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Study of the macro-scale transition emerging
from non-Newtonian fluid flow through porous
media
F. Zami-Pierre* (Total), Y. Davit (CNRS), R. de Loubens (Total) & M.
Quintard (CNRS)

SUMMARY
Over the last decades, the intensive use of polymer mixtures in Enhanced Oil Recovery (EOR) has led to a
great effort in understanding the flow of such fluids through complex porous media. While the macro-scale
behavior of these fluids has been actively investigated using core-scale experiments, the link with the
micro-scale fundamental physics of the flow remains largely unexplored. A transition from a Newtonian to
a non-Newtonian macro-scale regime has been observed. Recently, a simple model has been proposed to
characterize the critical Darcy velocity associated to this transition phenomenon. Here, we use
computational fluid dynamics, conceptual porous media and experimental datasets provided by the
literature to test the robustness this model. We conclude that the model is valid. Furthermore, it allows, via
an explicit formulation, a better understanding of the critical Darcy velocity associated to the transition.



 Introduction 

The flow of non-Newtonian fluids through porous media is ubiquitous in many applications, such as 

blood flow [1], polymer flows in composites and paper manufacturing [2] or enhanced oil recovery 

[3-5]. Understanding the underlying physics and proposing models for such complex flows is both 

intriguing and fundamental. Polymer solutions – typically Xanthan or Dextran in water – are classical 

examples of non-Newtonian fluids. Flow of such polymer solutions through porous media has been 

the subject of intense experimental and modeling works. Difficulties for all of these studies lie in the 

multiscale nature of porous media and highly nonlinear nature of the fluids rheology. 

For Newtonian fluids, Darcy's law is a remarkable example of a simple and robust homogenized 

expression where the system is described using the filtration velocity 〈𝑈〉 and the macro-scale 

pressure gradient ∇𝑝, 

〈𝑼〉 = −
𝑲 ⋅ ∇𝑃

𝜇
. 

(1) 

In Eq. 1, 𝑲 is the permeability tensor, 𝜇 is the viscosity of the fluid and ∇𝑃 = ∇𝑝 − 𝜌𝒈 the 

hydrodynamic pressure gradient. Due to the complex pore structure, the pore-scale flow field exhibits 

large perturbations from spatially average fields. These perturbations are further coupled with the 

strong nonlinear effects induced by the presence of the polymers, e.g., shear thickening and thinning, 

yield stress and cut-off effects, time-dependent mechanisms, mechanical and chemical degradation of 

polymer chains, confinement and sorption effects. The variety of phenomena occurring at the pore-

scale, and even at smaller scales, is actually very large. Under these circumstances, devising accurate 

models that apply to the Darcy or reservoir scales is an important challenge. 

Although the physics of non-Newtonian fluids represents a wide domain, many polymer mixtures 

exhibit similar rheological features. Under low shear rate, the fluid can often be considered 

Newtonian – i.e., with a uniformly constant viscosity 𝜇0 – while under high shear rate, a power-law

behavior is observed, 𝜇 ∝ �̇�𝑛−1 with �̇� the local shear rate and 𝑛 an intrinsic exponent of the fluid.

The flow of such fluids through a porous medium yields two different macro-scale behaviors 

(Newtonian and non-Newtonian). During the past decades, thorough studies have been performed to 

understand and predict the transition between the two resulting macro-scale laws. The complexity of 

this problem lies in both the nonlinearity induced by the fluid rheology and the complex pore structure 

of the medium itself. Recently, a simple prediction of the critical condition at which the macro-scale 

behavior transitions from Newtonian to non-Newtonian has been proposed by Zami-Pierre et al [6]. 

This model predicts a critical average velocity characterizing the regime at which the apparent 

homogenized behavior starts to become nonlinear. 

The goal of this paper is to provide more insight into the analysis previously proposed in [6], using 

simple analytical solutions over bundles of tubes and experimental datasets provided by the literature. 

This paper is organized as follows. After a review of previous work, we present the rheological model 

used. Then, we compare the critical velocity model to analytical solutions obtained for tube bundles. 

Later, we compare the model to experimental datasets. Finally, we investigate the relative invariance 

of the flow patterns when increasing velocity, for the porous media used in the previous study by 

Zami-Pierre et al [6]. 

Previous work 

As described in the introduction, the flow of non-Newtonian fluids through porous media has been the 

subject of intensive work. In this paper, we focus on relatively simple non-Newtonian fluids. We 

consider a constitutive law whereby the viscosity is constant up to a critical shear rate �̇�𝑐, and then 

follows a classical power law. This behavior has been observed for many polymer mixtures using 

standard measurements techniques. At the macro-scale, Newtonian – constant permeability – and non-



 Newtonian – variable permeability – regimes are observed. As demonstrated theoretically [7-9], 

experimentally [10,11] and computationally [12,13], the non-Newtonian permeability for power-law 

fluids evolves as ∝ ‖〈𝑈〉𝐹𝐿‖1−𝑛, 〈𝑈〉𝐹𝐿 being the intrinsic average velocity in the porous medium.

A common method used in core-flood experiments to evaluate the constraints experienced by the fluid 

inside the porous medium consists in calculating an apparent shear rate as �̇�𝑎𝑝𝑝 = 4𝛼〈𝑈〉 /𝑅𝑎𝑝𝑝, [14-

16]. This formulation is directly deduced from a single tube analogy, where the length 𝑅𝑎𝑝𝑝 is

proportional to the square root of the Newtonian permeability. At the transition, we should 

have �̇�𝑎𝑝𝑝 = �̇�𝑐 for a real porous medium. However, a semi-empirical parameter 𝛼 is necessary to

calibrate the actual transition. It is not surprising that a single tube analogy is not sufficient to 

understand the complexity due to the porous structure and the fluid rheology. Moreover, many other 

physical phenomena may be involved in the fitting parameter 𝛼 such as slip, sorption, etc. 

Figure 1 Evolution of the apparent permeability versus the intrinsic average velocity. This behavior is 

valid for any porous medium while a relatively simple non-Newtonian fluid – here Newtonian at low 

shear rates and then shear-thinning – is flowing through it. We observe two distinct macro-scale 

regimes. The Newtonian permeability corresponds to 𝑘𝑛=1 and the non-Newtonian asymptote to 
𝑘𝑛≠1.

More recently, a new approach to quantify the transition has been proposed in [6] based on direct 

numerical simulations of the flow field over a wide panel of different porous media, e.g., model 

porous media such as simple arrays, beads packing or tomographic images of sandstone samples. An 

important finding is that the macroscopic transition to a non-Newtonian regime is controlled by the 

local transition in a limited number of pore-throats. From a dimensional analysis and the study of 

viscous dissipation, we found a model that characterizes the transition using only an effective length 

scale. This yields a new formulation for the intrinsic average velocity at which the macro-scale 

behavior transitions, which reads  

〈𝑈𝑐〉𝐹𝐿  =  �̇�𝑐√𝑘𝑛=1, (2) 

with 𝑘𝑛=1 the Newtonian permeability. This model is found to predict the transition with relatively

good accuracy. An important feature here is the absence of any fitting parameter and the prediction of 

the transition using a simple effective length that is based on the linear situation. The goal of the 



 present paper is to propose a test of robustness for the model presented in Eq. 2. The approach 

consists in comparing this model to tube bundles to see if the underlying theory remains valid.  

Rheological model 

The fluid’s rheology is chosen as time independent and viscosity is a simple function of the local 

shear rate. The chosen rheological model is a power law with cut-off (PLCO), like in [6]. This model 

uses two parameters, (𝑛 and �̇�𝑐) as described in Eq. 3 below, 

𝜇 = {

𝜇0  𝑖𝑓 �̇� < �̇�𝑐 ,

𝜇0 (
�̇�

�̇�𝑐
)

𝑛−1

 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

(3) 

In Eq. 3, the local shear rate is defined as �̇� = √
1

2
(∇𝑈 + ∇𝑈𝑡): (∇𝑈 + ∇𝑈𝑡). The parameter 𝑛 

indicates the rheological response of the fluid with the shear rate. A Newtonian fluid corresponds 

to 𝑛 = 1 – which is the reason why the Newtonian permeability is denoted by 𝑘𝑛=1 in this paper –

whereas shear-thinning corresponds to 𝑛 < 1 and shear-thickening to 𝑛 > 1. The higher |𝑛 − 1|, the 

stronger is the nonlinearity induced by the fluid. This model is known to accurately describe many 

polymer solutions. The parameters 𝑛 and �̇�𝑐 can be obtained by standard rheological measurements. 

Due to the relative simplicity of this model, analytical solutions can be obtained for simple 

geometries, as shown in the following section. 

Model comparison with tubes bundles 

Analytical tubes bundles have been intensively studied in porous media science [17]. More 

specifically, for purely non-Newtonian fluids, the analogy with tubes bundles has already been used to 

explain the macro-scale behavior observed experimentally [18-19]. On the other hand, the transition 

phenomenon between Newtonian and non-Newtonian macro-scale regimes has surprisingly not been 

studied using bundles of tubes and analytical solutions. 

Figure 1 shows the apparent permeability of a PLCO fluid flowing through a porous medium. We 

observe two macro-scale regimes, with a Newtonian and a non-Newtonian asymptote. The critical 

velocity 〈𝑈𝑐〉𝐹𝐿 is defined as in [6] as the intersection of the fully non-Newtonian asymptote with the

Newtonian permeability line, see Fig. 1. Here we investigate the behavior of 〈𝑈𝑐〉𝐹𝐿  for porous media

consisting of a single tube, bundles of tubes in serial and in parallel. For all these media, we have 

calculated the Newtonian (𝜇 = 𝜇0) permeability 𝑘𝑛=1 and the apparent non-Newtonian (𝜇 ∝ �̇�𝑛−1)

permeability 𝑘𝑛≠1. We then calculate the critical velocity 〈𝑈𝑐〉𝐹𝐿 defined as the average velocity

〈𝑈〉𝐹𝐿 at which 𝑘𝑛=1 = 𝑘𝑛≠1. Finally, we express this critical velocity with an effective length, ℓ𝑒𝑓𝑓,

and the rheological parameter �̇�𝑐 as 〈𝑈𝑐〉𝐹𝐿 =  �̇�𝑐ℓ𝑒𝑓𝑓. The bundles of tubes are composed of 𝑁 tubes

of radii 𝑅𝑖 (1 ≤ 𝑖 ≤ 𝑁). For the specific case of the serial bundle, each tube i has an associated

length ℎ𝑖. For the case of the parallel bundle, all tubes have the same length ℎ0. All our calculations

are summarized in Table 1.  

In Table 1, the factor 𝐶(𝑛) might be different from values found in the literature, like for instance in 

[4,20]. This may be explained by a different definition of the transition point, emerging from a single 

tube. Here we used the asymptote intersection method defined above (see Fig. 1), while others would 

use the velocity at which the maximum shear rate in the medium is equal to the critical shear rate �̇�𝑐. 

This latter definition emphasizes the departure from the pure Newtonian flow and the beginning of the 

complex transition regime. Our proposed definition offers a better mathematical connection between 

the two limited regimes. 
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Table 1 Calculated Newtonian and non-Newtonian permeability and related effective length used in  

〈𝑈𝑐〉𝐹𝐿 to characterize the macro-scale transition. In this table, the following definitions are

used: 𝐴(𝑛, �̇�𝑐) = (
𝑛

3𝑛+1
)

𝑛 �̇�𝑐
𝑛−1

2
, 𝐶(𝑛) = (

1

4
(

3𝑛+1

𝑛
)

𝑛
)

1

1−𝑛
and 𝑅𝑒𝑞

2 =
∑ ℎ𝑖𝑖 𝑅𝑖

2

∑ ℎ𝑖𝑖
. 

We remark that, for the bundles of tubes in parallel or in serial, we naturally recover the single tube 

case by reducing the number of tubes to one. We also remark that the parameter 𝐶(𝑛) comes as a 

factor for the effective length in all cases.  For strong variations of 𝑛, 0.5 < 𝑛 < 1.5, this factor 

verifies the double inequality 0.88 <  2√2C(𝑛) < 0.91. Hence, we approximate it by 1/2√2 

(approximation valid to about 4%). As a consequence, we obtain in the single tube case  ℓ𝑒𝑓𝑓 = 𝑅 ×

𝐶(𝑛) ≃
𝑅

2√2
= √𝑘𝑛=1, which is coherent with the findings in Zami-Pierre et al. (2016). For the other

porous media, the results are less clear and actual computations of  ℓ𝑒𝑓𝑓 over discrete distributions are

needed. 

We adopt a discrete log-normal distribution for 𝑁 tubes. For the sake of simplicity and to reduce the 

number of variables, all tubes have the same length ℎ0 in the case of a serial bundle. We use a large

number of tubes (107), in order to have representative statistics. The distribution is defined by a mean

value of radii 𝑅𝑚𝑒𝑎𝑛 and a variance 𝑣. In addition, we calculate for each parallel or serial bundle the

effective length associated to the macro-scale transition ℓ𝑒𝑓𝑓 and the Newtonian permeability 𝑘𝑛=1 of

the generated porous medium. We plot, Fig. 2, the dimensionless effective length 

ℓ𝑒𝑓𝑓
∗ = ℓ𝑒𝑓𝑓 √𝑘𝑛=1⁄  against the variance of these porous media. We added the value ℓ𝑒𝑓𝑓

∗  for the

porous media investigated in the previous study [6]. 



 

Figure 2 Evolution of the dimensionless effective length with the variance of the bundle in parallel or 

serial, (𝑅𝑚𝑒𝑎𝑛 = 10𝜇𝑚). The calculations are run for 𝑛 = 0.7. The values for some of the porous 
media from [1] are also reported. 

A few important clarifications must be made at this point: 

 We ran the calculations for a wide range of values of 𝑛 (0.5 to 1.5) and the trend seems

relatively independent of this parameter. Remarkably, despite the high complexity of the 𝑛
dependency in the effective length expression, see Table 1, the choice of 𝑛 does not

significantly influence the critical velocity at which the transition occurs. This supports

conclusions in [6], where the effective length was also found to be independent from this

parameter.

 For better comparison with the results from [6], we add in Fig. 2 the values for the

dimensionless effective length obtained in that paper for a Bentheimer sandstone, B1, a

Clashach sandstone, C1, a packing of beads, P1, and a 2D cylinder array, A1. For all of them,

√𝑘𝑛=1 is a good order of magnitude estimation of the effective length (ℓ𝑒𝑓𝑓
∗  is of order 1). 

Nonetheless we note that ℓ𝑒𝑓𝑓
∗  is equal to 0.55 for medium C. In the framework of an order of 

magnitude approximation, the length √𝑘𝑛=1 is however still a correct estimation.

 The ratio of maximal to minimal radii of the distribution is equal to 21 for 𝑣 = 10−1 and

2597 for 𝑣 = 1. In the framework of this study, we choose to not investigate tubes bundles

that have a variance above 10−1. Although particular porous media present a very wide

maximal to minimal pore size, e.g., carbonate media, we consider these latter as very specific.

The pore space would be very complicated, and the model proposed by Zami-Pierre et al. [6]

to predict the transition may not be applied in this case.

In summary, we observe that ℓ𝑒𝑓𝑓
∗ is close to unity for all bundles (serial or parallel) up to a 

reasonable variance value (say 𝑣 = 10−1). By “close”, we mean here that an order of magnitude

approximation is correct. As explained in [6], the goal of the model is not to accurately predict the 

transition – which is a smooth phenomenon, definition-sensitive, pore structure dependent – but rather 

to estimate it. We may conclude that such artificial porous media give a transition between Newtonian 

and non-Newtonian regimes which can be reasonably estimated by Eq. 2. 



 Results show a different trend between the serial and parallel bundles. We observe in Fig. 2 that, as 

the serial bundle curve collapses to zero, the parallel one increases above a certain variance value. 

Modelling the effective length by √𝑘𝑛=1 seems then to work better at high variances for the parallel

bundle than for the serial one. To understand the curve behavior at high variance values, we calculate 

an approximation of the Newtonian permeability using the fact that the ratio of maximal to minimal 

radii is very large, so that we can simplify equations from Table 1. 

Bundle in serial: 
𝑘𝑛=1

𝑣≫1 =
𝑁2𝑅𝑚𝑖𝑛

4

8𝑅𝑚𝑎𝑥
2

(4) 

Bundle in parallel: 
𝑘𝑛=1

𝑣≫1 =
𝑅𝑚𝑎𝑥

2

8

(5) 

Concerning the serial bundle, we clearly see that, for a large variance, the permeability becomes very 

sensitive to the smallest tube radius, Eq. 4. This was expected since all the fluid must go through this 

small section. On the other hand, the largest tube radius becomes the most important for the parallel 

bundle, as expected, Eq. 5. We can now adopt the same asymptotic approach for the effective length.  

Bundle in serial: 
ℓ𝑒𝑓𝑓

𝑣≫1 = 𝐶(𝑛)
𝑁 𝑅𝑚𝑖𝑛

3

𝑅𝑚𝑎𝑥
2 ≃ √𝑘𝑛=1

𝑣≫1
𝑅𝑚𝑖𝑛

𝑅𝑚𝑎𝑥

(6) 

Bundle in parallel: 
ℓ𝑒𝑓𝑓

𝑣≫1 = 𝐶(𝑛)𝑅𝑚𝑎𝑥 ≃ √𝑘𝑛=1
𝑣≫1

(7) 

Thanks to the formulation in Eq. 7, we can understand why the parallel bundle curve increases at high 

variance. Indeed, by increasing the variance the parallel bundle will contain a very large and dominant 

tube, and the apparent behavior will then be close to a single tube case with this maximal radius. On 

the other hand, the expression ℓ𝑒𝑓𝑓
𝑣≫1 for the serial bundle tends to zero with increasing variance, i.e.,

increasing maximal radius. The use of √𝑘𝑛=1 as effective length in such cases becomes completely

irrelevant. 

Model comparison with experiments 

In addition to conceptual tubes bundles, we can also test the robustness of the model with regard to 

experimental datasets provided by the literature. As described earlier, a common methodology used in 

core-flood experiments consists in calculating an apparent shear rate, �̇�𝑎𝑝𝑝 as in Eq. 8. The fitting

parameter 𝛼 is tuned such as at the transition, �̇�𝑎𝑝𝑝 = �̇�𝑐.

�̇�𝑎𝑝𝑝 = 𝛼
4〈𝑈〉𝐹𝐿

√8 𝑘𝑛=1 𝜙⁄
⟹ 〈𝑈𝑐〉𝐹𝐿  =

1

√2𝜙𝛼
 �̇�𝑐√𝑘𝑛=1. 

(8) 

Instead of dealing with such an apparent quantity, the model presented by Zami-Pierre et al. [6] 

directly predicts the critical intrinsic average velocity, Eq. 2. A comparison can be done between these 

two approaches, through Eq. 8. The apparent shear rate approach is actually similar to the proposed 

model. A prefactor – equal to 1 √2𝜙𝛼⁄  – is simply added to the original formulation. 

We looked for core-flood experiments that used a non-Newtonian fluid (Xanthan) [14,16,21] and 

where the parameters used in the apparent shear rate formulation were detailed. We reported the 

values of the associated prefactor for several references and porous media in Table 2. 



 Reference Porous medium 𝛼 𝜙 1 √2𝜙𝛼⁄  

J. Lecourtier et al. [14] Beads packing 1.7 0.48 0.60 

G. Chauveteau [21] Beads packing 1.4 0.41 0.79 

G. Chauveteau [21] Sandstone 4.5 0.09 0.53 

G. Chauveteau [21] Carborunbum 1.1 0.46 0.95 

A. Fletcher et al. [16] Clashach 4.48 0.14 0.41 

A. Fletcher et al. [16] Berea 6.0 0.20 0.26 

Table 2 Calculated prefactor 1⁄√2𝜙𝛼 for several core-flood experiments for polymer solutions 

through different type of porous media. 

From Table 2, we observe that, for different porous media, the prefactor value is compatible with the 

estimate for the critical transition velocity. In other words, and this has an important practical 

significance, the “traditional” representation of the transition seems to introduce an artificial 

dependence with the porosity which is not supported by the physics of the flow for all type of media. 

As a consequence, this latest crtierion needs to introduce a correcting factor which may vary strongly 

with the nature of the porous medium. In the new approach, the proposed criterion is more robust and 

likely to suppress an unnecessary parameter. 

We also observe that the prefactor value is always smaller than 1. We recall that, the model from 

Zami-Pierre et al. [6] is based on a simple rheology only. In an actual core-flood, many physical 

phenomena may occur (e.g., rearrangement of polymer chains, wall interaction, degradation…) which 

are not taken into account in the proposed model. It seems like, from a macro-scale point of view, the 

sum of these phenomena trigger the transition sooner. 

Flow patterns 

Among the results obtained in [6], one of them is that the nonlinearity induced by the rheology has a 

weak impact on the evolution of the flow field properties for PLCO fluids. In particular, the 

probability density function of the velocity field normalized by the average velocity remains relatively 

unchanged by the non-Newtonian behavior. This is remarkable since we could expect the nonlinearity 

to drastically change the flow field. For instance, dealing with a shear-thinning fluid, we might think 

that when the fluid in a pore-throat becomes non-Newtonian, the viscosity will start to drop, reducing 

the energy loss through this pore-throat. As a result the velocity would increase in this pore-throat and 

the flow field would be drastically modified. Such feed-back being not observed, we explore this 

interesting and somehow intriguing result by studying the dissipative energy lost by viscous friction 

per unit volume, 𝜀 = 𝜇�̇� 2.

For the four porous media in [6] presented earlier, we first define a dimensionless dissipative energy 

by 𝜀∗ = 𝜀⁄𝜀𝑚𝑎𝑥. This definition allows us to work with a field variable between 0 and 1. We note 𝜀0
∗ 

the dissipative energy field of a Newtonian fluid. As long as the flow velocity is too low to exhibit 

non-Newtonian phenomena (〈𝑈〉𝐹𝐿 ≪ 〈𝑈𝑐〉𝐹𝐿), the field  𝜀∗ does not change and is equal to 𝜀0
∗. When 

the flow velocity starts to be high enough (〈𝑈〉𝐹𝐿 = 𝑂(〈𝑈𝑐〉𝐹𝐿)), the field 𝜀∗ should slightly deviate 
from 𝜀0

∗. To quantity this deviation, we define an auto-correlation function 𝐹 for the dissipative energy 
as,  

𝐹𝜀∗𝜀0
∗ (𝑈∗) =

〈𝜀∗𝜀0
∗ 〉

〈𝜀0
∗ 𝜀0

∗ 〉
, (9) 

with 𝑈∗ = 〈𝑈〉𝐹𝐿 〈𝑈𝑐〉𝐹𝐿⁄ . With this definition, when the flow regime is fully Newtonian (𝑈∗ ≪ 1),

the auto-correlation function is equal to 1, i.e.,  𝜀∗ and 𝜀0
∗ are equal. As the velocity increases, the flow

field starts to exhibit deviations from the Newtonian pattern. To prove that the flow patterns seem to 

remain statistically unchanged when the fluid undergoes nonlinear behavior induced by non-



 Newtonian effects, we could have studied other variables than the dissipative energy, e.g., shear rate, 

velocity magnitude or kinetic energy. However, the dissipative energy is very interesting since it is 

involved in the permeability and points at the region where the fluid firstly displays non-Newtonian 

effects [6]. Fig. 3 shows the function F versus the dimensionless velocity 𝑈∗ for the porous media

from [6] as well as a converging tube (𝛼 = 𝑅𝑜𝑢𝑡𝑙𝑒𝑡 𝑅𝑖𝑛𝑙𝑒𝑡 = 0.6⁄ ) and a simple tube (𝛼 = 1.0).

𝑐

Figure 3 Evolution of F versus the dimensionless average velocity 𝑈∗. Porous media investigated: A1, 
B1, C1 and P1 from [6], as well as a converging tube (𝛼 = 0.6) and a simple tube (𝛼 = 1.0). 

Rheology: 𝑛 = 0.75 & �̇� = 1𝑠−1.

Fig. 3 shows the existence of a plateau obtained at high flow velocity for all investigated porous 

media. We denote the plateau value as FU∗≫1. We could have expected that the function 𝐹 continues 
to increase with 𝑈∗, the flow field being less and less correlated to the Newtonian flow field. 
However, the plateau clearly indicates that, despite the flow complexity induced by the fluid 

nonlinearity, the dissipative energy fields remain correlated to the Newtonian field. We also notice 

that the plateau value is different for all media. Since the rheology is fixed for the cases in Fig. 3, this 

means that FU∗≫1 is an intrinsic trace of the topology/rheology interaction, or, in other words, an 
intrinsic property of the considered medium. 

Further insight can be gained by looking at simple analytical solutions for tubes. We can calculate 

FU∗≫1  for a tube or a converging tube, see Fig. 2. In the case of a tube,  FU∗≫1 simply depends on 𝑛 
and is equal to 6n⁄(5n + 1). This case is very distinct from the others since the effect of the topology 
is non-existent and the deviation of  𝐹𝑈∗≫1 from 1 is purely due to the rheology. Concerning the 
converging geometry (𝛼 = 0.6), the value of 𝐹𝑈∗≫1 is different. Turning to real porous media, where 
pore throats may be assimilated to converging-diverging tubes, this suggests that the pore size 

distribution (PSD) may affect directly the plateau value. When the PSD is wide, the inherent porous 

medium topology would be more likely to play a role in  FU∗≫1.

This idea might help in the analysis of results from Fig. 3. The PSD is wider for sandstone media B1 

& C1, than for the beads packing P1, which itself has a wider PSD than medium A1 [6]. The 

classification based on FU∗≫1 works for samples B, P & A, but not for medium C, which has a plateau 
close to unity. We hypothesise that medium C is so particular that it could actually be very well seen 

as a series of single tubes. Indeed, although its PSD is wide, only a few pore-throats are actually be 

solicited by the flow. A crucial distinction emerges here between the PSD and the actual solicited 

pores. Further work is needed to confirm this theory. 



 
Conclusions 

In this paper we have tested the robustness of the macro-scale transition model of a non-Newtonian 

fluid flowing through porous media proposed by Zami-Pierre et al. [6]. The tests were performed by 

comparing the model with results obtained for conceptual bundles of tubes and actual core-flood 

experiments. We found that the model is robust and that the square root of the Newtonian 

permeability provides a good estimation of the characteristic length-scale defining the non-Newtonian 

transition. A comparison with traditional transition criteria suggests that the introduction of the 

porosity in the criteria might be not pertinent. We also studied the relative stability of the flow 

patterns when the fluid changes to non-Newtonian behavior. In agreement with [6], we found that the 

normalized flow statistics remain unchanged by studying correlation functions for the viscous 

dissipative energy field. Further work is needed to quantify the influence of the topology and the 

rheology on the flow statistics. 
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