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Abstract

This paper proposes a logical framework for rep-
resenting and reasoning about imperfect informa-
tion games. We first extend the game description
language (GDL) with the standard epistemic oper-
ators and provide it with a semantics based on the
epistemic state transition model. We then demon-
strate how to use the language to represent the rules
of an imperfect information game and formalize its
epistemic properties. We also show how to use the
framework to reason about player’s own as well as
other players’ knowledge during game playing. Fi-
nally we prove that the model-checking problem of
the framework is in ∆

p
2, which is the lowest among

the existing similar frameworks, even though its
lower bound is Θ

p
2. These results indicate that the

framework makes a good balance between expres-
sive power and computational efficiency.

1 Introduction

General Game Playing (GGP) is concerned with creating in-
telligent agents that understand the rules of arbitrary new
games and learn to play these games without human interven-
tion [Genesereth et al., 2005]. Representing and reasoning
about games is a core technique in GGP. A formal game de-
scription language (GDL) has been introduced as an official
language for GGP since 2005. GDL is defined as a high-level,
machine-processable language for representing the rules of
arbitrary games [Love et al., 2006]. Originally designed for
perfect information games, GDL has recently been extended
to GDL-II so as to incorporate imperfect information games,
such as Poker, Backgammon [Thielscher, 2010].

Playing games with imperfect information poses an intri-
cate reasoning challenge for players since imperfect infor-
mation requires a player to use the rules of a game to in-
fer legal actions, draw conclusions from her own knowledge
about the current game state and about knowledge of other
agents. However, as a purely descriptive language, GDL-II
is only a tool for describing the rules of an imperfect infor-
mation game but does not provide a facility for reasoning
about how a player infers unveiled information based on the
rules [Schiffel and Thielscher, 2011; 2014]. Indeed, some
information is essential for players to proceed with a game.

For example, players should always know their own avail-
able actions in non-terminal states and know their results in
terminal states. Such epistemic properties of a game are nor-
mally implied by the game rules and thus need reasoning fa-
cilities to infer and verify them. Unfortunately, GDL-II (or
GDL) is not designed for this purpose. To handle this is-
sue, a few approaches have been proposed, mostly embed-
ding GDL-II into a logical system, such as Situation Calcu-
lus or Alternating-time Temporal Epistemic Logic (ATEL), to
use their reasoning facilities [Schiffel and Thielscher, 2011;
Ruan and Thielscher, 2011; 2012; Huang et al., 2013]. As
long as the targeting logics are expressive enough to interpret
any GDL description, it is possible to use the inference mech-
anisms of these logics for reasoning about GDL-II games.
However, a highly expressive logic may incur high complex-
ity for reasoning tasks. For instance, Ruan and Thielscher
[2012] propose an adaption of ATEL to verify epistemic prop-
erties of GDL-II games, and show that the model-checking
problem in that setting is 2EXPTIME-hard. Such high com-
putational complexity may not be what we want.

This paper aims to propose a different approach to deal
with this problem. We introduce a logical framework, called
EGDL, equipped with a language for representing imper-
fect information games and a semantical model that can be
used for reasoning about game information and players’ epis-
temic status. More importantly, we develop a model-checking
algorithm for EGDL and show that the complexity of the
model-checking problem for the logic can be significantly
reduced to ∆

p
2. There are two major reasons that help us

to reduce the complexity. Firstly, our language is a conser-
vative extension of GDL with the standard epistemic oper-
ators [Fagin et al., 2003]. We take a cautious way of do-
ing that without introducing the until operator or coalition
operators. Secondly, we provide an imperfect recall seman-
tics for knowledge. Other cases could be considered; nev-
ertheless, the addition of perfect recall to GDL-II renders
the model-checking problem of ATEL undecidable in gen-
eral [Ruan and Thielscher, 2012]. Also, in many applications,
especially when modeling extremely large games, imperfect
recall may provide considerably empirical and practical ad-
vantages [Piccione and Rubinstein, 1997; Waugh et al., 2009;
Busard et al., 2015]. Despite of a moderate expressive power,
we demonstrate with a running example that our language is
enough for expressing game rules, formalizing essential epis-
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temic properties and specifying the interactions of knowledge
and actions. In this sense, EGDL makes a good balance be-
tween expressive power and computational efficiency.

The rest of this paper is structured as follows: Section 2
establishes the syntax and the semantics of EGDL. Section 3
demonstrates its expressiveness and reasoning facility. Sec-
tion 4 investigates the model-checking problem of EGDL.
Finally, we conclude with a discussion of related work and
future work.

2 The Framework

All games we consider in this paper are assumed to be played
in multi-agent environments. A game signature S is a triple
(N,A,Φ), where

• N = {1, 2, · · · , k} is a non-empty finite set of agents,

• A =
⋃

i∈N Ai, where Ai consists of a non-empty finite

set of actions for agent i s.t. Ai ∩Aj = ∅ if i #= j, and

• Φ = {p, q, · · · } is a finite set of propositional atoms for
specifying individual features of a game state.

Hereafter we will fix a game signature S and all concepts
will be based on the same game signature unless otherwise
specified.

2.1 Epistemic State Transition Models

We begin by introducing the semantical structures used to
model synchronous games with imperfect information. By
synchronous we mean that all players move simultaneously.
In particular, turn-based asynchronous games are modelled
by only allowing the “noop” action for a player, when it is
not her turn.

Definition 1. An epistemic state transition (ET) model M is
a tuple (W,w, T, {Ri}i∈N , L, U, g, V ), where

• W is a non-empty set of possible states.

• w ∈ W , representing the initial state.

• T ⊆ W , representing the set of terminal states.

• Ri ⊆ W × W is an equivalence relation for agent i,
indicating the states that are indistinguishable for i.

• L ⊆ W × A is a legality relation, describing the legal
actions at each state.

• U : W ×D → W is an update function, specifying state
transitions, where D is the set of joint actions

∏
i∈N Ai.

• g : N → 2W is a goal function, specifying the winning
states for each agent.

• V : W → 2Φ is a standard valuation function.

For d ∈ D, let d(i) denote the i-th component of d. That
is, agent i’s action in the joint action d. For convenience, let
L(w) = {a ∈ A | (w, a) ∈ L} denote the set of all legal
actions at state w. We now define the set of all possible ways
in which a game can develop.

Definition 2. Let M = (W,w, T, {Ri}i∈N , L, U, g, V ) be an
ET-model. A path δ is a sequence of states and joint actions

w
d1→ · · ·

de→ we such that for all 1 ≤ j ≤ e and any i ∈ N ,

1. dj(i) ∈ L(wj−1) (that is, any action that is taken must
be legal),

2. wj = U(wj−1, dj) (state transition), and

3. {w, · · · , we−1} ∩ T = ∅ (that is, only the last state may
be terminal).

A path δ is complete if we ∈ T . Let P(M) denote the set
of all complete paths in M . When M is fixed, we simply
write P . Given δ ∈ P , the states on δ are called reachable
states. Let δ[j] denote the j-th reachable state of δ and θi(δ, j)
denote the action of agent i taken at stage j of δ. The length
of δ, written |δ|, is defined as the number of actions.

The following definition, by extending equivalence rela-
tions over states to complete paths, characterizes precisely
what an agent with imperfect recall and perfect reasoning can
in principle know at a specific stage of a game.

Definition 3. Two complete paths δ, δ′ ∈ P are imperfect
recall (also called memoryless) equivalent for agent i at stage

j ∈ N, written δ ≈j
i δ

′, iff δ[j]Riδ
′[j].

That is, imperfect recall requires an agent to be only aware of
the present state but forget everything that happened. This is
similar to the notion of imperfect recall in ATL [Schobbens,
2004]. It should be noted that the paper focuses on imperfect
recall; nevertheless, the framework is flexible to define ATL
state-based perfect recall [Jamroga and van der Hoek, 2004]

and GDL-II perfect recall [Thielscher, 2010].
To illustrate our framework, we use as our running example

a variant of the Tic-Tac-Toe, called Krieg-Tictactoe in [Schif-
fel and Thielscher, 2011].

Example. Krieg-Tictactoe is played by two players, cross x

and naught o, who take turns marking grids in a 3× 3 board.
Different from standard Tic-Tac-Toe, each player can see her
own marks, but not those of her opponent, just like the chess
variant Kriegspiel [Pritchard, 1994]. Players are informed
of the turn-taking. The game ends if the board is completely
filled or one player wins by having completed a horizontal,
vertical or diagonal line of three with her own symbol.

To represent Krieg-Tictactoe in terms of the ET-model, we
first describe the game signature, written SKT , as follows: let
NKT = {x, o}, Ai

KT
= {aij,k | 1 ≤ j, k ≤ 3} ∪ {noopi},

and ΦKT = {pij,k, tried(a
i
j,k), turn(i) | i ∈ {x, o} and 1 ≤

j, k ≤ 3}, where aij,k denotes the action that player i fills

grid (j, k) with her symbol, noopi denotes that player i does
action noop, pij,k represents the fact that grid (j, k) is filled

with player i’s symbol, tried(aij,k) represents the fact that

player i has tried to fill grid (j, k) before, and turn(i) says
that it is player i’s turn now.

We next specify the ET-model for this game, written MKT ,
as follows: let WKT = {(tx, to, x1,1, · · · , x3,3) : tx, to ∈
{0, 1} & x1,1, · · · , x3,3 ∈ {!,⊠,!,⊗,⊙}} be the set of
possible states, where tx, to specify the turn taking and xi,j

represents the fact that grid (i, j) is occupied by the cross
and not tried by the nought ⊠, occupied by the nought and
not tried by the cross !, occupied by the nought and tried by
the cross ⊗, occupied by the cross and tried by the nought
⊙, or empty !. The initial state w is (1, 0,!, · · · ,!).



For any two states w = (tx, to, x1,1, · · · , x3,3) and w′ =
(t′

x
, t′

o
, x′

1,1, · · · , x
′
3,3) in WKT , wRxw

′ iff (1) ti = t′i for

any i ∈ NKT , (2) xj,k ∈ {⊠,⊙} iff x′
j,k ∈ {⊠,⊙} for

any 1 ≤ j, k ≤ 3, and (3) xj,k = ⊗ iff x′
j,k = ⊗ for

any 1 ≤ j, k ≤ 3. The equivalence relation for o is de-
fined in a similar way. Let VKT be a valuation such that for
each state w = (tx, to, x1,1, · · · , x3,3) ∈ WKT , VKT (w) =
{turn(i) : ti = 1} ∪ {px

j,k : xj,k ∈ {⊠,⊙}} ∪ {po

j,k : xj,k ∈

{!,⊗}} ∪ {tried(ax

j,k) : xj,k = ⊗} ∪ {tried(ao

j,k) : xj,k =

⊙}. Moreover, we assume that each player takes the same
action at stages of all her indistinguishable complete paths,

i.e., θi(δ, j) = θi(δ
′, j) whenever δ ≈j

i δ′. Due to the space
limit, we refrain from explicitly listing the legality relation,
the update function, and the terminal and goal states for the
agents as this is possible but considerably lengthy. However,
the syntactic descriptions of the game given in the following
section detail them in a more compact way.

2.2 The Language

Let us now introduce an epistemic extension of a variant of
GDL [Zhang and Thielscher, 2015b] to represent games with
imperfect information, and further provide a semantics for the
language based on the epistemic state transition model. We
call this framework EGDL for short.

Definition 4. The language, denoted by L, consists of

• the finite set Φ of propositional atoms;

• pre-defined propositions: initial, terminal, wins(·),
legal(·) and does(·);

• logical connectives ¬ and ∧;

• temporal operator ©;

• epistemic operators: K and C.

A formula ϕ in L is defined by the following BNF:

ϕ ::= p |initial |terminal | legal(ai) | wins(i) | does(ai) |

¬ϕ | ϕ ∧ ψ | ©ϕ | Kiϕ | Cϕ

where p ∈ Φ, i ∈ N and ai ∈ Ai.

Other connectives ∨, →, ↔, ⊤, ⊥ are defined by ¬ and ∧
in a standard way. Intuitively, initial and terminal specify
the initial state and the terminal states of a game, respectively;
does(ai) asserts that agent i takes action a at the current state;
legal(ai) asserts that action a is available to agent i at the
current state; and wins(i) asserts that agent i wins at the
current state. The formula ©ϕ means “ϕ holds in the next
state”. All these components are inherited from GDL. The
epistemic operators K and C are taken from the Modal Epis-
temic Logic [Fagin et al., 2003]. The formula Kiϕ is read
as “agent i knows ϕ”, and Cϕ as “ϕ is common knowledge
among all the agents in N”.

We use the following abbreviations in the rest of the paper:

K̂iϕ =def ¬Ki¬ϕ Ĉϕ =def ¬C¬ϕ Eϕ =def

∧

i∈N

Kiϕ

where K̂i and Ĉ are the dual operators of Ki and C, respec-

tively. K̂iϕ says “ϕ is compatible with agent i’s knowledge”

and it is similar to Ĉϕ. Eϕ says “every agent in N knows ϕ”.

Let us illustrate the intuition of the language with our run-
ning example.

Example (continued) The rules of Krieg-Tictactoe are speci-
fied by EGDL in Figure 1.

1. initial ↔ turn(x) ∧ ¬turn(o) ∧
∧

3

j,k=1
(¬(px

j,k ∨ po

j,k)

∧¬(tried(ax

j,k) ∨ tried(ao

j,k)))

2. wins(i) ↔ (
∨

3

j=1

∧
2

l=0
pi
j,1+l) ∨ (

∨
3

k=1

∧
2

l=0
pi
1+l,k)

∨ (
∧

2

l=0
pi
1+l,1+l) ∨ (

∧
2

l=0
pi
1+l,3−l)

3. teminal ↔ wins(x) ∨ wins(o) ∨
∧

3

j,k=1
(px

j,k ∨ po

j,k)

4. turn(i) → ©¬turn(i) ∧ ©turn(−i)

5. legal(noopi) ↔ turn(−i), where −i represents i’s opponent

6. legal(ai
j,k) ↔ turn(i) ∧ ¬pi

j,k ∧ ¬tried(ai
j,k)

7. ©pi
j,k ↔ terminal ∨ pi

j,k ∨ (does(ai
j,k) ∧ ¬(px

j,k ∨ po

j,k))

8. ©tried(ai
j,k) ↔ terminal ∨ tried(ai

j,k) ∨ (does(ai
j,k) ∧ p

−i

j,k
)

9. does(ai
j,k) → Ki(does(a

i
j,k))

10. initial → Einitial

11. (turn(i) → Eturn(i)) ∧ (¬turn(i) → E¬turn(i))

12. (pi
j,k → Kip

i
j,k) ∧ (¬pi

j,k → Ki¬pi
j,k)

13. (tried(ai
j,k) → Kitried(a

i
j,k))∧(¬tried(ai

j,k) → Ki¬tried(ai
j,k))

Figure 1: An EGDL description of Krieg-Tictactoe.

The initial state, each player’s winning states, the terminal
states and the turn-taking are given by rules 1-4.

The preconditions of each action are specified by Rule 5
and Rule 6. The player who has the turn can fill any grid s.t.
(i) it is not filled by herself, and (ii) she has never tried to fill
the grid before. The other player can only do action noop.

Rules 7 and 8 are the combination of the frame axioms and
the effect axioms [Reiter, 1991]. Rule 7 states that a grid is
marked with a player’s symbol in the next state if the player
takes the corresponding action at the current state, or the grid
has been filled by herself, or the game ends. Similarly, Rule
8 says that an action is tried by a player in the next state if
the action is ineffective while still taken by the player at the
current state, or it has been tried before, or the game ends.

The others are the epistemic rules. Rule 9 states each
player knows which action she is taking. Rule 10 and Rule
11 says both players know the initial state and the turn-taking,
respectively. Rule 12 says that each player knows which grid
is filled or not by her own symbol. Similarly, Rule 13 states
that each player knows which grid is tried or not by herself.

Let ΣKT be the set of rules 1-13. It should be noted that
rules 11-13 together specify the epistemic relations for each
player: two states are indistinguishable for a player if their
configurations of the game board are the same in her view.

2.3 Semantics

The semantics of the language is based on the epistemic state
transition model.

Definition 5. Let M be an ET-model. Given a complete path
δ in M , a stage j of δ and a formula ϕ ∈ L, we say ϕ is true
at j of δ under M , denoted by M, δ, j |= ϕ, according to the
following definition:



M, δ, j |= p iff p ∈ V (δ[j])
M, δ, j |= ¬ϕ iff M, δ, j "|= ϕ
M, δ, j |= ϕ1 ∧ ϕ2 iff M, δ, j |= ϕ1 and M, δ, j |= ϕ2

M, δ, j |= initial iff δ[j] = w
M, δ, j |= terminal iff δ[j] ∈ T
M, δ, j |= wins(i) iff δ[j] ∈ g(i)
M, δ, j |= legal(ai) iff ai ∈ L(δ[j])
M, δ, j |= does(ai) iff θi(δ, j) = ai

M, δ, j |= ©ϕ iff if j < |δ|, then M, δ, j + 1 |= ϕ

M, δ, j |= Kiϕ iff for any δ′ ∈ P with δ ≈
j
i δ′,

M, δ′, j |= ϕ

M, δ, j |= Cϕ iff for any δ′ ∈ P with δ ≈
j

N δ′,
M, δ′, j |= ϕ

where ≈j
N is its transitive closure of

⋃
i∈N ≈j

i .

A formula ϕ is globally true in an ET-model M , written
M |= ϕ, if M, δ, j |= ϕ for any δ ∈ P and any 0 ≤ j ≤ |δ|.
A formula ϕ is valid, written |= ϕ, if M |= ϕ for any ET-
model M . A formula ϕ is called true at a state w in M ,
written M,w |= ϕ, if it is true for all complete paths going
through w, i.e., M, δ, j |= ϕ for any δ ∈ P and any j ≥ 0
with δ[j] = w. Finally, let Σ be a set of formulas in L, then
M is a model of Σ if M |= ϕ for all ϕ ∈ Σ.

We now show that EGDL provides a sound description for
Krieg-Tictactoe.

Proposition 1. MKT is a model of ΣKT .

It follows that these game rules are common knowledge
among two players, which is just what we expect.

Corollary 1. MKT |= Cϕ for all ϕ ∈ ΣKT .

3 Epistemic and Strategic Reasoning

In this section, we demonstrate the expressive power and flex-
ibility of EGDL by showing how it allows us to specify epis-
temic properties and reason about agents’ knowledge.

3.1 Epistemic Properties

The introduction of imperfect information raises new epis-
temic properties of a game. For instance, to make a game
playable, each player should always know her own legal ac-
tions in the course of the game. This property as well as some
other well-known properties can be naturally formulated by
EGDL as follows: given i ∈ N and ai ∈ Ai,

(1) initial → C initial (2) legal(ai) → Ki(legal(a
i))

(3) does(ai) → Ki(does(a
i)) (4) wins(i) → Ki(wins(i))

(5) terminal → C terminal

Formulas (1) and (5) express that the initial state, the ter-
minal states are common knowledge, respectively. Formula
(2) says that each agent knows her own legal actions. In
ATEL, this is a required semantic property yet with no syntac-
tic expression [Ågotnes, 2006]. Formula (3) asserts that each
agent is aware of her own actions. This is called the “uni-
form” property of actions (strategies) also with no syntactic
counterpart in ATEL [Van der Hoek and Wooldridge, 2003;
Jamroga and van der Hoek, 2004]. Finally, formula (4) spec-
ifies that each agent should know her winning result.

Moreover, the above epistemic properties are precisely
characterised by indistinguishable complete paths as follows:

Proposition 2. Let M be an ET-model. Then

1. M |= initial → C initial iff for all δ, δ′ ∈ P and any

j ∈ N, if δ ≈
j

N δ′, then (δ[j] = w iff δ′[j] = w).

2. M |= legal(ai) → Ki(legal(a
i)) iff for all δ, δ′ ∈ P and

any j ∈ N, if δ ≈
j
i δ′, then (ai ∈ L(δ[j]) iff ai ∈ L(δ′[j])).

3. M |= does(ai) → Ki(does(a
i)) iff for all δ, δ′ ∈ P and

any j ∈ N, if δ ≈
j
i δ′, then (θi(δ, j) = ai iff θi(δ

′, j) = ai).

4. M |= wins(i) → Ki(wins(i)) iff for all δ, δ′ ∈ P and any

j ∈ N, if δ ≈
j
i δ′, then (δ[j] ∈ g(i) iff δ′[j] ∈ g(i)).

5. M |= terminal → C terminal iff for all δ, δ′ ∈ P and

any j ∈ N, if δ ≈
j

N δ′, then (δ[j] ∈ T iff δ′[j] ∈ T ).

Obviously, not all games with imperfect information sat-
isfy these epistemic properties. For instance, property (5)
does not hold for Krieg-Tictactoe. Consider the two reach-
able states depicted in Figure 2. They are indistinguishable

o x o
x
x

o o
x

x x

Figure 2: The indistinguishable states for o

for player o. Yet the left one is a terminal state while the
right one is not. In fact, according to the game rules, Krieg-
Tictactoe satisfies all the other properties.

Observation 1. Formulas (1)-(4) are globally true in MKT .

It should be noted that each EGDL-formula may be inter-
preted as a property of a game. Typically, globally true for-
mulas describe properties for a particular game, such as the
rules for Krieg-Tictactoe, while valid formulas specify gen-
eral properties of a class of games and thus can be used to
classify games. For instance, different from Krieg-style board
games, most card games have the property (5).

3.2 Strategic Reasoning

Let us now show how to use EGDL to reason about agents’
knowledge and actions based on the game rules. In the con-
text of imperfect information, epistemic reasoning is closely
related to strategic reasoning. To start with, the following
proposition shows that EGDL is suitable for reasoning about
players’ knowledge as it is a conservative extension of the
standard Epistemic Modal Logic S5Cn [Fagin et al., 2003].

Proposition 3. Given an EGDL-formula ϕ without involving
the operator © and the pre-defined propositions, ϕ is valid
in EGDL iff it is valid in S5Cn .

This result indicates that EGDL is sufficient to provide a
static characterization of agents’ knowledge at a certain stage.
For instance, with S5Cn , we can derive the following formulas
from the rules of Krieg-Tictactoe.

Observation 2.

1. MKT |= turn(i) → Cturn(i)

2. MKT |= Ki(K−ip
−i
j,k ∨ K−i¬p

−i
j,k)

3. MKT |= Kitried(a
i
j,k) → Kip

−i
j,k



Clause 1 says the turn-taking is common knowledge. Clause
2 says a player knows the opponent knows whether or not a
grid is filled by herself. The last one says if a player knows
she has tried an action, then she knows the corresponding grid
has been filled by the opponent. The last two properties are
important when players gather information.

Furthermore, with the full expressive power of the lan-
guage, we can use EGDL to specify agents’ knowledge of
particular game features and reason about how agent’s knowl-
edge changes as a game progresses.

Observation 3.

1. MKT |= Kip
i
j,k → Ki© pij,k

2. MKT |= Ki© tried(ai
j,k) →©Kitried(a

i
j,k)

3. MKT |= initial → C(
∧

3

j,k=1
legal(ax

j,k) ∧ legal(noopo))

4. MKT |= does(ai
j,k) → ©Ki(p

i
j,k ∨ tried(ai

j,k))

Intuitively, clause 1 says that if a player knows a grid has been
filled by herself, then she still knows this fact holds at the next
state. Clause 2 says that a player is able to remember the grid
she has tried to fill before. Clause 3 says that at the initial state
the legal actions are common knowledge among two players,
and Clause 4 expresses that if a player takes an action now,
then at the next state she will know either the corresponding
grid has been filled by her symbol or she has tried that action.

Most importantly, the interactions of actions and knowl-
edge can be naturally formulated using EGDL. Specifically,
they interact in three different ways:

(i) Knowledge is necessary for an agent to perform an ac-
tion, which may be formulated by does(ai) → Kiϕ. For in-
stance, in Krieg-Tictactoe, with partial observation, a player
might take an ineffective action by trying to fill a grid which
has been filled by the opponent. Then we say a player i
takes a good action aij,k, written good(aij,k), if it is effec-

tive. It follows that, to take a good action, a player needs
to know the grid she attempts to fill is empty. Formally,
MKT |= good(aij,k) → Ki(¬(p

x

j,k ∨ po

j,k)).
(ii) Performing an action may increase an agent’s knowl-

edge, which may be specified by does(ai) → ©Kiϕ. For ex-
ample, if a player takes an ineffective action, then she would
know the corresponding grid has been filled by the other
player. Consider the following complete path

δ = w
〈ax

2,2,noop
o〉

→ w1

〈noopx,ao

2,2〉
→ w2

〈ax

1,1,noop
o〉

→ w3 · · ·
At stage 2 after player o tries to fill grid (2,2), by Rule 7 and
Rule 13, she knows that the grid has been filled by player x.
Thus, MKT , δ, 1 |= does(ao

2,2) → ©Ko(tried(a
o

2,2) ∧ px

2,2).
(iii) An agent makes her choice of actions based on her

knowledge, which may be captured by Kiϕ → does(ai). Let
us consider the following two basic actions:

attack
i =def Ki(does(a

i
j,k) ∧©wins(i)) → does(ai

j,k)

block
i =def Ki©(does(a−i

j,k) ∧©wins(−i)) → does(ai
j,k)

Intuitively, attack says if a player knows that filling a grid
leads to win, then she should fill that grid. Instead, block
says if a player knows her opponent makes to win by filling a
grid in the next state, then the player must fill that grid at the
current state to avoid an immediate loss.

4 Model Checking

In this section, we investigate the complexity of the model-
checking problem for EGDL and develop a model-checking
algorithm for EGDL.

The model checking problem for EGDL, denoted by
EGDL-MC, is the following: Given an EGDL-formula ϕ, an
ET-model M , a path δ of M and a stage j on δ, determine
whether M, δ, j |= ϕ or not. In principle, two variants of
EGDL-MC can be defined as follows: Given an ET-model M ,
a state w of M and an EGDL-formula ϕ, determine whether
M,w |= ϕ and determine whether M |= ϕ. It should be
noted that all the bounds presented in this section remain true
for these variants. Proofs are similar to those of EGDL-MC,
or can be obtained by simple reductions to/from EGDL-MC.

Let us first consider the upper bound of the complexity for
model-checking. Our goal is to show the following bound.

Theorem 1. EGDL-MC is in ∆
p
2.

To prove this upper bound, according to the definition of
∆

p
2, we need to prove that there is a polynomial-time deter-

ministic Turing machine M with an NP-oracle such that M
solves the model-checking problem for EGDL. To show the
existence, let us start with a simple property of EGDL.

Let ϕ be an EGDL-formula, and M = (G, V ) be an ET-
model over S . Take ψ to be any subformula of ϕ of the form
⊕ϑ, where ⊕ is either C or Ki for some i ∈ N . We introduce
a fresh propositional atom pψ for ψ. Let Mψ be the ET-model
(G, Vψ) where Vψ is a valuation function defined by

Vψ(w) :=

{
V (w) ∪ {pψ} if M,w |= ψ;

V (w) otherwise

for each state w of M . Let ϕψ denote the formula obtained
from ϕ by replacing ψ by pψ . Then, by the definition of se-
mantics for EGDL, the following property is clearly true.

Lemma 1. For every path δ of M and every stage j on δ, it
holds that M, δ, j |= ϕ iff Mψ, δ, j |= ϕψ .

Thus, by applying the above lemma, the epistemic opera-
tors can be eliminated from the formula in a recursive way.
For the EGDL-formulas without epistemic operators, we can
show that its model-checking problem is tractable.

Lemma 2. The following problem is in PTIME: Given an
ET-model M , a path δ of M , a stage j on δ and an EGDL-
formula ϕ without involving any epistemic operators, deter-
mine whether M, δ, j |= ϕ or not.

Due to the space limit, we omit the proof here. Roughly
speaking, in the context of model checking, the operator ©
can be simply regarded as a standard modal operator. Note
that model-checking for the basic modal logic is in PTIME.

To construct the model Mψ , the truth value of ψ under M
and a given state is needed to be evaluated. To simplify the
question, let us first consider a simple case as follows.

Lemma 3. The following problem is in NP: Given an ET-
model M , a state w of M and an EGDL-formula ⊕ϕ where
⊕ ∈ {Ĉ} ∪ {K̂i : i ∈ N} and ϕ does not involve any epistemic
operators, determine whether M,w |= ⊕ϕ or not.

This lemma holds due to the observation that, given any
path δ of M and any j ≥ 0, we have M, δ, j |= ϕ if, and



only if, M, δ[j, j + k], 0 |= ϕ, where k is the number of oc-
currences of © in ϕ, and δ[j, j + k] denotes the segment of δ
starting from position j with length k. With it, one can design
a nondeterministic Turing machine which first guesses a path
of length ≤ k, and then check the truth value of ϕ under this
path. By Lemma 2, the later can be done in PTIME.

To eliminate all the epistemic operators, it remains to con-
sider the formulas with nested epistemic operator. With this
complexity result for the non-nested case, we are now able to
design an algorithm for the general case. Roughly speaking,
the idea is to carry out the elimination of epistemic operator in
a bottom-up way. As we can see in Algorithm 1, such an idea
is implemented in the algorithm elimeop. It’s easy to check

Input : an ET-model M and an EGDL-formula ϕ
Output: an ordered pair (M0,ϕ0)
begin

switch ϕ do
case ϕ is atomic do

M0 ← M ; ϕ0 ← ϕ;
case ϕ is of the form ⊕ψ, where ⊕ ∈ {¬,©} do

(N0,ψ0) ← elimeop(M,ψ);
M0 ← N0; ϕ0 ← ⊕ψ0;

case ϕ is of the form ψ ∧ χ do
(N0,ψ0) ← elimeop(M,ψ);
(N0,χ0) ← elimeop(N0,χ);
M0 ← N0; ϕ0 ← ψ0 ∧ χ0;

case ϕ is of the form ⊕ψ, where ⊕ ∈ {C,Ki} do
(N0,ψ0) ← elimeop(M,ψ);
V ← the valuation function of N0;
for all w in W do

if N0, w |= ⊕̂¬ψ0 is false then
V (w) ← V (w) ∪ {p⊕ψ};

end

end
M0 ← the model obtained from N0 by replacing

the valuation function with V ;
ϕ0 ← p⊕ψ;

end
return (M0,ϕ0);

end

Algorithm 1: elimeop(M,ϕ)

that the algorithm can be implemented in a polynomial-time
deterministic Turing machine, but with an NP-oracle. Here
the procedure of checking N0, w |= ⊕̂¬ψ0 is used as the
NP-oracle. By Lemma 3, the checking is in NP. In addition,
Algorithm elimeop visits each subformula of ϕ at most once,
and that the number of subformulas of ϕ is not greater than
the size of ϕ. These assure that the Turing machine will ter-
minate in a polynomial number of stages.

With this algorithm, we can then devise an algorithm mc
for the model-checking of EGDL such that, given any proper
M, δ, j and ϕ as input, mc works as follows:

• Firstly, mc call the algorithm elimeop(M,ϕ), and let
(M0,ϕ0) be the results of this call.

• Next, mc check whether M0, δ, j |= ϕ0 or not, and re-
turn “true” if it holds, “false” otherwise.

By Lemma 1 and the definition of algorithm elimeop, it
is not difficult to verify that M, δ, j |= ϕ if, and only if,

M0, δ, j |= ϕ0. This assures the soundness of the algorithm
mc. On the other hand, by the previous analysis, the first
stage can be implemented in a polynomial-time determinitic
Turing machine with an NP-oracle; by Lemma 2, the second
stage can be done in PTIME. Thus, the algorithm mc can be
implemented in a polynomial-time determinitic Turing ma-
chine with an NP-oracle, which proves Theorem 1.

Next we identify a lower bound of the complexity of
model-checking for EGDL.

Theorem 2. EGDL-MC is Θ
p
2-hard.

Due to the space limit, we skip the proof here. The ba-
sic idea is to reduce the validity problem for Carnap’s modal
logic C to the model-checking problem of EGDL. The former
has been proved to be Θ

p
2-complete [Gottlob, 1995].

It should be noted that the lower bound shows that the al-
gorithm mc is nearly optimal, since ∆

p
2 and Θ

p
2 are very close

together, which both lie in the second level of the polynomial
hierarchy.

5 Conclusion

We have presented a logical framework for representing and
reasoning about imperfect information games with imperfect
recall players. The framework allows us to represent game
rules, formalize epistemic properties, specify the interactions
of knowledge and actions as well as reason about agents’
knowledge during game playing. We have also investigated
the model-checking problem for the logic. These results in-
dicate that we have made a reasonable compromise between
expressive power and computational efficiency.

Most of the related work has been discussed in the Intro-
duction. Besides that, the following is also worth mention-
ing. Ruan and Thielscher [2011] study the epistemic structure
and expressiveness of GDL-II in terms of epistemic modal
logic. They mainly provide a static characterization of play-
ers’ knowledge at a certain stage without involving the tem-
poral dimension. Haufe and Thielscher [2012] develop an au-
tomated reasoning method to deal with epistemic properties
for GDL-II. Different from ours, their method is restricted
to positive-epistemic formulas. Our underlying language is
from [Zhang and Thielscher, 2015b]. It was originally pro-
posed for reasoning about strategies of asynchronous games
with perfect information, while we investigate its epistemic
extension for representing and reasoning about synchronous
games with imperfect information.

Directions of future research are manifold. As we have
mentioned, besides imperfect recall, the framework is flexi-
ble enough to specify other memory types. To obtain a com-
plete picture of the relation between perfect or imperfect in-
formation, and perfect or imperfect recall, we plan to study
properties of these memory types; We also want to investigate
the satisfiability problem and the axiomatization of EGDL
based on the current literature [Zhang and Thielscher, 2015a;
Halpern et al., 2004].

Acknowledgments

We are grateful to Michael Thielscher for his valuable sug-
gestions, and special thanks are due to four anonymous ref-



erees for their insightful comments. This research was par-
tially supported by ANR-11-LABX-0040-CIMI within the
program ANR-11-IDEX-0002-02.

References
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