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Automatic Context-Driven Inference of
Engagement in HMI: A Survey

Hanan Salam, Member, IEEE, Oya Celiktutan, Member, IEEE, Hatice Gunes, Senior Member, IEEE, and
Mohamed Chetouani, Member, IEEE,

Abstract—An integral part of seamless human-human communication is engagement, the process by which two or more participants
establish, maintain, and end their perceived connection. Therefore, to develop successful human-centered human-machine interaction
applications, automatic engagement inference is one of the tasks required to achieve engaging interactions between humans and
machines, and to make machines attuned to their users, hence enhancing user satisfaction and technology acceptance. Several
factors contribute to engagement state inference, which include the interaction context and interactants’ behaviours and identity.
Indeed, engagement is a multi-faceted and multi-modal construct that requires high accuracy in the analysis and interpretation of
contextual, verbal and non-verbal cues. Thus, the development of an automated and intelligent system that accomplishes this task has
been proven to be challenging so far. This paper presents a comprehensive survey on previous work in engagement inference for
human-machine interaction, entailing interdisciplinary definition, engagement components and factors, publicly available datasets,
ground truth assessment, and most commonly used features and methods, serving as a guide for the development of future
human-machine interaction interfaces with reliable context-aware engagement inference capability. An in-depth review across
embodied and disembodied interaction modes, and an emphasis on the interaction context of which engagement perception modules
are integrated sets apart the presented survey from existing surveys.

Index Terms—Engagement Detection, Human-Machine Interaction, Socially Intelligent Systems.

F

1 INTRODUCTION

The field of human-machine interaction (HMI) is rapidly de-
veloping to address various societal challenges. Human in-
teractions with machines can take different forms, depend-
ing on the scenario, machine (dis)embodiment (referred to
as interaction mode hereafter), and interaction goal. Ex-
amples include delivering remote education [1], enhancing
mental well-being [2], and supporting elderly individuals
[3]. The success of such applications highly depends on
users’ satisfaction, trust and technology acceptance; there-
fore, it is becoming increasingly desirable that human-
machine interaction systems develop social intelligence and
become attuned to their users through the effective use of
multimodal communication channels, ultimately leading to
the maximization of the targeted interaction’s outcomes [4].

One key component of social intelligence is unarguably
engagement [5], [6], [7]. Engagement is a complex multi-
modal and multi-faceted social phenomenon that requires
the perception and recognition of social signals and their
interpretation at a higher level for social behaviour regula-
tion. In the past decade, there has been a significant body
of work that aims to develop engagement inference mod-
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els and machine behaviour adaption mechanisms in vari-
ous human-machine interaction contexts [8], [9]. From the
perspective of disembodied interaction (machine interface
without embodiment, e.g. human-computer interaction), for
example in the context of HMI for learning, it is important
to design engaging learning systems that have the capability
of detecting the user’s engagement state and adapting to it,
allowing the user to acquire the learning outcomes objec-
tives [10], [11]. Within the context of game entertainment,
designing engaging games is essential for making the user’s
experience enjoyable and preventing withdrawal [12]. From
the perspective of embodied interaction (machine interface
with physical or virtual embodiment, e.g. human-agent
interaction and human-robot interaction), engagement is
an essential rubric, which allows a smooth and natural
interaction between the user and the robot/agent, and can
contribute to achieving effective long-term interactions that
go beyond the novelty effect. Across different HMI contexts,
achieving engaging human-machine interactions requires
that the machine is able to 1) interpret human’s engagement
from the observation of their multimodal cues [13] and 2)
express its engagement in an appropriate manner beyond
on-off interactions.

Lately there has been an increasing trend towards inte-
grating contextual information in social signal processing
and affective computing research [14], [15]. During an inter-
action, any information that allows the characterization of
an entity’s situation can be considered as context, provided
that the entity is an individual, a location, or any object
relevant to the human-machine interaction, including the
user and the machine [16]. Context is used intuitively by
humans in social interactions to act and react properly, as
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well as to correctly infer the others’ state of mind [16]. In
particular, humans might manifest their engagement state
in different ways that largely depends on context [17]. The
user’s mental, emotional, and behavioural states associated
with their engagement state was also found to vary with
the interaction context [18]. Consequently, improving the
machine’s access to context information would increase its
social intelligence skills and promote more accurate, adap-
tive, and engaging user experience [16].

The importance of integrating context in the design of
engagement inference systems has been loosely underlined
in the literature through the use of various contextual cues
as input to automatic engagement inference models [19].
Despite the global recognition of the importance of context-
aware engagement modeling and inference by the com-
munity, however, the literature lacks a systematic context-
driven overview on the topic. In this paper, we present
an in-depth overview of the engagement modelling, detec-
tion, and recognition approaches across different interaction
modes (i.e. disembodied and embodied interaction). We
put a special emphasis on the importance of context for
modelling engagement and for the development of context-
aware, accurate and adaptive engagement perception algo-
rithms. The current engagement survey is context-driven in
the sense that it discusses engagement definitions across
different interaction modes, outlines different contextual
factors that have an effect on human-machine engagement
(e.g. interaction mode and scenario, and personal factors),
and reviews contextual features used in engagement infer-
ence models in the literature.

There has been a couple of previous efforts that reviewed
the definition of engagement [20] and its implications in
human-agent interaction [6]. There is also a recent survey
by Oertel et al. [21], which reviewed the definition of en-
gagement and how it differs across different interaction
settings (i.e., real-world versus laboratory, short-term versus
long-term, social versus task oriented) and user profiles
(e.g., adults versus children). However, in their survey, the
emphasis is more on the behaviour adaptation strategies
and the review of the engagement perception methods
does not go beyond the deep learning approaches. In [22],
a survey on engagement level recognition in child-robot
interaction was also presented. However, the survey’s scope
was limited to education and therapeutic settings. To the
best of our knowledge, this paper is the first comprehensive
context-driven survey of automatic engagement inference,
starting from the definition of engagement to the design of
the full detection pipeline including data acquisition, feature
extraction, and inference.

This review will serve as a guide for researchers in-
terested in the topic of engagement to acquire a holistic
understanding of the concept. Specifically, the emphasis on
the contextual factors of engagement, and how engagement
was defined and detected across different contexts in the
literature will inform context-aware artificially intelligent
systems. Consequently, this will allow the design of human-
machine interactions with increased usability, accuracy, and
efficiency in real-time settings, leading to improved user
experience.

Fig. 1. Examples of disembodied [34] and embodied (HAI [35], HRI [15])
interaction scenarios.

2 CONTEXT-DRIVEN ENGAGEMENT DEFINITION

In order to build effective systems for engagement inference,
it is essential to establish a clear and precise definition of
the notion. Engagement is a complex construct composed of
various components or factors, which were covered across
various interaction modes, namely, human-human inter-
action (HHI), human-computer interaction (HCI), human-
agent interaction (HAI) and human-robot interaction (HRI).
Different concepts (e.g. attention, involvement, interest, im-
mersion, rapport) were related to engagement and some-
times even used interchangeably in the literature [20].

From the perspective of the user, engagement is often
seen to be composed of three factors: emotional, cognitive,
and behavioural. Depending on the context, some factors
can be predominant with respect to the others [18]. For
instance, cognitive factors such as concentration might be
more predominant in a learning context, compared to a
purely social context. It is crucial to understand how the
notion of engagement changes based on the different context
categories as they appeared in the different studies. We
distinguish between three context types that influence the
user’s engagement state, and process in their interaction
with intelligent systems, namely, (1) the interaction mode
(i.e., embodied vs. disembodied), (2) the interaction scenario
(e.g., competitive vs. collaborative), and (3) personal factors
(e.g., personality and gender). In this section, we summarise
the most commonly used definitions of engagement and
associated attributes. We investigate how engagement was
related to different concepts across different contexts. We
underline how these change based on the context. Table
2 summarizes the commonly used definitions across the
different modes of interaction.

2.1 Interaction Mode: Embodied vs. Disembodied

In the sequel, we review widely used definitions of engage-
ment for human-human interaction, disembodied human-
machine interaction (e.g., mobile devices and web appli-
cations), and embodied human-machine interaction (e.g.,
agents, and robots) settings.

2.1.1 Engagement in Human-Human Interaction
The notion of engagement in human-human interaction
(HHI) was addressed in social sciences by Goffman [5] who
differentiates between unfocused interaction and focused inter-
action. Unfocused interaction, a pre-requisite of engagement,
is concerned with what can be communicated between peo-
ple due to their co-presence in the same social situation (e.g.
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TABLE 1
Summary of the most commonly used definitions across the different modes of interaction: HHI, HCI, HAI, and HRI. Interaction Mode (IM).

IM Definition Paper

HHI Engagement occurs when people gather closely together and openly cooperate to sustain a single focus of attention, typically by taking
turns at talking. [5]

HCI Engagement with technology is a measure of the quality of user experience. [6], [23]

A connection that exists at any point of time and possibly over time between a user and a resource.
The cognitive, affective, and behavioural state of interaction that makes the user want to be there. [24]

Engagement in online learning is a construct that encompasses student’s behaviours and involvement in consistent engagement with
resources or activities within the online environment, with the end-goal of achieving learning. [25]

Engagement in computer supported collaborative learning is with-me-ness which measures how much are the students with the
instructor. [26]

HAI An emotional state linked to the participant’s goal of receiving and elaborating new and potentially useful knowledge. [27]

Empathic engagement is fostering of emotional involvement intending to create a coherent cognitive and emotional experience which
results in empathic relations. [28]

The value that a participant in an interaction attributes to the goal of being together with the other participant(s) and continuing
interaction. [29]

HRI
The process by which two (or more) participants establish, maintain and end their perceived connection. This process includes initial
contact, negotiating a collaboration, checking that the other is still taking part in the interaction, evaluating, staying involved, and deciding
when to end connection.

[7]

The process of subsuming the joint, coordinated activities by which participants initiate, maintain, join, abandon, suspend, resume, or
terminate an interaction. [30]

Magnitude of an intrinsically motivated behaviour that is initiated by an organism to reach a specific goal [31]

Task engagement where there is a task and the participant starts to enjoy the task they are doing, social engagement which considers being
engaged with another party when there is no task included, and social-task engagement which includes interaction with another (e.g.,
robot) where both cooperate with each other to perform a task.

[32]

Productive Engagement is defined as the level of engagement that maximizes learning. [33]

glancing to glean information about the other). On the other
hand, focused interaction (face engagements/encounter)
takes place when there is cooperation between individuals
gathering closely together to sustain a single focus of attention,
commonly via turn-taking and conversing.

In HHI, several researchers investigated engagement in
the context of learning. Learner’s engagement was linked
to emotional (valence, value, interest), cognitive (motiva-
tion, effort, strategy), and behavioural (participation, per-
sistence) components [36] [37] [38] [39] [40]. Another view
of learner’s engagement in school setting relates engage-
ment to behavioural, academic, cognitive, and psychological
dimensions [41]. For instance, behavioural engagement in
a class refers to class attendance, concentrating on tasks,
listening and following the teacher’s directions. A cognitive
component (concentration) is apparent in what is described
as behavioural in [41]. Emotional engagement is the emotional
attitude concerning the learning task. A student may have
high behavioural engagement (a student obtaining high
grades on exams) and low emotional engagement (but is
bored). Cognitive engagement is related to learning with cog-
nitive abilities such as memory, attention, or strategy. An-
other work considered student’s engagement as the linear
sum of the student’s perceived focused attention, percieved
involvement in the task, and the endurability (perception
of the experience as worthwhile) [42]. Few studies dis-
cussed that a learner’s engagement state can be modelled
by the learner’s affective state [43]. Specifically, engage-
ment was directly related to the state of flow [44], which
can be reached during periods of full engagement (e.g.
when improving or enjoying the learning activity), whereas
disengagement can be depicted during period of lack of

enjoyment or non-advancement in the learning activity.
Negative affective states such as boredom, frustration, and
confusion are connected to disengagement [44]. In addition
to enjoyment, factors of challenge and being in a zone of
proximal development (distance between what a learner can
do with support and without support) were considered for
student’s engagement [45]. The study of Pekrun et al. [46]
proposed that learning and cognition are highly affected by
affect, which has an impact on motivation, attention, and
strategy use.

The definitions of engagement in HHI focus on the co-
presence of interaction partners, cooperation on mutual ac-
tivities, sustaining a single focus of attention, and establish-
ing and maintaining a connection. The interaction between
humans is an embodied one, and the embodiment is similar.
Humans as interaction partners are of similar nature, and
the interaction is governed by various factors such as the
(in)existence of a history between the individuals, their
social roles, the goal of the encounter, their knowledge of
each others, their rapport, their similarities and differences,
their characteristics and backgrounds, etc.

2.1.2 Engagement in Disembodied HMI
Disembodied HMI (also referred to as HCI) can take several
forms, such as interacting with a computer application,
web searching, online shopping, webcasting, learning, and
gaming among others. In such interaction, the focus is
primarily on the task. While some form of social interaction
might exist, the absence of embodiment, limits the ma-
chine’s expression of some forms of social intelligence (e.g.
through non-verbal signals like gestures and emotions), and
consequently, the expectation of the user from the system in
this regard. Certain social channels (e.g interactive pop-up
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messages in learning contexts) can be used in such contexts
to increase the human’s engagement, but this depends on
the machine’s design and social expressivity capabilities.
However, the design of engaging human-computer inter-
actions, even with limited social intelligence expressivity, is
of utmost importance, and serves in attaining the system’s
end-goal, ensuring its usability and long-term usage. The
factors pertaining to engagement in HCI depend on the
system’s characteristics, social expressivity capabilities, and
the interaction’s end goal, among others.

Engagement with technology is regarded as a measure of
the quality of user experience [6], [23], a connection between
a user and a resource that can exist at any instant and even
in the long term [47]. Engagement with a computer appli-
cation was referred to by Obrien et al. [24] as the cognitive,
affective, and behavioural state of interaction that “makes
the user want to be there”. It is a process comprised of
four distinct stages including point of engagement, period of
sustained engagement, disengagement, and re-engagement.
It is characterized by attributes that concern the user, sys-
tem, and their interaction. These include challenge, positive
affect, endurability, aesthetic and sensory appeal, attention,
feedback, variety/novelty, interactivity, and perceived user
control [6]. Reputation, trust and expectation, and user
context were also underlined as characteristics of engage-
ment in the context of web-applications [47]. In practice,
engagement characteristics were narrowed down in some
HCI contexts to cognitive components, e.g. attention [48],
[49], or affective components, e.g. frustration [50].

Engagement in the context of online learning has been
widely studied. For instance, the concept of with-me-ness
for computer supported collaborative learning was intro-
duced in [26] in an attempt to assess “how much are the
students with the instructor?”. Two components of with-
me-ness are distinguished: perceptual - learner engages with
what the instructor is referring to via deictic gestures (e.g.
pointing), and conceptual - learner engages with what the
instructor is referring to verbally. In [25], engagement in
online learning is regarded as a construct that encompasses
student’s behaviours and involvement in consistent engage-
ment with resources or activities within the online environ-
ment, with the end-goal of achieving learning. Concerning
factors pertaining to engagement in online learning were re-
ferred to as social, cognitive, behavioural, collaborative and
emotional elements [51]. The student’s access to learning
material was underlined as a factor of student’s engagement
in [52]. A longitudinal study aiming at understanding online
student engagement over a semester [53] demonstrated a
dynamic and fluctuating nature of student engagement,
which is affected by factors of assessment, course units
workload, course units content, lecturer presence and be-
haviour, and work/life commitments.

The definitions of engagement in disembodied HMI
focus on the user-system interaction end-goal. While some
factors are common to HHI, such as the user’s cognitive,
emotional, and behavioral factors, other factors pertaining
to the system (e.g. aesthetics, reputation, perceived user con-
trol) or to the interaction context (e.g. course units content
and workload in online learning) are more relevant to HCI.

2.1.3 Engagement in Embodied HMI

Embodiment in HMI usually takes two forms: virtual (em-
bodied conversational agents), and physical (robots). Em-
bodiment results in higher social intelligence expressivity
capabilities in the system and interaction as compared to
disembodied interaction. Interaction with virtual agents is
often conversational, which adds more weight to the social
aspect of engagement. On the other hand, physical embod-
iment increases the domain of applications of the machine.
Activities that require physical capacities (e.g. waitressing
or care-giving) as well as physical collaborative activities
(e.g robot-mediated collaborative learning) become possible
with physical embodiment.

HAI. In the literature of virtual embodied agents, some
definitions of engagement were associated with the goal of
acquiring knowledge, with an emphasis on the emotional
dimension and empathy. For instance, in the context of a
conversational scenario, Peters et al. [27] defined engage-
ment as “an emotional state linked to the participant’s
goal of receiving and elaborating new and potentially use-
ful knowledge”. They presented engagement as the direct
consequence of interest and and attention. The notion of
empathic engagement was referred to by [28] as “fostering
of emotional involvement intending to create a coherent
cognitive and emotional experience which results in em-
pathic relations”. According to Glas and Pelachaud [20],
the definition of Poggi [29] of engagement as “the value
that a participant in an interaction attributes to the goal of
being together with the other participant(s) and continuing
interaction” is the most suitable definition for engagement
in embodied HMI as it resonates with making interactions
with virtual agents as believable and human-like as possi-
ble.

HRI. The history of engagement in the field of HRI
dates back to the year 2002. In [7], Sidner and Dzikovska
presented a robot endowed with basic engaging capabil-
ities including the capacity to initiate, maintain, and end
a conversation with a human. According to Sidner and
Dzikovska, engagement is defined as “the process by which
two (or more) participants establish, maintain and end their
perceived connection. This process includes initial contact,
negotiating a collaboration, checking that other is still taking
part in interaction, evaluating, staying involved, and decid-
ing when to end connection.” In their work [7], engagement
was studied in the context of hosting activities, namely,
a class of collaborative activities where an agent provides
services to the human in a certain context (e.g. information,
entertainment, education), such that the human may be
requested by the agent to perform some actions, necessary
for the fulfilment of such services. They underlined atten-
tion as a direct correlate of engagement by demonstrating
that, during an interaction, a robot performing “engagement
gestures” (e.g. following the user’s face) would lead to an
increase of user’s attention, and consequently, their engage-
ment.

The definition of Sidner and Dzikovska is among the
most widely used definitions in the area of HRI. For ex-
ample, [54], [55], and [19] adopted this definition of engage-
ment, particularly, for describing emotional interaction level
and social bonding established in child-robot interaction.
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Other definitions widely used in the HRI literature were
proposed by Bohus et al. [30] and Peters [56]. According to
Bohus et al. [30], engagement is “the process of subsum-
ing the joint, coordinated activities by which participants
initiate, maintain, join, abandon, suspend, resume, or ter-
minate an interaction.” Various HRI studies employed the
conceptualisation of Bohus et al.’s engagement definition in
their studies [57], [58], [59]. The definition of Poggi [29] was
adopted by Peters [56] and used in the context of child-robot
interactions by Castellano et al. [60] and Sanghvi et al. [61]
among others. Another definition that builds upon motiva-
tion theory instead of cognitive and emotional constructs is
that of Drejing et al. [31] who suggests that engagement can
be defined as the magnitude of an intrinsically motivated
behaviour initiated by an individual to reach a specific goal.

With physical embodiment, the interaction components
can vary between social, task, and social-task. Consequently,
an interesting view on engagement, in this regard, is that
of Corrigan et al. [32] who introduced a context-dependent
engagement definition, in terms of task, social and social-
task contexts. Task engagement corresponds to scenarios
where a participant is performing a task, and enjoys it.
Social engagement involves engagement with an interaction
partner in a social interaction, with an absence of a task.
Social-task engagement involves a cooperation with another to
perform a task. Some studies such as that of [62] focused on
social-task engagement, by concentrating on the degree of
engagement of the user with the robot during a collaborative
task. Consequently, a metric of engagement was defined as
the normalized fraction of time an interaction party directs
their attention to the attention target the robot expects for
the current task (or sub-task). In the context of collaborative
learning, the concept of Productive Engagement (PE) was
introduced in [33] with the aim to conceptualize engagement
that is conducive to learning. PE is defined as the level of
engagement that maximizes learning and is composed of
social and task engagement. In contrast to existing work in
engagement conceptualization, the authors argue that being
overly engaged can result in decreased learning outcomes.

Similar to disembodied HMI, cognitive and emotional
elements of attention and valence of feeling were empha-
sised as components of engagement [14]. According to
Corrigan [32], engagement is characterized by elements of
participation, commitment, concentration, involution and
immersion. Causation elements constitute internal states or
desires like intrigue, curiosity, amazement, interest, concern,
or wonder. Furthermore, engagement may evoke more emo-
tional aspects of awareness, states of pleasure or arousal,
thus justifying the initial investment in engagement.

Engagement and its underlying factors in embodied
HMI can be seen as a middle-way construct, borrowing
aspects from engagement in HHI and disembodied HMI.
On the one hand, embodiment provides presence, and hu-
mans are less likely to ignore the system, and consequently
the expectations in terms of social interaction naturalness
and human-likeness. On the other hand, the focus on the
task and its differentiation from the social aspect of the
interaction is apparent in the embodied HMI engagement
literature.

2.2 Interaction Scenario
Interaction scenario describes the interaction between the
machine (embodied or disembodied) and the human. Dif-
ferent interaction scenarios might trigger different cogni-
tive, emotional, and behavioural user states, indicative of
their engagement state [18]. Based on existing literature in
HMI, we differentiate between 7 interaction scenarios: (1)
Purely social, (2) Informative, (3) Educative, (4) Competitive, (5)
Collaborative, (6) Negotiation, and (7) Guide-and-follow. Some
scenarios are possible for all interaction modes (e.g. compet-
itive, informative), while others are restricted to embodied
interaction (e.g. collaboration, negotiation, social).

Purely social [63] context is a social context that does
not involve performing a task. In such context, social inter-
action may include greetings, self-introductions, or informal
talking, etc. In conversational HCI context, temporal charac-
teristics [64] composed of the user’s past engagement state
(temporal continuity), their current emotional state, and
the other participants’ engagement states were considered.
Cognitive factors including attention and interest in the
conversation were related to engagement.

Informative [63], [65] context entails transmitting gen-
eral information that does not fall in the category of edu-
cating, e.g. giving navigation directions to reach a certain
location.

Educative [66] context describes a form of learning
which entails the transfer of knowledge or skills from an ed-
ucator to a learner. Student engagement within the context
of technology supported learning has been widely studied
in the literature [67], [68], [69] from physiological signals
or videos recorded during Massive Open Online Courses
(MOOCs), or data collected in the class [70], [71], [72].

Competitive [19], [73], [74] context is characterized by
elements of skills or knowledge testing or a form of compe-
tition over a certain profit (e.g. quiz, non-collaborative game,
etc.). In such context, states of concentration and reflection
might be triggered.

Collaborative [75] context involves a form of collabo-
ration to achieve a pre-defined task. Such scenario is more
prevalent in HRI, since physical embodiment allows a wider
range of collaborative activities.

Negotiation [76] context involves the adoption of several
strategies to achieve goals. Various parties confer and reach
an agreement.

Guide-and-follow [77] context is concerned with cases
involving a form of guidance to accomplish a specific task,
where one party leads while the other follows the directions.

2.3 Personal Factors
Personal factors such as the user’s gender, culture, age, eth-
nicity, personality, or if the user has a certain pathology were
underlined in the literature as intrinsic factors affecting the
engagement state of an individual [78]. From the system’s
perspective, specifically in embodied HMI, the system’s
personal factors (e.g. gender, personality) were also found to
directly affect the user’s engagement state. Other personal
factors such as age and ethnicity are not explored in the
literature of engagement inference. This might be related
to the fact that most studies in engagement restrict their
studies to specific age groups (e.g. adults or children), and
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it is rare to find studies with datasets that include different
age groups or different ethnicities.

Gender. The effect of gender on user’s engagement
was discussed in some studies [77], [79]. For example, the
HRI study of [79] found that most participants preferred
interacting with robots of the opposite sex, with a stronger
gender effect when the participant was a male, and the robot
is a female. This suggests that designing human-machine
interactions that adapts the gender of the machine to that of
the user would result in higher user engagement. Similarly,
also in an HRI context, it was found that female and male
users engage differently with robots [77]. Personalized
models such as gender-specific models improved the
accuracy of inference compared to general models in HCI
scenarios [39].

Culture. Differences in social behaviour among different
societies and cultures has been thoroughly underlined in the
literature [80]. For instance, studies on emotion recognition
have reported higher accuracy when cultural factors were
taken into consideration [81], encouraging the adoption of
a culture-sensitive approach in the assessment of emotions
[82], and consequently emotion-dependent constructs such
as engagement. Similarly, in HRI, an analysis of children
engagement have revealed differences in engagement
displays across different cultural backgrounds [83], which
have been taken into account in the computational models
of engagement [84]. A study on proxemics (a relevant cue
of engagement) in HRI, particularly on robot approaching
groups of people, have also shown different preferences in
proxemics behaviour among different cultures [85]. In HCI,
it was found that between- and within-country cultural
differences have an impact on digital consumer engagement
and engagement with online marketing material [85]. In
the context of learners engagement, cultural factors were
found to be correlated with organisational, technological,
and pedagogical components of online learning [86].

Personality. The effect of personality on the engagement
state is also evident in the literature. For instance, in contrast
to gender, previous studies found that human interactions
with a robot having the similar personality traits were
perceived as more comfortable compared to interactions
with a robot having different personality traits [78]. In a
triadic HRI study, results showed a significant correlation
between the perceived enjoyment with an extroverted robot
and the participants’ agreeableness and extroversion traits
[87]. The effect of the user’s personality regardless of the
robot’s personality on the user’s engagement state was
also investigated. Findings indicate that higher extroversion
scores were correlated with longer interactions with robots
[88]. High conscientiousness scores were associated with
higher expression of attentiveness and responsiveness in
interaction [89]. On the other hand, individuals scoring high
on the agreeableness dimension reported higher enjoyment
in interactions compared to others. In learning contexts, it
was found that extroverted and introverted students exhibit
different behaviours to indicate the same cognitive and
affective states [42].

Pathology. The presence of certain pathologies can alter
the way an individual behaves. For example, pathologies

that have an effect on social behaviour include Autism
Spectrum Disorder (ASD), Attention Deficit Hyperactivity
Disorder (ADHD), Major Depression Disorder (MDD), Bipo-
lar Disorder (BP), among others. For instance, individuals
with ASD are characterized by deficiencies in demonstrating
proper social cues in social interaction contexts [90]. Indi-
viduals with ADHD may exhibit an increased quantity of
movement, in addition to an impaired capacity of sustaining
attention on tasks. The characteristic social behaviours of
individuals with such pathologies compromises a generic
engagement model ability to accurately infer the human’s
engagement state. The fact that individuals attained with
such pathologies exhibit unusually diverse styles in the
expression of their affective-cognitive states makes the in-
ference task even more challenging [91]. Consequently, inte-
grating the pathology information or clinical assessments
in engagement inference models might better inform the
decisions of such models. Except for few approaches, the use
of such information is scarce in the literature. For instance,
clinical assessment in addition to culture, gender and indi-
vidual traits information were proposed in [91] to condition
autoencoders for the task of inferring child’s engagement
level continuously in time, in the context of robot-assisted
autism therapy.

3 AUTOMATIC INFERENCE OF ENGAGEMENT

In this section, we present a detailed summary of the
existing approaches to automatic engagement recognition,
including an overview of data acquisition for engagement
inference, the multimodal behavioural cues commonly used
as features for engagement in the literature and the em-
ployed machine learning approaches for the task, both
traditional and modern solutions (e.g., deep learning).

3.1 Data Acquisition

Usually data is collected using unimodal or multimodal
sensors such as microphones, cameras, 3D sensors (e.g.
Kinect©), and physiological sensors. However, the choice
of modalities depends on the context of application. Col-
lected samples are then given ground truth labels reflecting
the perceived or reported engagement state of the user.
Engagement ground truth assessment largely depends on
the context in which the engagement is being measured.
Compared to emotion data annotation where categorical
and dimensional scales are commonly used to assess emo-
tions ground truth [92], there are no common scales used to
collect engagement ground truth. Whether to treat engage-
ment as a process, a discrete or a continuous value, or to
concentrate on a specific component of the construct (e.g.
behavioural vs. cognitive engagement) is highly dependent
on the interaction context and end-goal. Moreover, there is
no agreement on the optimal time scale for engagement
annotation, e.g. frame-level or segment-level (cf. Section
4.2). Indeed, in the literature, there is no unified strategy for
user engagement state annotation. In the following, we give
an overview of the publicly available engagement datasets
(Section 3.1.1) as well as common annotation strategies to
obtain ground truth data (Section 3.1.2). We finalise with
reviewing the problem formulation for engagement and the
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definition of categories that commonly appear in the state-
of-the-art (Section 3.1.3).

3.1.1 Publicly Available Datasets

Since engagement is a context-dependent construct and
a relatively recent subject in human-machine interaction,
there are only a few publicly available datasets in the
literature, which provide engagement annotations. These
datasets are given in Table 2 and are introduced based on
the interaction mode below.

TABLE 2
Overview of publicly available datasets in engagement inference.
Modalities: Audio (A), Video (V), Physiological (P), Log – data that

captures interaction with the setup (L).

Mode Dataset Modality # S Context Papers

HHI RECOLA [93]
(2013) V, A, P 46 Collaborative −−

HCI

DAiSEE [94]
(2016) V 112 Educative [95]

HBCU [40]
(2014) V 34 Educative −−

in-the-wild [69]
(2018) V 78 Educative [96]

HRI

MHHRI [97]
(2017) V, A, P 18 Social [98]

PE-HRI [99]
(2020) V, A, L 68 Educative [33]

PE-HRI-temporal [100]
(2021) V, A, L 68 Educative [11]

UE-HRI [101]
(2017) V, A 54 Social [102], [103]

HHI. The Remote Collaborative and Affective Interac-
tions (RECOLA) database [93] provides engagement labels
in addition to set of affective and social behaviour anno-
tations including arousal, valence, agreement, dominance,
performance, and rapport in a mediated interaction context.
The participants in this corpus were recorded remotely in
dyads during a video conference while completing a collab-
orative task (the survival task). In addition to video, the cor-
pus includes audio and physiological data (ECG and EDA).
Engagement annotations in this corpus are performed for
each interaction session with a discrete Likert scale of (1−7).

HCI. Existing datasets in HCI are mostly recorded in
the context of online learning. For instance, the DAiSEE
dataset [94] includes learner’s videos captured while they
were watching a video tutorial, with a webcam mounted
on a computer. It was collected in unconstrained conditions
at different locations with varying illumination settings.
Learner’s engagement level as well as relevant emotions
(bored, confused, and frustrated) annotations on a scale
of (0 − 3) are provided for each video. Similarly, “in-
the-wild” dataset [69] for engagement assessment includes
student’s videos collected via Skype in an unconstrained en-
vironment. Engagement levels were annotated using crowd-
sourcing in terms of 4 classes, including disengaged, barely,
normally, and highly engaged. Finally, the HBCU dataset
[40] includes student’s engagement level annotations as-
sessed via crowdsourcing on data captured as the partici-
pants were engaged in a cognitive skill training study.

HRI. The Multimodal Human-Human-Robot Interac-
tions (MHHRI) Dataset [97] was introduced for studying
the relationship between personality and engagement si-
multaneously in dyadic HHI and triadic HRI. The context
of the dataset is purely social revolving around personal
questions asked by the interaction entities to each other. The
dataset was recorded using biosensors, Kinect depth sensors
in addition to first-person vision cameras attached to the
participants heads. The engagement state of the users was
assessed with a post-study questionnaire asking the partic-
ipants about their perceived enjoyment of the interaction.
In a later study [98], labels from external annotators were
obtained for this dataset using crowdsourcing. Another HRI
dataset, the User Engagement in spontaneous HRI (UE-
HRI) dataset [101], was presented to study spontaneous
social interactions between humans and a robot. The dataset
includes 54 dyadic HRI interactions with the robot Pepper
situated in a public space, collected over a period of 56
days. The dataset was recorded using two 2D cameras, a
3D depth sensor, 4 directional microphones, sonar, and laser
sensors. Recorded streams include face, speech, gesture,
and dialog features. Engagement labels were obtained by
external annotators.

In an educative HRI context, the Productive Engagement
in HRI (PE-HRI) dataset [99] is a multimodal dataset that al-
lows studying engagement in collaborative robot-mediated
educational contexts. The dataset includes productive en-
gagement scores which are computed via a linear combina-
tion of the most discriminatory features [104]. Additionally,
the dataset consists of multimodal team level behaviours
and learning outcomes (34 teams of two children). In a later
version [100], the PE-HRI-temporal dataset was introduced
where temporal features were computed in windows of 10
seconds for each team.

3.1.2 Engagement Annotation
An essential step for building a reliable engagement infer-
ence system is acquiring the ground truth data. Engagement
ground truth labels are usually assessed via validated or
self-designed questionnaires such as the Temple Presence
Inventory (TPI) [105] which was adapted and employed in
HRI & HAI contexts [98], [106]. Approaches to the collection
of engagement ground truth labels can be divided in three
categories: (1) self-report labels, (2) external measures, and (3)
combination of self-report and external annotations.

Self-report Labels. These constitute pre- or/and during-
or/and post-interaction self reports that gather information
from the user about their experience with the technology.
Using self-report evaluation of engagement can be consid-
ered as reliable since in theory one can truly know how they
really felt during an experience. However, asking people
to evaluate their experience after the experiment may be
prone to error, as it relies on memory recall and on their
attention to and communication of what made their sense
of engagement to be perceived as powerful, or weak [107].
Moreover, another issue that arises with post-experience
questionnaires is that they do not take into account the
interaction dynamics. Interactions are dynamic and change
over time, making engagement to fluctuate [6]. To account
for these issues, some HRI works explored strategies to
obtain the ground truth data from the users during the
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interaction by introducing implicit and explicit probes for
collecting self-reported engagement ground truth labels at
different stages of the interaction [108]. Also in the context
of interaction with an online learning platform, emotional
engagement self-labels were collected during the interac-
tion via two modes: (1) voluntary where the students can
provide their engagement label at any time via a window
that appeared during the entire interaction on the interface
and (2) mandatory via a pop-up window that appeared at
random time intervals [109].

External Annotations. These constitute recruiting a
number of external annotators that assess an individ-
ual’s level or state of engagement based on audio-visual
recordings of the individual’s interaction during the experi-
ence [110]. External evaluation by external observers might
be prone to errors due to the difficulty of perceiving the
true engagement state of the user. In addition, it is often
difficult to reach an agreement on the perceived engagement
due to annotators’ subjectivity. This is a general problem
involving any social phenomenon, and there is already a
line of work focusing on obtaining reliable ground truth
labels from multiple annotations. For instance, in HRI, in-
dependent models trained with different annotator’s labels
and then aggregated to obtain one integrated label [111].
Similarly, the subjectivity of the annotators was considered
by modeling each annotator’s latent character affecting their
engagement perception using hierarchical Bayesian model
in [112]. The annotator’s character and engagement level
are estimated as latent variables. Experimental results show
such modeling outperforms baseline models which do not
take into consideration the differences in annotations and
annotator’s characters.

Combining Self-report and External Labels. As dis-
cussed above, both self-report and external annotations
used to assess engagement ground truth suffer from certain
disadvantages. To account for this, few approaches have
attempted to combine self-report and external annotations
to obtain engagement ground truth data. The hypothesis
is that engagement prediction accuracy would be increased
with a combined label reflecting a ground truth closer to
reality, which is a combination between the perceived and
reported engagement states. In the context of conversational
HAI, past attempts for obtaining a combined self-report
and external engagement label was to sum the user’s and
observer’s judgments (e.g., user is labelled as disengaged
when assessed as such by both parties) [110], [113], [114].

3.1.3 Categorical View of Engagement
Most of the existing approaches to automatic engagement
recognition formalise this problem as a classification task.
It is crucial to identify what classes are relevant to the
interaction and application context. For instance, one might
be interested in detecting the user’s intention to engage
with one or all of the interaction parties, disengagement
or the user’s level of engagement. For this reason, we
identify five categories of engagement in the state-of-the-art,
summarised in Table 3.

Intention To Engage. Various engagement inference
approaches concentrate on detecting of user’s intention to
engage in the interaction [57], [65]. Particularly, in HAI and
HRI scenarios that include a social context, detecting the

user’s intention to initiate an interaction is of utmost im-
portance for the agent to show an intelligent behaviour, and
engage in a successful interaction. For instance, [57] focus on
detecting user’s intention to engage in an interaction with a
robot using two classes: not seeking engagement vs. seeking
engagement. Similarly, in [65] the occurrence of engagement
intentions was modeled with two classes: E-intention (user
wants to start a conversation with the agent or intends to
speak, provided that the speaking floor was being held by
others) and D-intention (user intends to disengage).

Engagement/Disengagement. Different approaches fo-
cus on binary classification of engagement, aiming to detect
the presence or absence of engagement vs. disengagement.
For instance, in [115], disengagement detection in individual
and group interactions was investigated. On the other hand,
linking engagement to attention, in [59] the focus was on the
user’s attention and lack of attention states.

Engagement Process. Several approaches focused on
the classification of the phases of the engagement process,
which constitutes mainly user’s intention to engage, engage-
ment, and disengagement. For example, in [116], [117], a
model for recognizing 5 engagement classes was trained:
no one, will interact, interact, leave interact, and someone
around.

Engagement Level. Another line of work deals with the
recognition of user’s engagement level or degree defining
the engagement state on a spectrum, e.g. low to high. Exam-
ples of defined engagement level classes from the literature
are summarized in Table 3 together with the respective
context they where defined in.

Behavioural Engagement. These approaches consider
the behavioural aspect of the user during their engagement
in an interaction. For instance, [118] distinguish different
states of conversational engagement: no interest, following,
responding, conversing, influencing and managing. Simi-
larly, [15], [18] decomposed the engagement state into sev-
eral mental, behavioural, and emotional states. In [119] two
classes in addition to high and low engagement levels were
explored, namely, “lead” referring to when the game leader
was directing the conversation and “org” corresponding to
when the group was forming itself. In the context of team
interaction [120], the level of participation in a meeting
was annotated with respect to six engagement states: disen-
gagement (no participation, distraction and no attention to
the meeting), relaxed engagement (attention to the meeting,
listening, observing, but no participation), involved engage-
ment (attention and non-verbal feedback), intention to act
(preparation for active participation indicated through an
increase in activity), action (speaking and/ or interacting
with participants or content on displays), and involved
action (intense gesture and voice).

3.2 Engagement Modalities and Features

In the literature, a rich set of features were explored, ex-
tracted from various data modalities including audio, video,
text, and physiological data, for engagement inference in
different interaction contexts. While different categorisa-
tions can be found such as static vs. dynamic features [125],
or low-level vs. high-level features [126], [127], we divide
the engagement features into five categories: (1) contextual
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TABLE 3
Overview of the engagement categories that are widely used in the literature. IM: Interaction Mode

Category Paper Classes Context IM

Intention To Engage [57] Not seeking engagement, Seeking engagement HRI
[65] Engagement intentions: E-intention , D-intention , Attention saliency HAI

Engagement/Disengagement [115] Disengagement HRI

Engagement Process [116] Intention to engage, Engaged, Disengaged HRI
[63] User is present, Interacting, Engaged, Just attending Robotic Receptionist HRI
[117] Will interact, Interact, Leave interact, No one, Someone around HRI

Attention Level [121] Distracted, Tired/Sleepy, Not paying attention, Attentive, Full of interest, Curious Educative HCI
Attention/Frustration [48] Attention/Non attention, Frustration/Non Frustration HCI
Attention [59] Attention, In-attention HRI

Engagement Level [19] Medium-high to high engagement, Medium-high to low engagement Competitive HRI
[119] Group involvement: High, Low, Lead, Group formation Collaborative game HHI
[122] Engaged in the interaction, Superficially engaged with the scene and action space, Agent salesperson HAI

Uninterested in the scene or action space
[123] High and low engagement Educative HRI

Interest Level [124] High interest, Low interest, Refreshing, Bored, neutral, Other Competitive HCI

Engagement Behaviour [118] Conversational engagement: HHI
No interest, Following, Responding, Conversing,Influencing, Managing

[18] Intends to Engage, Listening, Concentrating, Responding, Positive reaction, Social, Informative HRI
Negative reaction, Waiting feedback, Thinking, Disengaged Competitive

Engagement
Features
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(Section (2.2.1)
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Section (2.2.2)

Speech
Section (2.2.3)
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Fig. 2. Engagement modalities and features categories.

cues, (2) non-verbal visual cues, (3) speech cues, (4) inter-
personal cues, and (5) physiological cues. These categories
are depicted in a feature tree in section 2.

Our literature analysis of engagement modalities and
features has shown that there is no observable trend of
using specific features in specific contexts, as this depended
on the available modalities and data, and engagement cat-
egories/scores, which differed from one study to another.
Nevertheless, in our review of contextual cues (Section
3.2.1), we have found an important difference in the used
contextual features among different interaction contexts
(disembodied vs. embodied HMI). Consequently, in this
section, we provide an overview of the features that are most
commonly used in the literature of engagement inference.
We include the context in which the different features are
used, whenever it is relevant. We also discuss the difference
in the used contextual features among different disembod-
ied vs. embodied HMI interaction contexts.

3.2.1 Contextual cues

We have discussed in Section 2 the importance of context
for engagement. In this section, we review how context
was used in the engagement inference literature, and what

contextual features were extracted for this purpose across
the different interaction modes (disembodied and embodied
HMI) and scenarios.

Disembodied HMI. Contextual features have been ex-
tracted depending on different interaction scenarios. In
an HCI competitive game context, sequence mining was
applied to combine physiological signals and game-context
information for the prediction of computer game player af-
fective states [128]. For detecting a user’s attention level for
tasks that commonly occur in a workplace setting, machine-
specific contextual features were fused with person-specific
features. The contextual features were collected from the
keyboard, the mouse, and the active window size [50]. In
an educative HCI scenario involving children engaged in
solving a puzzle on a computer, the game state was used
as contextual features, and combined with facial and pos-
ture features for engagement inference [66]. In the context
of interaction with a learning platform, contextual infor-
mation were extracted from the URL logs and combined
with appearance features to predict whether the user is
engaged with the platform by analysing on-task vs. off-task
behaviours [129].

Embodied HMI. In terms of interaction scenario, in
an HRI competitive game scenario (robot vs. child), task
and social-based contextual features in the form of robot’s
social behaviour, game events, and game progress were
explored for the inference of engagement [19] [130]. In a
multiparty HRI scenario with varying contexts including
informative, competitive, and social, [15], the robot’s and other
participant’s behavioural cues were used as contextual in-
formation to detect the user’s engagement state. The study
has shown that behavioural cues from the other parties
(robot and other participant) can be used as predictors of the
engagement state of the user in question. This might happen
when in multi-party interactions, there is a significant cohe-
sion and synchrony within the group, which might signal
high engagement. Similarly, in [131], to integrate context
into the proposed framework of engagement inference, the
current user’s engagement is modeled as a function of
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previous user’s engagement state. The approach is validated
in the context of negotiation scenario (i.e., multi-agent job
interview) and a social robot scenario.

In terms of personal factors, a line of work investigated
the impact of personal cues such as individual’s personality
as well as their interaction partner’s personality on the
inference of engagement [98] or rapport [132]. Salam et
al. [98] focused on a triadic HRI interaction scenario (i.e.,
between two humans and a robot) and showed that using
individual’s personality traits only was sufficiently informa-
tive to detect their engagement, and combining those with
interpersonal features resulted in further improvement in
the accuracy of engagement inference. Cerekovic et al. [132]
analysed the impact of personality on the perception of
rapport in an HAI scenario. Participants interacted with
two different agents, displaying different characteristics (i.e.,
cheerful vs. gloomy), and they found that extroverted and
agreeable people tend to report higher levels of rapport with
both agents. Culture and gender were used implicitly for
personalizing engagement recognition deep architectures
to specific population of differing gender or culture [84],
[133], [134]. We touch into this more in detail in the Section
3.3.2.2, reviewing personalized deep learning models for
engagement inference.

Despite evidence on the predictive power of contextual
information for engagement inference, however, methods
using contextual features remain scarce in the literature.
Devillers et al. [135] highlight the importance of taking
into account context in the assessment of engagement in
HRI, namely the behaviour of the robot, the interaction
dynamics, and the dialogue participants communicative be-
haviour variations. They identified linguistic, paralinguistic,
interactional, non-verbal, and specific emotional and mental
states features to be of utmost importance for engagement
prediction.

3.2.2 Non-verbal Visual Cues
Non-verbal cues comprise social signals exchanged during
social interactions along with the uttered verbal words. This
type of behaviour is the most informative, when individuals
can easily verbally pretend that they are engaged in a task or
in a conversation. However, it is much harder to fake non-
verbal behaviour which is indicative of engagement. Some
researcher even claim that initiating and maintaining en-
gagement is fully possible without verbal conversation [7].
Features in this category include visual cues (eye gaze,
gestures, facial expressions, proxemics and spatial features,
body posture, and motion and activity features), and audio
cues (prosodic, sound source localization, turn-taking, and
back-channels). Commonly used non-verbal visual cues in-
clude: (1) gaze, (2) gestures, (3) facial cues, (4) proxemics
and spatial cues, (5) body Posture, (5) motion and activity,
and (6) non-verbal back-channels.

Gaze. Eye gaze is the mirror to the mind and is strongly
coupled with cognitive and emotional processes. It is con-
sidered as the primary cue of attention [136], a cognitive
component of engagement. For instance, engagement with
a speaking conversational partner can be signaled by gaze
cues such as looking at them. On the other hand, look-
ing away from them for long periods indicates disinterest
and consequently a disengagement intention [137]. Gaze

is among the most commonly used features for inferring
engagement across various interaction contexts. Employed
gaze features include gaze direction [19], [43], [59], [138],
visual focus of attention [58], [98], gaze transition pat-
terns [110], [113], [114], the amount of time the user’s
gaze was directed at the interaction partner [13], [60], gaze
following of the subject of speech [26], and mutual gaze [54],
and gaze fixation duration [139]. Eye gaze and head orien-
tation are closely linked and often one accompany the other.
Pointing gestures can also contribute to the computation of
the other’s direction of attention [140]. In some scenarios,
it might be difficult to detect the eye gaze accurately (e.g.,
due to low resolution images, adversarial head poses, or
occlusions). Several researchers, opted to approximate the
user’s gaze by the head pose [13], [30], [43], [57], [116], [141],
especially in HRI where there is a big distance between the
robot and the interactant.

Gestures. Gestural behaviour in interactions conveys a
lot information on the engagement state and on the con-
nectedness between participants [142]. Moreover, in HAI
and HRI the generation of appropriate gestures via the
agent/robot and the successful interpretation of human ges-
tures have a significant effect on the user’s engagement and
consequently the interaction success [143]. Relevant gestures
include head gestures such as head nods and shakes (convey
(dis)agreement and attention) [66], [141], and hand gestures
and speed such as hand raising (convey intention to engage)
[120], [144], [145].

Facial Cues. As discussed in previous sections, engage-
ment has an affective component. Consequently, facial ex-
pressions and emotions are important features for detecting
user’s engagement state across various interaction modes
and scenarios. Some approaches focused on a small class of
expressions, such as the smile [19], [120] or the probability
of smile and fidget [66]. Other approaches detected multiple
emotion states [146] and facial expressions such as smiling,
surprised, neutral, and angry states [59]. Fine-grained facial
movements such as the displacement and velocity of the
mouth and eye landmarks [147], or facial action units (AUs)
were also used as engagement features [40], [42], [148].
[39] concluded that eye’s region is more informative than
mouth’s region. Eye physiological indices such as pupil
diameter and blink rate and eye behavioural indices are also
relevant to engagement inference [139].

Proxemics and Spatial Cues. Spatial behaviour (prox-
emics) constitutes the dynamic process by which individ-
uals position themselves in social interactions [149]. Prox-
emics carry significant attentional and interpersonal factors
[150], which are indicative of an individual’s engagement
state. For instance, being at a relatively small distance
indicates higher probability of paying attention to a robot
[63]. Holthaus et al. [151] proposed a spatial model for
a receptionist robot to infer the user’s intention. Other
features to consider are the relative distance between the
interaction partners [98], or between the user and the robot
or the machine [42], [59], [152], as well as the trajectory or
speed of a person such as walking towards a robot. The
size of the face detected by the camera can also be used to
approximate the distance between a person and a robot [43],
[57], [116]. Detecting if the face is currently invisible, and
for how long was also used to indicate a person’s spatial
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situation [55].
Body Posture. Previous research has shown that the

face’s and body’s orientation towards an interlocutor is a
signal of engagement [56], [153]. The body orientation and
relaxation were also found to be significant indicators of
the communicator’s liking for their addressee [154]. The
dynamics of postural shifts might even signal shifts or
changes in the conversation topic (boundaries of informa-
tion units) during an interaction [155]. Moreover, as the
posture is often displayed unintentionally, this makes it an
effective indicator of the user’s real affective state [156],
[157], [158], as well as their attitude and alertness [159].
Various approaches employed body posture features in
the literature of engagement inference [124]. Among such
features, the upper body orientation, the back’s curvature,
and the upper body degree of contraction and expansion
(contraction index) were used in the context of human-child
game interaction [61]. Naturally occurring seated postures
were also used as features for child engagement during a
computer learning task [160]. Body lean angle, slouch factor,
body direction, hand vertical position, and posture were
also explored to detect engagement in team meetings [120]
and student engagement with MOOCs [161]. Other features
include hand pose and body orientation [57], upper body
posture and body openness [162], the position and orienta-
tion of the feet, hips, and torso and the shoulders positions
and orientation relative to each other [116], the relative
orientation between the participants and the robot [98].

Motion and Activity. Previous studies found correla-
tions between the user’s quantity of movement and their de-
gree of involvement in an interaction [17], [163]. It is actually
possible to judge users’ level of engagement by measuring
their movements as they use a computer [17]. For instance,
increased user movement can be an indicator of an increased
involvement, consequently an increased engagement state
[163]. On the other hand, the absence of certain movements
can signal cognitive engagement in seated situations [17]. In
[17], the authors distinguished between instrumental move-
ments referring to physical movements serving a direct
goal in a given situation, and non-instrumental movements
that are involuntary tiny movements that people usually
exhibit to reflect the person’s internal states. If someone is
absorbed in what they are watching or doing, referred to
as “rapt engagement” by [17], there is a decrease in these
non-instrumental movements. Motion features used for en-
gagement inference include the Quantity of Motion (QoM),
which is a measure of the amount of detected motion. QoM
was used by [61], [98] to infer engagement with a robot
companion. The approach of [98] also detected the global
QoM of a multi-party interaction for group and individual
engagement inference. The body activity computed from
skeleton joints of upper body bounding boxes was also used
in this context [98].

Back-Channels. Back-channels correspond to events
where an interaction party responds back to a primary
communication initiator with a brief verbal or gestural
communication [54]. Example non-verbal back-channels in-
clude head nods and shakes signaling to the initiator that
the responder understands, listens or desires to continue
the conversation. In HHI, head nods were combined with
other non-verbal features to detect team engagement in

meetings [120]. In HRI, [13] a robot was endowed with
the capability of interpreting nods as back-channels and
agreements in conversation in order to recognize the user’s
state of engagement. Back-channels together with laughing
and nodding were also found to be related to the level of
engagement in social HRI scenario [15].

3.2.3 Speech Cues
Speech cues are used in the context of HMI for engagement
recognition, since some spoken linguistic behaviour might
convey engagement [13]. Speech cues can be extracted from
verbal speech, or written text. Other than the linguistic
content, various non-verbal signals are encoded in speech.
The analysis of written or spoken language is interesting for
the context in question because it permits a straightforward
way to give an input to the engagement system: greetings
can be considered as a cue for intention to engage [30], [137],
while closing comments may signify the disengagement of
the user [13]. Using verbal behaviour, the user has an active
role during the interaction in a way that would not be pos-
sible if only non-verbal visual behaviours were considered.
Embodied HMI (HRI and HAI), for instance, can be more
natural if humans can speak directly with robots/agents.
Several works consider acoustic and text-based data to ob-
tain information about the user’s engagement [164]. These
can be categorized into: (1) prosodic cues, (2) sound source
localization, (3) turn-taking and disfluencies (4) and linguis-
tic content.

Prosodic Cues. Previous research [163] observed a rela-
tionship between the voice’s prosodic characteristics (level,
span, intensity) and involvement. The authors of [64], for
example, used sound and prosodic features such as the
speech rhythm, stress, and intonation, to estimate conver-
sational engagement level between a voice communication
system users. Another work [120] used the speech volume in
combination with other non-verbal features to predict team
engagement in meetings.

Sound Source Localization (SSL). Detecting the sound
source can be an indicator of user’s intention to engage, en-
gagement or disengagement. For example, the robot’s ability
of localising someone next to it from the sound, identifying
speech activity or even prosody allows it to recognise the
engagement state of a user. SSL was used in the literature
for locating the user’s voice or footsteps, allowing to detect
the direction in which the user approaches a robot, which
indicates their intention to engage [116]. SSL in an HRI
setting [165] was also used to estimate user’s intention to
engage and engagement level in [164].

Turn-Taking. The notion of turn-taking also plays an
important role in the context of conversational HAI and
HRI. As Sidner et al. [137] observed, failure of an inter-
action party to take an expected turn is an indication of
disengagement. Thus, related to this notion, adjacency pairs
which consist of “two utterances by two speakers, with
minimal overlap or gap between them, such that the first
utterance provokes the second utterance” were used as an
engagement cue in [54]. Similarly, engagement annotation
of conversational data was studied in the context of HRI,
where it has been demonstrated that engagement level is
correlated with turn-taking behaviours such as the duration
of the next turn [166]. Turn-taking features employed in
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the literature include speech and pause duration statistics,
speaker change with and without overlap, successful and
unsuccessful interruption, and speech overlap [167].

Disfluencies, such as filled pauses (also referred to as
fillers), short and long speech pauses between words, or
hesitations were also considered in the literature of engage-
ment detection and management. For instance, combined
with gaze, filled pauses (e.g. “uh” or “umm”) were used to
detect whether a user wishes to disengage from the inter-
action with a robot [168]. In [55], linguistic hesitations (e.g.
filled and non-filled pauses) were used for managing con-
versational disengagement in HRI when uncertainty about
whether the user wishes to stay engaged in the interaction
arises. In a robot-mediated collaborative learning context
involving teams of two children, speech behaviors including
the team members speech overlap or the amount of their
long pauses were found to be the most discriminating
between teams exhibiting high learning engagement and
teams exhibiting low learning engagement. An engagement
score was generated using a linear combination of such
behaviours [104].

Linguistic Content. Certain spoken words can signal
engagement and related affective states [169]. The use of
linguistic content in engagement inference is scarce in the
literature. Example works include [57] who presented a
method for speech recognition using grammar implemen-
tation. The proposed method aimed to extract syntactic
and semantic information from the user’s speech to detect
engagement. In [42] a tutorial scenario was proposed to
predict engagement and learning, where the user was able
to send textual messages to a virtual agent.

3.2.4 Interpersonal cues
Interpersonal features represent the interpersonal be-
haviours of the interaction parties relative to each other. The
cues discussed in the previous sections can be considered as
individual cues that are extracted by isolating the interac-
tion partners or action-reaction processes where interaction
partners exhibit a behaviour in response to each other (e.g.,
turn-taking, back-channels). In this section, we look at more
elaborate cues such as synchrony or alignment. Synchrony is
defined by [170] as “the dynamic and reciprocal adaptation
of the temporal structure of behaviours between interacting
partners”. Unlike mirroring or mimicry, synchrony is dy-
namic in the sense that the important element is the timing,
rather than the nature of the behaviours [170]. Several
studies in HMI have referred to the importance of synchrony
for engagement inference. Detecting synchrony between the
interaction parties involves not only the detection of their
reactivity, but also their agency and their engagement within
the ongoing interaction [171]. For instance, Prepin and
Gaussier [172] showed that synchrony is a viable indicator
of the user’s satisfaction and level of engagement during
an interaction with a robot. The better the interaction is,
the more the human is synchronous with the robot. They
designed a robotic architecture that can detect temporal
synchrony between the user and agent’s actions and use
this parameter to adapt the robot’s behaviour using rein-
forcement learning.

Three categories of approaches that use participant’s
synchrony for engagement recognition can be identified

in the literature: (1) lexical, (2) verbal and non-verbal be-
haviour, and (3) cross-modality alignment.

Lexical alignment refers to the adoption of one’s in-
terlocutor’s lexical items [173]. State-of-the-art approaches
investigated lexical alignment by detecting the use of shared
vocabulary and verbal repetitions [174] as a cue of engage-
ment in an attempt to develop a virtual agent capable of
employing alignment strategies to maintain user’s engage-
ment.

Verbal and non-verbal behaviour alignment refers to
the alignment or synchrony between participants verbal or
non-verbal cues during a social or collaborative interaction.
Studies in HHI found similar inphase/antiphase dynamic
among interaction parties engageing in an interpersonal
task [175]. In the context of multi-party HRI, Salam et al. [15]
showed that it is possible to detect the engagement of an
interaction party using as input the behavioural cues of the
other interaction parties (robot and other participant) with
an acceptable accuracy compared to solely using the inter-
action party individual behavioural cues. Such approach
can be considered an indirect way of using synchrony
features since the high correlation of others’ cues with the
engagement of the participant in question means that they
were in synchrony with her. They [15] also extracted a set of
features describing the synchrony and alignment between
robot’s and participants’ behaviours. These include, among
others, mutual gaze and laughter. Other features included
events where a participant speaks with the other during
the speech of the robot. This may signal a disengagement
behaviour as it means that the participant is not listening to
what the robot is saying.

Cross-modality alignment refers to the alignment or
synchrony between different modality cues such as speech
and gaze, or speech and gesture. Findings suggest that
gazing towards objects relevant to the conversation is an
indicator of engagement [137]. For instance, in the context
of a multi-party HRI scenario [15], events where one par-
ticipant looks at the other who is speaking to the robot or
events where a participant looks at objects corresponding to
the topic of robot’s speech (i.e., gaze-speech alignment) were
used as predictors of the user’s engagement state. In [131], a
study was performed in the context of two scenarios: a social
robot scenario and a multi-agent job interview scenario,
proposing to model the interpersonal cues dynamics that
reflect the social attitude of the user with the context. The
user’s engagement was considered as a combination of the
user’s individual behaviour patterns and their interpersonal
behaviour patterns as well as their temporal alignment.

3.2.5 Physiological cues
Previous research provided evidence on the relationship
of physiological signals with affective and cognitive states.
Composed of both affective and cognitive components, en-
gagement can be successfully predicted from physiological
responses. Various state-of-the-art methods have employed
physiological signal analysis for the inference or analysis
of engagement or any of its related constructs. For in-
stance, in [176] physiological features were extracted from
Electrocardiogram (ECG), electrodermal activity (EDA), and
Photoplethysmography (PPG) signals to differentiate be-
tween boredom (associated with disengagement), pain and
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surprise. In [138], EEG signals were used with the goal to
capture brain activity for understanding the link between
intention and attention. In [49], EEG, ECG, and Heat Flux
(HF) signals were investigated for the identification and
evaluation of engagement level variations during cognitive
tasks. In the context of tele-operated HRI, human engage-
ment (attention) on a specific task was also detected from
physiological signals [177]. The extracted features included
cardiac activity, heart sound, Bioimpedance, EDA, muscle
activity and Skin Temperature (SKT). Results showed that
the correlations between engagement ground truth labels
and features were not similar among all participants indi-
cating that people do not express engagement in the same
manner. In [39], video-based heart rate (HR) measurement
combined with appearance and geometric features was ex-
plored for engagement inference. In [178], it was found that
a notable percentage of the variance for task engagement
can be predicted from ECG, electro-oculogram (EOG), skin
conductance (SC), and respiratory rate (RR) signals. In [179],
it was shown that blood volume pulse (BPV) amplitude
varies significantly among task and resting periods, which
signals variations in sympathetic activity when engaging
with a task.

The advantage of using physiological signals for predict-
ing the affective and cognitive components of engagement
is that they are able to provide precise measurements, since
they give an objective insight on the true state experienced
by the user. However, their intrusive nature requiring to
attach various sensors to the user’s body limits their use in
natural human-machine interaction settings and their scal-
ability to a wide range of applications. Another important
issue with physiological signals comes from the inter-intra
individual variability.

3.3 Engagement State Inference

Engagement state inference methods can be classified into
three different categories: (1) rule-based, (2) supervised
learning and (3) unsupervised learning. The employment
of traditional machine learning techniques was more preva-
lent prior to the emergence of deep learning methods and
their success in various pattern recognition problems. On
the other hand, unsupervised learning approaches to en-
gagement inference were also explored in the literature.
However, these are limited to educative HCI contexts.

3.3.1 Rule-based Approaches
Rule-based approaches for engagement inference infer a
decision on the user’s engagement state based on a set
of custom-defined rules (IF some condition THEN some
action). Most of the rule-based engagement inference meth-
ods can be found in HRI contexts. This is mainly because
rule-based methods are less expensive in terms of resources
requirements, making them more suitable for integration is
real-time settings. Sidner et al. [143] implemented one of the
first robotic architectures that is endowed with engagement
rules to generate appropriate engagement behaviour for the
robot, and to detect the human’s engagement state enabling
a successful collaborative conversation between the human
and the robot. Similarly [13] endowed their robot with rule-
based engagement inference capabilities. The robot judges

the user’s engagement based on the head’s position which
indicates if the user is looking at the robot, at objects
necessary for the collaboration or to other objects or to
empty space. Similarly, [180] implemented a multimodal
rule-based real-time robotic architecture that detects user
engagement based on movement detection (head and body
tracking), face recognition, gaze direction, proxemic dis-
tance, and audio cues (sound direction localization, audio
signal power). Other works that employed rule-based en-
gagement inference methods include [54], [58], [57], [55],
[152]. Comparing rule-based user engagement classification
to machine learning methods, [57] found that trained clas-
sifiers were faster and more accurate at detecting the user’s
intention to engage, while the rule-based approach resulted
in more stability.

An important advantage of rule-based engagement in-
ference approaches is explainability, an important aspect to
take into account to avoid potential unwanted bias towards
certain protected social groups (e.g. gender or race). Other
advantages include the simplicity and rapidity of imple-
mentation, and the non-necessity of large training datasets.
On the other hand, such advantages come at the cost of
ignoring important complex patterns that can be automat-
ically discovered from data by machine learning models,
compromising the accuracy of rule-based methods.

3.3.2 Supervised Learning Approaches

Supervised learning methods were widely used for engage-
ment inference in the literature. We categorize the employed
supervised learning methods into two categories: (1) tradi-
tional machine learning, and (2) deep learning approaches.

3.3.2.1 Traditional Machine Learning Approaches: A
range of classification techniques have been used to classify
multi-modal observations into one of the pre-defined en-
gagement classes. The performance depends on the general
framework and used modalities. Examples include Sup-
port Vector Machine (SVM) [19] [42] [138] [116] [40] [39],
GentleBoost, AdaBoost [40], Multinomial logistic regression
[55] [40], General Regression Models (GRM), C4.5 (decision
tree) [39], and Random forests [49], Dtree and OneR [61],
boosted decision trees models [55], Fuzzy min-max neural
networks (FMMNN) [59]. Comparing various classifiers,
[57] concluded that trained classifiers are faster and more
efficient compared to rule-based methods. However rule-
based methods are more stable (prediction variables vary
less frequently during an interaction). Moreover, in order
to obtain better results, it’s possible to add some temporal
features to the states using Conditional Random Field or
HMM. For instance, employing a multilevel structure with
coupled HMM led to suitable performance for engage-
ment inference in a usual daily conversations [64]. In [160],
learner’s engagement level was estimated using a combina-
tion of neural networks and Hidden Markov Models. Other
probabilistic methods that were employed in the literature
include Bayesian inference methods [60], [162] and Sugeno-
type fuzzy inference system [48].

3.3.2.2 Deep Learning Approaches: The rise of deep
learning and its track record in achieving high performance
for various affective computing problematics has led re-
searchers to propose various deep learning approaches for
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engagement recognition. A clear added value of deep learn-
ing is their ability to learn new featureres presentations. This
is also a nice way to learn mixed representations using con-
textual information, which is harder with other approaches.
The most recent deep learning approaches concentrate on
students engagement inference in online learning. This is
due to the recent shift to online learning due to the Covid-
19 pandemic. Deep learning approaches for engagement
inference either use raw data, or behavioural cues as input
to deep architectures.

In HRI, various architectures composed of Convolu-
tional Neural Networks (CNNs) and LSTM were proposed
for engagement classification or regression. For instance
[181] proposed to classify engagement using body pose
estimated from multiple RGB depth cameras as input to
an LSTM layer. Other architectures composed of CNNs
followed by LSTM [8] were also employed to predict a con-
tinuous engagement score from robot-view video streams.

In online learning context, an approach for student en-
gagement prediction has been proposed by fusing facial
and body features into a single long short-term memory
(LSTM) model [182]. Dilated Temporal Convolutional Net-
works (TCN) has also been proposed for predicting student
engagement intensity [183]. It has been demonstrated that
TCN capture long term dependencies and it outperforms
other sequential models like LSTMs.

A recent trend, is the development of personalized en-
gagement models. ResNet-50 architecture [84] was proposed
to train culture-wise personalized engagement models (Cul-
tureNet) from face images for engagement inference in the
context of robot-assisted therapy for autistic children. [91]
proposed a personalized multitask learning framework to
simultneously predict engagement, valence and arousal.
The network learns behavioural multimodal (visual, audio,
physiological) features representations using autoencoders.
Personalization with respect to culture, gender and each in-
dividual is performed using different fine-tuning strategies.

3.3.3 Unsupervised Learning Approaches
There has been an interest in developing unsupervised
learning approaches to engagement inference, although
mainly these approaches are based clustering techniques
and are limited to HCI and education context. These ap-
proaches aim to discover learners’ engagement patterns
including engagement state, level or style from data, e.g.,
system log files.

Engagement State. A line of work has focused on iden-
tifying patterns corresponding to a binary engagement state
of the learner, namely, engagement vs. disengagement. For
instance, in the context of MOOC, Coffrin et al. [184] were
able to differentiate between engagement and disengage-
ment in the course based on student’s learning analytics
including histogram of student’s performance and weekly
student’s participation.

Engagement Level. Some approaches looked into de-
tecting the level of user’s engagement with the learning
environment. For instance, in the context of exploratory
learning environments [185] unsupervised clustering (k-
means) were applied to identify interaction patterns cor-
responding to different levels of learner engagement from
gaze and context-based features reflecting students actions

during their learning experience. Two engagement levels
were identified, namely, high and low learners.

Engagement Style. These approaches aim to identify
learners engagement style or behaviour based on interaction
patterns with the learning environment. For example, in
[186], [187], learners were clustered based on their degree of
lectures and assignment completion. In the context of robot-
mediated learning [11], approaches were designed using
forward and backward clustering from the multimodal be-
havioural features to the learners learning outcome metrics
and vice-and-versa, allowing the identification of learner
profiles (gainers vs. non-gainers). An engagement score
was then generated using a linear combination of the most
discriminating behaviors between the identified gainers and
non-gainers profiles [104].

4 DISCUSSION AND OPEN QUESTIONS

In this section we discuss the main points presented in
this survey paper as well as open questions in automatic
engagement perception and modeling which remain under-
explored and deserve attention.

4.1 Context-aware Engagement Modeling
One important question, related to context-aware engage-
ment modeling, is how to incorporate contextual informa-
tion in the automatic engagement inference systems. For in-
stance, in HRI, the work of [135] highlighted the importance
of accounting for high-level and low-level communication
processes when measuring engagement. In addition to com-
municative behaviour cues (e.g., visual, linguistic), and in-
terpersonal cues (communicative behaviour of interaction
parties w.r.t each other), it is necessary to consider the inter-
action dynamic (i.e. variations in interaction parties commu-
nicative behaviour ), as well as contexts (e.g., human-robot
relationship, social, situational, human profile).

As discussed in Section 3.2.1, most of the existing ap-
proaches incorporated contextual information in the form
of features extracted from the task or from the interaction
parties’ behaviours. However, research has shown that the
context of the interaction may evolve over time, impacting
the interaction parties’ behaviours and consequently, the
engagement models’ accuracies [18]. Regardless of the ul-
timate interaction goal, various interpersonal sub-contexts
(e.g. social, informative, etc.) [18] might emerge during
the same interaction, which might trigger different cogni-
tive, emotional and behavioural user states, indicative of
their engagement state. While previous studies relate some
mental states to engagement, the literature lacks a clear
indication of when a certain state (e.g emotional, cognitive)
is a significant indicator of engagement in a certain context.
It is thus necessary to understand how the engagement cues
emerge and fluctuate during the same interaction in relation
to the sub-context, and to consider such variations when
developing automatic engagement inference models.

4.2 Temporal Dynamics of Engagement
Previous works have indicated that engagement is a dy-
namic process that changes over time and that is depen-
dent on the participants of a continuously evolving inter-
action [20], [135]. This dynamic aspect was not thoroughly
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studied in the literature of automatic engagement inference.
As a matter of fact, we find different ways by which re-
searchers segment their videos and address the problem
of timescale without giving any justification on why the
specific time scale was chosen. For instance, [117] detected
engagement in 80 milliseconds video segments, [65] used
0.5 second fragments, and [124] segment their videos into
a maximum of 8 seconds fragments. One study [40], has
addressed this matter in the context of student engagement
and performed a comparison between 1 frame, 10 second
segments and 1 minute segments engagement labeling by
external annotators. They found that the labeling task was
easier and more reliable (high inter-rater agreement) when
annotators labeled 10 second video clips, and that a reliable
prediction of engagement labels of 10 second video seg-
ments can be obtained from the average of their constituting
frames labels. Consequently, an important aspect to take
into consideration in engagement inference is the optimal
observation window in which engagement can be detected.
Relevant research questions that are still open for investiga-
tion include the following. Is it sufficient to perform a static
(frame-level) inference? If yes, is this achieved by re-using
clip-level engagement label as the labels for the constituent
frames? What are the advantages and disadvantages of this?
Or a dynamic (segment-level) inference is more relevant? In
the case of dynamic inference, what is the optimal time
window, and is this context-dependent? Is engagement in
specific time segments or frames affected by the users’ past
behaviors, and if yes, to what extent? Such questions merit
further investigation in future studies.

4.3 Personalised Models and Bias

As discussed in Section 3.3.2.2, a recent trend in engage-
ment prediction systems is the development of personalized
models. In such frameworks, user profiling w.r.t personal
factors (cf. Section 2.3) can be performed prior to training
the models. Such information can then be used at the level
of the data, or within the machine learning process to adapt
the models to the specific profiles. Compared to one-fits-all
approaches which are simpler to train but can compromise
the models accuracy and adaptability, personalized mod-
els seem to be promising. However, they remain under-
explored. One concern that arises in this context is the prob-
lem of bias and potential unfairness of personalized models
decisions to certain social groups (e.g. gender, age). Generic
models of affect were shown to present certain biases to such
groups [188], if not properly tackled [189]. However, bias in-
vestigation and mitigation in generic engagement models is
still not explored in the literature. Moreover, the question of
whether personalization of automatic engagement inference
systems increase or mitigate bias and fairness remains open,
and merits further investigation.

5 CONCLUSION

In this paper, we presented a context-driven survey on
engagement in human-machine interaction across various
modes of interaction (HHI, HCI, HRI, and HAI). We re-
viewed more than 200 papers and we introduced widely
used engagement definitions, available datasets, widely

used features, and machine learning approaches. Engage-
ment is a key component of social intelligence. We believe
our survey will be a helpful guide for researchers working
or planning to work on the problem of engagement infer-
ence, and aiming to equip machines with social intelligence.
We finalised our survey with discussions and open ques-
tions to present our insights into how to advance this area
of research further.
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