Quietly Angry, Loudly Happy: Self-Reported Customer Satisfaction Vs. Automatically Detected Emotion In Contact Center Calls
Eric Bolo, Muhammad Samoul, Nicolas Seichepine, Mohamed Chetouani

To cite this version:
Eric Bolo, Muhammad Samoul, Nicolas Seichepine, Mohamed Chetouani. Quietly Angry, Loudly Happy: Self-Reported Customer Satisfaction Vs. Automatically Detected Emotion In Contact Center Calls. Interaction Studies, 2023, 24 (1), pp.168-192. 10.1075/is.22038.bol . hal-04109350

HAL Id: hal-04109350
https://hal.science/hal-04109350
Submitted on 30 May 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Phone calls are an essential communication channel in today’s contact centers, but they are more difficult to analyze than written or form-based interactions. To that end, companies have traditionally used surveys to gather feedback and gauge customer satisfaction. In this work, we study the relationship between self-reported customer satisfaction (CSAT) and automatic utterance-level indicators of emotion produced by affect recognition models, using a real dataset of contact center calls. We find (1) that positive valence is associated with higher CSAT scores, while the presence of anger is associated with lower CSAT scores; (2) that automatically detected affective events and CSAT response rate are linked, with calls containing anger/positive valence exhibiting respectively a lower/higher response rate; (3) that the dynamics of detected emotions are linked with both CSAT scores and response rate, and that emotions detected at the end of the call have a greater weight in the relationship. These findings highlight a selection bias in self-reported CSAT leading respectively to an over/under-representation of positive/negative affect.

Keywords: Customer satisfaction · Emotions · Affective Computing · Real-World applications

1 Introduction

In spite of digitalization, phone calls remain a major communication channel in today’s contact centers, but they are more difficult to analyze than written or form-based interactions. In an increasingly customer-centric business environment, gathering insight from interactions has become a common practice. To that end, companies have traditionally used surveys to gather feedback and evaluate service quality using metrics such as Customer Satisfaction (CSAT). A CSAT form asks the customer to assess their level of satisfaction on a Likert-scale. In the context of call centers, the question is typically asked by the operator at the end of the call.

Even if widely used, CSAT presents important limitations: first, the response rate is usually well below 100%, pointing to a probable selection bias, as the population of responders is likely to differ from the overall population; second, it is a summary metric which cannot capture the full complexity of customer experience, nor reveal details about its evolution.

In light of these limitations, it is natural to look for alternative or complementary metrics which (1) are objective rather than declarative, (2) can be applied on all interactions rather than a biased sample, and (3) give a higher-resolution description of each customer’s experience. AI-based approaches are promising with respect to all three criteria, as
they do not depend on explicit feedback, can be applied on all interactions or a random sample, and can yield useful
information down the level of an utterance and sometimes further.

In this work, we study the relevance of affective computing techniques for evaluating service quality and customer
satisfaction. More precisely, we study the relationship between automatic utterance-level indicators of emotion and
CSAT, using a real-world dataset of call center interactions.

For this study, data was anonymized by detecting identifying information in transcripts produced by an Automatic
Speech Recognition (ASR) system and removing corresponding audio segments. Only customer speech turns were
taken into account, and all identifying metadata concerning customers and operators were discarded.

More specifically, we investigate the relationship between affective indicators and satisfaction by analyzing CSAT
response rate, proportions of high satisfaction and proportions of affective events in calls. For this purpose, we conducted
several analyses using affective computing models designed to predict positive/negative valence and detect anger, which
are used to label a very large dataset of real calls (160,630 calls). We find that positive valence and anger as well as
their dynamics in each call are meaningfully linked with both CSAT score and response rate.

1.1 Contributions
The main contributions of this work are as follows:

• we jointly study automatically detected emotions and self-reported customer satisfaction using a large dataset
  of contact center calls (160,630 calls);
• we show that automatically detected valence and anger are linked with CSAT scores and response rate;
• we qualify the selection bias inherent in self-reported CSAT by showing that positive valence and anger are
  respectively over- and under-represented in the collected scores;
• we show that the dynamics of emotion in each call is relevant with respect to both scores and response rate.

2 Related work
Natural language and speech processing techniques have been explored for the purpose automatic quality monitoring.
Here we review related work pertaining to automatic emotion detection, customer satisfaction, or both.

2.1 Emotion recognition in phone calls
Typical call center conversations focus on at most a handful of problems or requests, and generally last a few minutes.
There is a large body of work on emotion recognition showing that (non-neutral) emotional events are often rare, with
typically only a few emotionally colored utterances per call. This results in highly unbalanced data, with a predominance
of neutral labels [Morrison et al., 2007].

Since customer dissatisfaction can have a disproportional impact on a company’s reputation and function, negative
emotions have been a central focus of many works [Vaudable and Devillers, 2012, Erden and Arslan, 2011, Morrison
et al., 2007]. In [Galanis et al., 2013], a corpus of 135 call centre conversations was annotated using a fine-grained
approach aiming at specific emotions such as pleasure, satisfaction, surprise, interest, anger, irritation, frustration,
anxiety. These categorical values were then grouped under macro-classes representing neutral, positive and negative.
Vaudable and Devillers [2012] followed a similar approach with three macro-classes representing neutral (no emotion is expressed), positive (satisfaction, positive-surprise), and negative (anger, disappointment, and negative-surprise).

Most studies highlight the complexity of detecting emotions in real-life phone calls. In addition to class imbalance,
many authors note that emotions in call center interactions are more nuanced than what is found in databases of
prototypical emotion [Vaudable and Devillers, 2012]. This complexity usually results in moderate inter-annotator
agreement [Galanis et al., 2013, Vaudable and Devillers, 2012], as well as lower prediction performance.

All reviewed methods rely on machine learning algorithms taking as input acoustic and/or linguistic features. In this
study, both types of features are used. Most of the previous works on emotion recognition in phone calls focus on
discrete emotions [Vaudable and Devillers, 2012, Erden and Arslan, 2011], mainly "anger". This focus is motivated
by the fact that "anger" is among the most frequent negative emotions expressed by customers when calling call
centers [Petrushin, 1999]. "Anger" is also among the best recognized by automatic approaches
[Deschamps-Berger et al., 2021]. In addition, "anger" is considered to be the most important emotion for business
Petrushin, 1999]: detection of angry customers is central in the activity of companies, and several of them take
into account "anger" in their processes. For this purpose, we also consider "anger" in this paper. However, modern approaches of affective computing exploit dimensional representations that are also considered in this paper. More precisely, in this work emotion is modeled with two independent labels: an anger flag, and a "positive/negative valence" flags.

### 2.2 Prediction of customer satisfaction and/or service quality

Due to their optional nature and typically low response rates, CSAT surveys can miss important information. Automatic satisfaction predictions aims at filling the gaps by analyzing and rating all interactions. In [Zweig et al., 2006], the authors design expert features from transcripts produced by Automatic Speech Recognition (ASR) to tag a call as a "good" or "bad" interaction. For a given amount of listening effort, this method triples the number of "bad" calls that are identified, over a policy of randomly sampling calls.

In contrast to approaches based mainly on expert features, the trend has more recently been to predict quality metrics with machine learning as a main tool. For instance [Auguste et al., 2019] present classifiers aimed at labeling the customer in each call as "a promoter", "passive" or "a detractor". Ratings obtained from end-of-call questionnaires are used as the ground truth. In order to address the ordinal, subjective and skewed nature of self-reported satisfaction, a ranking approach is considered by [Bockhorst et al., 2017]. The approach produces more accurate predictions compared to standard regression and classification approaches that directly fit the survey scores with call data.

Besides lexical and acoustic features, characteristics specific to dyadic interactions have been used to predict satisfaction. In [Chowdhury et al., 2016], turn-taking characteristics including participation equality, turn-taking freedom and statistics related speaker turns are used as input to a predictor. This approach is used to predict the final emotional manifestation of a conversation, which is considered as the satisfaction of the customer (positive, negative or neutral). The authors show that turn-taking features outperform lexical and prosodic feature sets. In [Luque et al., 2017], ASR transcripts, dialog turn-level features and acoustic/prosodic features are combined to predict customer satisfaction. The experimental results suggest that verbal communication convey more information than non-verbal cues with respect to customer satisfaction and that both sources of information are complementary. A Deep Convolutional Neural Network (CNN) is proposed to embed both linguistic and acoustic/prosodic features which allow to learn a representation able to capture customer’s satisfaction.

The joint modeling of customer satisfaction at turn- and call-levels has been investigated in [Ando et al., 2017, 2020]. Two types of long short-term memory recurrent neural networks (LSTM-RNNs) are proposed to capture contextual information and the relationship between call-level and turn-level customer satisfaction. This hierarchical approach outperforms SVM based approach with relative error reductions of over 20%. These works show that the interplay between verbal and non-verbal communication for the prediction of customer satisfaction is complex but could be exploited to improve the performance of automated quality monitoring systems.

In [Segura et al., 2016], Deep CNNs are employed for feature learning for continuous prediction of satisfaction. The lower “feature representation” layers from a conflict detection model trained on TV media are used as feature extractors in a satisfaction prediction tasks. The authors demonstrate that the learned features overpower traditional spectral features, showing thereby a potential for domain transfer.

### 2.3 Joint analysis of emotion and customer satisfaction

In [Kim et al., 2020], the authors use detected sentiment in speech as features for predicting self-reported satisfaction, showing that this method enabled the system to predict CSAT nearly as well as a human listener. They also found that valence is the sentiment most linked to CSAT. In [Chowdhury et al., 2016], the authors show that user satisfaction could be modeled as a the final emotional manifestation (positive, negative and neutral) of a conversation. In [Luque et al., 2017], the authors analyzed the significance of various acoustic, prosodic and linguistic features that correlate to emotion to predict self-reported satisfaction in contact centre phone calls. Linguistic features are obtained by a customized Automatic Speech Recognition (ASR) system trained with calls from call centers. Fundamental frequency, speech loudness as well articulation rate (number of syllable nuclei per phonation time) are the main acoustic and prosodic features used in this work. The authors also consider Low Level Descriptors extracted with OpenSmile using paralinguistic 2013 configuration. [Schuller et al., 2013]. We exploit a similar methodology in this paper by combining a customized ASR system (section 5.1) and low-level descriptors for emotion recognition (section 5.2).

As noted above, some works use emotions as a proxy for satisfaction, while other works use them as inputs to supervised predictors trained on self-reported satisfaction. By contrast, this study is primarily descriptive. Our goal is to better understand the relationship between emotion and self-reported satisfaction. More precisely, we ask whether customers expressing positive/negative emotions respond more to CSAT questionnaires and report higher/lower satisfaction.
3 Hypotheses

The aim of this study is to determine if and how detected emotions and self-reported CSAT are related. We consider both aggregate (call-level) and dynamic indicators. Since filling the CSAT questionnaire is optional, we also consider the response rate, defined as the proportion of calls with a CSAT score over all calls.

We formulate the following hypotheses:

- **H1 Customers’ emotions and CSAT response**
  - H1a: Customers expressing positive emotions respond more to CSAT questionnaires;
  - H1b: Customers expressing negative emotions respond less to CSAT questionnaires;
  - H1c: Customers expressing anger respond less to CSAT questionnaires;

- **H2 Customers’ emotions and self-reported satisfaction**
  - H2a: Customers expressing positive emotions report higher satisfaction;
  - H2b: Customers expressing negative emotions report lower satisfaction;
  - H2c: Customers expressing anger report lower satisfaction;

- **H3 Customers’ emotional profiles and CSAT response rate**
  - H3a: Customers manifesting upward positive valence dynamics (more positive emotions towards the end of the call) exhibit a higher CSAT response rate compared to flat or negative dynamics;
  - H3b: Customers manifesting downward negative valence dynamics (fewer negative emotions towards the end of the call) exhibit a higher CSAT response rate compared to flat or positive dynamics;
  - H3c: Customers manifesting downward anger dynamics (fewer anger events towards the end of the call) exhibit a higher CSAT response rate;

- **H4 Customers’ emotional profiles and self-reported satisfaction**
  - H4a: Customers manifesting upward positive valence dynamics report higher satisfaction;
  - H4b: Customers manifesting downward negative valence dynamics report higher satisfaction;
  - H4c: Customers manifesting downward anger dynamics report higher satisfaction;

4 Materials

4.1 Database

The corpus consists of 160 630 call center conversations that occur between a customer and an operator in French. All conversations were recorded between July 2021 and September 2021. The corpus contains a total of 28 478 hours of conversation, with call duration ranging from 40 seconds to 80 minutes. The average call duration is 11 minutes. All calls were recorded in stereo, with a sample rate 8 kHz and 16 bit format.

Calls were automatically processed and analyzed using custom models. The linguistic content of the calls was extracted using an Automatic Speech Recognition (ASR) system tuned on phone conversations (section 5.1). Personal information such as names, addresses and phone numbers was detected and permanently removed using a Named Entity Recognition (NER) algorithm.

4.2 Customer satisfaction

Operators may but do not always propose the CSAT questionnaire at the end of each call, and the customer is free to accept or decline the eventual proposal. In this context, it is useful to define the response rate as the number of calls with a CSAT score over the total number:

\[
\text{CSAT response rate} = \frac{\text{Nbr of Calls with CSAT scoring}}{\text{Total Nbr of Calls}} \quad (1)
\]

The CSAT questionnaire takes the form of a 9-point Likert: from level 0 (very unsatisfied) to 9 (very satisfied). The value obtained for each call is the CSAT score (\(CSAT_{score}\)).
The results of the CSAT questionnaire are also studied using a binary coding. Customers who answer from 6 to 9 are considered to be moderately to highly satisfied (labeled as "High Satisfaction"), those who answer from 0 to 5 are labeled as dissatisfied customers (labeled as "Low Satisfaction").

In addition to the per-call raw CSAT score, we introduce the Aggregate High Satisfaction score (aggH-CSAT). Given all calls with a CSAT score, we define aggH-CSAT as the number of calls with High satisfaction divided by the total number of calls with a CSAT score (Low and High satisfaction scores):

\[
\text{aggH-CSAT} = \frac{\sum_{i=6}^{9} \text{CSAT score}(i)}{\sum_{i=1}^{9} \text{CSAT score}(i)}
\]

The aggH-CSAT score is suitable for measuring the proportion of high self-reported customer satisfaction in calls with and without a detected emotion. aggH-CSAT score is bounded in \([0, 1]\), a greater value indicating a greater proportion of higher satisfaction.

### 4.3 Affective Indicators

We define positive emotional events as utterances flagged as positive/negative by the valence classifier (negative/neutral/positive). Similarly, anger events are utterances flagged as containing anger by the anger classifier. An utterance is a speaking turn containing at least three words. Turns range from 3s to 30s. A call is considered to contain the emotion (anger, positive/negative valence) if one emotion event is detected (hard labels). The satisfaction-emotion relationship is studied independently for each emotion.

For each emotion, we compute the CSAT response rate based on the number of calls with and without CSAT scoring. We compare the CSAT response rate of calls of customers expressing specific emotions. We then compare the proportion of calls \((\pi_1 \text{ and } \pi_2)\) of customers expressing an emotion \((i)\) with and without CSAT scoring and \((ii)\) with High and Low satisfaction scores.

### 4.4 Dynamics of Affective Indicators and Customers’ profiles

We analyze the dynamics of affective indicators to better characterize their relationship with CSAT. Given that call duration varies, we define three call phases using interquartile ranges:

- **beginning phase**, defined as first 25% of the duration (lower quartile).
- **middle phase**, defined as the next 50% of the call (middle quartile).
- **end phase**, defined as the last 25% of the call (upper quartile). The CSAT questionnaire is typically proposed during the conclusion of the call, thus in the end phase.

To study the dynamics of emotions during the call, the affective indicators are extracted for each phase of the call, for each emotion: \(N_{\text{beg}}, N_{\text{mid}}, N_{\text{end}}\) denoting the number of emotional events detected in the phase. We define the \(\Delta\) score, a summary metric of the dynamics of detected emotions:

\[
\Delta = \frac{N_{\text{end}} - N_{\text{beg}}}{N_{\text{beg}} + N_{\text{mid}} + N_{\text{end}}}
\]

A negative/positive \(\Delta\) score indicates a decrease/increase in the occurrence of emotional events as the call progresses. \(\Delta\) score is used to identify profiles of customers manifesting upward / downward emotion dynamics.

### 5 Methods

This section presents our methods for detecting affective indicators and analyzing their relationship with self-reported satisfaction. An essential step of our process is automatic speech recognition, which is described in section 5.1. We then describe the automatic emotion recognition model in section 5.2.

### 5.1 Automatic speech recognition

The ASR system used for this study draws from the Eesen framework proposed by Miao et al. [2015], and is implemented using a combination of custom code and utilities from Kaldi [Povey et al., 2011] and Eesen [Miao et al., 2015].
The features are Mel Frequency Cepstral Coefficients (MFCCs) computed with their deltas and delta-deltas over 20ms windows using 20 Mel-frequency bins, resulting in one 60-dimensional vector per frame. Cepstral Mean and Variance Normalization (CMVN) is applied using training data statistics to obtain identical per-utterance statistics across utterances, a technique known to improve the robustness of ASR systems to acoustic variability [Vilikki and Laurilä, 1998].

The phonetic recognizer is a bi-directional LSTM network with 5 layers, with a cell dimension of 320. It is trained using CTC loss [Graves et al., 2006], whose main benefit is to not require alignment of the phonemes in the training data.

The language model computes probabilities of n-grams, smoothed using the Kneser-Ney method to estimate the probabilities of n-grams unseen in the training data. We compute smoothed 1-, 2- and 3-grams probabilities.

The decoding graph, a weighted Forward State Transducer (wFST), incorporates the list of phonemes, the phonetic lexicon associating each word with its pronunciation(s), and the language model. During decoding, the phonetic model outputs phoneme probabilities for each frame, which are passed as inputs to the decoding graph. The most probable word sequence is computed using Viterbi decoding.

The hyper-parameters of the ASR system (for feature extraction, phonetic modeling, language modeling and decoding) were chosen using results of previous optimization experiments in similar domains.

Separate ASR models were trained for the agent and customer channels. The training data consists of 104 hours collected from a similar domain and manually transcribed. 5 hours are set aside for evaluation, leaving 99 hours of training data. Using the method described above (previously optimized in similar contexts), the ASR system achieves a Word Error Rate (WER) of 25.5% on the customer channel, and 16.5% on the agent channel. Only the customer channel ASR model is used in this study.

### 5.2 Automatic emotion recognition

#### 5.2.1 Data and labels

Emotions in the customer’s speech were detected using pre-trained custom models. Training data originated from call center data and was annotated by internal annotators using our recently open-sourced speech annotation platform Labelit [1].

Annotators were asked to label utterances extracted from call center data. Valence was annotated on an ordinal scale using a 5-point Likert scale, with multiple annotators (3 to 5) annotating each utterance. Our operational definition of valence is directly taken from the dimensional valence-arousal model [Russell, 1980]. Ordinal labels were binned to make up three categories: negative (1-2), neutral (3) and positive valence (4-5). Categorical training labels were obtained by averaging the ordinal labels of the multiple annotators. Then, we match the values with the corresponding bin (1-2; 3; 4-5). Anger was annotated as a binary categorical label, with multiple annotators (3 to 5) annotating each utterance. Categorical training labels were obtained by majority vote at the utterance level.

#### 5.2.2 Emotion Recognition model

Multiple model architectures and feature extraction methods were optimized and compared on this task. We now describe the best performing pipeline on this dataset.

We designed two predictive models one for respectively valence (3-class problem) and anger (2-class problem) prediction that exploit both linguistics and non-linguistics features.

The custom ASR model described in section 5.1 was applied on each utterance in the analyzed dataset. We extracted \( n \)-grams, with \( n \) ranging from 1 to 4. The textual content from each utterance is then vectorized using Term Frequency Inverse Document Frequency (TD-IDF).

Summative audio features were extracted for each utterance audio, resulting in a fixed-sized vector containing a combination of low-level descriptors (LLDs) and associated functionals. This technique is commonly used in the literature [Schuller et al., 2010a, 2013, 2019]. In this paper, the openSMILE toolkit [Eyben et al., 2013] was used to extract the INTERSPEECH 2010 Paralinguistic Challenge [Schuller et al., 2010b] feature set from the speech signal. The set contains 1582 features for each utterance. OpenSMILE computes Low-Level Descriptors (LLDs) from pitch, loudness, voice quality as well as cepstrum and linear predictive representations. Then, a series of functionals are applied to LLDs such as extremes, statistical moments, percentiles, duration and regression.

We optimized and evaluated multiple models for each task (anger, valence). Separate logistic regression models were trained for audio and text features using a 5-fold cross-validation strategy. The final prediction is a weighted sum of the best audio and text models, where the weights are learnt. See Table 1 for a performance summary.

Table 1: Emotion recognition system: performances

<table>
<thead>
<tr>
<th></th>
<th>Valence prediction</th>
<th>Anger prediction</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1 (weighted)</td>
<td>0.67</td>
<td>0.69</td>
</tr>
</tbody>
</table>

5.3 Data analysis

In order to test the hypotheses formulated in 3, we consider the following variables:

- CSAT response rate (equation 1): variable between 0 to 1, defined as the number of calls with a customer scoring divided by the total number of calls.
- Aggregate satisfaction score (aggCSAT, equation 2): variable between 0 to 1, defined as the number of calls with High Satisfaction (i.e., CSAT score [6, 9]) divided by the total numbers of a calls with a CSAT score.

A chi-square test was used to compare CSAT response and High/Low satisfaction against detected emotion (H1, H2 and H3 and H4) using a significance level of $\alpha = 0.05$, in case of multiple comparisons a Bonferroni correction has been performed. Analysis results were presented as frequency for categorical data.

Using a two proportion z-test, we analyze proportions of emotions in calls with and without CSAT scoring (H1a, H1b and H1c). For each analysis, we compute the two sample proportions $\pi_1$ and $\pi_2$. We then use the following null hypothesis:

$\textbf{H}_0$: $\pi_1 = \pi_2$ (the two sample proportions are equal)

We consider the corresponding alternative hypotheses that can be either left-tailed, or right-tailed:

- $\textbf{H}_a$ (left-tailed): $\pi_1 < \pi_2$ (sample 1 proportion is less than sample 2 proportion)
- $\textbf{H}_a$ (right-tailed): $\pi_1 > \pi_2$ (sample 1 proportion is greater than sample 2 proportion)

using a significance level of $\alpha = 0.05$ to indicate strong evidence against the null hypothesis H0. Bonferroni corrections were performed when multiple comparisons are made.

For each analysis, we report the proportion, the z-statistic and the significance level.

6 Results

6.1 CSAT scoring in phone calls

In this section, we analyze (i) the CSAT response rate; and for calls with a scoring, (ii) the distribution of the CSAT scores. The distribution detailed in (Table 2) shows that most of the customers do not respond to the satisfaction questionnaire with a CSAT response rate of approximately of 30%.

Table 2: Distribution of call types: with and without customer satisfaction scoring (CSAT)

<table>
<thead>
<tr>
<th></th>
<th># of calls</th>
</tr>
</thead>
<tbody>
<tr>
<td>All calls</td>
<td>160 630</td>
</tr>
<tr>
<td>Without CSAT scoring</td>
<td>111 001</td>
</tr>
<tr>
<td>With CSAT scoring</td>
<td>49 629</td>
</tr>
<tr>
<td>CSAT response rate</td>
<td>0.29</td>
</tr>
<tr>
<td>Low satisfaction (CSAT score 0-5)</td>
<td>3 120</td>
</tr>
<tr>
<td>High satisfaction (CSAT score 6-9)</td>
<td>46 309</td>
</tr>
<tr>
<td>aggH-CSAT</td>
<td>0.93</td>
</tr>
</tbody>
</table>

However, when customers do respond to the questionnaire, they tend to report high satisfaction as reported in table 2 and figure 1. The aggregate high satisfaction score (aggH-CSAT) is very high 0.93.
Since CSAT is collected on a fraction of all calls, the CSAT scores do not provide a full view of customer satisfaction, as the population of non-responders may differ greatly from the population of responders.

### 6.2 Emotion recognition

In this section, we apply the two emotion prediction models described in section 5.2 to label 160,630 calls of the database of the current study (table 2). As mentioned in section 4.3, each emotion target is studied independently. The number of calls detected per emotion by our models are reported in table 3. Consistent with the literature [Vaudable and Devillers, 2012, Morrison et al., 2007], calls containing anger are somewhat rare.

**Table 3: Number of calls per detected emotion**

<table>
<thead>
<tr>
<th>Target class</th>
<th>Positive valence</th>
<th>Negative Valence</th>
<th>Anger</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target class</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>703</td>
<td>99</td>
<td>629</td>
</tr>
<tr>
<td>No target class</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>119</td>
<td>927</td>
<td>61</td>
<td>152</td>
</tr>
</tbody>
</table>

### 6.3 CSAT response rate and emotions

In this section, we compare the CSAT response rate against detected emotional events (positive/negative valence and anger) using the data described in table 3. In table 4 and figure 2 we report the number of calls with and without a CSAT score per emotional category. We also report the number of calls with and without CSAT scoring without emotional analysis ("All calls") and we take the CSAT response of such calls as our baseline (0.29).

**Table 4: CSAT response rate and emotion in respect to the emotion analysis. * indicates a significant difference with the baseline (p<0.05)**

<table>
<thead>
<tr>
<th># of calls</th>
<th>With CSAT scoring</th>
<th>Without CSAT Scoring</th>
<th>CSAT response rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>All calls</td>
<td>49 629</td>
<td>111 001</td>
<td>0.29</td>
</tr>
<tr>
<td>Calls with positive valence</td>
<td>13 491</td>
<td>27 212</td>
<td>0.33*</td>
</tr>
<tr>
<td>Calls with negative valence</td>
<td>31 722</td>
<td>67 907</td>
<td>0.32*</td>
</tr>
<tr>
<td>Calls with anger</td>
<td>892</td>
<td>3 586</td>
<td>0.20*</td>
</tr>
</tbody>
</table>

Table 4 shows that the proportions of calls with a CSAT scoring and with positive valence differ from "All Calls" ($\chi^2(1) = 76.18, p < 0.05$). A higher CSAT response rate is observed (0.33) for calls with positive valence. The analysis indicates similar results regarding calls with negative valence ($\chi^2(1) = 25.43, p < 0.05$) with a CSAT response rate of 0.32. A Chi-Square test was performed to determine whether the proportion of calls with CSAT scoring was
equal between "All Calls" and "Calls with Anger". The proportions did differ ($\chi(1) = 259.43, p < 0.05$). Customers expressing anger significantly respond less to the CSAT questionnaire (0.20).

We now analyze the proportion of detected emotions in calls with and without CSAT scoring using a z-test proportion test (table 5). The results indicate that the proportion of calls with positive valence is higher in calls with CSAT scoring (with CSAT 0.27 vs. without CSAT 0.24, $z = 11.36, p < 0.05$). A similar result is obtained for calls with negative valence (with CSAT 0.63 vs. without CSAT 0.61, $z = 10.46, p < 0.05$). However, the proportions of calls with anger is significantly lower in calls with a CSAT scoring (0.01 < 0.03, $z = -16.12, p < 0.05$).

### 6.4 Satisfaction score and emotions

When CSAT scoring is available, we analyze the distribution of CSAT scores with respect to the presence of emotional content. In figure 3, we report the normalized CSAT score distribution (0-9). Call volumes for each analysis are reported in table 6.

<table>
<thead>
<tr>
<th>Table 5: Proportion of detected emotion in calls with and without CSAT scoring.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proportion in With CSAT scoring ($\pi_1$) Without CSAT Scoring ($\pi_2$)</td>
</tr>
<tr>
<td>Calls with positive valence</td>
</tr>
<tr>
<td>Calls with negative valence</td>
</tr>
<tr>
<td>Calls with anger</td>
</tr>
</tbody>
</table>

We consider as a baseline the CSAT score distribution of calls irrespective of detected emotional content ("All calls"). As we can see in figure 3, most of the customers report a high satisfaction. This is also supported by the aggregate high satisfaction score (aggH-CSAT) (section 4.2), which captures a normalized balance between High/Low scoring, a high score indicating more satisfactory customers. The aggH-CSAT score of calls is already high (0.93), which, as already noted, shows that most of the customers report high CSAT scores.

Table 6: Number of calls per CSAT scoring in respect of affective computing analysis (see also figure 3) and the Aggregate High Customer Satisfaction score (aggH-CSAT) in respect to the emotion analysis. * indicates a significant difference with the baseline (p<0.05)

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>aggH-CSAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>All calls</td>
<td>1079</td>
<td>414</td>
<td>239</td>
<td>277</td>
<td>268</td>
<td>1043</td>
<td>907</td>
<td>3169</td>
<td>7693</td>
<td>34540</td>
<td>0.93</td>
</tr>
<tr>
<td>Calls with positive</td>
<td>150</td>
<td>94</td>
<td>44</td>
<td>43</td>
<td>53</td>
<td>182</td>
<td>165</td>
<td>602</td>
<td>1814</td>
<td>10344</td>
<td>0.96*</td>
</tr>
<tr>
<td>valence</td>
<td></td>
</tr>
<tr>
<td>Calls with negative</td>
<td>929</td>
<td>320</td>
<td>195</td>
<td>234</td>
<td>215</td>
<td>861</td>
<td>742</td>
<td>2567</td>
<td>5879</td>
<td>24196</td>
<td>0.92*</td>
</tr>
<tr>
<td>valence</td>
<td></td>
</tr>
<tr>
<td>Calls with negative</td>
<td>883</td>
<td>299</td>
<td>180</td>
<td>184</td>
<td>193</td>
<td>747</td>
<td>556</td>
<td>2012</td>
<td>4819</td>
<td>21849</td>
<td>0.92*</td>
</tr>
<tr>
<td>valence</td>
<td></td>
</tr>
<tr>
<td>Calls with negative</td>
<td>196</td>
<td>115</td>
<td>59</td>
<td>93</td>
<td>75</td>
<td>296</td>
<td>351</td>
<td>1157</td>
<td>2874</td>
<td>12691</td>
<td>0.95*</td>
</tr>
<tr>
<td>valence</td>
<td></td>
</tr>
<tr>
<td>Calls with anger</td>
<td>184</td>
<td>17</td>
<td>11</td>
<td>17</td>
<td>10</td>
<td>39</td>
<td>26</td>
<td>51</td>
<td>115</td>
<td>422</td>
<td>0.69*</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Calls without anger</td>
<td>895</td>
<td>397</td>
<td>222</td>
<td>266</td>
<td>258</td>
<td>1004</td>
<td>881</td>
<td>3118</td>
<td>7578</td>
<td>34118</td>
<td>0.94*</td>
</tr>
</tbody>
</table>

We study the relationship between reported satisfaction and detected customer emotion, we compare the proportions of High/Low satisfaction against the presence or absence of each emotion. (table 6 and figure 3). The proportions of High satisfaction is higher for customers expressing positive valence than those not expressing it ($\chi(1) = 184.1, p < 0.05$). In addition, a higher aggH-CSAT is observed for such customers (0.96 > 0.93). Regarding customers expressing negative valence, similar results are obtained ($\chi(1) = 184.85, p < 0.05$). A slightly lower aggH-CSAT is observed (0.92 < 0.93).

Customers expressing anger report much lower satisfaction (aggH-CSAT = 0.69). Customers expressing anger still report high satisfaction on average, but a significant proportion reports dissatisfaction. (table 6 and figure 3). A significantly higher satisfaction is observed for customers who are not expressing anger (aggH-CSAT = 0.94). The proportions of high satisfaction differ in calls with and without anger ($\chi(1) = 807.77, p < 0.05$).

### 6.5 CSAT response rate and emotional dynamics profiles

Using the $\Delta$ score of calls of each emotion category (section 4.4), we categorized calls into upward and downward emotional profiles according to the dynamics of detected emotion. For each emotion, only calls containing at least one detected event are considered. In table 7, we report the CSAT response rates of such emotional profiles. The results show that customers with upward anger dynamics (i.e., more anger events at the end of the call) respond significantly less to the satisfaction score (0.16, $p < 0.05$).
Table 7: CSAT response rate with respect to the customers’ emotional profiles. * indicates a significant difference with the baseline (p<0.05)

<table>
<thead>
<tr>
<th># of calls</th>
<th>With CSAT scoring</th>
<th>Without CSAT Scoring</th>
<th>CSAT response rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>All calls</td>
<td>49 629</td>
<td>111 001</td>
<td>0.29</td>
</tr>
<tr>
<td>Calls with upward positive valence dynamics</td>
<td>11 896</td>
<td>24 577</td>
<td>0.32*</td>
</tr>
<tr>
<td>Calls with downward positive valence dynamics</td>
<td>302</td>
<td>521</td>
<td>0.36*</td>
</tr>
<tr>
<td>Calls with upward negative valence dynamics</td>
<td>15 489</td>
<td>40 017</td>
<td>0.27*</td>
</tr>
<tr>
<td>Calls with downward negative valence dynamics</td>
<td>5 854</td>
<td>9 621</td>
<td>0.37*</td>
</tr>
<tr>
<td>Calls with upward anger dynamics</td>
<td>437</td>
<td>2 155</td>
<td>0.16*</td>
</tr>
<tr>
<td>Calls with downward anger dynamics</td>
<td>82</td>
<td>230</td>
<td>0.38*</td>
</tr>
</tbody>
</table>

We compare the proportions of calls with CSAT scoring across profiles. We first compare the proportions of such profiles to "All Calls". We observe significant differences with calls with upward positive valence dynamics ($\chi^2(1) = 40.84, p < 0.05$), downward positive valence dynamics ($\chi^2(1) = 12.61, p < 0.05$), with upward negative valence dynamics ($\chi^2(1) = 175.20, p < 0.05$), downward negative valence dynamics ($\chi^2(1) = 314.01, p < 0.05$), upward anger dynamics ($\chi^2(1) = 235.09, p < 0.05$) and downward anger dynamics ($\chi^2(1) = 16.20, p < 0.05$).

We now compare the proportions of calls with and without CSAT in upward/downward emotional profiles. The proportions of high satisfaction are different in calls with upward/downward positive valence dynamics ($\chi^2(1) = 5.9, p < 0.05$). Similar observations are made for calls with upward/downward positive negative dynamics ($\chi^2(1) = 566.27, p < 0.05$) and calls with upward/downward anger valence dynamics ($\chi^2(1) = 16.2, p < 0.05$).

6.6 Self-reported satisfaction and emotional dynamics profiles

Using the approach described in section 6.4, we compare the proportions of high satisfaction across dynamics profiles.

Table 8: Number of calls per CSAT scoring with respect to affective computing analysis (see also figure 3) and the Aggregate High Customer Satisfaction score (aggH-CSAT) in respect to the emotion analysis. * indicates a significant difference with the baseline (p<0.05) (To be changed to integrating $\Delta$ score)

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>aggH-CSAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>All calls</td>
<td>1079</td>
<td>414</td>
<td>239</td>
<td>277</td>
<td>268</td>
<td>1043</td>
<td>907</td>
<td>3169</td>
<td>7693</td>
<td>34540</td>
<td>0.93*</td>
</tr>
<tr>
<td>Calls with upward</td>
<td>110</td>
<td>84</td>
<td>38</td>
<td>38</td>
<td>45</td>
<td>156</td>
<td>142</td>
<td>542</td>
<td>1582</td>
<td>9159</td>
<td>0.96*</td>
</tr>
<tr>
<td>positive valence</td>
<td></td>
</tr>
<tr>
<td>dynamics</td>
<td></td>
</tr>
<tr>
<td>Calls with downward</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>6</td>
<td>5</td>
<td>12</td>
<td>40</td>
<td>232</td>
<td>0.95*</td>
</tr>
<tr>
<td>positive valence</td>
<td></td>
</tr>
<tr>
<td>dynamics</td>
<td></td>
</tr>
<tr>
<td>Calls with upward</td>
<td>678</td>
<td>189</td>
<td>123</td>
<td>117</td>
<td>124</td>
<td>451</td>
<td>287</td>
<td>1059</td>
<td>2366</td>
<td>10095</td>
<td>0.89*</td>
</tr>
<tr>
<td>negative valence</td>
<td></td>
</tr>
<tr>
<td>dynamics</td>
<td></td>
</tr>
<tr>
<td>Calls with downward</td>
<td>89</td>
<td>36</td>
<td>20</td>
<td>21</td>
<td>23</td>
<td>102</td>
<td>76</td>
<td>326</td>
<td>880</td>
<td>4281</td>
<td>0.95*</td>
</tr>
<tr>
<td>negative valence</td>
<td></td>
</tr>
<tr>
<td>dynamics</td>
<td></td>
</tr>
<tr>
<td>Calls with upward</td>
<td>135</td>
<td>11</td>
<td>12</td>
<td>7</td>
<td>8</td>
<td>20</td>
<td>9</td>
<td>18</td>
<td>42</td>
<td>175</td>
<td>0.55*</td>
</tr>
<tr>
<td>anger dynamics</td>
<td></td>
</tr>
<tr>
<td>Calls with downward</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>1</td>
<td>7</td>
<td>15</td>
<td>46</td>
<td>0.84*</td>
</tr>
</tbody>
</table>

7 Discussion

It is natural to expect that positive/negative emotions are associated with higher/lower satisfaction, and the results presented above mostly confirm this expectation.

More precisely, we found that customers expressing positive emotions respond more to CSAT questionnaire ($H_{1a}$: CSAT response rate 0.33) and (when they respond) report higher satisfaction ($H_{2a}$: aggH-CSAT = 096). All null hypotheses regarding anger events were rejected. Customers expressing anger respond significantly less to the CSAT questionnaire ($H_{1c}$: CSAT response rate=0.2) and report lower satisfaction on average ($H_{2c}$: aggH-CSAT = 0.69).
We also found that the proportions of positive emotions in calls with CSAT scoring is higher than in calls without CSAT scoring ($0.27 > 0.24$, $z = 11.36$, $p < 0.05$). An opposite observation is made for calls with anger ($0.01 < 0.03$, $z = -16.12$, $p < 0.05$).

Contrary to our hypothesis $H_{1b}$, customers expressing negative emotions do not respond less to CSAT questionnaires (CSAT response rate: 0.32) but we do observe slightly lower overall satisfaction (aggH-CSAT = 0.92). The weakness of the correlation here suggests that the presence of negatively valent emotion alone has a small impact on satisfaction. Negative valence covers a wide swath of emotions which can have many different causes, including the customer’s mood, the quality of the interaction with the company representative, issues and obstacles for which the company or the representative may or may not be responsible. For example, a customer may call to express frustration about a problem, then report high satisfaction after the problem was well handled.

These results suggest that automatic emotion recognition by itself can complement but not replace self-reported satisfaction. While negative/positive emotions are linked with lower/higher CSAT, the presence of an emotion alone (e.g. anger) does not fully account for the reported score. Satisfaction is influenced by many factors besides momentary emotion, such as response effectiveness, overall service quality and other interactions with the company prior to the call. Furthermore, due to the limitations of optional reporting, we cannot be certain that the observed correlations apply in precisely the same way for calls for which no score is given.

The analysis of the response rate with respect to detected emotion provides insight into the selection bias induced by optional self-reporting of satisfaction. Angry customers have a tendency to answer less, and “happy” customers have a tendency to answer more, to CSAT questionnaires. Given this, it is likely that the aggregate CSAT score gives an overly optimistic picture of customer satisfaction. The reasons for the observed difference in response rates are unclear. As noted previously, proposal of the CSAT questionnaires is left to the discretion of customer representatives. It is possible that the emotions expressed by the customer not only influence whether the customer will respond, but also whether the questionnaire is offered in the first place.

When we compare the dynamics of detected anger against CSAT scores and response rate, we observe significant differences between “upward” and “downward” profiles. Customers manifesting downward anger dynamics exhibit a higher CSAT response rate (0.38, $H_{3c}$) and satisfaction (aggH-CSAT = 0.84, $H_{4c}$) than customers manifesting upward anger dynamics (CSAT response rate=0.16 and aggH-CSAT = 0.55). This suggests that anger expressed towards the end of the call is more meaningful with respect to satisfaction.

Customers manifesting upward positive valence dynamics exhibit a higher than average CSAT response rate (0.32, $H_{3a}$) and satisfaction (aggH-CSAT = 0.96, $H_{4a}$). However, we observed a similar behaviour for calls with downward positive valence dynamics (CSAT response rate=0.36 and aggH-CSAT = 0.95). Downward positive valence dynamics are actually associated with a higher response rate than upward dynamics. The observations are not symmetrical to those regarding anger. This result shows that positive valence is a relevant indicator of customer satisfaction since customers manifesting both upward and downward dynamics exhibit a high CSAT response rate and satisfaction.

Consistent with our findings for anger, calls with upward negative valence dynamics have a lower CSAT response rate (0.27) and reported high satisfaction (aggH-CSAT = 0.89) compared to calls with downward negative valence (CSAT response rate=0.37 and aggH-CSAT = 0.95, $H_{3b}$ and $H_{4b}$).

8 Conclusion and future works

This work provides a detailed description of the relationship between automatically detected emotion and self-reported satisfaction and shows that, for the studied dataset, detected valence and anger are linked with CSAT scores; positive emotions are linked with higher response rates, while anger is linked with a lower response rate; and finally, the dynamics of emotion significantly weigh on both scoring and response rate.

These findings suggest that emotions could be used by companies as a complement to CSAT, especially to shed light on calls without CSAT scores. Automatically detected emotions could also be used as input features to CSAT predictors, keeping in the mind that if the goal is to automate CSAT, both the presence of the score and the score itself should be modeled.

Future work will include expanding the range of considered emotions, specifically including more dimensional (arousal, dominance) and categorical (surprise, joy, disgust, etc.) labels. This could take the form of probabilistic class labels to compute emotional profiles [Mower et al. 2011].

We also plan on developing CSAT predictors that jointly model response and scoring using the insights garnered in the present study.
References


Customer Satisfaction & Detected Emotions


doi:https://doi.org/10.1016/j.csl.2018.02.004


doi:10.1109/ICASSP.2012.6289070


doi:10.3115/1225785.1225796
Figure 2: Number of calls with and without CSAT scoring in respect to detected emotions: (a) positive valence, (b) negative valence, (c) anger
Figure 3: CSAT scoring distribution with respect to emotional analysis. Number of calls are reported in table 6.

Figure 4: CSAT scoring distribution with of customer profiles.