0

(∫ J(5)
exp(T̃ )

1

p(2)exp(T̃ , J̃)− T̃ ∂T p
(2)
exp(T̃ , J̃))dJ̃

)
dT̃ . (45)
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3.2. Synthesis228

The complete identification of the finite strain thermo-elastic model relies on four experimental data:229

1) qm (1)
exp (T ): massic heat exchanged in the first path P(1) (strain-locked heating or cooling), with the230

condition:231

qm (1)
exp (T0) = 0. (46)

2) p(2)exp(T, J): pressure in the spherical evolution P(2) (isothermal spherical deformation), with the con-232

dition:233

p(2)exp(T, 1) = p(1)exp(T ),∀T. (47)

3) τ (3)exp(T, J, γs): in-plane shear stress in the isochoric planar shear test P(3), along with the condition:234

τ (3)exp(T, J, 0) = 0,∀T ∀J. (48)

4) τ (4)exp(T, J, γs, γt): out-of-plane tangential stress in the fourth path P(4), with the condition:235

τ (4)exp(T, J, γs, 0) = 0,∀T ∀J ∀γs. (49)

g(1), g(2), g(3), g(4) which determine the state functions are expressed in terms of these measurements:

g(1)(T ) = −T
∫ T

T0

q
m (1)
exp (T̃ )

T̃ 2
dT̃ or (45), (50)

g(2)(T, J) = − 1

ρ0

∫ J

1

p(2)exp(T, J̃)dJ̃ , (51)

g(3)(T, J, γs) =
J

ρ0

∫ γs

0

τ (3)exp(T, J, γ)dγ, (52)

g(4)(T, J, γs, γt) =
J

ρ0

∫ γt

0

γs − τ√
(γs − τ)2 − γ2s

τ (4)exp(T, J, γs, τ)dτ. (53)

The internal massic energy is assumed to be a state function, as to ensure (29) takes a simpler expression:236

em = qm (1)
exp + g(2) − T∂T g

(2) + g(3) − T∂T g
(3) + g(4) − T∂T g

(4). (54)

For the numerical assessment of the model, it is not necessary to compute explicitly g(1) because this function237

does not appear neither in the constitutive law, nor in the internal energy.238

3.3. Volumetric/isochoric splitting assumption239

As already mentioned, hyperelastic materials exhibit radically different volume and shear behavior. This

explains a well-accepted splitting of the Helmholtz free energy with respect to the isochoric/volumetric part

of the strain tensor (see [24, 27]). In this section, we emphasize that this partition comes down to a very
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natural assertion: the pressure remains unchanged in isochoric evolutions. With the previous results, the

pressure in any state (T, J, γs, γt) is:

−Trσ

3
= −ρ0∂J

(
g(2)(T, J) + g(3)(T, J, γs) + g(4)(T, J, γs, γt)

)
= p(2)exp(T, J) +

∫ γs

0

τ (3)exp(T, J, γs)− J∂Jτ
(3)
exp(T, J, γs)dγ (55)

−
∫ γt

0

γs − τ√
(γs − τ)2 − γ2s

(
τ (4)exp + J∂Jτ

(4)
exp

)
(T, J, γs, τ)dτ.

The pressure in any state is a function of the tangential stresses τ (3)exp, τ
(4)
exp measured during the paths240

P(3), P(4). If one performs the P(3) experiment from the initial state (p(2)exp(T0, 1) = 0, no prior volume241

expansion), the Cauchy stress tensor generated is not deviatoric.242

Hypothesis Optional Simplification. In isochoric deformation, the pressure does not vary. Both conditions243

∂γtTrσ = 0, ∂γsTrσ = 0 and (55) lead to the differential equations:244

τ (4)exp + J∂Jτ
(4)
exp = 0 ⇒ τ (4)exp(T, J, γs, γt) =

τ̂
(4)
exp(T, γs, γt)

J
,

τ (3)exp + J∂Jτ
(3)
exp = 0 ⇒ τ (3)exp(T, J, γs) =

τ̂
(3)
exp(T, γs)

J
.

(56)

245

Inserting these expressions into the general formula (52)–(53), (56) obviously split the Helmholtz free energy246

into an isochoric/volumetric contributions:247

ψm(T, J, γs, γt) = g(1)(T ) + g(2)(T, J) + g(3)(T, γs) + g(4)(T, γs, γt). (57)

This assumption is certainly valid in a wide range of solicitation (e.g is consistent with the classical linearized248

elasticity), but must be somehow validated experimentally. Note that the complete model (50)–(53) can249

take into account the volumetric/deviatoric coupling which is relevant for high velocity impact [28]. Indeed,250

extreme strain-rate experiments can induced finite elastic deformations before plasticity occurs, so that251

pressure-dependent shear modulus are requiered (see for instance the SCG model [2, 33]).252

3.4. Time derivative of the massic internal energy253

The massic internal energy takes a rather elegant form:254

em = qm (5)
exp (T )− 1

ρ0

∫ J

J
(5)
exp(T )

(p(2)exp − T∂T p
(2)
exp)(T, J̃)dJ̃ +

1

ρ0

∫ γs

0

(
τ̂ (3)exp − T∂T τ̂

(3)
exp

)
(T, γ̃s)dγ̃s

+
1

ρ0

∫ γt

0

γs − τ√
(γs − τ)2 − γ2s

(
τ̂ (4)exp − T∂T τ̂

(4)
exp

)
(T, γs, τ)dτ.

(58)

The time derivative of the internal energy, essential for the numerical implementation, is obtained by evalu-255

ating the partial derivatives of the massic internal energy with respect to its four variables (see Appendix E256

for details):257

dem

dt
=
∂em

∂T
Ṫ +

∂em

∂J
J̇ +

∂em

∂γs
γ̇s +

∂em

∂γt
γ̇t. (59)
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4. Idealizations of elementary paths258

The expressions (50)–(53) yields the “exact” thermo-elastic behavior of an isotropic material and lies259

upon four experimental results. In this section, we will propose physically consistent expressions for the260

experimental stresses. We will see that some rather simple forms reduce our model to a few hyperelastic261

models classically found in the literature.262

4.1. Pressure assumption263

Hypothesis Experimental pressure p(2)exp. We assume the following form for the pressure p(2)exp in any264

isothermal spherical deformation:265

p(2)exp(T, J) = p(1)exp(T )− κ(T ) lnJ, (60)

where p(1)exp(T ) is the pressure from the path P(1)
266

κ(T ) is a temperature-dependent bulk modulus.267

The pressure (60) is reasonable (note for instance lim
J→∞

p(2)exp = −∞, lim
J→0

p(2)exp = ∞), but predicts a

finite strain energy under infinite compression J → 0. For further details about the volumetric part of the

Helmholtz free energy from which the pressure is derived, we refer to [12] and references therein. A more

reasonable approximation of the experimental stress would be:

p(2)exp = p(1)exp(T )−
κ(T )

2

(
J − 1

J

)
, (61)

⇒ g(2)(T, J) = − (J − 1)p
(1)
exp(T )

ρ0
+
κ(T )

2

(
1

2

(
J2 − 1

)
− ln J

)
. (62)

It’s worth noticing that (62) coincides with that proposed by [31] which is a variant of [8].268

For the sake of calculus simplicity, we will however keep the pressure given by (60) for the following,269

noting that the differences between (60) and (61) are very small for any volumic expansion up to 200%.270

Both model comes down to the so called linearized elasticity when J ≈ 1 as ln J ≈ 1

2

(
J − 1

J

)
≈ Trε.271

g(2) is obtained using both (60) and (51):272

g(2)(T, J) = − (J − 1)p
(1)
exp(T )

ρ0
+
κ(T )

ρ0
(J ln(J) + 1− J) . (63)

273

274

If we replace the first path P(1) by a free expansion P(5) (in which one save qm (5)
exp (T ) and J

(5)
exp(T ))275

followed by an isothermal spherical compression to bring J back to 1, p(1)exp(T ) is obtained by evaluating (60)276

in (T, J
(5)
exp). Remembering that the stress is zero in a freely expanded test, it comes:277

p(1)exp(T ) = κ(T ) ln
(
J (5)
exp(T )

)
. (64)
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Therefore, by reinjecting this expression (64) into the general formula (60), we deduce the expression of278

p
(2)
exp:279

p(2)exp(T, J) = −κ(T ) ln J

J
(5)
exp(T )

. (65)

Hypothesis Free-stress volume expansion J (5)
exp(T ). One can set arbitrary for J (5)

exp(T ):280

J (5)
exp(T ) = 1 + β(T − T0), (66)

where β refers to a free-stress expansion coefficient.281

Inserting both the experimental pressure (64) and the free-stress volume expansion (66) in (63), g(2)(T, J)282

now yields:283

g(2)(T, J) =
κ(T )

ρ0

(
J ln

(
J

1 + β(T − T0)

)
+ 1− J + ln (1 + β(T − T0))

)
. (67)

4.2. Massic heat qm (1)
exp284

As a reminder, the first path P(1) can be substituted by a free thermal expansion followed by isothermal285

compression. We then obtain:286

qm (1)
exp (T ) = qm (5)

exp (T ) +
1

ρ0

∫ J(5)
exp

1

p(2)exp(T, J̃)− T∂T p
(2)
exp(T, J̃)dJ̃ [see (44)]. (68)

The conservation of energy in a free expansion is then written according to (65):287

qm (5)
exp (T ) = qm (1)

exp (T ) +
1

ρ0

(
Tκ(T )

∂TJ
(5)
exp

J
(5)
exp

(
J (5)
exp − 1

)
+ (κ(T )− Tκ′(T ))

(
1 + ln(J (5)

exp)− J (5)
exp

))
. (69)

We can choose a simple function of qm (5)
exp (T ) or qm (1)

exp (T ) the other being determined by (69).288

It is noteworthy that the idealizations of experimental curves presented in this section are only arbitrary289

examples that have no theoretical justification.290

Hypothesis Massic heat qm (5)
exp (T ). A physically reasonable approximation to q

m (5)
exp (T ) may be, for291

example:292

qm (5)
exp (T ) = Cp(T − T0), (70)

where Cp refers to a specific heat capacity in free expansion.293

4.3. Calculation of g(3)294

Hypothesis In-plane shear stress τ̂ (3)exp. We assume that a temperature dependent simple shear modulus295

µ(T ) linearly links the shear stress with respect to the shear parameter γ:296

τ̂ (3)exp(T, J, γ) = µ(T )γ. (71)
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The shear stress (71) leads to a quadratic massic free energy with respect to γs that is also independent of297

the volume expansion J :298

g(3)(T, γs) =
µ(T )γ2s
2ρ0

. (72)

This Helmholtz massic free energy has for example been postulated in [29]. We now choose to enhance the299

model considering the contribution of the second invariant BII through γt.300

4.4. Calculation of g(4)301

The out-of-plane shear stress is a purely non-linear effect and its interpretation in terms of a “classical”302

shear or compressibility coefficient is therefore impossible.303

Hypothesis Out-of-plane shear stress τ̂ (4)exp. We postulate that the shear stress τ̂ (4)exp in the fourth path304

P(4) is given by:305

τ̂ (4)exp(T, γs, τ) = α(T )
√

(γs − τ)2 − γ2s , (73)

α(T ) refers to a non-linear shear modulus. We further recall that the invariant γt is always negative during306

the double shear test so that the square root involved in (73) is well-defined. Using the expression (73) g(4)307

now reads:308

g(4)(T, γs, γt) =
α(T )

ρ0

∫ γt

0

(γs − τ)dτ =
α(T )

2ρ0

(
γ2s − (γs − γt)

2
)
. (74)

4.5. Idealized elastic law309

With the idealizations of the experimental stresses (60), (71), (73) the g(•) functions were explicitly310

calculated (63), (72), (74). The derivation of the Helmholtz free energy yields the current Cauchy stress:311

σ = ρ0

(
∂J f̃ψ1+

1

γsJ
5
3

(µ(T )γs + α(T ) (γs − γt))DevB +
α(T )

J
7
3

Dev
(
B2 − Tr(B)B

))
. (75)

The invariant γt is upper bounded by γs whereas the positivity of the second invariant JB2 implies the lower312

bound:313

JB2 =

√
3

2
∥DevB∥ ≥ 0 ⇒ γt ≥ γs

(
1−

√
1 + γ2s

4

)
. (76)

Finally lim
γs→0

γt
γs

= 0 so that (75) does not diverge when γs → 0. As we will see in the following section, the314

expression (75) is algebraically equivalent to a standard Mooney-Rivlin model.315

5. Analogy with the Mooney-Rivlin model316

If we retain the idealizations (71), (73), the dependence of the massic free energy with respect to the317

isochoric invariants is written:318

g(3)(T, γs) + g(4)(T, γs, γt) =
1

2ρ0

(
µ(T )γ2s + α(T )

(
γ2s − (γs − γt)

2
))

=
1

2ρ0

(
µ(T )

(
BI − 3

)
+ α(T )

((
BI − 3

)
−
(
BII − 3

)))
.

(77)
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The right and left Cauchy-Green strain tensors C and B share their invariants Bi = Ci, as C and B are319

related through the rotation tensor R arising from the polar decomposition of the transformation gradient320

F = R ·U = V ·R. Therefore the free energy (77) coincides exactly with that of a Mooney-Rivlin model321

[22]:322

ψmM−R = g1(T ) + g2(T, J) +
C01

ρ0

(
BI − 3

)
+
C10

ρ0

(
BII − 3

)
, (78)

with the parameters C01 = 1
2 (µ(T ) + α(T )), C10 = −α(T )

2 .323

If we assume that the shear stress along the P(4) path is identically zero, the massic free energy be-324

comes independent of the γt invariant and we then observe that the Helmholtz massic free energy evolves325

linearly with BI−3, which corresponds to the Neo-Hookean model ψmN−H = g1(T )+g2(T, J)+
µ

2ρ0

(
BI − 3

)
.326

Consequently our thermodynamic approach includes these two models which result from the experimental327

idealizations (71) (73).328

329

More generally, if one looks at the in-plane shear stress curve τ (3)exp as a function of the slip parameter330

γ, it is certain that a polynomial expansion fitting experimental data can be found. By symmetry, this331

polynomial expansion must necessarily contain only even powers:332

τ̂ (3)exp(T, γ) =
∑
i

µiγ
2i+1. (79)

(79) then generates a generalized Neo-Hookean model (power series of the free energy with respect to the333

“BI − 3” invariant).334

Moreover, if we postulate by the same reasoning that the out-of-plane shear stress τ̂ (4)exp develops in the335

form:336

τ̂ (3)exp(T, γ) =
∑
i

µiγ
2i+1 and τ̂ (4)exp(T, γs, τ) =

∑
i

αi
√
(γs − τ)2 − γ2s (γs − τ)

2i
. (80)

Then one found the following Helmholtz massic free energy:337

ψm =
1

ρ0

∑
i

µi(T )

2i+ 2

(
BI − 3

)i
+
αi(T )

2i+ 2

[(
BI − 3

)i − (BII − 3
)i]

+ g(1)(T ) + g(2)(T, J),

ψm =
1

ρ0

∑
i

Ci0
(
BI − 3

)i
+ C0i

(
BII − 3

)i
+ g(1)(T ) + g(2)(T, J) Cij = 0 if i ̸= j.

(81)

That is, a generalized Mooney-Rivlin material [22] .338

339

In the general case, the integral expressions given in section 3.2 yield the exact finite strain isotropic340

thermo-elastic constitutive law.341

6. Conclusion342

We have developed a complete finite-strain isotropic thermo-elastic model without any assumption con-343

cerning the form of the Helmholtz free energy. The identification of the latter relies on the successive344
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realization of four elementary experiments, and more precisely the measurement of: a massic heat, a pres-345

sure, and two shear stresses. Experiments must be carried many times in order to scan all the accessible346

values of the state variables e.g. the double shear test P(4) must be performed for a whole collection of347

temperature T , volume expansion J , and slip γs.348

Some idealizations of the experimental stresses have been proposed. They can be replaced by any realistic349

curves, or even be given by the upscaling results of a large scale molecular dynamic simulation.350

The well known Mooney-Rivlin model, and consequently the Neo-Hookean, are special cases of our351

methodology. They are derived from an assumption concerning the shear stress along the P(3) and P(4)
352

paths.353

The present work could admit several natural extensions among which:354

• The description of an anisotropic medium by the introduction of structural tensors {N•
t } representing355

the actual directions of anisotropy. Enhancing the Helmholtz free energy with these new unknowns356

necessarily yields cross-invariant effects, reflecting the current orientation of the deformation with357

respect to the anisotropic directions.358

• A finite strain plasticity model with the addition of an objective plastic strain tensor Bp in the359

arguments’ list of the Helmholtz free energy. Taking this tensor into account adds 6 state variables.360

Three of them are specific to the plastic strain Bp (2 if one further assumes that the plastic evolution361

is isochoric), three others orient the principal directions orthogonal trihedron of B and Bp.362

• The study of large-amplitude shock waves and more particularly shock tails. Indeed, after a large363

plastic phase which is out of the scope of this study, the elastic release wave on the shock tail can be364

considered as large strain. A proper coupling between both, an equation of state driving the pressure,365

and the deviatoric elastic law presented herein is a very interesting perspective.366
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Appendix A. Justification of the finite strain isotropic elastic law370

The definition of the Finger tensor is B = F ·F⊤, hence its time derivative reads:371

Ḃ = Ḟ ·F⊤ + F · Ḟ⊤ = (Ḟ ·F−1) · (F ·F⊤) + (F ·F⊤) · (F−⊤ · Ḟ⊤),

Ḃ = (D +W ) ·B +B · (D −W ).
(A.1)

where D (resp W ) denotes the symmetric (resp skew-symmetric) part of the spatial velocity gradient.372
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Using the combined product A1 : (A2 ·A3) = A2 : (A1 ·A⊤
3 ) = A3 : (A⊤

2 ·A1), we get successively,373

∀n ∈ Z:374

Bn : Ḃ = Bn : ((D +W ) ·B +B · (D −W )) = 2Bn+1 : D. (A.2)

Orthogonality of the antisymmetric and symmetric tensors for the doubly contracted product has been used375

to simplify (A.2).376

The time derivatives of the coefficients of the characteristic polynomials of B are (see also [14, 15]):377

dBI

dt
= Tr

dB

dt
= 1 : Ḃ;

dBII

dt
= (BI1−B⊤) :

dB

dt
;

dBIII

dt
=
(
BII1−BIB

⊤ +B2⊤) : dB
dt

= BIIIB
−⊤ :

dB

dt
;

ḂI = 2B : D; ḂII = 2(BIB −B2) : D; ḂIII = BIII1 : D;

(A.3)

The nullity of intrinsic dissipation (4), is written using the coincident isotropic function (5):378

−ρ
(
∂T f

B
ψ Ṫ + ∂BI

fBψ ḂI + ∂BII
fBψ ḂII + ∂BIII

fBψ ḂIII + Ṫ sm
)
+ σ : D = 0. (A.4)

Injecting both (A.3), (A.2) in (A.4) and using the fact that σ and fBψ are state functions so that they do379

not depend on D, the nullity of (A.4) ∀T ∀D yields the elastic law (6).380

Appendix B. Thermo-elastic law with respect to isochoric invariants381

The partial derivatives of the new function f̃Bψ defined by (11) are simple algebraic calculations:382

∂BI
fBψ = ∂BI

f̃Bψ ∂BI
BI = B

− 1
3

III ∂BI
f̃Bψ ,

∂BIIf
B
ψ = ∂BII

f̃Bψ ∂BIIBII = B
− 2

3

III ∂BII
f̃Bψ ,

∂BIII
fBψ = ∂BI

f̃Bψ ∂BIII
BI + ∂BII

f̃Bψ ∂BIII
BII + ∂BIII

f̃Bψ ,

∂BIII
fBψ = −∂BI

f̃Bψ
BI

3BIII
− ∂BII

f̃Bψ
2BII

3BIII
+ ∂BIII

f̃Bψ .

(B.1)

And the elastic law (6) now reads:383

σ =
2ρ0√
BIII

((
BIII∂BIII

f̃Bψ − ∂BI
f̃Bψ

BI

3
− ∂BII

f̃Bψ
2BII

3

)
1

+
(
B

− 1
3

III ∂BI
f̃Bψ +B

1
3

IIIBIB
− 2

3

III ∂BII
f̃Bψ

)
B −B

− 2
3

III ∂BII
f̃Bψ B2

)
,

σ =
2ρ0√
BIII

((
BIII∂BIII f̃

B
ψ − ∂BI

f̃Bψ
BI

3
− ∂BII

f̃Bψ
2BII

3

)
1

+
(
∂BI

f̃Bψ +BI∂BII
f̃Bψ

)
B − ∂BII

f̃Bψ B
2
)
.

(B.2)

This formula is more elegantly written using the following relations, which hold for any tensor of order 2:384

XII =
1

2

(
X2

I − TrX2
)

⇒ −2

3
XII1+XIX −X2 = −1

3

(
X2

I − TrX2
)
1+XIX −X2,

= −Dev
(
X2 − Tr (X)X

)
.

(B.3)
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So that (B.2) is finally written:385

σ =
2ρ0√
BIII

(
BIII∂BIII f̃

B
ψ 1+ ∂BI

f̃Bψ DevB − ∂BII
f̃Bψ Dev

(
B

2 − Tr
(
B
)
B
))

,

σ =
2ρ0√
BIII

(
BIII∂BIII f̃

B
ψ 1+

∂BI
f̃Bψ

B
1
3

III

DevB −
∂BII

f̃Bψ

B
2
3

III

Dev
(
B2 − Tr (B)B

))
.

(B.4)

Appendix C. Evolution domain of γt386

Let (λi)i∈J1,3K be the principal stretches of the isochoric Finger tensor B. We further assume that the

invariant γs remains fixed. The following system is necessarily verified by the triplet (λi)i∈J1,3K:

λ
2

1 + λ
2

2 + λ
2

3 = γ2s + 3 = BI, (C.1)

λ
2

1λ
2

2 + λ
2

2λ
2

3 + λ
2

1λ
2

3 = BII, (C.2)

λ1λ2λ3 = 1. (C.3)

By combining the equations (C.1) and (C.3), we deduce:387

λ
4

2 +
(
λ
2

1 −BI

)
λ
2

2 +
1

λ
2

1

= 0. (C.4)

(C.4) has a positive or zero discriminant:388

∆ =
(
λ
2

1 −BI

)2
− 4

λ
2

1

≥ 0 ⇒ λ
2

2± =

BI − λ
2

1 ±

√(
λ
2

1 −BI −
2

λ1

)(
λ
2

1 −BI +
2

λ1

)
2

. (C.5)

The positivity of the term under the square root implies that (C.4) has real solutions if and only if the389

eigenvalue λ1 evolves in the interval:390

λ ∈ [X2, X0] with Xk = 3
√
α̃ cos

(
1

3
arccos

(
− (α̃)

− 3
2

)
+

2kπ

3

)
with α̃ =

BI

3
≥ 0. (C.6)

We can then express γt as a function of the unique variable λ1:391

BII(λ1) = λ
2

1λ
2

2± +
1

λ
2

1

+
1

λ
2

2±

= λ
2

1BI − λ
4

1 +
1

λ
2

1

⇒ γt(λ1) = γs −
√
BII(λ1)− 3 (C.7)

Fixing γs successively, we plot the evolution domain of γt (see Figure C.3a) and compare it to the set that392

can be scanned by the double shear test:393

γt ∈

[
γs

(
1−

√
1 +

γ2s
4

)
, 0

]
. (C.8)

Some values of the shear parameter γt are not accessible through the double shear test (see Figure C.3b).394

Therefore, we present in the following Appendix D a more general motion which scan the whole domain of395

variation for γt.396
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(a) γt as a function of γs and the eigenvalue λ1
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(b) Upper and lower bound for γt as a function of γs

Figure C.3: Value of the second invariant γt for various γs

Appendix D. Double shear traction397

We define as “isochoric double shear-traction test” the motion given by the following gradient:398

F = J
1
3


1√
e

γ 0

0
1√
e

γ⊥

0 0 e

 ⇒ B =


1

e
+ γ2

γ√
e

0

1

e
+ γ2⊥ γ⊥e

Sym e2

 . (D.1)

The “double shear test” mentioned in Section 3.1.4 corresponds to e = 1. We also denote as “simple tensile-399

shear test” the case γ⊥ = 0.400

The square of the Finger isochoric strain tensor is equal to:401

B
2
=



(
1

e
+ γ2

)2

+
γ2

e

γ√
e

(
2

e
+ γ2 + γ2⊥

)
γγ⊥

√
e

γ2

e
+ (γ⊥e)

2 +

(
1

e
+ γ2⊥

)2

γ⊥e

(
1

e
+ γ2⊥ + e2

)
Sym (γ⊥e)

2 + e4

 . (D.2)

It’s worth noticing a non-zero B
2

13 deformation which induces a purely non-linear stress. This out-of plane402

shear stress is relevant for identifying the dependence of the free energy on the second invariant γt.403

A simple computation of the characteristic polynomial of the isochoric Finger tensor shows that the404

fundamental invariants are equal to:405

BI = γ2 + γ2⊥ + e2 +
2

e
and BII = γ2

(
γ2⊥ + e2

)
+ 2e+

1

e2
+
γ2⊥
e2
. (D.3)

The conservation of the parameter γs is ensured if at each instant, the following equality holds:406

BI = γ2 + γ2⊥ + e2 +
2

e
= γ2s + 3 with e(0) = 1, γ(0) = γs, γ⊥(0) = 0. (D.4)
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The motion has two independent parameters: a shear γ⊥ and a traction magnitude e. The value of γ is407

adjusted so as to guarantee at each instant the equality (D.4).408

We then deduce, by simple calculations, the value of the invariant γt:409

γt(e, γ⊥) = γs −

√
(γ2⊥ + e2)

(
BI − γ2⊥ − e2 − 2

e

)
+

1

e2
+ 2e+

γ2⊥
e

− 3, (D.5)

with the necessary conditions of existence:410

BI − γ2⊥ − e2 − 2

e
≥ 0 and e > 0. (D.6)

The existence conditions (D.6) define a sub-domain of R2. At γ⊥ ≤ γs fixed, the range of variation of e411

is analytic and simply given by e ∈ [e2, e0] with:412

ek = 2
√
α̃ cos

(
1

3
arccos

(
− (α̃)

− 3
2

)
+

2kπ

3

)
with α̃ =

BI − γ2⊥
3

≥ 0. (D.7)

Hence, the values of the parameter γt that can be scanned through the simple shear tensile test ((D.9) with413

γ⊥ = 0) are:414

γt(e, 0) = γs −

√
e2
(
BI − e2 − 2

e

)
+

1

e2
+ 2e

γt(e, 0) = γs −
√
e2BI − e4 +

1

e2

e ∈ [e2(0), e0(0)], ek(0) given by (D.7). (D.8)

Whereas for the double-shear test ((D.9) with e = 1):415

γt(1, γ⊥) = γs −
√
(γ2⊥ + 1)

(
BI − γ2⊥ − 3

)
+ γ2⊥ = γs −

√
γ2s + γ2⊥ (γ2s − γ2⊥). (D.9)

We represent in figure D.4 the values of γt covered by the double shear tensile test with γs = 3. The red line416

corresponds to the single tensile-shear test (γ⊥ = 0), while the orange line corresponds to the double shear417

test (e = 1). The widest γt interval is scanned when γ⊥ = 0 (see D.4), i.e., during a single tensile-shear test.418

419

We further represent the γt that can be scanned by both the tensile-shear (Figure (D.5b)) and double420

shear (Figure D.5a) tests for various γs. We note that the double-shear test only explores negative values of421

γt while the tensile-shear test scans the whole domain (see Figure D.6 or more simply the equality between422

(C.7) and (D.8) as e = λ1).423

424

The identification of the constitutive law with respect to the second invariant γt Section 3.1.4 was built425

upon the double shear test. The reason is quite simple: the single shear tensile test, although scanning the426

whole domain for γt, does not allow to simply identify the dependence on γt because the non-linear stress σ13427

vanishes. Therefore, measuring either σ12 or σ13 will couple g(4) to the other functions. The most efficient428

test, but also the hardest to perform experimentally, shall set a small shear strain γ⊥ and then perform a429

tensile test by varying e. Hence σ13 would be non-zero and one could characterize f̃ψ for γt ≥ 0.430

22



0.0 0.5 1.0 1.5 2.0 2.5 3.0

Shear parameter 

0.5

1.0

1.5

2.0

2.5

3.0

Tr
ac

tio
n 

pa
ra

m
et

er
 e

2.5

2.0

1.5

1.0

0.5

0.0

0.5

1.0

t

Figure D.4: Value of γt, γs = 3 fixed, for different values of e and γ⊥
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(b) γt, tensile-shear test

Figure D.5: γt for various γs

Appendix E. Generic partial derivatives of the internal energy431

The partial derivative with respect to temperature is certainly the most cumbersome:432

∂em

∂T
=

dq
m (5)
exp

dT
− 1

ρ0

dJ
(5)
exp(T )

dT
T∂T p

(2)
exp(T, J

(5)
exp(T ))

+
1

ρ0

∫ J

1

T∂2T p
(2)
exp(T, J̃))dJ̃ − 1

ρ0

∫ γs

0

T∂2T τ̂
(3)
exp(T, γ̃s)dγ̃s

− 1

ρ0

∫ γt

0

γs − τ√
(γs − τ)2 − γ2s

T∂2T τ̂
(4)
exp(T, γs, τ)dτ.

(E.1)

The partial derivative with respect to the volume expansion J thanks to the volumetric/isochoric split:433

∂em

∂J
= − 1

ρ0

(
p(2)exp(T, J)− T∂T p

(2)
exp(T, J)

)
. (E.2)
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Figure D.6: Upper and lower bound of γt

The partial derivative with respect to γs and γt are written as:434

∂em

∂γs
=

1

ρ0

(
τ̂ (3)exp(T, γs)− T∂T τ̂

(3)
exp(T, γs)
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+

1
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0
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(4)
exp
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)
dτ,

∂em

∂γt
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1
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γs − γt√
(γs − γt)2 − γ2s

(
τ̂ (4)exp − T∂T τ̂

(4)
exp

)
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(E.3)
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