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Introduction

A pseudo-Riemannian manifold is a differentiable manifold M endowed with a pseudo-Riemannian metric g of signature (p, q). Two metrics g 1 and g 2 on M are said to be conformally equivalent if and only if g 1 = exp(f )g 2 where f is C ∞ function. A conformal structure is then an equivalence class [g] of a pseudo-Riemannian metric g and a conformal manifold is a manifold endowed with a pseudo-Riemannian conformal structure. A remarkable family of conformal manifolds is given by the conformally flat ones. These are pseudo-Riemannian conformal manifolds that are locally conformally diffeomorphic (i.e preserving the conformal structures) to the Minkowski space R p,q i.e the vector space R p+q endowed with the pseudo-Riemannian metric -dx 2 0 -... -dx 2 p-1 + dy 2 0 + ... + dy 2 q-1 . The conformal group Conf(M, g) is the group of transformations that preserve the conformal structure [g]. It is said to be essential if there is no metric in the conformal class of g for which it acts isometrically. In the Riemannian case, the sphere S n is a compact conformally flat manifold with an essential conformal group. The Einstein universe Ein p,q is the equivalent model of the standard conformal sphere in the pseudo-Riemannian setting. It admits a two-fold covering conformally equivalent to the product S p ×S q endowed with the conformal class of -g S p ⊕g S q . It is conformally flat and its conformal group, which is in fact the pseudo-Riemannian Möbius group O(p + 1, q + 1), is essential. Actually the Einstein universe is the flat model of conformal pseudo-Riemannian geometry. This is essentially due to the fact that the Minkowski space embeds conformally as a dense open subset of the Einstein universe Ein p,q and in addition to the Liouville theorem asserting that conformal local diffeomorphisms on Ein p,q are unique restrictions of elements of O(p + 1, q + 1). Hence a manifold is conformally flat if and only if it admits a (O(p + 1, q + 1), Ein p,q )-structure.

In the sixties A. Lichnérowicz conjectured that among compact Riemannian manifolds, the sphere is the only essential conformal structure. This was generalised and proved independently by Obatta and Ferrand (see [START_REF] Obata | The conjectures on conformal transformations of Riemannian manifolds[END_REF], [START_REF] Lelong-Ferrand | Transformations conformes et quasiconformes des variétés riemanniennes; application à la démonstration d'une conjecture de A. Lichnerowicz[END_REF]). In the pseudo-Riemannian case, a similar question, called the pseudo-Riemannian Lichnérowicz conjecture, was raised by D'Ambra and Gromov [START_REF] Ambra | Lectures on transformation groups: geometry and dynamics[END_REF]. Namely, if a compact pseudo-Riemannian conformal manifold is essential then it is conformally flat. This was disproved by Frances see [START_REF] Frances | About pseudo-Riemannian Lichnerowicz conjecture[END_REF], [START_REF] Frances | The lorentzian Lichnerowicz conjecture for real-analytic, three-dimensional manifolds[END_REF].

The present article is the first of a series on the pseudo-Riemannian Lichnérowicz conjecture in a homogeneous setting [START_REF] Belraouti | On homogeneous holomorphic conformal structures[END_REF][START_REF] Belraouti | Conformal pseudoriemannian Lichnerowicz conjecture in homogeneous setting[END_REF]. The general non homogeneous case, but with signature restrictions, was amply studied by Zimmer, Bader, Nevo, Frances, Zeghib, Melnick and Pecastaing (see [START_REF] Zimmer | Split rank and semisimple automorphism groups of G-structures[END_REF], [START_REF] Bader | Conformal actions of simple Lie groups on compact pseudo-Riemannian manifolds[END_REF], [START_REF] Frances | Some remarks on conformal pseudo-Riemannian actions of simple Lie groups[END_REF], [START_REF] Pecastaing | Conformal actions of real-rank 1 simple Lie groups on pseudo-Riemannian manifolds[END_REF], [START_REF] Pecastaing | Conformal actions of higher rank lattices on compact pseudo-Riemannian manifolds[END_REF], [START_REF] Pecastaing | Essential conformal actions of PSL(2, R) on real-analytic compact Lorentz manifolds[END_REF], [START_REF] Melnick | The conformal group of a compact simply connected Lorentzian manifold[END_REF]). Let us also quote [START_REF] Leistner | Conformal transformations of cahen-wallach spaces[END_REF] as a recent work in the Lorentz case.

We are investigating in this first part the case where the non-compact semi-simple part of the conformal group is locally isomorphic to the Möbius group SO(1, n + 1). More exactly, we prove the following classification result. This Möbius situation will actually play a central role towards the general case treated in [START_REF] Belraouti | On homogeneous holomorphic conformal structures[END_REF].

Theorem 1.1. Let (M, [g]) be a conformal connected compact pseudo-Riemannian manifold. We suppose that there exists G a subgroup of the conformal group Conf(M, g) acting essentially and transitively on (M, [g]). We suppose moreover that the noncompact semi-simple part of G is locally isomorphic to the Möbius group SO(1, n + 1). Then (M, [g]) is conformally flat. More precisely (M, [g]) is conformally equivalent to

• The conformal Riemannian n-sphere or;

• Up to a cover, the Einstein universe Ein 1,1 or; • Up to a finite cover, the Einstein universe Ein 3,3 . Remark 1.2. It turns out that, in the first and third cases, the acting group G is locally isomorphic to the Môbius group, that is, G is simple. In the second case, the universal cover G is a subgroup of SL(2, R) × SL(2, R). It can in particular be SL(2, R) × SO(2).

Preliminaries

2.1. Notations. Throughout this paper (M, g) will be a compact connected pseudo-Riemannian manifold of dimension n endowed with a transitive and essential action of the conformal group G = Conf(M, g). We suppose without loss of generality that G is connected.

Fix a point x in M and denote by H = Stab(x) its stabilizer in G. Denote respectively by g, h the Lie algebras of G and H. Let g = s r be a Levi decomposition of g, where s is semi-simple and r is the solvable radical of g. Denote by s nc the non-compact semi-simple factor of s, by s c the compact one and let n be the nilpotent radical of g. Note that n is an ideal of g. Let us denote respectively by S, S nc , S c , R and N the connected Lie sub-groups of G associated to s, s nc , s c , r and n.

Let a be a Cartan subalgebra of s associated with a Cartan involution Θ. Consider s = s 0 ⊕ α∈∆ s α = a ⊕ m ⊕ α∈∆ s α the root space decomposition of s, where ∆ is the set of roots of (s, a). Denote respectively by ∆ + , ∆ -the set of positive and negative roots of s for some chosen notion of positivity on a * . Then

s = s -⊕ a ⊕ m ⊕ s + , where s + = α∈∆ + s α and s -= α∈∆ -s α .
For every α ∈ a * , consider

g α = {X ∈ g, ∀H ∈ a : ad H (X) = α(H)X}.
We say that α is a weight if g α = 0. In this case g α is its associated weight space. As [g, r] ⊂ n (see [START_REF] Jacobson | Lie algebras[END_REF]Theorem 13]) then, for every α = 0, g α = s α ⊕ n α , where

n α = {X ∈ n, ∀H ∈ a : ad H (X) = α(H)X}.
Moreover, the commutativity of a together with the fact that finite dimensional representations of a semi-simple Lie algebra preserve the Jordan decomposition implies that elements of a are simultaneously diagonalisable in some basis of g.

Thus g = g 0 ⊕ α =0 g α .
Finally we will denote respectively by A, S + the connected Lie subgroups of G corresponding to a and s + .

2.2. General facts. We will prove some general results about the conformal group G. We start with the following general fact: Proposition 2.1. We have that [s, n] = [s, r]. In particular the sub-algebra s n is an ideal of g.

Proof.

For this, let us consider the semi-simple S-representation in GL(r). It preserves n and thus has a supplementary invariant subspace. But [g, r] ⊂ n so automorphisms of r act trivially on r/n and hence [s, g] ⊂ s ⊕ [s, n] ⊂ s n. We deduce that s n is an ideal of g.

Next we will prove:

Proposition 2.2. The non-compact semi-simple factor S nc of S is non trivial.

Let us first start with the following simple observation: Proposition 2.3. If a conformal diffeomorphism f of (M, g) preserves a volume form ω on M , then it preserves a metric in the conformal class of g.

Proof. Let f be a diffeomorphism preserving the conformal class [g] and a volume form ω on M . Denote by ω g the volume form defined on M by the metric g. On the one hand, there exists a C ∞ real function φ such that ω = e φ ω g . Hence ω is the volume form defined by the metric e Assume that the non-compact semi-simple factor S nc is trivial. Then by [START_REF] Zimmer | Ergodic theory and semisimple groups[END_REF]Corollary 4.1.7] the group G is amenable. So it preserves a regular Borel measure µ on the compact manifold M . It is in particular a quasi-invariant measure with associated rho-function ρ 1 = 1 (in the sense of [START_REF] Bekka | Kazhdan's property (T)[END_REF]). Let now ω g be the volume form corresponding to the metric g. As the group G acts conformally and the action is C ∞ , the measure ω g is also quasi-invariant with C ∞ rho-function ρ 2 (see [START_REF] Bekka | Kazhdan's property (T)[END_REF]Theorem B.1.4]). Again by [START_REF] Bekka | Kazhdan's property (T)[END_REF]Theorem B.1.4], the measures µ and ω g are equivalent and dµ dωg = 1 ρ2 . This shows that µ is a volume form. Then one use Corollary 2.4 to get the Proposition 2.2.

In the general case the essentiality of the action ensure the non discreetness of the stabilizer H.

Proposition 2.5. The stabilizer H is not discrete.

Proof. If it was not the case then H would be a uniform lattice in G. But as the action is essential, there is an element h ∈ H that does not preserve the metric on g/h. So |det (Ad h )| = 1 contradicting the unimodilarity of G.

To finish this part let us prove the two following important Lemmas that will be used later in the paper: Lemma 2.6. Let π : S nc -→ GL(V ) be a linear representation of S nc into a linear space V . Then, the compact orbits of S nc are trivial.

Proof. Assume that S nc has a compact orbit C ⊂ V . Then the convex envelope Conv(C ∪ -C) is an S nc -invariant compact convex symmetric set with non empty interior. Thus the action of S nc preserves the Minkowski gauge . (which is in fact a norm) of Conv(C ∪ -C). But Isom (Conv(C ∪ -C), . ) is compact. So the restriction of the representation π to Conv(C ∪ -C) gives rise to an homomorphism from a semi-simple group with no compact factor to a compact group and hence is trivial.

Lemma 2.7. A linear representation π : s nc -→ gl(V ) of s nc into a linear space V is completely determined by its restriction to a ⊕ m ⊕ s + . More precisely, π snc (V ) = Vect π a⊕m⊕s+ (V ) .

Proof. It is in fact sufficient to show that π s-(V ) ⊂ Vect π a⊕s+ (V ) . For that, fix x ∈ s -α ⊂ s -and let a ∈ a such that Rx ⊕ Ra ⊕ RΘ(x) ∼ = sl(2, R) (see for example [15, Proposition 6.52]). Thus the restriction of π to Rx ⊕ Ra ⊕ RΘ(x) is isomorphic to a linear representation of sl(2, R) into V . Using Weyl Theorem we can assume without loss of generality that this last is irreducible. But irreducible linear representations of sl(2, R) into V are unique up to isomorphism (see for instance [START_REF] Hall | Lie groups, Lie algebras, and representations[END_REF]Theorem 4.32]). It is then easy to check that they verify π(x)(V ) ⊂ Vect π Ra⊕RΘ(x) (V ) (see [START_REF] Hall | Lie groups, Lie algebras, and representations[END_REF]Examples 4.2]). This finishes the proof.

Lie algebra formulation

3.1. Enlargement of the isotropy group. As the manifold G/H is compact, the isotropy subgroup H is a uniform subgroup of G. If H was discrete then it is a uniform lattice and in this case G would be unimodular. In the non discrete case, this imposes strong restrictions on the group H. When H and G are both complex algebraic it is equivalent to being parabolic i.e contains maximal solvable connected subgroup of H. In the real case, Borel and Tits [START_REF] Borel | Groupes réductifs[END_REF] proved that an algebraic group H of a real linear algebraic group G is uniform if it contains a maximal connected triangular subgroup of G. Recall that a subgroup of G (respectively a sub-algebra of g) is said to be triangular if, in some real basis of g, its image under the adjoint representation is triangular.

Let H * = Ad -1 Ad(H) Zariski be the smallest algebraic Lie subgroup of G containing H. By [12, Corollary 5.1.1], the Lie algebra h * of H * contains a maximal triangular sub-algebra of g. The sub-algebra (a ⊕ s + ) n being triangular, we get the following fact: Fact 3.1. Up to conjugacy, the sub-algebra h * contains (a ⊕ s + ) n.

Consider the vector space Sym(g) of bilinear symmetric forms on g. The group G acts naturally on Sym(g) by g.Φ(X, Y ) = Φ(Ad g -1 X, Ad g -1 Y ). Let ., . be the bilinear symmetric form on g defined by

X, Y = g (X * (x), Y * (x)) ,
where g is the pseudo-Riemannian metric, X * , Y * are the fundamental vector fields associated to X and Y and x is the point fixed previously. It is a degenerate symmetric form with kernel equal to h.

Let P be the subgroup of G preserving the conformal class of ., . . It is an algebraic group containing H and normalizing the sub-algebra h. In particular, it contains H * : the smallest algebraic group containing H. Using Fact 3.1 we get that up to conjugacy, the Lie algebra p of P contains (a ⊕ s + ) n.

Proposition 3.2. The Cartan sub-group A does not preserve the metric ., . . Proof. First as h is an ideal of p then by taking quotient of both P and H by H

• , we can suppose that H is a uniform lattice of P and in particular that P is unimodular.

Assume that A preserves the metric ., . . On the one hand, the groups S + and N preserve the conformal class of ., . . On the other hand, they act on Sym(g) by unipotent elements. So the groups A, S + , and N preserve the metric ., . . But by Iwasawa decomposition (A S + ) is co-compact in S. Thus the S-orbit of ., . is compact in Sym(g) and hence trivial by Lemma 2.6. Therefore S and N are subgroups of P . This implies that for any p ∈ P , det (Ad p ) |g/p = 1. Indeed, the action of G on (s c + r)/n factors trough the product of the action of S c on s c by the trivial action on r/n. As P contains S and N , its action on g/p is a quotient of the action of S c on s c . But S c is compact, thus it preserves some positive definite scalar product and hence the determinant det (Ad p ) |g/p = 1. Now let h ∈ H such that Ad h does not preserve ., . . We have that

1 = det (Ad h ) |g/h = det (Ad h ) |g/p det (Ad h ) |p/h
Finally we get det (Ad h ) |p/h = 1 which contradicts the unimodularity of P .

3.2. Distortion. The group P preserves the conformal class of ., . . There exists thus an homomorphism δ : P → R such that: for every p ∈ P and every u, v ∈ g,

(1) Ad p (u), Ad p (v) = e δ(p) u, v = det (Ad p ) |g/h 2 n u, v
In particular if p ∈ P preserves the metric then δ(p) = 0 and

(2)

Ad p (u), Ad p (v) = u, v
Or equivalently

(3) ad p (u), v + u, ad p (v) = 0
It follows that if the action of p ∈ P on g is unipotent then δ(p) = 0. Therefore, the homomorphism δ is trivial on S -and N but not on A by Proposition 3.2. We continue to denote by δ the restriction of δ to A. We can see it alternatively as a linear form δ : a → R, called distortion, verifying: for every a ∈ a and every u, v ∈ g,

(4) ad a (u), v + u, ad a (v) = δ(a) u, v Definition 3.1. 
Two weights spaces g α and g β are said to be paired if they are not ., . -orthogonal.

Definition 3.2. A weight α is a non-degenerate weight if g α is not contained in h.

Definition 3.3. We say that a subalgebra g is a modification of g if g projects surjectively on g/h. In this case g / (g ∩ h) = g/h.

Proposition 3.3. If the weight space g 0 is degenerate then up to modification, g is semi-simple and M = G/H is conformally flat.

Proof. On the one hand, g 0 ⊂ h implies that a ⊂ h. As h is an ideal of p, we get that s + = [s + , a] ⊂ h. On the other hand, r ⊂ g 0 + n ⊂ g 0 + [n, a] ⊂ h. Thus, up to modification, we can assume that g is semi-simple and that h contains a + s + . Now let α max be the highest positive root and let X ∈ g αmax . Then d 1 e X : g/h → g/h is trivial. Yet e X is not trivial. We conclude using [START_REF] Frances | Formes normales pour les champs conformes pseudoriemanniens[END_REF]Theorem 1.4].

A direct consequence of Equation 4, is that if g α and g β are paired then α+β = δ. This shows that if α is a non-degenerate weight then δ -α is also a non-degenerate weight. In particular if 0 is a non-degenerate weight, then g 0 and g δ are paired and hence δ is a non-degenerate weight. In fact: Proposition 3.4. If 0 is a non-degenerate weight then δ is a root. Moreover s δ ⊂ h.

Proof. First we will prove that the subalgebras a and n δ are ., . -orthogonal. Let a ∈ a such that δ(a) = 0. Using Equation 4 for a, u = a and v ∈ n δ , we get, a, ad a (v) = δ(a) a, v . But v preserves ., . , thus by Equation 3, δ(a) a, v = 0. Hence a, v = 0, for every v ∈ n δ . We conclude by continuity. Now if δ was not a root then s δ = 0 and g δ = n δ . Thus a and g δ are orthogonal. Which implies that a ⊂ h. But h is an ideal of p, so g δ = [g δ , a] ⊂ h. This contradicts the fact that g δ is paired with g 0 .

To finish we need to prove that s δ ⊂ h. If this was not the case then a would be orthogonal to g δ . Hence g δ ⊂ h which contradicts again the fact that g δ is paired with g 0 .

3.3. The isotropy group is big. From now and until the end we will suppose that the non-compact semi-simple part S nc of G is locally isomorphic to the Möbius group SO(1, n + 1). In this case the Cartan Lie algebra a is one dimensional and we have s nc = s -α ⊕ a ⊕ m ⊕ s α , where α is a positive root, a ∼ = R, m ∼ = so(n), and

s -α ∼ = s α ∼ = R n . Moreover, g ±α = s ±α ⊕ n ±α , g 0 = a ⊕ m ⊕ s c ⊕ r 0 , g β = n β for every β = 0, ±α and r = r 0 ⊕ β =0 n β .
In section 3.1 we saw that the isotropy group H is contained in the algebraic group P which turn out to be big i.e to contain the connected Lie groups A, S α and N . Our next result shows that the group H itself is big:

Proposition 3.5. The Lie algebra h contains a ⊕ s α ⊕ β =0 n β .
Proof. We have that a ⊂ h. Indeed, if 0 is a degenerate weight then we are done. If not, then δ is a root and a ⊂ g 0 is orthogonal to every g β with β = δ. From the proof of Proposition 3.4 we know that a and n δ are orthogonal. Thus it remains to show that a and s δ are orthogonal. For that, let x ∈ s δ then Θ(x) ∈ s -δ and [x, Θ(x)] = 0 in a. Now using Equation 3 and the fact that one of x or Θ(x) preserve ., . , we get ad x (Θ(x)), x = 0. But a is one dimensional so it is orthogonal to s δ .

To end this proof, we have that h is an ideal of p and so

a ⊕ s α ⊕ β =0 n β = a ⊕   a, s α ⊕ β =0 n β   ⊂ h ⊕ [h, p] ⊂ h.
As a consequence we get:

Corollary 3.6. If 0 is a non-degenerate weight, then δ = -α.

3.4.

A suitable modification of g. We will show that g admits a suitable modification g . This allows us to considerably simplify the proofs in the next section.

More precisely, we have:

Proposition 3.7. The solvable radical decomposes as a direct sum r = r 1 ⊕r 2 , where r 1 is a subalgebra commuting with the semi-simple factor s and r 2 is an s-invariant linear subspace contained in h. In particular g = s ⊕ r 1 is a modification of g.

To prove Proposition 3.7, we need the following lemma:

Lemma 3.8. We have [s, n] = [s, r] ⊂ h.

Proof of Lemma 3.8. First we prove that [n, g 0 ] ⊂ h. For this, note that by the Jacobi identity and the fact that n is an ideal of g, we have β =0 n β , g 0 = β =0 n β which in turn is a subset of h by Proposition 3.5. Thus one need to prove that [n 0 , g 0 ] ⊂ h. We know that n preserve the metric ., . . So using Equation 3 for p ∈ n 0 , u ∈ g 0 and v ∈ g δ gives us: ad p (u), v + u, ad p (v) = 0. But once again by Jacobi identity, the fact that n is an ideal of g and Proposition 3.5 we have ad p (v) ∈ g δ ∩ n = n δ ⊂ h. So ad p (u), v = 0, which means that [n 0 , g 0 ] is orthogonal to g δ . Using the fact that [n 0 , g 0 ] ⊂ g 0 and that g 0 is orthogonal to every g β 7
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  2φ n g. On the other hand, we have f * e 2φ n g = e ψ e 2φ n g, for some C ∞ function ψ. Thus f * ω = e n 2 ψ ω. But, f preserves the volume form ω, so ψ = 0 which means that f preserves the metric e 2φ n g. As a consequence we get: Corollary 2.4. The conformal group G preserves no volume form on M .

for β = δ we get that [n 0 , g 0 ] ⊂ h.

Next we have that s c ⊂ g 0 thus [s c , n] ⊂ [g 0 , n] ⊂ h.

Finally we finish by proving that [s nc , n] ⊂ h. On the one hand we have,

On the other hand, as s nc is semi-simple we have by Lemma 2.7 that [s nc , n] ⊂ Vect ([a ⊕ m ⊕ s α , n]) ⊂ h.

Proof of Proposition 3.7. The subalgebra [s, n] = [s, r] is s-invariant, so it admits an s-invariant supplementary subspace r 1 in r. But s acts trivially on r/ [s, n] and thus it acts trivially on r 1 . We take r 1 to be the s-invariant subalgebra generated by r 1 (in fact the action of s on r 1 is trivial).

It is clear that r 1 is a direct sum of r 1 and r 1 : an s-invariant subspace of [s, n]. Consider r 2 to be the supplementary of r 1 in [s, n] = [s, r]. It is s-invariant and by Lemma 3.8 we have r 2 ⊂ h.

The Möbius conformal group: a classification theorem

This section is devoted to prove Theorem 1.1. We distinguish two situations: when m is contained in h and when it is not. In this last one, we first consider the case where only the non-compact semi-simple part S nc is non trivial. Then deduce from it the general case. From now and until the end we will assume, up to modification, that g = s ⊕ r 1 .

4.1. The Frances-Melnick case. We suppose that the sub-algebra m is contained in h. Then we have the following proposition: Proposition 4.1. M is conformally equivalent to the standard sphere S n or the Einstein universe Ein 1,1 .

Proof. Assume first that g 0 is contained in h. Then by Proposition 3.3, M is conformally flat and after modification, r = 0. Moreover, g/h ∼ = s -α . This is because

Now suppose that g 0 is not in h. In this case g -α = g δ is paired with g 0 . But a, m and n δ are contained in h so s -α is paired with s c ⊕ (r 0 ∩ r 1 ). Note that m acts on s -α ⊕ (s c ⊕ (r 0 ∩ r 1 )) by preserving the pairing (in fact the action of m preserves the metric ., . ). On the contrary for n ≥ 2, m ∼ = so(n) acts trivially on r 0 ∩ r 1 and transitively on s -α -{0}, so n = 1. As the metric is of type (p, q), we conclude that the projection of s c ⊕ (r 0 ∩ r 1 ) on g/h is ∼ = R. Thus, after modification g = so(1, 2) ⊕ R = u(1, 1), h = a ⊕ s α = R ⊕ R and hence M is, up to cover, conformally equivalent to Ein 1,1 .

4.2.

The non-compact semi-simple case. Here we suppose that m is not contained in h, the compact semi-simple part s c and the radical solvable part r 1 are both trivial. We will show: Proposition 4.2. The pseudo-Riemannian manifold M is conformally equivalent to Ein 3,3 By corollary 3.6, δ is a negative root. In particular δ = -α and g -α is paired with g 0 . In addition g = s -α ⊕ a ⊕ m ⊕ s α and a ⊕ s α ⊂ h. We have: Proposition 4.3. The root space s δ does not intersect h. In particular the metric is of type (n, n).

Proof. If it was the case then let 0 = X ∈ s δ ∩ h. We have [[X, s -δ ] , X] = s δ so s δ ⊂ h. This contradicts the fact that g δ is paired with g 0 .

Consider the bracket [., .] :

and .∨. : s α ×s -α -→ a its projections on m and a respectively. Direct computations give us: Lemma 4.4.

(

The Cartan involution identifies s α and s -α , which when identified with R n , m acts on them as so(n). In this case, the map .∨. can be seen as a bilinear symmetric map from R n × R n to R n , and when composed with α gives rise to an m-invariant scalar product ., . 0 on R n . Moreover, by Lemma 4.4, for every x, X ∈ R n , X ∧ x is the antisymmetric endomorphism of R n defined by X ∧x(y) = X, y 0 x-x, y 0 X.

Let x, X ∈ R n and consider P the plane generated by x, X. Then X ∧ x when seen as element of m ∼ = so(n) is the infinitesimal generator of a one parameter group acting trivially on the orthogonal P ⊥ of P with respect to the scalar product ., . 0 . Hence X ∧ x ∈ so(P ). More generally: Proposition 4.5. Let E be a linear subspace of R n and let x ∈ E. Consider c the Lie subalgebra of so(n) generated by {X ∧ x/X ∈ E}. Then c equals the Lie algebra linearly generated by {X ∧ X /X, X ∈ E}, which in turn equals so(E), the Lie algebra of orthogonal transformations preserving E and acting trivially on its orthogonal (with respect to ., . 0 ).

Proof. First we have c(E) ⊂ E and hence c ⊂ so(E). It is then sufficient to prove that c and so(E) have the same dimensions. For that let {x, X 2 , ..., X k } be a basis of E. Note that {X 2 ∧ x, ..., X k ∧ x, [X i ∧ x, X j ∧ x] , for 2 ≤ i < j ≤ k} are linearly independent. Thus c = so(E).

For every x = 0 ∈ s -α consider:

Proof. By Proposition 4.5 we have,

This implies that

Hence, the projections Θ(Z x )\{0}

x∈s-α form a partition of g/h.

Next we prove:

Proposition 4.7. The pseudo-Riemannian manifold M is conformally flat.

Proof. We need to prove that the Weyl tensor W (or the Cotton tensor C if the dimension of M is 3) vanishes. Actually we will just make use of their conformal invariance property. Namely: if f is a conformal transformation of M then, (5)

We denote by x the projection in g/h of an element x ∈ g. A direct application of Equation 5gives us:

(1) W(x, ȳ, z) = 0 for every x, y, z ∈ s -α ;

(2) W(x, ȳ, m) = 0 for every x, y ∈ s -α and every m ∈ m;

Then, from Equation 5we obtain:

In other words W(x, m 1 , m 2 ) ∈ Θ(Z x ). Now let x, y ∈ s -α , X ∈ s α and m ∈ m. Then again Equation 5gives us:

But W(x, [X, ȳ] , m) ∈ Θ(Z x ) and W([X, x] , ȳ, m) ∈ Θ(Z y ). Thus, Proposition 4.6 gives us:

(1) If y / ∈ Θ(Z x ) then W(x, [X, ȳ] , m) = 0; (2) In the case y ∈ Θ(Z x ) and X ∈ Z x , we have W(x, [X, ȳ] , m) = 0 (3) If y ∈ Θ(Z x ) and X / ∈ Z x . Then because Θ(X) / ∈ Θ(Z x ) we have:

So as a conclusion we get W = 0.

We finish this section by proving Proposition 4.2: Proof of Proposition 4.2. First note that if n = 1 then m = 0. Thus we assume n ≥ 2. So far we have seen that M = SO(1, n + 1)/H is a conformally flat pseudo-Riemannian manifold of signature (n, n). Since the Lie algebra h contains a + s α , the group H

• is cocompact in SO(1, n + 1). Therefore SO

• is connected and compact, with a connected isotropy and hence simply connected. As M is connected, it covers SO

• and thus equals it.

On the one hand, the Einstein universe Ein n,n is simply connected. Thus M is identified to Ein n,n . So SO(1, n + 1) acts transitively on Ein n,n with isotropy H. By Montgomery Theorem [19, Theorem A] any maximal compact subgroup in SO(1, n + 1), e.g. K 2 = SO(n + 1), acts transitively on S n × S n the two fold cover of Ein n,n .

On the other hand, the conformal group of Ein n,n is SO(n+1, n+1). A maximal compact subgroup of it is K 1 = SO(n + 1) × SO(n + 1). Up to conjugacy , we can assume K 2 ⊂ K 1 . Therefore, K 2 = SO(n + 1) acts via a homomorphism ρ = (ρ 1 , ρ 2 ) : SO(n + 1) → SO(n + 1) × SO(n + 1). If SO(n + 1) is simple, then:

-either ρ 1 or ρ 2 is trivial and the other one is bijective, in which case ρ(SO(n + 1)) does not act transitively on S n × S n , -or both are bijective, and ρ(SO(n + 1) is up to conjugacy in SO(n + 1) × SO(n + 1) the diagonal {(g, g)/g ∈ SO(n + 1)}. The latter, too, does not act transitively on S n × S n .

Hence SO(n + 1) must be non-simple which implies n = 1 or n = 3. but n = 1 was excluded, and then remains exactly the case n = 3, for which M is conformally equivalent to Ein 3,3 . 4.3. The general case. In this section we will show Theorem 1.1 in the general case. We suppose that g = s -α ⊕ a ⊕ m ⊕ s α ⊕ s c ⊕ r 1 . Let us denote by m 0 = m ∩ h so that so(1, n + 1) ∩ h = a ⊕ s α ⊕ m 0 . A priori the subalgebra m 0 could be of any dimension in m. Nevertheless the hypothesis m ⊂ h restricts drastically the possibilities. So we have: Proof. If n = 2 then m = so(2). Hence [p, s α ] = a ⊕ m for any non null p ∈ s -α . Recall that s -α preserves the metric so by applying Equation 3 for p = v ∈ s -α , u ∈ s α we get s -α , m = 0. Thus m ⊂ h which contradicts our hypothesis.

Assume that n ≥ 3 and suppose that m 0 has codimension less then n-1. Denote by M 0 the connected subgroup of SO(n) corresponding to m 0 .

If the action of M 0 on s -α ∼ = R n is reducible then M 0 preserves the splitting R d × R n-d and hence is contained in SO(d)×SO(n-d). Thus M 0 has codimension bigger than the codimension of SO(d) × SO(n -d) which in turn achieves its minimum if d = 1 or n -d = 1 and hence M 0 = SO(n -1). One can identify m 0 with so(E) for some n-1 dimensional linear subspace E of s -α . Let then e ∈ s -α such that s -α = Re ⊕ E. Fix a non zero element x ∈ Θ(E), we have ad x (e), X + e, ad x X = 0 for every X ∈ s -α and so in particular e, ad x e = 0. In addition by Proposition 4.5, [E, Θ(E)] = a ⊕ m 0 ⊂ h thus ad x e, X = 0 for every X ∈ E and hence ad x e is orthogonal to s -α . This implies that x ∧ e ∈ h ∩ m = m 0 = so(E) which contradicts the fact that x ∧ e is the infinitesimal rotation of the plane Re ⊕ Rx.

The last case to consider is when M 0 acts irreducibly. Let m ∈ m 0 , X ∈ s -α and y ∈ s c ⊕ r 1 then ad m (X), y + X, ad m y = 0. But ad m y = 0 and hence s c ⊕ r 1 is orthogonal to [m 0 , s -α ] which is equal to s -α by irreducibility. Thus s c ⊕ r 1 ⊂ h and we are in the non-compact semi-simple case. Therefore n = 3 and m ∼ = so(3). Non trivial Sub-algebras of so(3) have dimension one and are reducible. So the only left possibility is m 0 = m ∼ = so(3) which show that m ⊂ h and this is a contradiction.

End of Proof of Theorem 1.1. By Proposition 4.8, m 0 is of codimension n in m. But s -α is paired with g 0 = a ⊕ m ⊕ s c ⊕ (r 1 ∩ r 0 ). Thus s c ⊕ (r 1 ∩ r 0 ) ⊂ h and we are also in the non-compact semi-simple case. Therefore n = 3 and M is conformally equivalent to Ein 3,3 .
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