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Abstract

We study an epistemic logic where knowledge is built from
what the agents observe (including higher-order visibility)
and what the agents learn from public announcements. This
fixes two main drawbacks of previous observability-based ap-
proaches where who sees what is common knowledge and
where the epistemic operators distribute over disjunction. The
latter forbids the modeling of most of the classical epistemic
problems, starting with the muddy children puzzle. We in-
tegrate a dynamic dimension where both facts of the world
and the agents’ observability can be modified by assignment
programs. We establish that the model checking problem is
PSPACE-complete.

Keywords: epistemic logic, dynamic epistemic logic,
public announcement, propositional assignment, proposi-
tional observability

Introduction

Recently several logics based on the observability of propo-
sitional variables by agents were proposed (van der Hoek,
Troquard, and Wooldridge 2011; Balbiani, Gasquet, and
Schwarzentruber 2013; Gasquet, Goranko, and Schwarzen-
truber 2014). The models of these logics are based on visibil-
ity atoms from which Kripkean accessibility relations can be
defined in a natural way: agent i cannot distinguish w from
w′ when all the variables agent i sees have the same truth
value at w and w′. Such logics are attractive because their
models are much more compact than the standard Kripke
models of epistemic logics. The existing approaches how-
ever have two major drawbacks. First, who sees what is com-
mon knowledge: the formula (Kip∨Ki¬p)→ CK(Kip∨Ki¬p)
is valid. Second, the epistemic operator may distribute over
disjunctions: when p and q are different propositional vari-
ables then Ki(p ∨ q) → (Kip ∨ Kiq) is valid. The former is
annoying because theory of mind is ‘flattened’. The latter is
annoying because it does not allow to model things such as
the muddy children puzzle (where each child knows that one
of the children is muddy without knowing which) (Lehmann
1984; Fagin et al. 1995). In the present paper we propose a
solution to these two problems.

As to the first problem, we adopt the solution of (Herzig,
Lorini, and Maffre 2015) and suppose that the valuations
contain higher-order visibility atoms. Such atoms may take
for example the form JS Sj p, expressing that all agents
jointly see whether agent j sees the value of the proposi-
tional variable p. From this we obtain accessibility relations
that are not common knowledge.

As to the second problem, following (Castelfranchi 1994;
van Linder, Hoek, and Meyer 1997), we start by observ-
ing that an agent’s knowledge may originate from three
processes: observation, communication, and inference. We
do not consider knowledge obtained via inference and as-
sume that agents are omniscient. We therefore do not model
formation of knowledge via (time-consuming) application
of inference rules and leave it to future work to integrate
existing logics of time-bounded reasoning (Alechina, Lo-
gan, and Whitsey 2004; Grant, Kraus, and Perlis 2000;
Balbiani, Fernandez-Duque, and Lorini 2016). While the
above observability-based approaches only account for the
former, we here take into account the most basic form of
communication modifying the agents’ knowledge: public
announcements. We do so by adding a public information
state to the model, which is a set of valuations, as pro-
posed in (Lomuscio, van der Meyden, and Ryan 2000;
Su, Sattar, and Luo 2007) and recently used in (Charrier and
Schwarzentruber 2015; van Benthem et al. 2015). Public an-
nouncements make the public information state shrink just
as in public announcement logic. We can then model that
although both a p-world and a q-world are accessible for
i, there is no accessible p∧q-world because the information
state contains no such world. This may be due to the an-
nouncement of p∧q, or to the announcement (in some order)
of p and of q, or to the announcement (in some order) of p
and of p→q, etc.

Our approach is based on programs of Dynamic Logic
of Propositional Assignments DL-PA (Herzig et al. 2011;
Balbiani, Herzig, and Troquard 2013), which is a dialect of
propositional dynamic logic whose atomic programs are +p
and −p, for p being a propositional variable: the program
+p makes p true and −p makes p false. Complex programs
are built from these atomic programs by the PDL program
operators. We view such programs as being executed pub-
licly, thereby updating the public information state. Pub-
lic announcements will be a particular case of such pub-



licly executed programs: they are publicly executed tests.
Our program-based approach to knowledge and its dynamics
also allows to modify visibility information, viz. by means
of the assignment of visibility atoms to true or false. For
example, the program +Si Sj p has the effect that i sees
whether j sees p.

The paper is organized as follows: we first present the lan-
guage then the semantics. Then we establish the complexity
of the model checking problem and study the properties of
our logic. Finally, we illustrate our logic by a full analysis of
the muddy children puzzle and conclude.

Language

Let Prop be a countable non-empty set of propositional vari-
ables and let Agt be a finite non-empty set of agents.

Observability atoms

Atomic formulas of our language are sequences of visibility
operators followed by propositional variables. For instance,
JS S1 p is an atomic formula. It is read “all agents jointly see
whether agent 1 sees the truth value of p”.

Formally, the set of observability operators is

OBS = {Si : i ∈ Agt} ∪ {JS},

where Si stands for individual visibility of agent i and JS

stands for joint visibility of all agents. The set of all se-
quences of visibility operators is noted OBS∗ and the set of
all non-empty sequences is noted OBS+. We use σ , σ ′, . . .
for elements of OBS∗.

Finally, observability atoms are propositional variables
prefixed by a possibly empty sequence of observability op-
erators. So an observability atom is of the form σ p where
p ∈ Prop and σ ∈ OBS∗. We use α, α′, . . . for observabil-
ity atoms. So propositional variables are particular observ-
ability atoms.

Programs and formulas

The language of programs and formulas is defined by the
following grammar:

π ::= +α | −α | (π;π) | (π ⊔ π) | ϕ?

ϕ ::= α | ¬ϕ | (ϕ ∧ ϕ) | Kiϕ | CKϕ | [π !]ϕ

where α ranges over ATM and i over Agt .
As to the formulas: Kiϕ reads “ϕ is known by i” and CKϕ

reads “ϕ is common knowledge among all agents”. While Si
expresses sensor information, Ki expresses information com-
ing from both sensors and communication. We read [π !]ϕ as
“ϕ will be true after the update of the current local and in-
formation states by π”.

As to the programs: +α makes the atomic formula α pub-
licly true and −α makes it publicly false. We will see in the
semantics that −α may fail. For instance, Si Si α is always
true (agents are introspective) and the execution of −Si Si α
fails. The other program operators are sequential and nonde-
terministic composition and test and are read as in dynamic
logic (Harel, Kozen, and Tiuryn 2000). As we shall see, the
publicly performed test ϕ? behaves exactly as the public an-
nouncement of ϕ.

As usual in modal logic, 〈π!〉ϕ abbreviates ¬[π !]¬ϕ.

Example 1 (representing the muddy children puzzle).
Let us illustrate by means of the muddy children puzzle
how knowledge can be represented in our language. Let
Agt = {1, . . . , n} be the set of children. Let Prop =
{m1, . . . ,mn} be the propositional variables, where mi ex-
presses that child i is muddy. First, the fact that all children
are muddy is described by the conjunction

Muddy =
∧

i∈Agt

mi.

Second, agents’ observational capabilities are expressed by

Obs =
(

∧

i∈Agt

¬Simi

)

∧
(

∧

i,j∈Agt,
i 6=j

Simj

)

∧
(

∧

i,j∈Agt

JS Simj

)

.

The first two conjuncts express that the agents see the states
of other agents but not their own states. The last conjunct
expresses that the agents jointly observe their observational
capabilities. For instance, JS Simi reads “all agents jointly
see whether i sees mi”. Third, the agents’ (sensor and com-
municational) information in the initial situation is described
by the formula

Ign =
∧

i∈Agt

(¬Kimi ∧ ¬Ki¬mi).

So the muddy children puzzle is fully described by the con-
junction Muddy ∧Obs ∧ Ign .

Let us now look at the consequences of this description in
the semantics to be defined. First, the implication

(Muddy ∧Obs ∧ Ign)→ 〈(
∨

i∈Agt

mi)?!〉Ign

will be valid for n ≥ 2: each child is still ignorant about
her muddiness after the announcement that one of them is
muddy. Furthermore, the implications

(Muddy ∧Obs ∧ Ign)→ 〈(
∨

i∈Agt

mi)?!〉〈Ign?!〉
kIgn

will be valid for 0 ≤ k ≤ n−2 and n ≥ 2, where 〈π!〉k is the
iteration of 〈π!〉, k times: the children keep on being igno-
rant about their state after n−2 rounds of the announcement
of that ignorance. It is important to note that the intended
meaning of the formulas ¬Kimi ∧ ¬Ki¬mi and ¬Simi is
different: the former says that according to her information
state, i is ignorant aboutmi, while the latter says that accord-
ing to her observational information, i does not observe mi.
The status of the latter remains unchanged when the chil-
dren gain new information via the public announcement of
Ign . In contrast, the status of the former changes after n−1
announcements:

(Muddy ∧Obs ∧ Ign)→

〈(
∨

i∈Agt

mi)?!〉〈Ign?!〉
n−1

(

∨

i∈Agt

Kimi

)

and even

(Muddy ∧Obs ∧ Ign)→

〈(
∨

i∈Agt

mi)?!〉〈Ign?!〉
n−1

CK

(

∨

i∈Agt

mi

)



will be valid: knowledge and even common knowledge of
muddiness is achieved after n−1 rounds.

Semantics

Our semantics is based on valuations, that we will also call
worlds. These are nothing but subsets on the set of atomic
formulas ATM , noted w,w′, u, v, . . .. We write w(α) =
w′(α) when atomic formula α has the same truth value in
w and w′, i.e., when either both α ∈ w and α ∈ w′, or both
α /∈ w and α /∈ w′.

Accessibility relations for Ki and CK

From the visibility information that is contained in valua-
tions we are now going to define accessibility relations be-
tween valuations. Two valuationsw andw′ are related by ❀i

if every α that i sees at w has the same value, and similarly
for the common knowledge accessibility relation ❀Agt :

w ❀i w
′ iff Si α ∈ w implies w(α) = w′(α)

w ❀Agt w
′ iff JSα ∈ w implies w(α) = w′(α)

In logics of knowledge these relations are standardly sup-
posed to be equivalence relations. This fails to hold here:
while ❀i and ❀Agt are clearly reflexive, they are neither

transitive nor symmetric.1 We will see in the sequel how
transitivity and symmetry can be guaranteed by means of
appropriate introspection constraints.

Introspective valuations

A valuation w ∈ 2ATM is introspective if and only if the
following hold, for every α ∈ ATM and i ∈ Agt :

Si Si α ∈ w (C1)

JS JSα ∈ w (C2)

JS Si Si α ∈ w (C3)

if JSα ∈ w, then Si α ∈ w (C4)

if JSα ∈ w, then JS Si α ∈ w (C5)

For example, 2ATM is introspective, while ∅ and {p, q}
are not. The set of all introspective valuations is noted
INTR. Let us stress that neither Si α ∈ w nor JSα ∈ w
imply α ∈ w: seeing whether α is true is weaker than seeing
that α is true.

Together, the last two constraints ensure that when JSα ∈
w then σ α ∈ w for every σ ∈ OBS+. This motivates
the following relation of introspective consequence between
atoms:

α⇒β iff α = β, or

(α = JSα′ and β = σ α′ for some σ ∈ OBS+).

For example, JS Si p⇒ Sj1 Sj2 Si p: when all agents jointly
see whether i observes the value of p then j1 sees whether
j2 sees whether i sees p.

Introspective valuations can be characterized as valua-
tions that satisfy (C1), (C2) and (C3) and are closed under
introspective consequence.

1For example, ∅ ❀i w for every w ⊆ ATM , while w ❀i ∅
fails to hold as soon as there is a p such that p and Si p are in w.

Proposition 1 ((Herzig, Lorini, and Maffre 2015)). A val-
uation w ⊆ ATM is introspective if and only if, for every
α ∈ ATM and i ∈ Agt:

σ Si Si α ∈ w for every σ ∈ OBS∗ (1)

σ JSα ∈ w for every σ ∈ OBS+ (2)

if α ∈ w and α⇒β then β ∈ w (3)

We say that an atom α is valid in INTR if and only if α
belongs to every valuation in INTR. By Proposition 1, α is
valid in INTR if and only if α is of the form either σ Si Si α
with σ ∈ OBS∗, or σ JSα with σ ∈ OBS+.

Proposition 2 ((Herzig, Lorini, and Maffre 2015)). The re-
lation ❀Agt and every relation ❀i are equivalence relations
on INTR.

Let us illustrate this by means of two muddy children.

Example 2 (two muddy children). Consider the valuation

w = {S1m2, S2m1} ∪

{α : α is valid in INTR} ∪

{σSimj : σ ∈ OBS+, i, j ∈ {1, 2}}.

The last two lines ensure that w is introspective: the second
adds all introspective validities and the third adds JS Simj

and all its introspective consequences. Then the four relevant
introspective valuations are depicted in Figure 1, together
with relations ❀1 and ❀2.

w ∪ {m1} oo
2 //

OO

1

��

1,2

��
w ∪ {m1,m2}OO

1

��

1,2

��

w oo
2

//

1,2

MM w ∪ {m2}

1,2

RR

Figure 1: Two muddy children.

Truth conditions and validity

Given an introspective valuation, our update operations add
or remove atoms from it. This requires some care: we want
the resulting valuation to be introspective, too. For example,
removing Si Si p should be impossible. Another example is
when the introspective valuation w does not contain Si p:
then w ∪ {JS p} would violate (C4). In order to avoid this,
when adding an atom to w we also add all its positive con-
sequences. Symmetrically, when removing an atom we also
have to remove its negative consequences. To that end, let us
define the following update operations on valuations:

w+α = w ∪ {β ∈ ATM : α⇒β}

w−α = w \ {β ∈ ATM : β⇒α}

When w is introspective then both w+α and w−α are so,
too (the latter with the proviso that α is not valid in INTR).
We extend the definition to updates of sets of valuationsU ⊆
2ATM in the obvious way: U+α = {w+α : w ∈ U} and
U−α = {w−α : w ∈ U}.



A pointed model is a couple 〈U,w〉whereU ⊆ 2ATM and
w ⊆ ATM . We call U the information state and w the local
state. Note that we do not require w ∈ U . In these models
formulas are interpreted as follows:

U,w |= α iff α ∈ w

U,w |= ¬ϕ iff not (U,w |= ϕ)

U,w |= ϕ ∧ ϕ′ iff U,w |= ϕ and U,w |= ϕ′

U,w |= [π !]ϕ iff U ′, w′ |= ϕ for every 〈U ′, w′〉
such that 〈U,w〉Pπ〈U

′, w′〉

U,w |= Kiϕ iff U,w′ |= ϕ for every w′ ∈ U
such that w ❀i w

′

U,w |= CKϕ iff U,w′ |= ϕ for every w′ ∈ U
such that w ❀Agt w

′

where Pπ is the relation of public update on pointed models
defined as follows:

〈U,w〉P+α〈U
′, w′〉 iff U ′ = U+α and w′ = w+α

〈U,w〉P−α〈U
′, w′〉 iff U ′ = U−α and w′ = w−α

and α is not valid in INTR

〈U,w〉Pπ;π′〈U ′, w′〉 iff 〈U,w〉(Pπ ◦ Pπ′)〈U ′, w′〉

〈U,w〉Pπ⊔π′〈U ′, w′〉 iff 〈U,w〉(Pπ ∪ Pπ′)〈U ′, w′〉

〈U,w〉Pχ?〈U
′, w′〉 iff U,w |= χ, w′=w, and

U ′ = {u ∈ U : U, u |= χ}

For example, both ¬Si p ∧ ¬Si q and Ki(p ↔ q) are true
in the pointed model 〈{∅, {p, q}}, ∅〉.

Example 3 (two muddy children, continued). Let U be the
set of all valuations in Figure 1. We have:

U, u |= Obs ∧ Ign , for every u ∈ U

U,w∪{m1,m2} |= 〈m1∨m2?!〉Ign

U,w∪{m1,m2} |= 〈m1∨m2?!〉〈Ign?!〉(K1m1 ∧ K2m2)

Let C be a class of pointed models. A formula ϕ is sat-
isfiable in C if and only if there is a 〈U,w〉 ∈ C such that
U,w |= ϕ; it is valid in C if and only if ¬ϕ is unsatisfiable.
For example, the equivalence [χ? !]⊥ ↔ ¬χ is valid in the
class of all pointed models.

A pointed epistemic model is a pointed model 〈U,w〉 such
that U ⊆ INTR and w ∈ U . For example, Si JS p is valid in
epistemic models. The following conditions guarantee that
when we interpret a formula in a pointed epistemic model
we stay within the class of pointed epistemic models.

Proposition 3. Let 〈U,w〉 be a pointed epistemic model.
Then the following hold:

1. If w ❀i w
′ and w′ ∈ U then 〈U,w′〉 is a pointed epis-

temic model.

2. If w ❀Agt w′ and w′ ∈ U then 〈U,w′〉 is a pointed
epistemic model.

3. If 〈U,w〉Pπ〈U
′, w′〉 then 〈U ′, w′〉 is a pointed epistemic

model.

Observe that the last item does not require that w′ ∈ U ′:
this is guaranteed by the fact that 〈U,w〉 is a pointed epis-
temic model and the definition of Pπ .

It is important to observe that the schemas

Si α ∧ α→ Kiα

Si α ∧ ¬α→ Ki¬α

are valid in the class of all pointed models (even non-
epistemic ones). In contrast, the converse of the implication
is invalid. For example, for U = {w ∈ 2ATM : p ∈ w} we
have 〈U, {p}〉 |= Kip while 〈U, {p}〉 6|= Si p.

Expressing public announcement of formulas

Consider the operator [χ !] of public announcement of a for-
mula χ as studied in dynamic epistemic logics (van Dit-
marsch, van der Hoek, and Kooi 2007). In the present set-
ting, its truth condition has to be formulated as follows:

U,w |= [χ !]ϕ iff U,w |= χ implies

{u ∈ U : U, u |= χ}, w |= ϕ.

The set {u ∈ U : U, u |= χ} is called the relativization of U
to the extension of χ in U .

Let us compare this to the public performance of tests:
the relativization of U to the extension of χ in U is noth-
ing but the result of the public update of U by χ?. Indeed,
〈U,w〉Pχ?〈U

′, w′〉 is the case if and only if U,w |= χ and
U ′ is the restriction of U to the extension of χ in U . So [χ !]ϕ
and [χ? !]ϕ have identical truth conditions.

Adding mental programs

It will be useful for the sequel to extend our language of
formulas by adding a further modal operator Kπ , where π
is viewed as a mental program. Such operators were in-
troduced e.g. in (van Benthem, van Eijck, and Kooi 2006;
Charrier and Schwarzentruber 2015; Herzig, Lorini, and
Maffre 2015). While [π !]ϕ is read “ϕ will be true after the
public update of the current local and information states by
π”, we read Kπϕ as “ϕwill be true after the update of the cur-
rent local state by π (keeping the current information state
constant)”. So at a given local state w and information state
U , the public program operator [π !] updates both U and w;
in contrast, the mental program operator Kπ keeps U con-
stant and only updates w. So the latter can be viewed as
traversing the space of current epistemic possibilities.

Let us give an example: suppose there are only three
propositional variables p, q, r and suppose agent i sees p but
neither q nor r. This can then be modeled by the program
(+q ⊔ −q); (+r ⊔ −r) that nondeterministically changes q
and r while keeping p unchanged. Indeed, the accessibility
relation that we are going to define for (+q⊔−q); (+r⊔−r)
coincides with ❀i in the language whose only variables
are p, q, r. Visibility information therefore allows to reduce
epistemic operators to mentally executed programs.

Interpreting mental programs

In the formula Kπϕ, both the program π and the formula
ϕ may contain some Kπ′ . So the precise definition of the
language is recursive.

The semantics of the additional operator Kπ is as follows:

U,w |= Kπϕ iff U,w′ |= ϕ for every w′ ∈ U
such that 〈U,w〉Mπ〈U,w

′〉



where Mπ is the mental relation on pointed models that is
defined as follows:

〈U,w〉M+α〈U
′, w′〉 iff U ′=U and w′ =w+α

〈U,w〉M−α〈U
′, w′〉 iff U ′=U and w′ =w−α

and α is not valid in INTR

〈U,w〉Mπ;π′〈U ′, w′〉 iff 〈U,w〉(Mπ◦Mπ′)〈U ′, w′〉

〈U,w〉Mπ⊔π′〈U ′, w′〉 iff 〈U,w〉(Mπ∪Mπ′)〈U ′, w′〉

〈U,w〉Mχ?〈U
′, w′〉 iff U ′=U,w′=w and U,w |= χ

Observe that mental programs do not change the informa-
tion state: when 〈U,w〉Mπ〈U

′, w′〉 then U ′ = U . Observe
also that mental programs can exit the public information
state U during their execution. However, our truth condition
for Kπ requires w′ ∈ U : we only take into account execu-
tions of π terminating inside the public information state U .

Let us illustrate the difference between the relations of
public and mental program execution by an example.

Example 4. Let U = {w ∈ 2ATM : p /∈ w}. Then M+p

relates the pointed epistemic model 〈U, ∅〉 to the model
〈U, {p}〉, but {p} /∈ U . Therefore 〈U, ∅〉 |= K+p⊥.

In contrast, P+p relates 〈U, ∅〉 to 〈U+p, {p}〉, where

U+p = {w ∈ 2ATM : p ∈ w}. Therefore 〈U, ∅〉 6|= [+p !]⊥.

From epistemic operators to mental programs

In this section we show how to encode epistemic operators
by means of mental programs. Consider the following ex-
ample:

{∅, {p, q}}, ∅ |= Ki(p↔ q)

{∅, {p, q}}, ∅ |= K(+p⊔−p);(+q⊔−q)(p↔ q)

This illustrates that Ki and K(+p⊔−p);(+q⊔−q) are evaluated
in the same way as long as we consider formulas built with
p and q. Let us give a more general example.

Example 5. Suppose agent i’s mental program is

π = (Si p? ⊔ (¬Si p?; (+p ⊔ −p)));
(Si q? ⊔ (¬Si q?; (+q ⊔ −q)))

The program π computes the worlds that are possible for
agent i by varying the value of p if i does not see p, and
similarly for q. When U contains the valuation {p, q} then
the latter is a possible valuation for agent i at the current
valuation ∅. Indeed, (∅, {p}, {p, q}) is a possible trace of π.

Now suppose that the formula p↔ q is announced. Then
{p, q} should still be a possible valuation for agent i at ∅
because U, {p, q} |= p ↔ q for every U . That valuation is
indeed still accessible via the above trace because we only
make sure that we are in the public information state at the
endpoint of the trace.

Let us generalize the above examples. The following pro-
grams will be helpful:

varyIfNotSeen(i, α) = Si α? ⊔ (¬Si α?; (+α ⊔ −α))

varyIfNotSeen(i, A) = varyIfNotSeen(i, α1); · · · ;
varyIfNotSeen(i, αn)

where A = {α1, . . . , αn} is a finite set of atoms that we
suppose ordered in some arbitrary way. Similarly for the set

of all agents:

varyIfNotSeen(Agt , α) = JSα? ⊔ (¬JSα?; (+α ⊔ −α))

varyIfNotSeen(Agt , A) = varyIfNotSeen(Agt , α1); · · · ;
varyIfNotSeen(Agt , αn)

Proposition 4. Let ϕ be without Ki and CK. Then the equiv-
alences

Kiϕ↔ KvaryIfNotSeen(i,ATM (ϕ))ϕ

CKϕ↔ KvaryIfNotSeen(Agt,ATM (ϕ))ϕ

are valid in the class of all pointed models.

It follows from the above proposition that all modal oper-
ators Ki and CK can be eliminated from formulas.2

Complexity of model checking

Our goal is to design a model checking problem that takes a
finite description of an introspective valuation w and a for-
mula ϕ as an input and says whether INTR, w |= ϕ. A first
problem is that introspective valuations are always infinite.
We are going to represent w in a finite way in order to prop-
erly define a model checking decision problem.

From infinite to finite models

We restrict the set of atomic propositions to those relevant
for the model checking of ϕ, noted RATM (ϕ). We ob-
tain RATM (ϕ) by applying Proposition 4, starting with the
innermost epistemic operators. The formal definition is by
structural induction on ϕ as follows:

RATM (α) = {α}

RATM (Kiϕ) = RATM (ϕ) ∪ {Si α : α ∈ RATM (ϕ)}

RATM (CKϕ) = RATM (ϕ) ∪ {JSα : α ∈ RATM (ϕ)}

and homomorphic otherwise. So RATM (ϕ) includes
ATM (ϕ). For instance:

ATM (q ∧ CK Kip) = {q, p}

RATM (q ∧ CK Kip) = {q, p, JS p, Si p, JS Si p}

Note that while RATM (ϕ) is finite, its cardinality can be
exponential in the length of ϕ: for example, the cardinality
of the set of atoms RATM (Ki1 . . . Kinp) is in 2n.

Let us define the restriction of valuations and sets thereof
to a set of atoms A:

w|A = w ∩A

U |A = {w|A, w ∈ U}.

Lemma 1. Let ϕ be a formula without epistemic operators
(Ki or CK). Then RATM (ϕ) = ATM (ϕ) and

INTR, w |= ϕ iff INTR|RATM (ϕ), w|RATM (ϕ) |= ϕ.

Proposition 5. For every formula ϕ and introspective valu-
ation w ∈ INTR,

INTR, w |= ϕ iff INTR|RATM (ϕ), w|RATM (ϕ) |= ϕ.

Proof. Let ϕ′ be obtained from ϕ by eliminating the epis-
temic operators according to the equivalences of Proposi-
tion 4. We have:

2This uses the rule of replacement of equivalences that pre-
serves validity, cf. Proposition 6.



INTR, w |= ϕ;
iff INTR, w |= ϕ′ by Proposition 4;
iff INTR|RATM (ϕ), w|RATM (ϕ) |= ϕ′ by Lemma 1;

iff INTR|RATM (ϕ), w|RATM (ϕ) |= ϕ by Proposition 4.

The model checking problem

Thanks to Proposition 5, we can restrict w and ϕ to
RATM (ϕ). The model checking problem can then be de-
fined as follows:

• Input: a couple 〈w,ϕ〉 where ϕ is a formula and w is a
finite valuation containing all introspectively valid atoms
of RATM (ϕ);

• Output: yes if INTR, w |= ϕ, no otherwise.

Remark 1. Note that we do not consider the more gen-
eral problem of checking a triple 〈U,w, ϕ〉 where U is
a set of valuations. The reason is that the explicit repre-
sentation of U may require exponential space in the size
of w (that may be double-exponential in the length of ϕ).
One might consider representing U by a boolean formula,
as done in (Lomuscio, van der Meyden, and Ryan 2000;
Su, Sattar, and Luo 2007; van Benthem et al. 2015); how-
ever, one cannot represent the set of all introspective valua-
tions INTR in that way.

Complexity results

The model checking problem was proven to be PSPACE-
hard for a logic with less operators (Herzig, Lorini, and Maf-
fre 2015). We now show that the problem is in PSPACE.
For that, we adapt the alternating algorithm in (Charrier
and Schwarzentruber 2015), originally designed for a variant
of a dynamic logic with propositional assignments, public
announcements and arbitrary public announcements. Here
we consider another, novel variant without arbitrary public
announcements but with public assignments. We call this
logic DL-PA-PMP (Dynamic Logic of Propositional As-
signments with Public and Mental Programs). The syntax
of DL-PA-PMP is very similar to the one considered in this
paper:

π ::= α←⊥ | α←⊤ | (π;π) | (π ⊔ π) | ϕ?

ϕ ::= α | ¬ϕ | (ϕ ∧ ϕ) | [π !]ϕ | Kπϕ

The main difference concerns assignments. The seman-
tics of α←⊤ and α←⊥ do not take the introspective conse-
quence relation into account unlike +α and −α: we define
w[α←⊤] = w ∪ {α} and w[α←⊥] = w \ {α}.

Compared to (Charrier and Schwarzentruber 2015), there
are two differences. First, general programs [π !]ϕ are con-
sidered, instead of only public announcements. Second, we
do not have arbitrary public announcements.

We define the following translation of any formula ϕ of
our logic into DL-PA-PMP:

1. eliminate all epistemic operators from ϕ, call the resulting
formula ϕ′;

2. translate ϕ′ into the DL-PA-PMP formula trATM (ϕ′)(ϕ
′)

according to the following definition:

trA(α) = α

trA(¬ϕ
′) = ¬trA(ϕ

′)

trA(ϕ1 ∧ ϕ2) = trA(ϕ1) ∧ trA(ϕ2)

trA(Kπϕ) = KtrA(π)trA(ϕ)

trA([π !]ϕ
′) = [trA(π) !]trA(ϕ

′)

trA(+α) = β1←⊤; ...;βn←⊤

trA(−α) =

{

⊥? if αINTR valid

β′
1←⊥; ...;β

′
m←⊥ otherwise

trA(π1;π2) = trA(π1); trA(π2)

trA(π1 ⊔ π2) = trA(π1) ⊔ trA(π2)

trA(ϕ?) = trA(ϕ)?

where

{β1, ..., βn} = {β ∈ ATM , α⇒β} ∩A

{β′
1, ..., β

′
m} = {β ∈ ATM , β⇒α} ∩A

The size of trATM (ϕ′)(ϕ
′) may be exponential in the size

of ϕ, but the size of 〈w|ATM (ϕ′), trATM (ϕ′)(ϕ
′)〉 is poly-

nomial in the size of 〈w|ATM (ϕ), ϕ〉. Therefore we have a
polynomial reduction from our model checking to the model
checking of DL-PA-PMP.

procedure Mc(w,ϕ)
mcyes([], w, ϕ)
accept

Figure 2: The main model checking procedure Mc for DL-

PA-PMP.

procedure mcyes(L,w, ϕ)
match ϕ with

case ϕ = α: if α 6∈ w then reject
case ϕ = ¬ψ: mcno(L,w, ψ)
case ϕ = (ψ1 ∧ ψ2):

(∀)(∀)(∀) choose i ∈ {1, 2}
mcyes(L,w, ψi)

case ϕ = Kπψ:
(∀)(∀)(∀) choose w′ ∈Wall

(∃)(∃)(∃) ispathno(L,w,w
′, π)

or survivesno(L,w
′)

or mcyes(L,w
′, ψ)

case ϕ = [α←⊤!]ψ:
mcyes(L :: (α←⊤), w[α←⊤], ψ)

case ϕ = [α←⊥!]ψ:
mcyes(L :: (α←⊥), w[α←⊥], ψ)

case ϕ = [π1;π2!]ψ:
mcyes(L,w, [π1!][π2!]ψ)

case ϕ = [π1 ⊔ π2!]ψ:
mcyes(L,w, [π1!]ψ ∧ [π2!]ψ)

case ϕ = [χ?!]ψ
(∀)(∀)(∀) mcyes(L,w, χ)

and mcyes(L :: (χ!), w, ψ)

Figure 3: The model checking sub-procedure mcyes .

Figures 2, 3, 4 and 5 describe the model checking



procedure survivesyes(L,w)
match L with

case L = []: do nothing
case L = L′ :: ϕ!:

(∀)(∀)(∀) mcyes(L
′, w, ϕ)

and survivesyes(L
′, w)

case L = L′ :: (α←⊤):
(∀)(∀)(∀) α ∈ w

and
(∃)(∃)(∃) survivesyes(L

′, w[α←⊥])
or survivesyes(L

′, w[α←⊤])
case L = L′ :: (α←⊥):

(∀)(∀)(∀) α 6∈ w
and
(∃)(∃)(∃) survivesyes(L

′, w[α←⊥])
or survivesyes(L

′, w[α←⊤])

Figure 4: The procedure survivesyes , checking whether a
valuation satisfies all announcements made.

procedure ispathyes(L,w,w
′, π)

match π with
case π = α←⊥:

if w′ 6= w \ {α} then reject
case π = α←⊤:

if w′ 6= w ∪ {α} then reject
case π = π1;π2:

(∃)(∃)(∃) choose a valuation v ∈Wall

(∀)(∀)(∀) ispathyes(L,w, v, π1)
and ispathyes(L, v, w

′, π2)
case π = π1 ∪ π2:

(∃)(∃)(∃) choose k ∈ {1, 2}
ispathyes(L,w,w

′, πk)
case π = χ?:

(∀)(∀)(∀) w = w′

and mcyes(L,w, χ)

Figure 5: The path searching procedure ispathyes for mental
programs.

procedures for DL-PA-PMP, adapted from (Charrier and
Schwarzentruber 2015). In these, the set of all valuations
INTR|RATM (ϕ) is fixed in the beginning and is calledWall.
The procedures are alternating, meaning existential and uni-
versal choices are performed. For instance, the instruction
‘(∀)(∀)(∀) choose w′ ∈ U ’ succeeds if any choice of w′ leads to
the accepting state. We also quantify over choices of sub-
procedures: for instance, ‘(∃)(∃)(∃) algo1 or algo2’ means that at
least one of the calls algo1 or algo2 must succeed.

Figure 2 shows the main model checking procedure for
DL-PA-PMP, that calls a sub-procedure mcyes and accepts
the input if mcyes does not reject it. We implicitly define the
dual of mcyes , called mcno , by replacing and by or , (∀)(∀)(∀) by
(∃)(∃)(∃), mcyes by mcno etc. in the pseudo-code of mcyes . We
define survivesno and ispathno similarly from the code of
survivesyes and ispathyes respectively.

In Figure 3, the surviving set of valuations is implic-
itly represented as a list L of announcements and as-

signments. For this reason, in Figure 2, the set Wall

is represented by the empty list []. In order to check
whether a valuation w′ is in U in the Kπ case, (that is,
the valuation w′ survives the announcements and assign-
ments in L), we call survivesno(L,w). The sub-procedure
ispathyes(L,w, u, π), used in the model checking of Kπϕ,
checks whether there is a π-path from w with u w.r.t. L.
Therefore, in the Kπ case, we check that if there is a π-path
from w to w′ and if w′ is in U , then mcyes(L,w

′, ϕ) must
hold.

Note that when choosing between two sub-procedures in
‘(∃)(∃)(∃)algo1 or algo2’ and ‘(∀)(∀)(∀)algo1 and algo2’, either algo1
or algo2 is executed, but not both. Therefore, we can prove
that this model checking procedure runs in polynomial time
in the size of (w,ϕ). The model checking of DL-PA-PMP

is then in AP. Since AP = PSPACE (Chandra and Stock-
meyer 1976), we have shown that our model checking is in
PSPACE. Therefore it is PSPACE-complete.

Theorem 1. The model checking problem is PSPACE-
complete.

Proof. As to hardness: the model checking problem was
proven to be PSPACE-hard for a logic with less operators
(Herzig, Lorini, and Maffre 2015).

As to membership: given an instance 〈w,ϕ〉, we apply the
following algorithm:

• We eliminate all epistemic operators from ϕ and we ob-
tain ϕ′;

• We compute trATM (ϕ′)(ϕ
′);

• We call Mc(w, trATM (ϕ′)(ϕ
′)).

This requires a polynomial amount of space in the size of
〈w,ϕ〉. Therefore, the model checking is in PSPACE.

More properties

We now discuss a list of valid equivalences.

Equivalences for publicly announced programs

Consider the operator of public program execution [π !]. The
following equivalences reduce all programs to either atomic
programs or public tests:

[π;π′ !]ϕ↔ [π !][π′ !]ϕ (Red [; !])

[π ⊔ π′ !]ϕ↔ [π !]ϕ ∧ [π′ !]ϕ (Red [⊔ !])

Applying these equivalences exhaustively we obtain pro-
grams without sequential and nondeterministic composition.
So all programs are either public tests or public assignments.

As to public tests, they can be reduced against all other
operators (supposing that the Ki have been eliminated by
Proposition 4):

[χ? !]β ↔ ¬χ ∨ β, for β atomic (Red [? !],β)

[χ? !]¬ϕ↔ ¬χ ∨ ¬[χ? !]ϕ (Red [? !],¬)

[χ? !](ϕ∧ϕ′)↔ [χ? !]ϕ ∧ [χ? !]ϕ′ (Red [? !],∧)

[χ? !]Kπ′ϕ↔ ¬χ ∨ Kπ′ [χ? !]ϕ (Red [? !],K )

Observe that these axioms are exactly the reduction axioms
of public announcement logic PAL.



As to positive public assignments, they are deterministic
and distribute over the boolean operators:

[+α !]β ↔

{

⊤ if α⇒β

β otherwise
(Red [+ !],ϕ)

[+α !]¬ϕ↔ ¬[+α !]ϕ (Red [+ !],¬)

[+α !](ϕ∧ϕ′)↔ [+α !]ϕ ∧ [+α !]ϕ′ (Red [+ !],∧)

Similarly, for negative public assignments we have:

[−α !]β ↔







⊤ if α is valid in INTR

⊥ if β⇒α

β otherwise

(Red [− !],β)

[−α !]¬ϕ↔

{

⊤ if α is valid in INTR

¬[−α !]ϕ otherwise (Red [− !],¬)

[−α !](ϕ∧ϕ′)↔ [−α !]ϕ ∧ [−α !]ϕ′ (Red [− !],∧)

However, we do not have a reduction axiom for public as-
signments followed by mental programs. In particular, the
equivalence [+α !]Kπ′ϕ↔ Kπ′ [+α !]ϕ is invalid. For exam-
ple, [+p !]K−p⊥ is valid while K−p[+p !]⊥ is not. Similarly,
the equivalence [−α !]Kπ′ϕ ↔ Kπ′ [−α !]ϕ is invalid (unless
α is valid in INTR).

There also seem to be no reduction axioms for [π !][π′ !]ϕ.
Indeed, we would have to apply (Red [; !]) from the right to
the left while we have applied it from the left to the right
when reducing programs. An axiomatics without the rule
of replacement of equivalents—which is the standard pre-
sentation of the axiomatics of PAL and which requires a
reduction axiom for [π !][π′ !]ϕ, cf. (Balbiani et al. 2012;
Wang and Cao 2013; Wang and Aucher 2013)—seems
therefore impossible.

Reduction axioms for mental programs

Consider the mental program operator Kπ . Reduction axioms
for ⊔ and ? are familiar:

Kπ⊔π′ϕ↔ Kπϕ ∧ Kπ′ϕ (RedK⊔
)

Kχ?ϕ↔ ¬χ ∨ ϕ (RedK?
)

So the mental test Kχ? behaves just as the PDL test. In con-
trast and as we have seen above, the public test [χ? !] behaves
just as the public announcement operator.

However, we do not have reduction axioms for sequen-
tial composition; in particular, Kπ;π′ϕ ↔ KπKπ′ϕ is invalid.
This is due to our requirement that mental programs have to
terminate in the public information state.

As to positive atomic programs, they distribute over the
boolean operators:

K+α¬ϕ↔ K+α⊥ ∨ ¬K+αϕ (RedK+,¬)

K+α(ϕ ∧ ϕ
′)↔ K+αϕ ∧ K+αϕ

′ (RedK+,∧)

Similarly, for negative atomic programs:

K−α¬ϕ↔

{

⊤ if α is valid in INTR

K−α⊥ ∨ ¬K−αϕ otherwise (RedK−,¬)

K−α(ϕ ∧ ϕ
′)↔ K−αϕ ∧ K−αϕ

′ (RedK−,∧)

However, we do not have reduction axioms for mental as-
signments followed by an atom, i.e., for K+αβ and K−αβ.

Again, this is due to our requirement that mental programs
have to terminate in the public information state.

Replacement of equivalents

The above equivalences can be applied anywhere in a for-
mula because the inference rule of replacement of equiva-
lents preserves validity. This is due to the fact that the fol-
lowing rules of equivalence for the modal operators [π !], Kπ ,
Ki, CK all preserve validity:

ϕ↔ ψ
[π !]ϕ↔ [π !]ψ

ϕ↔ ψ
Kπϕ↔ Kπψ

ϕ↔ ψ
Kiϕ↔ Kiψ

ϕ↔ ψ
CKϕ↔ CKψ

Proposition 6. Let ϕ′ be obtained from ϕ by replacing some
occurrence of χ in ϕ by χ′. Let U be a set of valuations. If
U,w |= χ ↔ χ′ for every w ∈ U then U,w |= ϕ ↔ ϕ′ for
every w ∈ U .

Let us terminate this section by pointing out that the
equivalences that we have seen do not make up a complete
set of reduction axioms. Indeed, while we have equivalences
for almost all combinations of operators, we lack reduction
axioms for the following three cases.

• Public assignments followed by mental programs:
[+α !]Kπ′ϕ and [−α !]Kπ′ϕ;

• Sequences of mental programs: Kπ;π′ϕ;

• Mental assignments followed by an atom: K+αβ and
K−αβ.

We have seen that this is related to our truth condition for
mental program operator Kπ .

We leave a complete axiomatization of the validities of
our logic to future work.

Muddy children, proved

In this section we formally prove the statement we made in
Example 3 about the muddy children puzzle for the case of
two children. Remember that each child sees the other but
cannot see herself. This is captured by the following con-
junction of visibility atoms:

Obs = ¬S1m1 ∧ ¬S2m2 ∧ S1m2 ∧ S2m1 ∧

JS S1m1 ∧ JS S1m2 ∧ JS S2m1 ∧ JS S2m2.

Remember also that initially each child does not know
whether she is muddy or not:

Ign = ¬K1m1 ∧ ¬K1¬m1 ∧ ¬K2m2 ∧ ¬K2¬m2.

We use the following validity of Public Announcement
Logic PAL (which carries over to our logic because all prin-
ciples of PAL are valid).

Proposition 7. Let ϕ and ϕ′ be boolean formulas. Then

(Kiϕ ∧ ¬Kiϕ
′ ∧ ¬Ki¬ϕ

′)→ [ϕ∨ϕ′? !](¬Kiϕ
′ ∧ ¬Ki¬ϕ

′)

is valid in pointed epistemic models.

Intuitively, the above proposition says that if agent i
knows a fact ϕ but does not know the fact ϕ′, then pub-
licly announcing that ϕ or ϕ′ is true does not increase her
knowledge about ϕ′.

The formulas

(K1m2 ∧ ¬K1m1 ∧ ¬K1¬m1)→



[m2∨m1? !](¬K1m1 ∧ ¬K1¬m1)

and

(K2m1 ∧ ¬K2m2 ∧ ¬K2¬m2)→

[m1∨m2? !](¬K2m2 ∧ ¬K2¬m2)

are instances of the above PAL validity. Observe that
Muddy ∧ Obs implies the first conjunct of each of the two
antecedents while Ign implies its last two conjuncts. There-
fore

(Muddy ∧Obs ∧ Ign)→ [m1∨m2? !]Ign.

Moreover,

Muddy → 〈m1∨m2?!〉⊤.

Putting the last two implications together we obtain:

(Muddy ∧Obs ∧ Ign)→ 〈m1∨m2?!〉Ign.

Similarly, we can establish that

(Muddy ∧Obs ∧ Ign)→

〈m1∨m2?!〉〈Ign?!〉(K1m1 ∧ K2m2)

is valid.

Conclusion

We have introduced a dynamic epistemic logic where knowl-
edge of agents is deduced from what they see and from
what is publicly announced to them. We thereby contribute
two main improvements to previous observability-based ap-
proaches: we can reason about higher-order knowledge be-
cause visibilities are not common knowledge and we can
reason about a simple form communication: public an-
nouncements. It is the latter feature which allows us to for-
malize the muddy children puzzle in a natural way.

Beyond public announcements we can reason about pub-
licly executed programs: public announcements are special
cases of publicly executed tests. This allows to formalize
variants of the muddy children puzzle where the children
e.g. clean their forehead (van Ditmarsch, van der Hoek, and
Kooi 2005).

One may wonder whether one can identify a validity that
is not a validity of the multimodal logic S5. Here is one:

K1(p∨q)→ K1p ∨ K1q ∨ K2(p∨q).

This can be explained as follows: for K1(p∨q) to be true, 1
must have learned p∨q from either observation or communi-
cation. In the first case, either she sees p, or she sees q, and
therefore either K1p or K1q is true. In the second case, p∨q
must have been announced and thus K2(p∨q) is true.

While we proved that the model checking problem is
PSPACE-complete, it remains to prove the complexity of the
satisfiability problem. Other future works would be to gener-
alize the common knowledge operator to an arbitrary subset
of agents or add the Kleene star to the language of programs.
It also remains to find an axiomatization.

Beyond public announcement logic, we would like to in-
vestigate to which extent one can capture so-called action
models of dynamic epistemic logics (Baltag and Moss 2004;
van Ditmarsch, van der Hoek, and Kooi 2007). We have
shown in (Herzig, Lorini, and Maffre 2015) that we can

also model at least some forms of private announcements
thanks to our visibility atoms. For example, that ϕ is true
after the private announcement of p to i is captured by the
formula p → [+Si p !]ϕ. We have furthermore modeled pri-
vate announcements of literals, of conjunctions of literals
and of knowledge of literals: for example, ϕ is true after
the private announcement of Kip to j if and only if Kip →
[+Sj Si p; +Sj p !]ϕ is true.3 We have shown in (Herzig and
Maffre 2015) that this allows to formalize the gossip prob-
lem: there are n friends, and each i knows a fact si not
known to anybody else. They can call each other and dur-
ing a call they exchange all their knowledge. The problem is
to find a minimal number of calls allowing to reach a state
where all secrets are shared knowledge: each agent knows
every secret. We have shown that a generalized version of
the problem where the goal is to achieve shared knowledge
up to a fixed depth can also be formalized in our logic. Other
variants can be captured as well, such as when there are
agents that cannot phone to each other, when the goal is that
some agents remain ignorant about some secrets, and when
secrets (that might be better thought of as passwords in that
case) can be changed by their owner. One might imagine to
find combinations of gossip problems and muddy children
puzzles. . .
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