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Abstract

Slow slip events (SSEs) originate from a slow slippage on faults that lasts
from a few days to years. A systematic and complete mapping of SSEs is
key to characterizing the slip spectrum and understanding its link with
coeval seismological signals. Yet, SSE catalogues are sparse and usually
remain limited to the largest events, because the deformation transients
are often concealed in the noise of the geodetic data. Here we present the
first multi-station deep learning SSE detector applied blindly to multi-
ple raw geodetic time series. Its power lies in an ultra-realistic synthetic
training set, and in the combination of convolutional and attention-
based neural networks. Applied to real data in Cascadia over the period
2007-2022, it detects 78 SSEs, that compare well to existing indepen-
dent benchmarks: 87.5% of previously catalogued SSEs are retrieved,
each detection falling within a peak of tremor activity. Our method
also provides useful proxies on the SSE duration and may help illumi-
nate relationships between tremor chatter and the nucleation of the slow
rupture. We find an average day-long time lag between the slow deforma-
tion and the tremor chatter both at a global- and local-temporal scale,
suggesting that slow slip may drive the rupture of nearby small asperities.
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Introduction1

Slow slip events (SSEs) generate episodic deformation that lasts from a few2

days to years. Like earthquakes, they originate from slip on faults but, unlike3

them, do not radiate energetic seismic waves. In the mid-1990s, Global Navi-4

gation Satellite System (GNSS) networks started to continuously monitor the5

ground displacement, providing evidence that SSEs are a major mechanism6

responsible for the release of stress in plate boundaries, as a complement to7

seismic rupture [1–5]. This constituted a change of paradigm for the under-8

standing of the earthquake cycle and of the mechanics of the fault interface.9

Twenty years later, the characterization of the full slip spectrum and the10

understanding of the link between slow slip and the associated seismological11

signals are hindered by our capacity to detect slow slip events in a systematic12

manner, more particularly those of low magnitude (typically lower than Mw13

6), even though a systematic and complete mapping of SSEs on faults is key14

for understanding the complex physical interactions between slow aseismic slip15

and earthquakes. Indeed, the small deformation transients associated with an16

SSE are often concealed in the noise [6, 7], making it difficult to precisely char-17

acterize the slip spectrum and provide fruitful insights into the fault mechanics18

[4, 8, 9]. Studies dealing with the detection and analysis of SSEs often rely on19

dedicated signal analysis, involving visual inspection of the data, data selec-20

tion, denoising, filtering, geodetic expertise, dedicated modeling methods with21

a fine-tuning of the parameters, and also often complementary data such as22

tremor or LFE catalogs [7, 10–13].23

The development of in-situ geophysical monitoring generates nowadays24

huge data sets, and machine learning techniques have been largely assimilated25

and used by the seismological community to improve earthquake detection and26

characterization [5, 14–16], generating catalogs with unprecedented high qual-27

ity [17, 18] and knowledge shifts [19, 20]. However, up to now, such techniques28

could not be successfully applied to the analysis of geodetic data and slow slip29

event detection because of two main reasons: (1) too few true labels exist to30

train machine learning-based methods, which we tackled by generating a real-31

istic synthetic training data set, (2) the signal-to-noise ratio is extremely low32

in geodetic data [21, 22], meaning that we are at the limit of detection capac-33

ity. One possibility is to first pre-process the signals (via denoising, filtering,34

detrending), but this is at the cost of possibly corrupting the data. Instead,35

in this work, we assume that the information is already present in the raw36

time series and that our deep learning model should be able to learn the noise37

signature, and therefore to separate the noise from the relevant information38

(here, slow slip events). In order to develop an end-to-end model capable of39
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dealing with raw geodetic measurements, it is necessary, on one hand, to set up40

advanced methods to generate realistic noise, taking into account the spatial41

correlation between stations as well as the large number of data gaps present in42

the GNSS time series. On the other hand, it involves developing a specific deep43

learning model able to treat multiple stations simultaneously, using a relevant44

spatial stacking of the signals (driven by our physics-based knowledge of the45

slow slip events) in addition to a temporal analysis. We address these two major46

drawbacks in our new approach and present SSEgenerator and SSEdetector,47

to our knowledge the first end-to-end deep learning-based detector, combin-48

ing the spatiotemporal generation of synthetic GNSS time series containing49

modeled slow deformation (SSEgenerator), and a Convolutional Neural Net-50

work (CNN) and a Transformer neural network with an attention mechanism51

(SSEdetector), that proves effective in systematically detecting slow slip events52

in raw GNSS position time series from a large geodetic network containing53

more than 100 stations, both on synthetic and on real data.54

Results55

SSEgenerator: construction of the synthetic dataset56

We choose the Cascadia subduction zone as the target region because: (1) a57

link between slow deformation and tremor activity has been assessed [23] and a58

high-quality tremor catalog is available [24]; (2) a preliminary catalog of SSEs59

has recently been proposed during the period 2007-2017 with conventional60

methods [11]. This proposed catalog will be used for comparison and baseline61

for our results, which are expected to provide a more comprehensive catalog62

that will better show the link between slow deformation and tremors.63

To overcome the scarcity of catalogued SSEs, we train SSEdetector on64

synthetic data, consisting of simulated sets of geodetic time series for the full65

station network. Each set of signals (60 days and 135 stations) is considered66

as a single sample. In order to be able to detect SSEs in real raw time series,67

several characteristics need to be present in these synthetics. First, they must68

contain a wide range of realistic background signals at the level of the GNSS69

network, i.e. spatially and temporally-correlated realistic noise time series. On70

the other hand, while half of the samples (negative samples) will only consist of71

background noise, the other half must also include an SSE signal. For this, we72

modeled SSEs signals that are realistic enough compared to real transients of73

aseismic deformation. Finally, the synthetics should also carry realistic missing74

data recordings, as many GNSS stations have data gaps in practice.75

First, we thus generated ultra-realistic synthetic time series, that repro-76

duce the spatial and temporal correlated noise of the data acquired by the77

GNSS network, based on the method developed by Costantino et al. [22]. This78

database of 60,000 synthetic time series was derived from real geodetic time79

series (details in Methods). We select data in the periods 2007-2014 and 2018-80

2022 as sources for the noise generation, while we keep data in the period81

2014-2017 as an independent test data set (details in Methods).82
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Fig. 1 Schematic architecture of SSEgenerator and SSEdetector. (a) Overview of
the synthetic data generation (SSEgenerator). In the matrix, each row represents the GNSS
position time series for a given station, color-coded by the value of the position. The 135
GNSS stations considered in this study are here shown sorted by latitude. The synthetic
static displacement model (cf. (b) panel), due to a Mw 6.5 event, at each station is convolved
to a sigmoid to model the SSE transient, and is added to the ultra-realistic artificial noise to
build synthetic GNSS time series. (b) Location of the GNSS stations of MAGNET network
used in this study (red triangles). An example of synthetic dislocation is represented by the
black rectangle, with arrows showing the modeled static displacement field. The heatmap
indicates the locations of the synthetic ruptures considered in this study, color-coded by
the slab depth. The dashed black contour represents the tremor locations from the PNSN
catalog. (c) High-level representation of the architecture of SSEdetector. Input GNSS time
series are first convolved in the time domain, then a higher weight is assigned to slow slip
transients and a probability value is provided depending on whether slow deformation has
been found in the data.

In order to create the positive samples (time series containing an SSE),83

we modeled 30,000 dislocations (approximated as a point source) distributed84

along the Cascadia subduction interface (see Figure 1(b)) following the slab285

geometry [25] (detailed procedure in Methods). The focal mechanism of the86

synthetic ruptures approximates a thrust, with rake angle following a uniform87

distribution (from 75 to 100°) and strike and dip defined by the geometry of88

the slab. The magnitude of the synthetic SSEs is drawn from a uniform prob-89

ability distribution (from Mw 6 to 7). Their depths follow the slab geometry90

and are taken down to 60 km, with further variability of ±10 km. We fur-91

ther assign each event a realistic stress drop modeled from published scaling92

laws [26]. We use the Okada dislocation model [27] to compute static displace-93

ments at each real GNSS station. We scaled the amplitudes of synthetic SSE94

signals, modeled as sigmoidal-shaped transients, with a duration following a95

uniform distribution (from 10 to 30 days). Eventually, we compute a database96

of 30,000 synthetic SSE transients, where the amplitude was added to the97

positive samples (placed in the middle of the 60-day window).98
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The synthetic data set is thus made of 60,000 samples and labels, equally99

split into pure noise (labeled as 0) and signal (labeled as 1) with different100

nuances of signal-to-noise ratio, resulting both from different station noise101

levels and differences in magnitude and location, so that the deep learning102

method effectively learns to detect a variety of slow deformation transients103

from the background noise. The data set is further split into three independent104

training (60%), validation (20%) and test (20%) sets, with the latter being105

used after the training phase only.106

SSEdetector: high-level architecture107

SSEdetector is a deep neural network made of a CNN [28] and a Transformer108

network [29] that are sequentially connected (detailed structure in Methods).109

We constructed the CNN to be a deep spatial-temporal encoder, that behaves110

as feature extractor. The structure of the encoder is a deep cascade of 1-111

dimensional temporal convolutional block sequences and spatial pooling layers.112

The depth of the feature extractor guarantees: (1) a high expressive power,113

i.e., detailed low-level spatiotemporal features, (2) robustness to data gaps,114

since their propagation is kept limited to the first layers thanks to a cascade of115

pooling operators, and (3) limited overfit of the model on the station patterns,116

thanks to the spatial pooling operation. The decisive component of our archi-117

tecture is the Transformer network, placed right after the deep CNN encoder.118

The role of the Transformer is to apply a temporal self-attention mechanism119

to the features computed by the CNN. As humans, we instinctively focus just120

on particular fragments of data when looking for any specific patterns. We121

wanted to replicate such a behavior in our methodology, leading to a network122

able to enhance crucial portions of the data and neglect the irrelevant ones.123

This is done by assigning a weight to the data, with those weights being learnt124

from the data itself. As a result, our Transformer has learnt (1) to precisely125

identify the timing of the aseismic deformation transients in the geodetic time126

series and (2) to focus on it by assigning a weight close to zero to the rest of the127

time window. We further guide the process of finding slow deformation tran-128

sients through a specific supervised-learning classification process. First, the129

disclosed outputs of the Transformer are averaged and passed through a sig-130

moid activation function. The output values are a detection probability lying131

in the (0,1) range and can be further interpreted as a confidence measure of132

the method. Second, we train SSEdetector by minimizing the binary cross-133

entropy loss between the target and the predicted labels (details in Methods).134

The combination of the two strategies allows SSEdetector to be successfully135

applied in a real context because: (1) we can run our detector on 1-day-shift136

windows of real data and collect an output value for each day used to build137

a temporal probability curve, (2) thanks to the Transformer neural network,138

such a curve will be smooth and the value of probability will gradually increase139

in time as SSEdetector identifies slow deformation in the geodetic data.140
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a.

b.

Fig. 2 Performance of SSEdetector on synthetic data. (a) The blue curve represents
the true positive rate (probability that an actual positive will test positive), computed on
synthetic data, as a function of the magnitude. (b) Map showing the spatial distribution
of the magnitude threshold for reliable detection, computed, for each spatial bin, as the
minimum magnitude corresponding to a true positive rate value of 0.7.

Application to the synthetic test set: detection threshold141

We test SSEdetector against unseen synthetic samples and we analyze the142

results quantitatively. We generate test synthetic samples from GNSS data in143

the period 2018-2022 to limit the influence of data gaps (details in Method).144

We obtain a measure of the sensitivity of our model by computing the true145

positive rate (TPR, probability that an actual positive will test positive) as146

a function of the magnitude. On a global scale, the sensitivity is increasing147

with the signal-to-noise ratio (SNR), which also shows that it exists an SNR148

threshold limit for any SSE detection. This threshold is mainly linked to the149

magnitude of the event, rather than the moment rate. Thus, the ability of150

SSE detection is mostly influenced by the signal-to-noise ratio rather than the151

event duration (cf. Supplementary Figure 1). We compute the sensitivity as a152

function of the spatial coordinates of the SSE, by deriving a synthetic proxy as153

the magnitude threshold under which the TPR is smaller than 0.7 on a spatial154

neighborhood of approximately 50 km. We can see from Figure 2(b) that the155

detection power is related to the density of stations in the GNSS network, as156

well as to the distance between the rupture and the nearest station, and the157

rupture depth. When the density of GNSS stations is not high enough, our158

resolution power decreases as well as the reliability of the prediction. In those159

cases, we can only detect high-magnitude SSEs. This is also the case on the160

eastern side of the targeted region where the SSE sources are deeper because of161
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a.

b.

c.

d.

Fig. 3 Overview of the performance of SSEdetector on real raw GNSS time
series. The blue curves show the probability of detecting a slow slip event (output by
SSEdetector) in 60-day sliding windows centered on a given date. Grey bars represent the
number of tremors per day, smoothed (gaussian smoothing, σ = 2 days) in the grey curve.
Red horizontal segments represent the known events catalogued by [11]. The (a) panel shows
the global performance of SSEdetector over 2007-2022. The red arrow indicates the time
window analyzed by Michel et al., while the green arrows describe the two periods from
which the synthetic training samples have been derived. The grey rectangle indicates the
period which was not covered by the PNSN catalog. In this period, data from Ide, 2012 [30]
has been used. The (b), (c) and (d) panels show zooms on 2016-2017, 2019-2021 and 2017
(January to July), respectively.

the slab geometry (Figure 1(b)), even in locations where the density of stations162

is higher. In this case, the magnitude threshold increases because these events163

are more difficult to detect.164

Continuous SSE detection in Cascadia from raw geodetic165

data during 2007-2022166

Overall characteristics of the detected events167

In order to evaluate how SSEdetector performs on real continuous data, we168

applied it to the raw GNSS time series in Cascadia for the period 2007-2022.169

SSEdetector scans the data with a 60-day sliding window (1-day stride), pro-170

viding a probability of detection for the central day in each window. Figure171

3(a) shows the probability of slow slip event detection (in blue) together with172

the tremor activity over the period 2007-2022 (in grey). We consider having a173
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Table 1 Comparison of the number detections from SSEdetector with respect
to the catalog from Michel et al. [11]. We distinguish detections in 2007-2017 (the
same period analyzed by Michel et al.), and in 2017-2022. We further discriminate, in
2007-2017, between events in common with Michel et al., and new events in the same period.

Period Method
Michel et al. SSEdetector

2007-2017
Common with Michel et al. 40 35

Not detected by Michel et al. 0 20
2017-2022 0 23

reliable detection when the probability value exceeds 0.5. We find 78 slow slip174

events over the period 2007-2022, with durations ranging from 2 to 79 days.175

We find 55 slow slip events in the period 2007-2017, to be compared with the176

40 detections of the catalog of Michel et al. [11] (Table 1). We detect 35 of177

the 40 (87.5%) catalogued SSEs. Three of the missed SSEs have a magnitude178

smaller than 5.5, one of them has a magnitude of 5.86. The remaining one has179

a magnitude of 6.03. We show their location in Supplementary Figure 2, super-180

imposed on the magnitude threshold map derived for SSEdetector (see Figure181

2(b)). Given their location, the five missed events have magnitudes that are182

below the magnitude resolution limit (from 6 to 6.5, see Supplementary Figure183

2). The remaining 20 events may be associated with new undetected SSEs.184

We also find 23 new events in the period 2017-2022, which was not covered by185

Michel et al. [11]. We fixed the detection threshold to its default value of 0.5,186

i.e., the model detects an event with a 50% confidence. Yet, this threshold can187

be modified in accordance with specific needs: if high-confidence detections are188

required, the threshold can be raised; conversely, it can be lowered to capture189

more events with lower confidence. Interestingly, the few SSE from Michel et190

al. that were missed with a 0.5 confidence are all detected when selecting a 0.4191

threshold.192

We also analyze the shape of the static displacement field in correspondence193

with the detected SSEs (cf. Supplementary Figure 3). We compute the static194

displacement field by taking the median displacement over three days and195

subtracting the displacement value at each station corresponding to the dates196

of the SSE. We find a good accordance with independent studies [11, 31, 32].197

Moreover, many of the events found after 2018, as well as the new events198

detected in the period analyzed by Michel et al., have a displacement field199

suggesting that they are correct detections.200

Analysis of the SSE durations201

The shape of the probability curve gives insights into how SSEdetector reveals202

slow slip events from raw geodetic data. The probability curve in correspon-203

dence with an event has a bell shape: it grows until a maximum value, then it204

smoothly decreases when the model does not see any displacement associated205

with slow deformation in the data anymore. We use this property of the prob-206

ability curve to extract a proxy on the detected SSE duration, based on the207
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a. b.

Fig. 4 Distribution of the detected SSEs and comparison with the independent
catalogue from Michel et al. [11]. (a) Cumulative histogram of SSEdetector inferred
durations. Blue bars represent the 35 catalogued events by Michel et al. [11] that have been
successfully retrieved. Orange bars show the 20 additional events that have been discovered
within the time window analyzed by Michel et al., while green ones represent the 23 events
found in the time period 2017-2022, not covered by the catalog of Michel et al. (b) Event
durations from Michel et al.’s catalogue with respect to the durations obtained by SSEde-
tector. Events are color-coded by the overlap percentage (details in Methods).

time span associated with the probability curve exceeding 0.5. We present the208

duration distribution in Figure 4. We detect most of the SSEs found by Michel209

et al., but we also find many more events, not only in the 2018-2022 period210

which was not investigated by Michel et al., but also within the 2007-2017 time211

window that they analyzed, suggesting that our method is more sensitive. We212

find potential slow slip events at all scales of durations (from 2 to 79 days).213

Michel et al. hardly detect SSEs that last less than 15 days, probably due to214

temporal data smoothing [11], while we retrieve shorter events (less than 10215

days) since we use raw time series, meaning that our method has a better216

temporal resolution. In Figure 4 (b), we show a comparison between the SSE217

durations of Michel et al.’s [11] catalogued events and ours. This plot is made218

by considering all the combinations between events in our catalog and in the219

Michel et al. one. Each horizontal alignment represents an event in our cata-220

logue that is split into sub-events in the Michel et al. catalog, while vertical221

alignments show events in the Michel et al. catalog corresponding to sub-events222

in our catalog. We find that the durations are in good accordance for a large223

number of events, for which the overlap is often higher than 70%, both for224

small- and large-magnitude ones. We can also identify, from figure 4(b), that225

some events are separated in one method while identified as one single SSE226

in the other: this is the case for the 55 day-long event from Michel et al. [11],227

that was paired with 3 SSEdetector sub-events (see Figure 3(d) and the rect-228

angle in Figure 4(b)). The majority of the points located off the identity line229

(the diagonal) are thus sub-events for which the grouping differs in the two230

catalogs. As more points are below the diagonal than above, we can see that231

SSEdetector tends to separate the detections more. We interpret this as a pos-232

sible increase in the detection precision, yet a validation with an independent233

acquisition data set is needed, since the separation into sub-events strongly234



Springer Nature 2021 LATEX template

10 Slow slip detection with deep learning in multi-station geodetic time series

a. b.

d.c.

Fig. 5 Validation of SSEdetector performance against tremor activity in
2010-2022. (a) Global-scale cross-correlation between the full-length SSEdetector output
probability and the number of tremors per day, as a function of the time shift between the
two curves. (b) Local-scale maximum value of cross-correlation for each SSE and tremor
windows, centered on the SSE duration, as a function of the SSE duration, color-coded by
the associated time lag between tremor and SSE (positive lag means deformation precedes
tremor). Events having a zero-lag cross-correlation (correlation coefficient) lower than 0.4
are marked with an empty point. (c) Histogram of the time lags computed in the (b) panel.
(d) SSE durations as a function of the tremor durations for the events in the (b) panel which
have a correlation greater than 0.4. The solid black line represents the identity line, while
the dashed grey line is the maximum tremor duration that can be attained for a given SSE
duration, that is SSE duration + 14 days (see section section ”Computation of local- and
global-scale correlations”).

depends on the threshold applied to the detection probability to define a slow235

slip event (0.5 in this study).236

Validation against tremors237

In order to have an independent validation, we compare our results with tremor238

activity from the Pacific Northwest Seismic Network (PNSN) catalog [24]239

between 2009-2022 and Ide’s catalogue [30] catalog between 2006-2009, shown240

in grey in Figure 3. We show the location of the tremors in our catalogues with241

the dashed black contour in Figure 1(b). From a qualitative point of view, we242

can see that the detection probability curve seems to align well with the num-243

ber of tremors per day, throughout the whole period. This is also true for the244
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20 possible new detected events that were not present in previous catalogs, for245

example during the period after 2017 (see Figure 3(c)), but also in 2016-2017,246

where we detect 11 possible events that were not previously catalogued (see247

Figure 3(b)). The excellent similarity between tremors and our detections is248

quantitatively assessed by computing the cross-correlation between the prob-249

ability curve and the number of tremors per day, the latter smoothed with a250

gaussian filter (σ = 1.5 days), as a function of the time shift between the two251

curves (Figure 5(a)). The interval 2007-2010 has been excluded from Figure252

5(a) in order to consider the period covered by the PNSN catalog only. The253

maximum correlation value is around 0.58 and is obtained for a time shift254

between 1 and 2 days. This shows that, at a global scale, the probability peaks255

are coeval with the peaks of tremor activity.256

We also make a further comparison at the local scale for each individual257

detected SSE. In Figure 5(b) we observe that most of the individual detected258

SSEs show a correlation larger than 0.4 with the coeval peak of tremor. SSE259

and tremor signals are offset by about 2 days on average (see Figure 5(c)).260

This result, obtained on windows of month-long scale, seems consistent with261

the decade-long correlation shown in Figure 5(a), suggesting that the found262

large-scale trend is also true at a smaller scale. This may suggest that the263

slow deformation, for which the detection probability is a proxy, precedes the264

tremor chatter by a few days, with potential implications on the nucleation of265

the slow rupture.266

We compare the tremor peak duration (see details in Methods) to the SSE267

duration in Figure 5(d) for all the events that have been also considered in268

Figure 5(b). The figure shows a correspondence between slow slip duration269

and coeval tremor activity duration: most of the events are associated with a270

peak of tremor activity of close duration. This is true also for large events, up271

to 80 days. This finding gives an insight that our deep learning-based method,272

blindly applied to raw geodetic time series, achieves reliable results. Yet, this273

result should be taken with caution, since it is strongly dependent on the choice274

of the window of observation (see Methods section for further details).275

Sensitivity study276

We analyze the sensitivity of SSEdetector with respect to the number of277

stations. We construct an alternative test selecting 352 GNSS stations (see278

Supplementary Figure 5), which is the number of stations used by Michel et279

al. [11]. The 217 extra stations have larger percentages of missing data com-280

pared to the initial 135 stations (cf. Supplementary Figure 4). We train and281

test SSEdetector with 352 time series and we report the results in Supplemen-282

tary Figures 6-7. We observe that the results are similar, with an excellent283

alignment with tremors and similar correlation and lag values, although with284

this setting the detection power slightly decreases, probably due to a larger285

number of missing data.286
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We also test the ability of SSEdetector to identify SSEs in a sub-region287

only (even if it is trained with a large-scale network. For that, we test SSEde-288

tector (trained on 135 stations), without re-training, on a subset of the GNSS289

network, situated in the northern part of Cascadia. To this end, we replace290

with zeros all the data associated with stations located at latitudes lower than291

47 degrees (see Supplementary Figure 8). Similarly, we find that SSEdetector292

retrieves all the events which were found by Michel et al. [11] and the correla-293

tion with tremors that occur in this sub-region is still high, with a global-scale294

cross-correlation of 0.5 (cf. Supplementary Figures 9-10). This means that the295

model is robust against long periods of missing data and, thanks to the spatial296

pooling strategy, can generalize over different settings of stations and obtain297

some information on the localization.298

Finally, we test SSEdetector against other possible deep learning models299

that could be used for detection. We report in Supplementary Figures 11-12300

the results obtained by replacing the one-dimensional convolutional layers with301

two-dimensional convolutions on time series sorted by latitude (as shown in302

Figure 1(a)). This type of architecture was used in studies having similar multi-303

station time-series data [33]. We observe that the results on real data are not304

satisfactory because of too high a rate of false detections and a lower temporal305

resolution than SSEdetector (in other words, short SSEs are not retrieved).306

This suggests that our specific model architecture, handling in different ways307

the time dimension and the station dimension, might be more suited to multi-308

station time-series data sets.309

Discussion310

In this study, we use a multi-station approach that proves efficient in detecting311

slow slip events in raw GNSS time series even in presence of SSE migrations312

[11, 31, 32]. Thanks to SSEdetector, we are able to detect 87 slow slip events313

with durations from 2 to 79 days, with an average limit magnitude of about314

6.4 in north Cascadia and 6.2 in south Cascadia computed on the synthetic315

test set (see Figure 2(b)). The magnitude of the smallest detected SSE in316

common with Michel et al. is 5.42, with a corresponding duration of 8.5 days.317

One current limitation of this approach is that the location information is not318

directly inferred. In this direction, some efforts should be made in developing a319

method for characterizing slow slip events after the detection in order to have320

information on the location, but also on the magnitude, of the slow rupture.321

We apply our methodology to the Cascadia subduction zone because it is322

the area where independent benchmarks exist and it is thus possible to validate323

a new method. However, the applicability of SSEgenerator and SSEdetector to324

other subduction zones is possible. The current approach is, however, region-325

specific. In fact, the characteristics of the targeted zone affect the structure326

of the synthetic data, thus a method trained on a specific region could have327

poor performance if tested on another one without retraining. This problem328

can be addressed by generating multiple data sets associated with different329
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regions and combining them for the training. Also, we focus on the Casca-330

dia subduction zone, where not much regular seismicity occurs, making it a331

prototypical test zone when looking for slow earthquakes. When addressing332

other regions, such as Japan, for example, the influence of earthquakes or333

post-seismic relaxation signals could make the problem more complex. This334

extension goes beyond the scope of this study, yet we think that it will be335

essential to tackle this issue in order to use deep learning approaches for the336

detection of SSEs in any region.337

Conclusions338

We developed a powerful pipeline, composed of a realistic synthetic GNSS339

time-series generation, SSEgenerator, and a deep-learning classification model,340

SSEdetector, aimed to detect slow slip events from a series of raw GNSS time341

series measured by a station network. We built a new catalog of slow slip events342

in the Cascadia subduction zone by means of SSEdetector. We found 78 slow343

slip events from 2007 to 2022, 35 of which are in good accordance with the344

existing catalog [11]. The detected SSEs have durations that range between a345

few days to a few months. The detection probability curve correlates well with346

the occurrence of tremor episodes, even in time periods where we found new347

events. The duration of our SSEs, for the 35 known events, as well as for the348

43 new detections, are found to be similar to the coeval tremor duration. The349

comparison between tremors and SSEs also shows that, both at a local and a350

global temporal scale, the slow deformation may precede the tremor chatter351

by a few days, with potential implications on the link between a slow slip that352

could drive the rupture of nearby small seismic asperities. This is the first353

successful attempt to detect SSEs from raw GNSS time series, and we hope354

that this preliminary study will lead to the detection of SSEs in other active355

regions of the world.356

Methods357

SSEgenerator: data selection358

We consider the 550 stations in the Cascadia subduction zone, belonging to359

the MAGNET GNSS network, and we select data from 2007 to 2022. We train360

SSEdetector with synthetic data whose source was affected by different noise361

and data gap patterns. We divide the data into three periods: 2007-2014, 2014-362

2018, and 2018-2022. In order to create a more diverse training set, data in363

the period 2007-2014 and 2018-2022 has been chosen as a source for synthetic364

data generation. The period 2014-2018 was left aside and used as an inde-365

pendent validation set for performance assessment on real data. Nonetheless,366

since synthetic data is performed by applying random transformations, a test367

on the whole sequence 2007-2022 is possible without overfitting.368

For the two periods 2007-2014 and 2018-2022, we sort the GNSS stations369

by the total number of missing data points and we choose the 135 stations370
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affected by fewer data gaps as the final subset for our study. We make sure371

that stations having too high a noise do not appear in this subset. We select372

135 stations since it represents a good compromise between the presence of373

data and the longest data gap sequence in a 60-day window. However, we also374

train and test SSEdetector on 352 stations (the same number used in the study375

by Michel et al. [11]). We briefly discuss the results in the section ”Sensitivity376

study”.377

SSEgenerator: Generation of ultra-realistic noise time378

series379

Raw GNSS data is first detrended at each of the 135 stations, i.e. the linear380

trend is removed, where the slope and the intercept are computed, for each381

station, without taking into account the data gaps, i.e., for each station the382

mean over time is calculated without considering the missing data points,383

and is removed from the series. A matrix containing all station time series384

X ∈ RNt×Ns is built, where Nt is the temporal length of the input time series385

and Ns is the number of stations. In this study, we use 2 components (N-S and386

E-W) and we apply the following procedure for each component independently.387

Each column of X contains a detrended time series. We proceed as follows.388

The X matrix is then re-projected in another vector space through a Principal389

Component Analysis (PCA), as follows. First, the data is centered. The mean390

vector is computed µ ∈ RNs , such that µi is the mean of the i-th time series.391

The centered matrix is considered X̃ = X − µ, and is decomposed through392

Singular Value Decomposition (SVD) to obtain the matrix of right singular393

vectors V, which is the rotation matrix containing the spatial variability of394

the original vector space. We further rotate the data by means of this spatial395

matrix to obtain spatially-uncorrelated time series X̂ = X̃V. Then, we produce396

X̂R, a randomized version of X̂, by applying the iteratively-refined amplitude-397

adjusted Fourier transform (AAFT) method [34], having globally the same398

power spectrum and amplitude distribution of the input data. The number399

of AAFT iterations has been experimentally set to 5. The surrogate time400

series are then back-projected in the original vector space to obtain XR =401

X̂RV
T + µ. We further enrich the randomized time series XR by imprinting402

the real pattern of missing data for 70 % of the synthetic data. We shuffle403

the data gaps before imprinting them to the data, such that SSEdetector can404

better generalize over unseen test data for the same station, which necessarily405

would have a different pattern of data gaps. We leave the remaining 30% of406

the data as it is. We prefer not to use any interpolation method in order not407

to introduce new values in the data. Thus, we set all the missing data points408

to zero, which is a neutral value with respect to the trend of the data and the409

convolution operations performed by SSedetector.410

After this process, we generate sub-windows of noise time series as follows.411

Given the window length WL, a uniformly distributed random variable is gen-412

erated s ∼ U(−WL/2,WL/2) and the data is circularly shifted by the amount413

s. Then, ⌊Nt/WL⌋ contiguous (non-overlapping) windows are obtained. The414
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circular shift is needed in order for SSEdetector not to learn a fixed temporal415

pattern of data gaps. Finally, by knowing the desired number N of noise win-416

dows to compute, the surrogate generation {XR}i can be repeated ⌈ N
⌊Nt/WL⌋⌉417

times. In our study, we generate N = 60, 000 synthetic samples, by calling the418

surrogate data generation 1,429 times and extracting 42 non-overlapping noise419

windows from each randomized time series.420

SSEgenerator: Modeling of synthetic slow slip events421

We first generate synthetic displacements at all the 135 selected stations using422

Okada’s dislocation model [27]. We draw random locations, strike and dip423

angles using the slab2 model [25] following the subduction geometry within424

the area of interest (see Figure 1(b)). We let the rake angle be a uniform425

random variable from 75 to 100 degrees, in order to have a variability around426

90 degrees (thrust focal mechanism). For each (latitude, longitude) couple, we427

extract the corresponding depth from the slab and we add further variability,428

modeled as a uniformly distributed random variable from -10 to 10 km. We429

allow for this variability if the depth is at least 15 km, in order not to have430

ruptures that reach the surface. We associate each rupture with a magnitude431

Mw, uniformly generated in the range (6, 7), and we compute the equivalent432

moment as M0 = 101.5Mw+9.1. As for the fault geometry, we rely on the circular433

crack approximation [35] to compute the fault radius as:434

R =

(
7

16

M0

∆σ

)1/3

(1)

where ∆σ is the static stress drop. We compute the average slip on the435

fault as:436

ū =
16

7π

∆σ

µ
(2)

where µ is the shear modulus. We assume µ = 30 GPa. By imposing that437

the surface of the crack must equal a rectangular dislocation of length L and438

width W , we obtain L =
√

2πR. We assume that W = L/2. Finally, we model439

the stress drop as a lognormally-distributed random variable. We assume the440

average stress drop to be ∆σ = 0.05 MPa for the Cascadia subduction zone441

[26]. We also assume that the coefficient of variation cV , namely the ratio442

between the standard deviation and the mean, is equal to 10. Hence, we gener-443

ate the static stress drop as ∆σ ∼ Lognormal(µN , σ2
N ), where µN and σN are444

the mean and the standard deviation of the underlying normal distribution,445

respectively, that we derive as:446

σN =
√

ln (c2V + 1) (3)

and447

µN = ln (∆σ) − σ2
N/2. (4)
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We thus obtain the (horizontal) synthetic displacement vector Ds =448

(DN−S
s , DE−W

s ) at each station s. We model the temporal evolution of slow449

slip events as a logistic function. Let D be the E-W displacement for simplicity.450

In this case, we model an SSE signal at a station s as:451

ds(t) =
D

1 + eβ(t−t0)
(5)

where β is a parameter associated with the growth rate of the curve and452

t0 is the time corresponding to the inflection point of the logistic function. We453

assume t0 = 30 days, so that the signal is centered in the 60-day window. We454

derive the parameter β as a function of the slow slip event duration T . We can455

rewrite the duration as T = tmax− tmin, where tmax is the time corresponding456

to the steady-state value of the signal (i.e., D), while tmin is associated to457

the minimum (i.e., 0). Since these values are only asymptotically reached, we458

introduce a threshold γ, such that tmax and tmin are associated with ds(D−γ)459

and ds(γ), respectively. We choose γ = 0.01 ·D. By rewriting the duration as460

T = tmax − tmin and solving for β, we obtain:461

β =
2

T
ln

(
D

γ
− 1

)
. (6)

Finally, we generate slow slip events having uniform duration T between462

10 and 30 days. We take half of the noise samples (30,000) and we create a463

positive sample (i.e., time series containing a slow slip event) as XR + d(t),464

where d(t) is a matrix containing all the modeled time series ds(t) for each465

station. We let XR contain missing data. Therefore, we do not add the signal466

ds(t) where data should not be present.467

SSEdetector: Detailed architecture468

SSEdetector is a deep neural network obtained by the combination of a convo-469

lutional and a Transformer neural network. The full architecture is shown in470

Supplementary Figure 13. The model takes input GNSS time series, which can471

be grouped as a matrix of shape (Ns, Nt, Nc), where Ns, Nt, Nc are the num-472

ber of stations, window length and number of components, respectively. In this473

study, Ns = 135, Nt = 60 days and Nc = 2 (N-S, E-W). The basic unit of this474

CNN is a Convolutional Block. It is made of a sequence of a one-dimensional475

convolutional layer in the temporal (Nt) dimension, which computes Nf feature476

maps by employing a 1× 5 kernel, followed by a Batch Normalization [36] and477

a ReLu activation function [37]. We will refer to this unit as ConvBlock(Nf )478

for the rest of the paragraph (see Supplementary Figure 13). We alternate con-479

volutional operations in the temporal dimension with pooling operations in480

the station dimension (max-pooling with a kernel of 3) and we replicate this481

structure as long as the spatial (station) dimension is reduced to 1. To this482

end, we create a sequence of 3 ConvBlock(·) + max-pooling. As an example,483

the number of stations after the first pooling layer is reduced from 135 to 45.484

At each ConvBlock(·), we multiply by 4 the number of computed feature maps485
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Nf . At the end of the CNN, the computed features have shape (Nt, N
final
f ),486

with Nfinal
f = 256.487

This feature matrix is given as input to a Transformer neural network. We488

first use a Positional Embedding to encode the temporal sequence. We do not489

impose any kind of pre-computed embedding, but we use a learnable matrix490

of shape (Nt, N
final
f ). The learnt embeddings are added to the feature matrix491

(i.e., the output of the CNN). The embedded inputs are then fed to a Trans-492

former neural network [29], whose architecture is detailed in Supplementary493

Figure 14. Here, the global (additive) self-attention of the embedded CNN494

features is computed as:495

ηt1,t2 = Wa tanh
(
WT

1 ht1 + WT
2 ht2 + bh

)
+ ba , (7)

at1,t2 = softmax (ηt1,t2) =
eηt1,t2∑
t2
eηt1,t2

, (8)

ct1 =
∑
t2

at1,t2 · ht2 , (9)

where W represents a learnable weight matrix and b a bias vector. The496

matrices ht1 and ht2 are the hidden-state representations at time t1 and497

t2, respectively. The matrix at1,t2 contains the attention scores for the time498

steps t1 and t2. Here, a context vector is computed as the weighted sum of499

the hidden-state representations by the attention scores. The context vector500

contains the importance at a given time step based on all the features in501

the window. The contextual information is then added to the Transformer502

inputs. Then, a position-wise Feed-Forward layer (with a dropout rate of 0.1)503

is employed to add further non-linearity. After the Transformer network, a504

Global Average Pooling in the temporal dimension (Nt) is employed to gather505

the transformed features and to output a vector summarizing the temporal506

information. A Dropout is then added as a form of regularization to reduce507

overfitting [38], with dropout rate δ = 0.2. In the end, we use a fully-connected508

layer with one output, with a sigmoid activation function to express the509

probability of SSE detection.510

Training details511

We perform a mini-batch training [39] (batch size of 128 samples) by minimiz-512

ing the binary cross-entropy (BCE) loss between the target labels y and the513

predictions ŷ (a probability estimate):514

BCE(y, ŷ) = −y ln(ŷ) − (1 − y) ln(1 − ŷ). (10)

The BCE loss is commonly used for binary classification problems (detec-515

tion is a binary classification). We use the ADAM method for the optimization516

[40] with a learning rate λ = 10−3 which has been experimentally chosen. We517

schedule the learning rate such that it is reduced during training iterations518
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and we stop the training when the validation loss did not improve for 50 con-519

secutive epochs. We initialized the weights of SSEdetector with a uniform He520

initializer [41]. We implemented the code of SSEdetector in Python using the521

Tensorflow and Keras libraries [42, 43]. We run the training on NVIDIA Tesla522

A100 Graphics Processing Units (GPUs). The training of SSEdetector takes523

less than 2 hours. The inference on the whole 15-year sequence (2007-2022)524

takes a few minutes.525

Calculation of tremor durations526

We compute the durations of tremor bursts using the notion of topographic527

prominence, explained in the following. We rely on the software implemen-528

tation from the SciPy Python library [44]. Given a peak in the curve, the529

topographic prominence is informally defined as the minimum elevation that530

needs to be descended to start reaching a higher peak. The procedure is graph-531

ically detailed in Supplementary Figure 15. We first search for peaks in the532

number of tremors per day by comparison with neighboring values. In order to533

avoid too many spurious local maxima, we smooth the number of tremors per534

day with a gaussian filter (σ = 1.5 days). For each detected SSE, we search for535

peaks of tremors in a window given by the SSE duration ±3 days. For each536

peak of tremors that is found, the corresponding width is computed as follows.537

The topographic prominence is computed by placing a horizontal line at the538

peak height h (the value of the tremor curve corresponding to the peak). An539

interval is defined, corresponding to the points where the line crosses either the540

signal bounds or the signal at the slope towards a higher peak. In this interval,541

the minimum values of the signal on each side are computed, representing the542

bases of the peak. The topographic prominence p of the peak is then defined as543

the height between the peak and its highest base value. Then, the local height544

of the peak is computed as hL = h−α · p. We set α = 0.7 in order to focus on545

the main tremor pulses, discarding further noise in the curve. From the local546

height, another horizontal line is considered and the peak width is computed547

as the intersection point of the line with either a slope, the vertical position548

of the bases or the signal bounds, on both sides. Finally, the total width of a549

tremor pulse in an SSE window is computed by considering the earliest start-550

ing point on the left side and the latest ending point on the right side. It must551

be noticed that, the derivation of the tremor duration depends on the window552

length. In fact, the inferred tremor duration can saturate to a maximum value553

equal to the length of the window. For this reason, we added in Figure 5(c)554

a dashed line corresponding to the window length (SSE duration + 14 days)555

(see section section ”Computation of local- and global-scale correlations”).556

Computation of local- and global-scale correlations557

We compute the time-lagged cross-correlation between the SSE probability558

and the number of tremors per day (Fig. 5(a) and (b)). We smooth the number559
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of tremors per day with a gaussian filter (σ = 1.5 days). We consider a lag560

between -7 and 7 days, with a 1-day stride.561

In the case of Fig. 5(a), we compute the global correlation coefficient by562

considering the whole time sequence (2010-2022). As for Fig. 5(b), we make a563

local analysis. For each detected SSE, we first extract SSE and tremor slices564

from intervals centered on the SSE dates [tstartSSE −∆t, tendSSE+∆t], where ∆t = 30565

days. We first compute the cross-correlation between the two curves to filter566

out detected SSEs whose similarity with tremors is not statistically significant.567

For each SSE date, we discard p′′(t) and n′′
T (t) if their correlation coefficient568

is lower than 0.4. We build Fig. 5(b) after this process.569

We compute Fig. 5(d) by comparing the SSE and tremor durations for all570

the events that had a cross-correlation higher than 0.4. For those, we infer the571

tremor duration, using the method explained in section ”Calculation of tremor572

durations” on the nT (t) cut from an interval [tstartSSE − ∆t′, tendSSE + ∆t′], with573

∆t′ = 7 days.574

Overlap percentage calculation575

In Figure 4 (b) we color-code the SSE durations by the overlap percentage576

between a pair of events, which we compute as the difference between the577

earliest end and the latest start, divided by the sum of the event lengths.578

Let E1 and E2 be two events with start and end dates given by (tstart1 , tend1 )579

and (tstart2 , tend2 ) and with durations given by D1 = tend1 − tstart1 and D2 =580

tend2 − tstart2 , respectively. We compute their overlap π as:581

π =
max(0,min(tend1 , tend2 ) − max(tstart1 , tstart2 ))

D1 + D2
(11)

Supplementary information. This article has an accompanying supple-582

mentary file.583

Acknowledgments. This work has been funded by ERC CoG 865963584

DEEP-trigger. Most of the computations presented in this paper were585

performed using the GRICAD infrastructure (https://gricad.univ-grenoble-586

alpes.fr), which is supported by Grenoble research communities.587

Declarations588

• Funding This work has been funded by ERC CoG 865963 DEEP-trigger.589

• Competing interests The authors declare no competing interests.590

• Materials & Correspondence Correspondence to: Giuseppe Costantino591

• Data availability We downloaded the data from the Nevada Geodetic592

Laboratory (http://geodesy.unr.edu).593

• Code availability The source code of SSEgenerator and SSEdetector as594

well as the pre-trained model of SSEdetector are available at https://gricad-595

gitlab.univ-grenoble-alpes.fr/costangi/sse-detection.596



Springer Nature 2021 LATEX template

20 Slow slip detection with deep learning in multi-station geodetic time series

• Authors’ contributions G.C. developed SSEgenerator and SSEdetector597

and produced all the results and figures presented here. A.S. designed the598

study and provided expertise for the geodetic data analysis. S.G.R. provided599

expertise for the Deep Learning aspects. G.C. wrote the first draft of the600

paper. All the authors contributed to reviewing the manuscript.601

References602

[1] Dragert, H., Wang, K., James, T.S.: A silent slip event on603

the deeper cascadia subduction interface. Science 292, 1525–604

1528 (2001). https://doi.org/10.1126/SCIENCE.1060152/ASSET/605

DD167B7B-24D4-40A4-996F-4603D42C0244/ASSETS/GRAPHIC/606

SE1919443004.JPEG607

[2] Lowry, A.R., Larson, K.M., Kostoglodov, V., Bilham, R.: Transient fault608

slip in guerrero, southern mexico. Geophysical Research Letters 28, 3753–609

3756 (2001). https://doi.org/10.1029/2001GL013238610

[3] Schwartz, S.Y., Rokosky, J.M.: Slow slip events and seismic tremor at611

circum-pacific subduction zones. Reviews of Geophysics 45 (2007). https:612

//doi.org/10.1029/2006RG000208613

[4] Ide, S., Beroza, G.C., Shelly, D.R., Uchide, T.: A scaling law for slow614

earthquakes. Nature 2007 447:7140 447, 76–79 (2007). https://doi.org/615

10.1038/nature05780616

[5] Mousavi, S.M., Ellsworth, W.L., Zhu, W., Chuang, L.Y., Beroza, G.C.:617

Earthquake transformer—an attentive deep-learning model for simulta-618

neous earthquake detection and phase picking. Nature Communications619

11 (2020). https://doi.org/10.1038/s41467-020-17591-w620

[6] Rousset, B., Campillo, M., Lasserre, C., Frank, W.B., Cotte, N., Walpers-621

dorf, A., Socquet, A., Kostoglodov, V.: A geodetic matched filter search622

for slow slip with application to the mexico subduction zone. Journal623

of Geophysical Research: Solid Earth 122, 10498–10514 (2017). https:624

//doi.org/10.1002/2017JB014448625

[7] Frank, W.B., Radiguet, M., Rousset, B., Shapiro, N.M., Husker, A.L.,626

Kostoglodov, V., Cotte, N., Campillo, M.: Uncovering the geodetic signa-627

ture of silent slip through repeating earthquakes. Geophysical Research628

Letters 42, 2774–2779 (2015). https://doi.org/10.1002/2015GL063685629

[8] Gomberg, J., Wech, A., Creager, K., Obara, K., Agnew, D.: Reconsidering630

earthquake scaling. Geophysical Research Letters 43, 6243–6251 (2016).631

https://doi.org/10.1002/2016GL069967632

https://doi.org/10.1126/SCIENCE.1060152/ASSET/DD167B7B-24D4-40A4-996F-4603D42C0244/ASSETS/GRAPHIC/SE1919443004.JPEG
https://doi.org/10.1126/SCIENCE.1060152/ASSET/DD167B7B-24D4-40A4-996F-4603D42C0244/ASSETS/GRAPHIC/SE1919443004.JPEG
https://doi.org/10.1126/SCIENCE.1060152/ASSET/DD167B7B-24D4-40A4-996F-4603D42C0244/ASSETS/GRAPHIC/SE1919443004.JPEG
https://doi.org/10.1126/SCIENCE.1060152/ASSET/DD167B7B-24D4-40A4-996F-4603D42C0244/ASSETS/GRAPHIC/SE1919443004.JPEG
https://doi.org/10.1126/SCIENCE.1060152/ASSET/DD167B7B-24D4-40A4-996F-4603D42C0244/ASSETS/GRAPHIC/SE1919443004.JPEG
https://doi.org/10.1029/2001GL013238
https://doi.org/10.1029/2006RG000208
https://doi.org/10.1029/2006RG000208
https://doi.org/10.1029/2006RG000208
https://doi.org/10.1038/nature05780
https://doi.org/10.1038/nature05780
https://doi.org/10.1038/nature05780
https://doi.org/10.1038/s41467-020-17591-w
https://doi.org/10.1002/2017JB014448
https://doi.org/10.1002/2017JB014448
https://doi.org/10.1002/2017JB014448
https://doi.org/10.1002/2015GL063685
https://doi.org/10.1002/2016GL069967


Springer Nature 2021 LATEX template

Slow slip detection with deep learning in multi-station geodetic time series 21

[9] Hawthorne, J.C., Bartlow, N.M.: Observing and modeling the spectrum633

of a slow slip event. Journal of Geophysical Research: Solid Earth 123,634

4243–4265 (2018). https://doi.org/10.1029/2017JB015124635

[10] Frank, W.B., Brodsky, E.E.: Daily measurement of slow slip from low-636

frequency earthquakes is consistent with ordinary earthquake scaling.637

Science Advances 5 (2019). https://doi.org/10.1126/SCIADV.AAW9386/638

SUPPL FILE/AAW9386 SM.PDF639

[11] Michel, S., Gualandi, A., Avouac, J.P.: Similar scaling laws for earth-640

quakes and cascadia slow-slip events. Nature 574, 522–526 (2019). https:641

//doi.org/10.1038/s41586-019-1673-6642

[12] Bartlow, N.M., Miyazaki, S., Bradley, A.M., Segall, P.: Space-time correla-643

tion of slip and tremor during the 2009 cascadia slow slip event. Geophys-644

ical Research Letters 38 (2011). https://doi.org/10.1029/2011GL048714645

[13] Radiguet, M., Cotton, F., Vergnolle, M., Campillo, M., Walpersdorf, A.,646

Cotte, N., Kostoglodov, V.: Slow slip events and strain accumulation in647

the guerrero gap, mexico. Journal of Geophysical Research: Solid Earth648

117, 4305 (2012). https://doi.org/10.1029/2011JB008801649

[14] Kong, Q., Trugman, D.T., Ross, Z.E., Bianco, M.J., Meade, B.J., Ger-650

stoft, P.: Machine learning in seismology: Turning data into insights.651

Seismological Research Letters 90, 3–14 (2019). https://doi.org/10.1785/652

0220180259653

[15] Zhu, W., Beroza, G.C.: Phasenet: A deep-neural-network-based seismic654

arrival-time picking method. Geophysical Journal International 216, 261–655

273 (2019). https://doi.org/10.1093/gji/ggy423656

[16] Woollam, J., Münchmeyer, J., Tilmann, F., Rietbrock, A., Lange, D.,657

Bornstein, T., Diehl, T., Giunchi, C., Haslinger, F., Jozinović, D., Miche-658
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