Célia Martinie

Eric Barboni

David Navarre

Philippe Palanque

Racim Fahssi

Erwann Poupart

Eliane Cubero-Castan

Camille Fayollas

Task Models for Supporting Function Allocation between Operators and Autonomous Systems: Application to Collision Avoidance Operations for Spacecraft (2016)

published or not. The documents may come

Introduction

The widespread of internet and the rise of social computing has demonstrated that dealing with single user applications is nowadays part of history. Designing interactive systems thus requires, most of the time, to address the needs of group of users involved in common tasks for which communication, cooperation and production activities are mediated by computers. Despite this undeniable situation, most of the research contributions in the area of interactive systems engineering still focus on single user applications. This is easily understandable as multi-users application are far more difficult to build than single user ones. This difficulty comes from different sources:

• The difficulty to gather and understand the requirements as well as the need of groups of users;

• The difficulties to address the required communication infrastructures in order to allow both synchronous and asynchronous communication between collaborating users (as for instance argued in [START_REF] Olson | What mix of video and audio is useful for remote real-time work?[END_REF])); The difficulty to define work allocation between operators and with automation in order to ensure adequate distribution of work load, authority and tasks.

• The difficulty to ensure usability of these applications that are used jointly by different users (with different characteristics and needs) and under different environmental conditions (time zones, seasons, light, sound, …); • The difficulty to ensure the reliability of these computing systems relying deeply on underlying communication mechanisms, networks, concurrent behaviours … This paper aims at proposing a model-based approach for the design of usable and reliable collaborative applications. To address the usability issue we propose a notation for describing collaborative task i.e. tasks having group of users trying to achieve common goals. This notation extends current models such as GTA [START_REF] Van Der Veer | GTA: Groupware Task Analysis -modeling complexity[END_REF] or CTT [START_REF] Mori | CTTE: support for developing and analyzing task models for interactive system design[END_REF]. As for CTT, which the most mature notation in that domain, extensions refine further the task types (see section 3), adds explicit representation of information and knowledge required for performing the tasks and does not require the construction of an "artificial" task model describing the collaboration. To address reliability, we propose the use of the ICO formalism and its related tool PetShop extended in order to edit and execute models of interactive distributed applications. This work takes advantage of previous work done with ICO notation to formally specify distributed applications over Corba middleware [START_REF] Bastide | Formal specification of CORBA services: experience and lessons learned[END_REF]. Following the philosophy presented in [START_REF] Barboni | Beyond modeling: an integrated environment supporting co-execution of tasks and systems models[END_REF] we propose also a synergistic approach integrating models of operators' tasks (described using the extended HAMSTERS notation) with models of the interactive system (described using the ICO notation). These various elements are successively presented in the paper. This presentation is followed by the description of the application of the approach on a real life case study from the space domain. This case study consisted in designing and modeling a collaborative collision avoidance management application for the CNES (French Space Government Agency) Orbit Computation Center. Current existing and in use applications are not supported by dedicated tools for collaboration. They are distributed over many time zones, involve multi-national teams and aim at forecasting and avoiding collisions between spacecraft and space debris.

Enhanced Collaborative Tasks Descriptions to Address Collaboration and Automation

The HAMSTERS notation and CASE tool has been introduced in 2010 in order to provide support for task-system integration at the tool level [START_REF] Barboni | Beyond modeling: an integrated environment supporting co-execution of tasks and systems models[END_REF]. Since then, this tool and notation has been refined several times in order to provide support for:

• Automation design. The notation has been extended to help with the analysis of function allocation between human and system thanks to the refinement of cognitive tasks into analysis and decision subtypes of cognitive tasks according to the Parasuraman model of human information processing (Martinie et al. 2011a).

• Structuring a large number and complex set of tasks introducing the mechanism of subroutines (Martinie et al. 2011b).

• Precise description of knowledge, information and objects required and manipulated [START_REF] Martinie | Extending Procedural Task Models by Explicit and Systematic Integration of Objects, Knowledge and Information[END_REF]) in order to accomplish tasks.

These elements are necessary to describe collaborative activities but they are not sufficient. Hereafter are the extensions we propose in order to deal with collaborative activities of multiple operators involved in a common goal.

Adding notation elements to describe collaborative activities

Collaborative work is performed by several persons, each one having a role in the achievement of common goals. The concept of role we are using is the same as the one used in [START_REF] Mori | CTTE: support for developing and analyzing task models for interactive system design[END_REF][START_REF] Van Der Veer | GTA: Groupware Task Analysis -modeling complexity[END_REF]). In the same way, we also integrate the concept of actor (Van der [START_REF] Van Der Veer | GTA: Groupware Task Analysis -modeling complexity[END_REF] in the HAMSTERS notation and tool. Collaborative work can be described at different abstraction levels: at the group level and at the individual level. A group task is a set of task that a group has to carry out in order to achieve a common goal [START_REF] Mcgrath | Groups: Interaction and Performance[END_REF], whereas a cooperative task is an individual task performed by a person in order to contribute to the achievement of the common goal [START_REF] Roschelle | The construction of shared knowledge in collaborative problem solving[END_REF].

In order to be able to describe group tasks, we introduce several new task types illustrated in Figure 1 (in the last right column). These group tasks provide support for describing high level activities that a group of person have to accomplish: • An abstract group task is a task that can be decomposed into user, system, interactive and collaborative tasks.

• A group (of users) task is task that can be decomposed in user and collaborative user tasks.

• An interactive group task can be decomposed in interactive and collaborative interactive tasks.

• A system group task can be decomposed in system tasks.

The refinement of group tasks into low-level activities needs fine-grain task types to describe individual and cooperative tasks that have to be performed in order to contribute to the group activities. As individual task types were already available within HAMSTERS, we then introduce cooperative tasks, illustrated in Figure 1. A cooperative task is a task related to a role and accomplished in correlation with another cooperative task that relates to a different role. A cooperative task may be of various types within the user and interactive main family types.

Cooperative tasks may be performed within various spacetime constraints (local/distant, synchronous/asynchronous) [START_REF] Ellis | Groupware: some issues and experiences[END_REF]. These constraints can be described with notation elements illustrated in Figure 2. machine comparison and they describe automation as a device or system that accomplishes (partially or fully) a function that was previously, or conceivably could be, carried out (partially or fully) by a human operator. This implies that automation can vary across a continuum of levels, from the lowest level of fully manual performance to the highest level of full automation and the several levels between these two extremes are illustrated in the following table. Even though those levels can support the understanding of automation they cannot be used as a mean for assessing the automation of a system which has to be done at a much finer grain i.e. "function" by "function". However, if a detailed description of the "functions" is provided they make it possible to support both the decision and the design process of migrating a function from the operator's activity to the system or vice versa.

As stated in (Parasuraman et al. 2000), automated systems can operate at specific levels within this continuum and automation can be applied not only to the output functions but also to input functions. This model of human information processing has a similar counterpart in system's functions as shown in Figure 5. Each of these functions can be automated to different degrees. For instance, the sensory processing stage (in Figure 4) could be migrated to the information acquisition stage (in Figure 5)

Example from a Large Case Study

HAMSTERS, as presented above, has been used to design and develop a prototype of groupware application belonging to the space ground segment category of applications. This study has been led in the context of a Research and Technology project funded by the French Space Government Agency (CNES). MARACCASS stands for Models and Architectures for the Resilience and Adaptability of Collaborative Collision Avoidance System for Spacecraft and aims at studying methods, techniques and tools to design and develop collaborative applications. This project is particularly targeting groupware for the management of collision avoidance between satellites and space objects. In this section, we present illustrative extracts from the case study which are relevant to highlight the key points of the contribution.

Management of collision risks between space objects and satellites

CNES and various other international agencies have to cope with the increasing number of space fragments, which are a threat to on-going satellite missions. Collision avoidance management is a collaborative, cross-team, and international activity. Amongst the national and international organizations, two main types of teams can be distinguished: the space observation teams and the satellite mission teams.

The observation teams, thanks to various equipment's and tools are gathering information about space objects and their trajectories (past, present, future). The mission teams focus on one particular space object (usually a satellite) and are monitoring and controlling the space object they are in charge of and its operations. If the observation team detects a collision risk between a satellite and a space object, it contacts and alerts the mission team in charge of the satellite.

Roles and main goals to manage collision risks

In this case study, we take the example of the collaboration between the CNES team in charge of monitoring space objects (called the Orbit Computation Center or OCC) and the SMOS satellite mission team. In order to collaboratively manage a collision risk, the teams are assisted with several non-integrated software tools: individual software tools to analyze probability of collision and traditional communication tools (email and telephone) to coordinate and communicate about the risk.

Preliminary work before high-fidelity prototyping phase

The first phase of the project has consisted in analyzing current activity with the production of corresponding task models. Then, we proposed several low-fidelity prototypes for a new groupware application to support collaborative activities of collision risk management. These low-fidelity prototypes take into consideration groupware principles [START_REF] Ellis | Groupware: some issues and experiences[END_REF] but also contributions about design considerations for collaborative visual analytics [START_REF] Heer | Design Considerations for Collaborative Visual Analytics[END_REF].

We then produced task and system models from low-fidelity prototypes that had been validated with operational teams.

In the next paragraphs we present extracts from models and from the high-fidelity groupware prototypes that highlight how the proposed framework has been applied to develop a high-fidelity prototype of the collaborative application for collision risk management. In these extracts, we will focus on the collaborative asynchronous activities related to posting annotations (OCC engineer role) and consulting these annotations (SMOS controller role) in the corresponding remote applications. Figure 8 and Figure 9 presents screenshots of the two remote applications dedicated to collaborative management of collision risks. Figure 8 presents the application dedicated to OCC engineers (with a larger set of functionalities such as deep probabilistic calculus and Conjunction Summary Messages creation and edition). In the presented screenshot, a popup window is opened in order to let the OCC engineer edit an annotation. Figure 9 presents the application dedicated to the mission controllers with a reduced set of functionalities. Its main purpose is to provide situation awareness about the collision risks related to the mission and communication and coordination support. In the presented screenshot, an annotation is displayed (pined to the table) to the attention of the SMOS mission controller. Figure 9 presents an extract from the set of activities performed once a collision risk has been detected for the SMOS satellite mission. In particular, it shows the sequence of activities led when the SMOS mission controller was not available for a live communication. The OCC engineer first creates an annotation ("Create annotation" input tasks), then positions the annotation (iterative task "Move annotation") until the position is adequate ("Fix annotation position" input task). The OCC engineer then edits the annotation (input task "Edit annotation"), decides to send the annotation (cognitive decision task "Decide to send annotation") and then send the annotation (cooperative asynchronous task "Send annotation"). Figure 11 presents an extract from the set of activities performed once a collision risk has been detected. In particular, this set of activities is cooperative and bound to the above presented set of activities for the OCC engineer role. Once the OCC engineer has sent an annotation, it is displayed in the SMOS remote application (cooperative output task "Display new annotation"). When the SMOS mission controller will be available for consulting the application, s/he detects and acknowledges reception of the annotation (cooperative input asynchronous task "Acknowledge lecture of annotation"). S/he then analyzes the reported risk and may delete the annotation (cooperative input task "Delete annotation").

Discussion

This positon paper has presented how extended tasks descriptions can support the description and the analysis of team work. That point has not been detailed due to space constraints but the detailed descriptions make it possible to assess respective work load, needs for information sharing and work pressure (such as performance of tasks under temporal constraints).

The fact that information acquisition, analysis of such information and decision making are explicit, detailed task description allow identification of good candidate towards automation either being based on the task types (following MABA-MABA concepts in (Fitts 1951) and refined in [START_REF] Carver | Human-computer interaction: the human and computer as a team in emergency management information systems[END_REF].

Work that has been done on the satellite collision avoidance system could be used for discussion in the workshop. Some important aspects that are complex to handle such as multilanguage, time difference, asynchronous/synchronous communications as well as the critical aspects.

Figure 1 .

 1 Figure 1. Task types in HAMSTERS

Figure 2 .Figure 3 .

 23 Figure 2. Elements of notation related to space-time constraintsCooperative task may be dedicated to one or more of the following type of collaborative activities: production, coordination, communication. It is then possible to associate one or more properties amongst this set. For example, Figure3a) shows that one task is dedicated to coordination whereas Figure3b) shows that the task is dedicated to both coordination and communication.

Figure 4 :Figure 5 :

 45 Figure 4: Simple four-stages model of human information processingThe first stage refers to the acquisition and recording of multiple forms of information. The second one involves conscious perception, and manipulation of processed and retrieved information in working memory. The third stage is where decisions are accomplished by cognitive processes and the last one contains the implementation of a response or action consistent with decision made in the previous stage.Information Acquisition Information Acquisition

Figure 6 .

 6 Figure 6. Screenshot of the Hi-Fi prototype for collision risks management dedicated to OCC engineers

Figure 8 .

 8 Figure 8. Extract of the highest level task model for the OCC activities (OCC engineer role) Orbit Computation Center (OCC) engineers Figure 8 presents an extract from the set of activities that have to be performed by the expert engineer on duty from the Orbit Computation Center to monitor and manage collision risks.Figure9presents an extract from the set of activities performed once a collision risk has been detected for the SMOS satellite mission. In particular, it shows the sequence of activities led when the SMOS mission controller was not available for a live communication. The OCC engineer first creates an annotation ("Create annotation" input tasks), then positions the annotation (iterative task "Move annotation") until the position is adequate ("Fix annotation position" input task). The OCC engineer then edits the annotation (input task "Edit annotation"), decides to send the annotation (cognitive decision task "Decide to send annotation") and then send the annotation (cooperative asynchronous task "Send annotation").

Figure 9 .

 9 Figure 9. Extract of the task model "Handle collision risk between satellite and fragment" for the OCC engineer role SMOS command and control room controllers and engineers Figure 10 presents an extract from the set of activities that have to be performed by the SMOS controller when warned by the OCC engineer.

Figure 10 .

 10 Figure 10. Highest level model for the SMOS mission activities

Figure 11 .

 11 Figure 11. Extract of the task model "Handle collision risk" for the SMOS mission controller role

TABLE I

 I

	. LEVELS OF AUTOMATION OF DECISION AND ACTION SELEC-
		TION (EXCERPT FROM (PARASURAMAN ET AL. 2000)
	HIGH	10. The computer decides everything, acts autono-mously, ignoring the human
		9, 8, 7. … 3, 2
	LOW	1. The computer offers no assistance: human must take all decisions and actions

tech-oatao@listes-diff.inp-toulouse.fr