
HAL Id: hal-04109377
https://hal.science/hal-04109377

Submitted on 30 May 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

eGovernment Security Requirements: Managing
Obligations and Authorizations Inconsistencies with

XACMLv3
Ibrahim Yonis Omar, Romain Laborde, Ahmad Samer Wazan, François

Barrère, Abdelmalek Benzekri

To cite this version:
Ibrahim Yonis Omar, Romain Laborde, Ahmad Samer Wazan, François Barrère, Abdelmalek Benzekri.
eGovernment Security Requirements: Managing Obligations and Authorizations Inconsistencies with
XACMLv3. International Conference on Security and Management (SAM 2016), Jul 2016, Las Vegas,
United States. pp.89-95. �hal-04109377�

https://hal.science/hal-04109377
https://hal.archives-ouvertes.fr

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 18778

The contribution was presented at SAM 2016 :
http://sam.udmercy.edu/sam16/index.html

To cite this version : Yonis Omar, Ibrahim and Laborde, Romain and Barrère,
François and Wazan, Ahmad Samer and Benzekri, Abdelmalek eGovernment
Security Requirements: Managing Obligations and Authorizations Inconsistencies
with XACMLv3. (2016) In: International Conference on Security and Management
(SAM 2016), 25 July 2016 - 28 July 2016 (Las Vegas, United States).

Any correspondence concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

eGovernment service security policy:

obligation conflict resolution in XACMLv3

Ibrahim Yonis Omar, Romain Laborde, Ahmad Samer Wazan, François Barrère, Abdelmalek Benzekri

Institut de Recherche en Informatique de Toulouse
University Paul Sabatier

Toulouse, France
{Yonis, Romain.Laborde, Ahmad-Samer.Wazan, Francois.Barrere, Abdelmalek.Benzekri}@irit.fr

Abstract— Today, many governments tend to propose e-services

to their citizens. However, implementing an eGovernment

environment shall face up to several security challenges including

integrating security requirements coming from multiple stakeholders.

In this article, we analyze the conflicts that can occur between

eGovernment security requirements. Since these security

requirements can contain both authorizations and obligations, we

cover these two aspects. Then, we propose a new conflict resolution

algorithm that handles conflicts between authorizations as well as
obligations. This work has been implemented in XACMLv3.

Keywords— eGovernment; Access control; Obligations;

conflict; XACMLv3

I. INTRODUCTION

Towards a reduction process of gaps between user
expectations and public services, public administration tends to
use ICT in order to offer efficient services. This paradigm is
known as electronic Government (eGovernment) [1] and can
be classified according to different target areas as:

- Government-to-Government (G2G), also known as e-
administration, refers to electronic collaboration
between different government agencies,

- Government-to-Citizen (G2C), is the process that
electronically provides on-demand and personalized
public services to citizens,

- Government-to-Business (G2B), sets up online
relationship between government and the business
sector in order to interactively provide information on
regulations, advice, and procedures.

This modernization of relations with a government takes an
interest because it is generally offered in a centralized way –
with a one-shop portal: all eGovernment services are available
in one place and exposed from a common portal [2].

eGovernment services are classified depending on its levels
of paperless known as maturity level. Designing models of
maturity levels has been the subject of several studies [3].
Although the number of phases differs from one model to
another, all the models are based on four main phases to
measure the maturity of a system of e-government. These main
level starts from level 1, with a simple informational website to
level 4 with an advanced shared services between public
administration.

However, implementing eGovernment must address several
challenges [4]. Among them the way to design and write a
security policy remains complex [5] because it must consider
different High Level Security Requirements (HLSRs) given by
stakeholders [6]. Security policy of an eGovernment service
must comply at the same time with HLSRs expressed by law
issuers (Li), Executive governance (Eg) and government
departments (Gd).

Our proposed research is done in the context of the
Djiboutian eGovernment Cloud Community (eGCC) which
aim to implement a G2G infrastructure: two main issues have
been highlighted when the common security policy of eGCC
was analyzed. .

First, according to its own area of occupation, each
stakeholder expresses its HLSR using an expression model that
may differ from other stakeholders. DAC (Discretionary
Access Control) - – MAC (Mandatory Access Control) model;
- RBAC (Role Based Access Control) [7] [8][9] are some
example of such models. While specific constraints must be
considered, it remains that the policy within eGCC must adopt
unified way of expression.

This issue was discussed in [10] where we proposed the
usage of ABAC (attributes based access control) with
XACMLv3 [11] standard. A common policy-based language
for eGovernment was presented in order to express multiple
specific constraints (thanks to ABAC) and applied our
approach to an open source Cloud Computing solution –
OpenStack [12].

The second issue is related to the consistency of HLSRs.
HLSRs can contain both authorizations (permission on
resources with defined conditions) and obligations (duties to
execute). The common security policy for eGovernment service
is established by combining all stakeholders’ HLSRs. Each
HLSR, written in XACMLv3 is delivered by stakeholders and
contain specific constraints. As a consequence a simple HLSR
combining may result into conflicts and inconsistencies.

Many works have studied conflicts between authorizations.
E.g., XACMLv3 provides twelve authorization conflict
resolution algorithms. However, much less researches have
explored conflicts between obligations and how to manage
these conflicts. As consequence, XACMLv3 doesn’t include
any obligation conflict resolution. In this article, we analyze the
obligation conflict management issue in the context of

eGovernment that involves multiple stakeholders. Also, we
propose an obligation conflict resolution algorithm that we
implemented in XACMLv3.

The rest of the article is structured as follows. In section II,
we present security management issues in eGovernment. In
section III, we present XACMLv3 and its capability to express
eGovernment policy security requirements. In section IV, we
introduce our approach to enhance XACMLv3 with an
algorithm for eGovernment obligation conflict management.
In section V, we list some related work. Finally, we draw our
conclusion and perspectives in section VI.

II. EGOVERNMENT SECURITY

MANAGEMENT

The security of eGovernment services is governed by a set
of HLSRs that we classify according to the institution source:
legal, governance and business.

Legal HLSRs are expressed from legislation and concerns
compliance to legal texts applied to information and data
collected by public administration. Data sensitivity in the
context of eGovernment requires regulation. To prevent abuse
of data usage in administrative procedures and thus establish
trust between the users and the e-Government service, a
number of laws have been voted and must be respected.

Governance HLSRs is expressed from executives and
ensure the proper organization of security within eGovernment
organizations IS. It corresponds to the general policy of
government on eGovernment and expresses requirements on
how eGovernment is implemented.

Business HLSRs expressed from organization are
essentially dealing with business needs. They are driven by the
profession’s needs of ministerial departments.

Given the multiple policies with its HLSR, security
compliance of eGovernment services to those policies may be
subject to conflicts. We propose to address these conflicts by
prioritizing them according to their sources. This priority is
based on the natural hierarchy characterizing the machinery of
government

Legal HLSRs should have greater weight than those
dictated by the executives and business stakeholders. Executive
HLSRs should have more weight than those of business.

 A weight is given to each HLSR according to its source (i.e.,
legal, governance or business). Based on that weight, HLSRs
are prioritized to resolve the conflicts. Thus, the order relation
that states is:

Legal Policies (LP) > Executive Policies (EP) > Business
Policies (BP).

To highlight HLSRs consistency challenge, let us consider,
for instance, the Tax Income Public Agency (TIPA) that
provides tax information and services. In order to enhance its
service treatments, TIPA decide to offer an eGovernment
services. At the first stage of this migration, TIPA will only
provide informational eGovernment service (Maturity level 1).
Thus TIPA creates Virtual Machines (VM) which hosts a web

server within a virtual data center (VDC), offered by an
eGovernment Cloud provider (eGCp).

Resources of TIPA is governed by a set of policies with
multiple HLSRs from 1) Law, 2) Executive and 3) Business.
Enforcement of policies must follow the order of the
predefined hierarchy: Legal (LP)> Executives (EP) > Business
(BP). Let’s consider that the policy of TIPA is the following:

- LP1: Identifiable data collected from users shall not
be transferred or used in any other purpose without
the prior consent of its user.

- LP2: Regulation requires encrypting eGovernment
services resources.

- BP1: Resource encryption is required for
eGovernment service classified as Maturity Level 3
[3] and above only.

- BP2: In case of cyber attack any executive
administrative task of eGovernment system should
not be available except for Chief Information
Security Officer (CISO).

- EP1: In case of cyber attacks to eGovernment system,
access to the system is forbidden until constitution of
a team by ministerial Decree.

Clearly, the policy of TIPA entails the handling of different
HLSRs coming from different sources and the preservation of
authorizations and obligations orders. Thus, the following
criteria must be filled:

Criterion 1 — There must have policies hierarchy
management systems.

Criterion 2 — Security management system has to apply
both authorizations and obligations policies.

Criterion 3 — Regardless of policy selection order,
enforcement must respect the predefined hierarchy.

In order to handle policies whose expressions (e.g., RBAC,
MAC or DAC) and sources (Law, Executives and Business)
are different, we have selected the language XACMLv3 to
implement our solution. The extensibility of this language
permits us to enhance its capability to the eGovernment
context.

III. XACMLV3 AND EGOVERNMENT

POLICY SECURITY HLSR

We briefly present in this section the XACMLv3 standard
and how it could meet the constraint of HLSRs.

XACML (eXtensible Access Control Markup Language)
version 3 is an XML-based specification for access control that
has been standardized by OASIS [8]. XACMLv3 describes an
architecture, an attribute-based access control policy language
and a request/response language.

The XACMLv3 policy language is used to describe general
access control constraints in terms of constraints on attributes.
Specifically, attributes could be any characteristics of any
category such as the subject, the resource, the action, or the

environment in which the access request is made. Attributes
have an identifier, which is a Uniform Resource Name (URN),
and a data type also identified by a URN. Considering
attributes makes the language very flexible. Moreover,
XACMLv3 language is natively extensible. A XACMLv3
policy is composed of:

• A target element which is a first filter for searching
the applicable policy

• A set of obligation expressions that are instantiated
when a matching request is processed. PEPs must
enforce obligations.

• A set of advice expressions that are instantiated when
a matching request is processed. Advice is similar in
its form to an obligation. However, PEPs may or may
not enforce advice.

• A set of rules that are expressions to determine if a
request is denied or permitted. A rule contains a
target and may include obligations and advice
specific to this rule.

• Policies can be grouped in policy sets.

Figure 1. The XACMLv3 policy language mode [11]

The architecture of XACMLv3 consists mainly in two
management components: the Policy Enforcement Point (PEP)
and the Policy Decision Point (PDP). The PEP is the guard of
the resources. It intercepts the request expressed in the native
application format, translates it into the XACMLv3 request
format and sends it to the PDP. The PDP is the “brain” of the
system. Once it receives a request from a PEP, it looks at its
XACMLv3 policy for matching rules. Each rule leads to a
specific decision, which is a triplet (permit/deny, set of
obligations, set of advice). If only one rule match then the
decision is applied .If the request matches two or more rules,
the PDP builds a unique decision by applying the rule
combining algorithms and the policy combining algorithms.
This unique decision is then returned to the PEP that enforces it
in the actual system.

XACMLv3 includes a set of predefined policy/rule
combining algorithms, used to resolve the eventual conflicts in
the authorizations:

• Deny overrides: This algorithm combines decisions of
policies / rules so that if any decision is Deny, then
that decision is applied.

• Permit-overrides: This algorithm does the same work
as the above algorithm, but in this case Permit
decisions are the dominant ones.

• First applicable: This algorithm applies the first
decision (Deny or Permit) found and returns the first
match as result.

• Only one applicable: This algorithm is used only for
combining policies. It cannot be used to combine
rules.

• Deny unless permit: The algorithm result will be
Deny unless an explicit Permit Decision is found.

• Permit unless Deny: Same as the above algorithm
except default result will be Permit unless explicit
Deny is found.

These algorithms also exist in ordered mode where policy,
policy set and rules are considered in the order in which they
are defined. Thus, prior establishment of hierarchy can be
fulfilled with XACMLv3 predefined combining algorithms.

Although XACMLv3 supports natively authorization
conflict management with its combining algorithms, these
algorithms don’t take into account the obligations. In the
scenario proposed above, as VM creation is authorized for
TIPA, BP1 and LP2 HLSRs obligations conflict. LP2 (law)
requires all VMs must be encrypted on creation. BP1
(business) does not claim such encryption as the service
provided is informational (maturity level1) and is not an
advanced one (maturity level3). As XACMLv3 does not have
an obligation conflict management algorithm, such obligations
are together sent to PEP which generates a problem of
applicability for PEP or obligation Service unless formal
handling methodology.

IV. A NEW CONFLICT RESOLUTION

ALGORITHM THAT CONSIDERS

OBLIGATIONS

In this section we present our new algorithm to resolve
eGovernment obligations conflict issues in XACMLv3. A
conflict resolution algorithm for obligations consists of two
parts: conflict detection and conflict resolution.

A. Detection of Conflict

We represent a XACML rule R RULES as a triple
(condR, effectR, obligationsR) where condR COND is a
Boolean expression with free variables, effectR {Permit,
Deny} and obligationsR (OBLIGATIONS) is a set of

obligation expressions with free variables.

PolicySet

Policy Combining Algorithm

Policy

ObligationExpression

Target

Rule Combining AlgorithmRule

EffectCondition

AnyOf

1
1

1
1

11

1

1..*

1

1

1

1

1

1

1

0..* 1

0..*

1

0..*

1 0..*

1

0..*

1

0..1

AllOf

1

1..*

AdviceExpression

1

0..*

1

0..*

1

0..*

1

0..*

Evaluating a rule R for a given request req can be achieved
by executing three tasks:

1. The bounding of the free variables of the condition
using the request attributes. We note the bounded
condition with bound(condR,req).

2. The interpretation of the bounded condition that
provides a Boolean value (the condition matches
or not). We represent it by interpret
(bound(condR,req)).

3. The bounding of the free variables of the
obligations using the request attributes. We note
the bounded obligations with
bound(obligationR,req).

Detecting a conflict for a given request req can then be
formalized as follows:

 (R1, R2) RULES2,

R1= (condR1, effectR1, obligationsR1), R2 = (condR2, effectR2,
obligationsR2) ,

interpret(bound(condR1,req)) =

interpret(bound(condR2,req)) =

where at least one of the following two conditions is true:

Condition 1) effectR1 effectR2

Condition 2) (oR1, oR2) obligationsR1 × obligationsR2,

conflict(interpret(bound(oR1,req),
interpret(bound(oR2,req)))

Detecting a conflict must be performed at the decision
stage, i.e. by the PDP, in order to provide a unique decision to
the PEP. When rules don’t include obligations, the detection is
easy since the PDP natively performs
interpret(bound(condR,req)) and evaluating condition 1 requires
only to compare two values (Permit/Deny).

However, evaluating condition 2 is not as simple as
condition 1. In fact, obligations conflict detection requires the
analysis of the semantic of the obligations and a dynamic
detection of possible conflict is not obvious. E.g., what is the
result of interpret (bound(oR1,req))? How to detect the
execution of an obligation is conflicting with another one?
Such issue is pointed with BP1 against LP2. Thus, for
obligation conflict detection, we use the follow manual
discovery algorithm to handle semantic means of obligation
action.

Algorithms 1 ObligationConflictsDetect()

1 Let p be the parameter of an eGovernment service

resource Obli represent, for each i, 1 i , a set of obligations
applied to p and PObl possible obligation conflict.

2 PObl = if (OblBP,OblLP) x p(TIPA)

3 if PObli OblBP ¬ OblLP OblC

End Algorithms

Our algorithms detect obligation conflict, if two or more
obligations are designed towards the same parameters of single

resource to the same eGovernment services (TIPA). For TIPA,
for instance, we identify the set of obligation HLSR applied to
it. Afterwards, we identify whether any of the obligations
potentially conflict with each other. If positive conflict match,
we select conflicting obligations.

B. Obligation conflict resolution

To detect and resolve obligation conflicts in XACMLv3,
we propose to extend the PDP with obligation inconsistency
management algorithms. We adopt answer set programming
(ASP), a form of declarative programming [13], to formally
represent our model. ASP is based on the stable model
semantics of propositional logic programming and allows non-
monotonic reasoning. Syntactically, ASP is closed to Prolog.
However, instead of asking a question and using inference to
find the solution like in Prolog, ASP grounds the variables and
computes stable models (for more details [14]).

We recall quickly some basics on the ASP syntax. Rules
are of the form “h :- b.” where h is the head and b is the
body. It can be understood as if predicate b is true in an
answer then h is also true in the answer. When the rule has no
body, for example “h.” then h is a fact and must be in all the
answers. When the rule has no head, for example “:- b.”,
the rule is a constraint and means that b must not be true in
any answers. Finally, it is also possible to specify choice. For
example, the following rule “{h1;h2}:-b.” can be
understood as if b is true then there can be an answer where
h1 is true and another one where h2 is true.

Figure 2. Our Answer Set Program for resolving conflicts.

Since determining matching XACMLv3 rules and
detecting authorization effects conflict is already done by any
XACMLv3 PDP, we focus only on obligation conflict
resolution. Thus, we consider that a set of rules matches a
specific XACMLv3 request and these rules have the same
effects. However, some rules contain obligations.

For our implementation, we used clingo 4 [15]. We
followed the guess and check methodology [14] which
consists in:

1) Guess : Create candidate solutions to the problem

2) Check: Check with rules/constraints whether a
candidate solution is valid or not.

Thus, based on a set of obligations as input, we generate
candidate solutions (Figure 2). If conflicts exist, we choose the
obligation with the higher priority calculated based on the
issuer (Law > Executive > Business). We then check if there is
no conflicting obligations or functional dependency issue in a
candidate solution. Conflicting obligations and obligation
dependencies have to be manually expressed using predicates
conflict/2 and dependsOn/2 (Figure 3). This means that all
obligations applied on eGovernment services must be
predetermined and analyzed to produce this data.

Figure 3. Example of an initial knowledge database for conflict

resolution.

Figure 4. Predicates translated from matching XACMLv3
rules.

Finally, when the PDP has to take a decision, it translates
the candidate obligation into predicate decision/2. Figure 4

gives an example where obligations obl1 and obl2 are coming
from law HLSRs and obligation obl3 and obl4 from executive
HLSRs. After being processed, the final decision calculated by
the ASP program is cancelled obl3 (in conflict with obl2 that
has higher priority) and obl4 (it depends on obl3).

C. Obligation enforcement planning

We complete the obligation conflict resolution with an
obligation enforcement planner to ensure that obligations are
executed in the right order (compliance to our criterion3).
Indeed, unwanted side effects may arise if obligations are
applied in any arbitrary order. We propose to specify known
side effects using predicate before/2 meaning that an obligation
must be applied before another one (Figure 5). Using the
methodology Guess&Check, we build the following obligation
enforcement planner. For example, if a final decision consists

in applying obligations obl1, obl2, obl3, obl4, planner proposes
several solutions like the following sequences <obl1, obl3,
obl4, obl2> or <obl3, obl1, obl2, obl4>

Figure 5. Our obligation enforcement planner

V. RELATED WORK

eGovernment security policy.

Security in eGovernment is largely acknowledged as a
challenge [16] [17][18] . As part of a European project,
Lambrinoudakis et al. [19] propose PKI-based security policy
for eGovernment services. According to eGovernment service,
its level of paperless and users involved, a risk level, which can
be low, medium or high, is labeled. Based on this level, they
define security requirements. They then deal with these levels
of requirements with a PKI-based security policy.

Drogkaris et al. [20] have acknowledged privacy concerns
in eGovernment security policy with user preference
involvement. They propose a Privacy Controller Agent (PCA),
an engine that manages privacy enforcement in eGovernment.
They underline existing of various rules in the service provider
privacy policy document. For Drogkaris et al., conflict can
occur between service provider and user preferences. Although
this approach is dealing with the security concerns (privacy
aspect) of modern eGovernment with centralized one stop shop
portal, it ignores the potential conflict between various
inherited rules expressed by services provider policies.

A. XACMLv3 conflicts analysis

Hwang et al. [21] propose a tool that generates the
XACML-represented policy and check the consistency of these
policies both statically and automatically. Verification focuses
on policy coherence, specifically whether the authorization
result is produced as expected or not.

To detect inconsistencies and conflicting XACML-
represented policy, Martin and Logrippo [22] use Alloy [23] a
first order logic model checking tools. They represent XACML
element as a logical model and translated into Alloy in order to

detect inconsistency of policies. Inconsistency is produced
when “two rules return two different decisions (permit and
deny) in a context of a specific request”.

Fisler et al. [24] propose verification and validation policy
tool Margrave (ref) for XACML-represented policy. With
verifier component integrated into margrave, different possible
decisions from XACML policy are represented as a form of
diagram and are verified to detect the eventual conflict between
decisions.

Mohan et al. [25] highlight the problematic of authorization
in taxonomy-based biomedical databases. They propose
strategies and algorithms to detect policies conflict and
potential inference attacks resulting from how policies are
formulated. Their proposition is implemented in XACML.

Martin et Xie [26] determine the gap between result of
decision and expected behavior of policies written in XACML
by generating request on policies and use the responses as input
to a tool using machine learning algorithms. As an output
these tool generate behaviors of policies by listing, “inferred
properties that may not be true for all requests but are true for
most requests in order to highlight possible special case
requests.

However, all these works have uniquely focused on the
management of inconsistency and conflicts of the authorization
side of XACML. We have shown that conflicts in policies can
also be produced because of opposed obligations to carry out.
Since XACMLv3 takes into account the obligation
representation and due to the lack of obligation conflict
management in the current works, we have proposed an
algorithm to detect and resolve the eventual conflicts produced
by different opposed obligations in XACMLv3 policies in the
eGovernment context.

VI. CONCLUSION

Managing the security policies in context of eGovernment
entails the construction of a security management system that
allows to: 1) Combine different policies expressed by different
models, 2) Handle conflict decisions produced at policy and
rule levels (using combining algorithms), and 3) Handle
conflict obligations.

In a previous work [10], we addressed the first point. In the
current work, we have handled the second and third points.
Specifically, we have exploited the existing capabilities of
XACMLv3 to address the second point. However, since
XACMLv3 does not support natively obligation conflict
management, we propose an obligation conflict management
algorithm that can be executed by a PDP. Also, we have
implemented an obligation planner intended to preserve
obligation orders.

Our contribution didn’t consider the real security state of
different stakeholders. Indeed, the higher the maturity levels of
eGovernment services are, the more resources are available on
the Internet. Also, advanced high level eGovernment services
require involvement of multiple stakeholders. Thus, the
security of these resources becomes an essential matter to
consider. However, due to divergence state of security
preparation of stakeholders, defining formal security

responsibility of stakeholders towards advanced eGovernment
service is not obvious. How we can determine security
responsibility of involved stakeholders? Thus, defining a scale
of security competency levels of stakeholders may help to
preserve the security of the advanced high-level eGovernment
services. We believe that such levels can be considered as
conditions to delimit the scope of each stakeholder. These
issues constitute the main activity that we are conducting
currently.

VII. REFERENCE

[1] M. J. Moon, “The evolution of e-government among
municipalities: rhetoric or reality?,” Public Adm. Rev., vol. 62, no. 4, pp. 424–
433, 2002.
[2] A. Tat-Kei Ho, “Reinventing local governments and the e-
government initiative,” Public Adm. Rev., vol. 62, no. 4, pp. 434–444, 2002.
[3] K. Layne and J. Lee, “Developing fully functional E-government:
A four stage model,” Gov. Inf. Q., vol. 18, no. 2, pp. 122–136, 2001.
[4] D. S. Jones and B. Crowe, Transformation not automation: The e-

government challenge. Demos, 2001.
[5] M. Al-Sebie and Z. Irani, “Technical and organisational challenges
facing transactional e-government systems: an empirical study,” Electron.

Gov. Int. J., vol. 2, no. 3, pp. 247–276, 2005.
[6] J. Rowley, “eGovernment stakeholders—Who are they and what
do they want?,” Int. J. Inf. Manag., vol. 31, no. 1, pp. 53–62, 2011.
[7] G.-J. Ahn, “Discretionary Access Control,” in Encyclopedia of

Database Systems, L. LIU and M. T. ÖZSU, Eds. Springer US, 2009, pp.
864–866.
[8] P. Samarati and S. D. C. Di Vimercati, “Access control: Policies,
models, and mechanisms,” Lect. Notes Comput. Sci., pp. 137–196, 2001.
[9] D. F. Ferraiolo and D. R. Kuhn, “Role-based access controls,”
ArXiv Prepr. ArXiv09032171, 2009.
[10] I. Y. Omar, R. Laborde, A. S. Wazan, F. Barrere, and A. Benzekri,
“G-Cloud on Openstack: Adressing access control and regulation
requirements,” in International Symposium on,Networks, Computers and

Communications (ISNCC), 2015, pp. 1–6
[11] “eXtensible Access Control Markup Language (XACML) Version
3.0.” [Online]. Available: http://docs.oasis-open.org/xacml/3.0/xacml-3.0-
core-spec-en.html. [Accessed: 08-Feb-2016].
[12] “Documentation — OpenStack.” [Online]. Available:
https://wiki.openstack.org/wiki/Documentation. [Accessed: 08-Feb-2016].
[13] V. Lifschitz, “What Is Answer Set Programming?.,” in AAAI,
2008, vol. 8, pp. 1594–1597.
[14] T. Eiter, G. Ianni, and T. Krennwallner, Answer set programming:

A primer. Springer, 2009.
[15] M. Gebser, R. Kaminski, B. Kaufmann, and T. Schaub, “Clingo=
asp+ control: Extended report,” Technical report, University of Potsdam,
2014.
[16] Z. Zhou and C. Hu, “Study on the e-government security risk
management,” Int. J. Comput. Sci. Netw. Secur., vol. 8, no. 5, pp. 208–213,
2008.
[17] C. Kalloniatis, E. Kavakli, and S. Gritzalis, “Security requirements
engineering for e-government applications: analysis of current frameworks,”
in Electronic Government, Springer, 2004, pp. 66–71.
[18] R. Breu, M. Hafner, B. Weber, and A. Novak, “Model driven
security for inter-organizational workflows in e-government,” in E-

Government: Towards Electronic Democracy, Springer, 2005, pp. 122–133.
[19] C. Lambrinoudakis, S. Gritzalis, F. Dridi, and G. Pernul, “Security
requirements for e-government services: a methodological approach for
developing a common PKI-based security policy,” Comput. Commun., vol.
26, no. 16, pp. 1873–1883, 2003.
[20] P. Drogkaris, S. Gritzalis, C. Kalloniatis, and C. Lambrinoudakis,
“A Hierarchical Multitier Approach for Privacy Policies in eGovernment
Environments,” Future Internet, vol. 7, no. 4, pp. 500–515, 2015.
[21] J. Hwang, T. Xie, V. Hu, and M. Altunay, “ACPT: A tool for
modeling and verifying access control policies,” in Policies for Distributed

Systems and Networks (POLICY), 2010 IEEE International Symposium on,
2010, pp. 40–43.
[22] M. Mankai and L. Logrippo, “Access control policies: Modeling

and validation,” in 5th NOTERE Conference (Nouvelles Technologies de la

Répartition), 2005, pp. 85–91.
[23] D. Jackson, “Alloy 3.0 reference manual,” Softw. Des. Group,
2004.
[24] K. Fisler, S. Krishnamurthi, L. A. Meyerovich, and M. C.
Tschantz, “Verification and change-impact analysis of access-control
policies,” in Proceedings of the 27th international conference on Software

engineering, 2005, pp. 196–205.
[25] A. Mohan, D. M. Blough, T. Kurc, A. Post, and J. Saltz,

“Detection of conflicts and inconsistencies in taxonomy-based authorization
policies,” in Bioinformatics and Biomedicine (BIBM), 2011 IEEE

International Conference on, 2011, pp. 590–594.
[26] E. Martin and T. Xie, “Inferring access-control policy properties
via machine learning,” in Policies for Distributed Systems and Networks,

2006. Policy 2006. Seventh IEEE International Workshop on, 2006, p. 4–pp.

