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PSEUDO-CONFORMAL ACTIONS OF THE MÖBIUS GROUP

M. BELRAOUTI, M. DEFFAF, Y. RAFFED, AND A. ZEGHIB

Abstract. We study compact connected pseudo-Riemannian manifolds (M, g) on
which the conformal group Conf(M, g) acts essentially and transitively. We prove,
in particular, that if the non-compact semi-simple part of Conf(M, g) is the Möbius
group, then (M, g) is conformally flat.
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1. Introduction

A pseudo-Riemannian manifold is a differentiable manifold M endowed with
a pseudo-Riemannian metric g of signature (p, q). Two metrics g1 and g2 on M
are said to be conformally equivalent if and only if g1 = exp(f)g2 where f is
C∞ function. A conformal structure is then an equivalence class [g] of a pseudo-
Riemannian metric g and a conformal manifold is a manifold endowed with a
pseudo-Riemannian conformal structure. A remarkable family of conformal mani-
folds is given by the conformally flat ones. These are pseudo-Riemannian conformal
manifolds that are locally conformally diffeomorphic (i.e preserving the conformal
structures) to the Minkowski space Rp,q i.e the vector space Rp+q endowed with
the pseudo-Riemannian metric −dx2

0 − ...− dx2
p−1 + dy2

0 + ...+ dy2
q−1.

The conformal group Conf(M, g) is the group of transformations that preserve
the conformal structure [g]. It is said to be essential if there is no metric in the
conformal class of g for which it acts isometrically. In the Riemannian case, the
sphere Sn is a compact conformally flat manifold with an essential conformal group.
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The Einstein universe Einp,q is the equivalent model of the standard conformal
sphere in the pseudo-Riemannian setting. It admits a two-fold covering conformally
equivalent to the product Sp×Sq endowed with the conformal class of −gSp⊕gSq . It
is conformally flat and its conformal group, which is in fact the pseudo-Riemannian
Möbius group O(p + 1, q + 1), is essential. Actually the Einstein universe is the
flat model of conformal pseudo-Riemannian geometry. This is essentially due to
the fact that the Minkowski space embeds conformally as a dense open subset of
the Einstein universe Einp,q and in addition to the Liouville theorem asserting that
conformal local diffeomorphisms on Einp,q are unique restrictions of elements of
O(p + 1, q + 1). Hence a manifold is conformally flat if and only if it admits a
(O(p+ 1, q + 1),Einp,q)-structure.

In the sixties A. Lichnérowicz conjectured that among compact Riemannian man-
ifolds, the sphere is the only essential conformal structure. This was generalised
and proved independently by Obatta and Ferrand (see [20], [17]). In the pseudo-
Riemannian case, a similar question, called the pseudo-Riemannian Lichnérowicz
conjecture, was raised by D’Ambra and Gromov [1]. Namely, if a compact pseudo-
Riemannian conformal manifold is essential then it is conformally flat. This was
disproved by Frances see [8], [10].

The present article is the first of a series on the pseudo-Riemannian Lichnérowicz
conjecture in a homogeneous setting [5, 4]. The general non homogeneous case, but
with signature restrictions, was amply studied by Zimmer, Bader, Nevo, Frances,
Zeghib, Melnick and Pecastaing (see [25], [2], [11], [22], [23], [21], [18]). Let us also
quote [16] as a recent work in the Lorentz case.

We are investigating in this first part the case where the non-compact semi-simple
part of the conformal group is locally isomorphic to the Möbius group SO(1, n+1).
More exactly, we prove the following classification result. This Möbius situation
will actually play a central role towards the general case treated in [5].

Theorem 1.1. Let (M, [g]) be a conformal connected compact pseudo-Riemannian
manifold. We suppose that there exists G a subgroup of the conformal group Conf(M, g)
acting essentially and transitively on (M, [g]). We suppose moreover that the non-
compact semi-simple part of G is locally isomorphic to the Möbius group SO(1, n+
1). Then (M, [g]) is conformally flat. More precisely (M, [g]) is conformally equiv-
alent to

• The conformal Riemannian n−sphere or;
• Up to a cover, the Einstein universe Ein1,1 or;
• Up to a finite cover, the Einstein universe Ein3,3.

Remark 1.2. It turns out that, in the first and third cases, the acting group G is
locally isomorphic to the Môbius group, that is, G is simple. In the second case,

the universal cover G̃ is a subgroup of ˜SL(2,R) × ˜SL(2,R). It can in particular be

˜SL(2,R) × S̃O(2).

2. Preliminaries

2.1. Notations. Throughout this paper (M, g) will be a compact connected pseudo-
Riemannian manifold of dimension n endowed with a transitive and essential action
of the conformal group G = Conf(M, g). We suppose without loss of generality that
G is connected.
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Fix a point x in M and denote by H = Stab(x) its stabilizer in G. Denote
respectively by g, h the Lie algebras of G and H. Let g = s n r be a Levi decom-
position of g, where s is semi-simple and r is the solvable radical of g. Denote by
snc the non-compact semi-simple factor of s, by sc the compact one and let n be
the nilpotent radical of g. Note that n is an ideal of g. Let us denote respectively
by S, Snc, Sc, R and N the connected Lie sub-groups of G associated to s, snc, sc,
r and n.

Let a be a Cartan subalgebra of s associated with a Cartan involution Θ. Con-
sider s = s0 ⊕

⊕
α∈∆ sα = a ⊕ m ⊕

⊕
α∈∆ sα the root space decomposition of s,

where ∆ is the set of roots of (s, a). Denote respectively by ∆+, ∆− the set of
positive and negative roots of s for some chosen notion of positivity on a∗. Then
s = s− ⊕ a⊕m⊕ s+, where s+ =

⊕
α∈∆+ sα and s− =

⊕
α∈∆− sα.

For every α ∈ a∗, consider

gα = {X ∈ g,∀H ∈ a : adH(X) = α(H)X}.

We say that α is a weight if gα 6= 0. In this case gα is its associated weight space.
As [g, r] ⊂ n (see [14, Theorem 13]) then, for every α 6= 0, gα = sα ⊕ nα, where

nα = {X ∈ n,∀H ∈ a : adH(X) = α(H)X}.

Moreover, the commutativity of a together with the fact that finite dimensional
representations of a semi-simple Lie algebra preserve the Jordan decomposition
implies that elements of a are simultaneously diagonalisable in some basis of g.
Thus g = g0 ⊕

⊕
α6=0 gα.

Finally we will denote respectively by A, S+ the connected Lie subgroups of G
corresponding to a and s+.

2.2. General facts. We will prove some general results about the conformal group
G. We start with the following general fact:

Proposition 2.1. We have that [s, n] = [s, r]. In particular the sub-algebra s n n
is an ideal of g.

Proof. For this, let us consider the semi-simple S−representation in GL(r). It
preserves n and thus has a supplementary invariant subspace. But [g, r] ⊂ n so
automorphisms of r act trivially on r/n and hence [s, g] ⊂ s ⊕ [s, n] ⊂ s n n. We
deduce that sn n is an ideal of g. �

Next we will prove:

Proposition 2.2. The non-compact semi-simple factor Snc of S is non trivial.

Let us first start with the following simple observation:

Proposition 2.3. If a conformal diffeomorphism f of (M, g) preserves a volume
form ω on M , then it preserves a metric in the conformal class of g.

Proof. Let f be a diffeomorphism preserving the conformal class [g] and a volume
form ω on M . Denote by ωg the volume form defined on M by the metric g.
On the one hand, there exists a C∞ real function φ such that ω = eφωg. Hence

ω is the volume form defined by the metric e
2φ
n g. On the other hand, we have

f∗e
2φ
n g = eψe

2φ
n g, for some C∞ function ψ. Thus f∗ω = e

n
2 ψω. But, f preserves

the volume form ω, so ψ = 0 which means that f preserves the metric e
2φ
n g. �
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As a consequence we get:

Corollary 2.4. The conformal group G preserves no volume form on M .

Assume that the non-compact semi-simple factor Snc is trivial. Then by [24,
Corollary 4.1.7] the group G is amenable. So it preserves a regular Borel measure
µ on the compact manifold M . It is in particular a quasi-invariant measure with
associated rho-function ρ1 = 1 (in the sense of [3]). Let now ωg be the volume
form corresponding to the metric g. As the group G acts conformally and the
action is C∞, the measure ωg is also quasi-invariant with C∞ rho-function ρ2 (see
[3, Theorem B.1.4]). Again by [3, Theorem B.1.4], the measures µ and ωg are

equivalent and dµ
dωg

= 1
ρ2

. This shows that µ is a volume form. Then one use

Corollary 2.4 to get the Proposition 2.2.
In the general case the essentiality of the action ensure the non discreetness of

the stabilizer H.

Proposition 2.5. The stabilizer H is not discrete.

Proof. If it was not the case then H would be a uniform lattice in G. But as the
action is essential, there is an element h ∈ H that does not preserve the metric on
g/h. So |det (Adh)| 6= 1 contradicting the unimodilarity of G. �

To finish this part let us prove the two following important Lemmas that will be
used later in the paper:

Lemma 2.6. Let π : Snc −→ GL(V ) be a linear representation of Snc into a linear
space V . Then, the compact orbits of Snc are trivial.

Proof. Assume that Snc has a compact orbit C ⊂ V . Then the convex envelope
Conv(C ∪ −C) is an Snc−invariant compact convex symmetric set with non empty
interior. Thus the action of Snc preserves the Minkowski gauge ‖.‖ (which is in
fact a norm) of Conv(C ∪ −C). But Isom (Conv(C ∪ −C), ‖.‖) is compact. So the
restriction of the representation π to Conv(C ∪−C) gives rise to an homomorphism
from a semi-simple group with no compact factor to a compact group and hence is
trivial. �

Lemma 2.7. A linear representation π : snc −→ gl(V ) of snc into a linear space V
is completely determined by its restriction to a⊕m⊕s+. More precisely, πsnc(V ) =
Vect

(
πa⊕m⊕s+ (V )

)
.

Proof. It is in fact sufficient to show that πs− (V ) ⊂ Vect
(
πa⊕s+ (V )

)
. For that,

fix x ∈ s−α ⊂ s− and let a ∈ a such that Rx ⊕ Ra ⊕ RΘ(x) ∼= sl(2,R) (see for
example [15, Proposition 6.52]). Thus the restriction of π to Rx ⊕ Ra ⊕ RΘ(x) is
isomorphic to a linear representation of sl(2,R) into V . Using Weyl Theorem we
can assume without loss of generality that this last is irreducible. But irreducible
linear representations of sl(2,R) into V are unique up to isomorphism (see for
instance [13, Theorem 4.32]). It is then easy to check that they verify π(x)(V ) ⊂
Vect

(
πRa⊕RΘ(x) (V )

)
(see [13, Examples 4.2]). This finishes the proof. �

3. Lie algebra formulation

3.1. Enlargement of the isotropy group. As the manifold G/H is compact,
the isotropy subgroup H is a uniform subgroup of G. If H was discrete then it is a
uniform lattice and in this case G would be unimodular. In the non discrete case,
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this imposes strong restrictions on the group H. When H and G are both complex
algebraic it is equivalent to being parabolic i.e contains maximal solvable connected
subgroup of H. In the real case, Borel and Tits [6] proved that an algebraic group
H of a real linear algebraic group G is uniform if it contains a maximal connected
triangular subgroup of G. Recall that a subgroup of G (respectively a sub-algebra
of g) is said to be triangular if, in some real basis of g, its image under the adjoint
representation is triangular.

Let H∗ = Ad−1
(

Ad(H)
Zariski

)
be the smallest algebraic Lie subgroup of G

containing H. By [12, Corollary 5.1.1], the Lie algebra h∗ of H∗ contains a maximal
triangular sub-algebra of g. The sub-algebra (a⊕ s+) n n being triangular, we get
the following fact:

Fact 3.1. Up to conjugacy, the sub-algebra h∗ contains (a⊕ s+) n n.

Consider the vector space Sym(g) of bilinear symmetric forms on g. The group
G acts naturally on Sym(g) by g.Φ(X,Y ) = Φ(Adg−1X,Adg−1Y ). Let 〈., .〉 be the
bilinear symmetric form on g defined by

〈X,Y 〉 = g (X∗(x), Y ∗(x)) ,

where g is the pseudo-Riemannian metric, X∗, Y ∗ are the fundamental vector
fields associated to X and Y and x is the point fixed previously. It is a degenerate
symmetric form with kernel equal to h.

Let P be the subgroup of G preserving the conformal class of 〈., .〉. It is an
algebraic group containing H and normalizing the sub-algebra h. In particular, it
contains H∗: the smallest algebraic group containing H. Using Fact 3.1 we get that
up to conjugacy, the Lie algebra p of P contains (a⊕ s+) n n.

Proposition 3.2. The Cartan sub-group A does not preserve the metric 〈., .〉.

Proof. First as h is an ideal of p then by taking quotient of both P and H by
H

◦
, we can suppose that H is a uniform lattice of P and in particular that P is

unimodular.
Assume that A preserves the metric 〈., .〉. On the one hand, the groups S+ and

N preserve the conformal class of 〈., .〉. On the other hand, they act on Sym(g) by
unipotent elements. So the groups A, S+, and N preserve the metric 〈., .〉. But
by Iwasawa decomposition (An S+) is co-compact in S. Thus the S−orbit of 〈., .〉
is compact in Sym(g) and hence trivial by Lemma 2.6. Therefore S and N are

subgroups of P . This implies that for any p ∈ P ,
∣∣∣det (Adp)|g/p

∣∣∣ = 1. Indeed, the

action of G on (sc + r)/n factors trough the product of the action of Sc on sc by
the trivial action on r/n. As P contains S and N , its action on g/p is a quotient of
the action of Sc on sc. But Sc is compact, thus it preserves some positive definite

scalar product and hence the determinant
∣∣∣det (Adp)|g/p

∣∣∣ = 1.

Now let h ∈ H such that Adh does not preserve 〈., .〉. We have that

1 6=
∣∣∣det (Adh)|g/h

∣∣∣ =
∣∣∣det (Adh)|g/p

∣∣∣ ∣∣∣det (Adh)|p/h

∣∣∣
Finally we get

∣∣∣det (Adh)|p/h

∣∣∣ 6= 1 which contradicts the unimodularity of P . �
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3.2. Distortion. The group P preserves the conformal class of 〈., .〉. There exists
thus an homomorphism δ : P → R such that: for every p ∈ P and every u, v ∈ g,

(1) 〈Adp(u),Adp(v)〉 = eδ(p) 〈u, v〉 =
∣∣∣det (Adp)|g/h

∣∣∣ 2n 〈u, v〉
In particular if p ∈ P preserves the metric then δ(p) = 0 and

(2) 〈Adp(u),Adp(v)〉 = 〈u, v〉

Or equivalently

(3) 〈adp(u), v〉+ 〈u, adp(v)〉 = 0

It follows that if the action of p ∈ P on g is unipotent then δ(p) = 0. Therefore,
the homomorphism δ is trivial on S− and N but not on A by Proposition 3.2. We
continue to denote by δ the restriction of δ to A. We can see it alternatively as
a linear form δ : a → R, called distortion, verifying: for every a ∈ a and every
u, v ∈ g,

(4) 〈ada(u), v〉+ 〈u, ada(v)〉 = δ(a) 〈u, v〉

Definition 3.1. Two weights spaces gα and gβ are said to be paired if they are not
〈., .〉−orthogonal.

Definition 3.2. A weight α is a non-degenerate weight if gα is not contained in h.

Definition 3.3. We say that a subalgebra g′ is a modification of g if g′ projects
surjectively on g/h. In this case g′/ (g′ ∩ h) = g/h.

Proposition 3.3. If the weight space g0 is degenerate then up to modification, g
is semi-simple and M = G/H is conformally flat.

Proof. On the one hand, g0 ⊂ h implies that a ⊂ h. As h is an ideal of p, we get
that s+ = [s+, a] ⊂ h. On the other hand, r ⊂ g0 + n ⊂ g0 + [n, a] ⊂ h. Thus, up to
modification, we can assume that g is semi-simple and that h contains a + s+.

Now let αmax be the highest positive root and let X ∈ gαmax . Then d1e
X :

g/h→ g/h is trivial. Yet eX is not trivial. We conclude using [9, Theorem 1.4]. �

A direct consequence of Equation 4, is that if gα and gβ are paired then α+β = δ.
This shows that if α is a non-degenerate weight then δ−α is also a non-degenerate
weight. In particular if 0 is a non-degenerate weight, then g0 and gδ are paired and
hence δ is a non-degenerate weight. In fact:

Proposition 3.4. If 0 is a non-degenerate weight then δ is a root. Moreover sδ 6⊂ h.

Proof. First we will prove that the subalgebras a and nδ are 〈., .〉−orthogonal. Let
a ∈ a such that δ(a) 6= 0. Using Equation 4 for a, u = a and v ∈ nδ, we get,
〈a, ada(v)〉 = δ(a) 〈a, v〉. But v preserves 〈., .〉, thus by Equation 3, δ(a) 〈a, v〉 = 0.
Hence 〈a, v〉 = 0, for every v ∈ nδ. We conclude by continuity.

Now if δ was not a root then sδ = 0 and gδ = nδ. Thus a and gδ are orthogonal.
Which implies that a ⊂ h. But h is an ideal of p, so gδ = [gδ, a] ⊂ h. This
contradicts the fact that gδ is paired with g0.
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To finish we need to prove that sδ 6⊂ h. If this was not the case then a would be
orthogonal to gδ. Hence gδ ⊂ h which contradicts again the fact that gδ is paired
with g0.

�

3.3. The isotropy group is big. From now and until the end we will suppose
that the non-compact semi-simple part Snc of G is locally isomorphic to the Möbius
group SO(1, n + 1). In this case the Cartan Lie algebra a is one dimensional and
we have snc = s−α ⊕ a⊕m⊕ sα, where α is a positive root, a ∼= R, m ∼= so(n), and
s−α ∼= sα ∼= Rn. Moreover, g±α = s±α ⊕ n±α, g0 = a ⊕ m ⊕ sc ⊕ r0, gβ = nβ for
every β 6= 0,±α and r = r0 ⊕

⊕
β 6=0 nβ .

In section 3.1 we saw that the isotropy group H is contained in the algebraic
group P which turn out to be big i.e to contain the connected Lie groups A, Sα
and N . Our next result shows that the group H itself is big:

Proposition 3.5. The Lie algebra h contains a⊕ sα ⊕
⊕

β 6=0 nβ.

Proof. We have that a ⊂ h. Indeed, if 0 is a degenerate weight then we are done.
If not, then δ is a root and a ⊂ g0 is orthogonal to every gβ with β 6= δ. From the
proof of Proposition 3.4 we know that a and nδ are orthogonal. Thus it remains
to show that a and sδ are orthogonal. For that, let x ∈ sδ then Θ(x) ∈ s−δ and
[x,Θ(x)] 6= 0 in a. Now using Equation 3 and the fact that one of x or Θ(x) preserve
〈., .〉, we get 〈adx(Θ(x)), x〉 = 0. But a is one dimensional so it is orthogonal to sδ.
To end this proof, we have that h is an ideal of p and so

a⊕ sα ⊕
⊕
β 6=0

nβ = a⊕

a, sα ⊕⊕
β 6=0

nβ

 ⊂ h⊕ [h, p] ⊂ h.

�

As a consequence we get:

Corollary 3.6. If 0 is a non-degenerate weight, then δ = −α.

3.4. A suitable modification of g. We will show that g admits a suitable mod-
ification g′. This allows us to considerably simplify the proofs in the next section.
More precisely, we have:

Proposition 3.7. The solvable radical decomposes as a direct sum r = r1⊕r2, where
r1 is a subalgebra commuting with the semi-simple factor s and r2 is an s−invariant
linear subspace contained in h. In particular g′ = s⊕ r1 is a modification of g.

To prove Proposition 3.7, we need the following lemma:

Lemma 3.8. We have [s, n] = [s, r] ⊂ h.

Proof of Lemma 3.8. First we prove that [n, g0] ⊂ h. For this, note that by the Ja-

cobi identity and the fact that n is an ideal of g, we have
[⊕

β 6=0 nβ , g0

]
=
⊕

β 6=0 nβ

which in turn is a subset of h by Proposition 3.5. Thus one need to prove that
[n0, g0] ⊂ h. We know that n preserve the metric 〈., .〉. So using Equation 3 for
p ∈ n0, u ∈ g0 and v ∈ gδ gives us: 〈adp(u), v〉 + 〈u, adp(v)〉 = 0. But once again
by Jacobi identity, the fact that n is an ideal of g and Proposition 3.5 we have
adp(v) ∈ gδ ∩ n = nδ ⊂ h. So 〈adp(u), v〉 = 0, which means that [n0, g0] is orthog-
onal to gδ. Using the fact that [n0, g0] ⊂ g0 and that g0 is orthogonal to every gβ

7
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for β 6= δ we get that [n0, g0] ⊂ h.

Next we have that sc ⊂ g0 thus [sc, n] ⊂ [g0, n] ⊂ h.

Finally we finish by proving that [snc, n] ⊂ h. On the one hand we have,

[a⊕ sα ⊕m, n] ⊂ [a⊕ sα, n] + [g0, n] ⊂ h + h ⊂ h.

On the other hand, as snc is semi-simple we have by Lemma 2.7 that [snc, n] ⊂
Vect ([a⊕m⊕ sα, n]) ⊂ h.

Proof of Proposition 3.7. The subalgebra [s, n] = [s, r] is s−invariant, so it
admits an s−invariant supplementary subspace r′1 in r. But s acts trivially on
r/ [s, n] and thus it acts trivially on r′1. We take r1 to be the s−invariant subalgebra
generated by r′1 (in fact the action of s on r1 is trivial).

It is clear that r1 is a direct sum of r′1 and r′′1 : an s−invariant subspace of [s, n].
Consider r2 to be the supplementary of r′′1 in [s, n] = [s, r]. It is s−invariant and by
Lemma 3.8 we have r2 ⊂ h.

4. The Möbius conformal group: a classification theorem

This section is devoted to prove Theorem 1.1. We distinguish two situations:
when m is contained in h and when it is not. In this last one, we first consider
the case where only the non-compact semi-simple part Snc is non trivial. Then
deduce from it the general case. From now and until the end we will assume, up to
modification, that g = s⊕ r1.

4.1. The Frances-Melnick case. We suppose that the sub-algebra m is contained
in h. Then we have the following proposition:

Proposition 4.1. M is conformally equivalent to the standard sphere Sn or the
Einstein universe Ein1,1.

Proof. Assume first that g0 is contained in h. Then by Proposition 3.3, M is
conformally flat and after modification, r = 0. Moreover, g/h ∼= s−α. This is
because g0 = a ⊕ m ⊕ sc and [m, X] = s−α for every X 6= 0 in s−α. Thus M is
conformally equivalent to SO(1, n+ 1)/CO(n) nRn ∼= Sn.

Now suppose that g0 is not in h. In this case g−α = gδ is paired with g0. But
a, m and nδ are contained in h so s−α is paired with sc ⊕ (r0 ∩ r1). Note that m
acts on s−α ⊕ (sc ⊕ (r0 ∩ r1)) by preserving the pairing (in fact the action of m
preserves the metric 〈., .〉). On the contrary for n ≥ 2, m ∼= so(n) acts trivially
on r0 ∩ r1 and transitively on s−α − {0}, so n = 1. As the metric is of type
(p, q), we conclude that the projection of sc ⊕ (r0 ∩ r1) on g/h is ∼= R. Thus, after
modification g = so(1, 2)⊕ R = u(1, 1), h = a⊕ sα = R⊕ R and hence M is, up to
cover, conformally equivalent to Ein1,1.

�

4.2. The non-compact semi-simple case. Here we suppose that m is not con-
tained in h, the compact semi-simple part sc and the radical solvable part r1 are
both trivial. We will show:

Proposition 4.2. The pseudo-Riemannian manifold M is conformally equivalent
to Ein3,3

8
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By corollary 3.6, δ is a negative root. In particular δ = −α and g−α is paired
with g0. In addition g = s−α ⊕ a⊕m⊕ sα and a⊕ sα ⊂ h. We have:

Proposition 4.3. The root space sδ does not intersect h. In particular the metric
is of type (n, n).

Proof. If it was the case then let 0 6= X ∈ sδ ∩ h. We have [[X, s−δ] , X] = sδ so
sδ ⊂ h. This contradicts the fact that gδ is paired with g0. �

Consider the bracket [., .] : sα × s−α −→ a⊕m. Denote by .∧ . : sα × s−α −→ m
and .∨. : sα×s−α −→ a its projections on m and a respectively. Direct computations
give us:

Lemma 4.4.

(1) ∀X ∈ sα, ∀x ∈ s−α: X ∨ x = −Θ(x) ∨Θ(X).
(2) ∀X ∈ sα, ∀x ∈ s−α, ∀y ∈ s−α: [X ∧ x, y] = [X ∧ y, x]− [Θ(x) ∧ y,Θ(X)]

The Cartan involution identifies sα and s−α, which when identified with Rn, m
acts on them as so(n). In this case, the map .∨ . can be seen as a bilinear symmetric
map from Rn×Rn to Rn, and when composed with α gives rise to an m−invariant
scalar product 〈., .〉0 on Rn. Moreover, by Lemma 4.4, for every x,X ∈ Rn, X∧x is
the antisymmetric endomorphism of Rn defined by X∧x(y) = 〈X, y〉0 x−〈x, y〉0X.

Let x,X ∈ Rn and consider P the plane generated by x,X. Then X ∧ x when
seen as element of m ∼= so(n) is the infinitesimal generator of a one parameter group
acting trivially on the orthogonal P⊥ of P with respect to the scalar product 〈., .〉0.
Hence X ∧ x ∈ so(P ). More generally:

Proposition 4.5. Let E be a linear subspace of Rn and let x ∈ E. Consider c
the Lie subalgebra of so(n) generated by {X ∧ x/X ∈ E}. Then c equals the Lie
algebra linearly generated by {X ∧X ′/X,X ′ ∈ E}, which in turn equals so(E), the
Lie algebra of orthogonal transformations preserving E and acting trivially on its
orthogonal (with respect to 〈., .〉0).

Proof. First we have c(E) ⊂ E and hence c ⊂ so(E). It is then sufficient to prove
that c and so(E) have the same dimensions. For that let {x,X2, ..., Xk} be a basis of
E. Note that {X2 ∧ x, ...,Xk ∧ x, [Xi ∧ x,Xj ∧ x] , for 2 ≤ i < j ≤ k} are linearly
independent. Thus c = so(E). �

For every x 6= 0 ∈ s−α consider:

Zx = {X 6= 0 ∈ sα, such that [X,x] ∈ h} .

Denote Θ(Zx) the projection of Θ(Zx) in g/h. Then:

Proposition 4.6. The family
{

Θ(Zx)\{0}
}
x∈s−α

form a partition of g/h. More

precisely:
Θ(Zx) ∩Θ(Zy) = {0} ⇐⇒ x /∈ Θ(Zy)⇐⇒ y /∈ Θ(Zx).

Proof. By Proposition 4.5 we have,

[Zx,Θ(Zx)] = a⊕ alg ({X ∧ x/X ∈ Zx}) ⊂ h.

This implies that

Θ(Zx) = Θ(Zy)⇐⇒ x ∈ Θ(Zy)⇐⇒ y ∈ Θ(Zx).

Hence, the projections
{

Θ(Zx)\{0}
}
x∈s−α

form a partition of g/h. �
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Next we prove:

Proposition 4.7. The pseudo-Riemannian manifold M is conformally flat.

Proof. We need to prove that the Weyl tensor W (or the Cotton tensor C if the
dimension of M is 3) vanishes. Actually we will just make use of their conformal
invariance property. Namely: if f is a conformal transformation of M then,

(5) dxf W(X,Y, Z) = W(dxf(X), dxf(Y ), dxf(Z))

We denote by x̄ the projection in g/h of an element x ∈ g. A direct application
of Equation 5 gives us:

(1) W(x̄, ȳ, z̄) = 0 for every x, y, z ∈ s−α;
(2) W(x̄, ȳ,m) = 0 for every x, y ∈ s−α and every m ∈ m;
(3) [X,W(x̄,m1,m2)] = W([X, x̄] ,m1,m2) for every X ∈ sα, x ∈ s−α and

every m1,m2 ∈ m.

Let x ∈ s−α, m1,m2 ∈ m. Then, from Equation 5 we obtain:

[Θ(x),W(x̄,m1,m2)] = W([Θ(x), x̄] ,m1,m2) = 0.

In other words
W(x̄,m1,m2) ∈ Θ(Zx).

Now let x, y ∈ s−α, X ∈ sα and m ∈ m. Then again Equation 5 gives us:

W(x̄, [X, ȳ] ,m) + W([X, x̄] , ȳ,m) = 0.

But W(x̄, [X, ȳ] ,m) ∈ Θ(Zx) and W([X, x̄] , ȳ,m) ∈ Θ(Zy). Thus, Proposition 4.6
gives us:

(1) If y /∈ Θ(Zx) then W(x̄, [X, ȳ] ,m) = 0;
(2) In the case y ∈ Θ(Zx) and X ∈ Zx, we have W(x̄, [X, ȳ] ,m) = 0
(3) If y ∈ Θ(Zx) and X /∈ Zx. Then because Θ(X) /∈ Θ(Zx) we have:

W(x̄, [X, ȳ] ,m) = W(x̄,
[
Θ(y),Θ(X)

]
,m) = 0.

So as a conclusion we get W = 0. �

We finish this section by proving Proposition 4.2:
Proof of Proposition 4.2. First note that if n = 1 then m = 0. Thus we
assume n ≥ 2. So far we have seen that M = SO(1, n+ 1)/H is a conformally flat
pseudo-Riemannian manifold of signature (n, n). Since the Lie algebra h contains

a + sα, the group H
◦

is cocompact in SO(1, n + 1). Therefore SO
◦
(1, n + 1)/H

◦

is connected and compact, with a connected isotropy and hence simply connected.

As M is connected, it covers SO
◦
(1, n+ 1)/H

◦
and thus equals it.

On the one hand, the Einstein universe Einn,n is simply connected. Thus M
is identified to Einn,n. So SO(1, n + 1) acts transitively on Einn,n with isotropy
H. By Montgomery Theorem [19, Theorem A] any maximal compact subgroup in
SO(1, n+ 1), e.g. K2 = SO(n+ 1), acts transitively on Sn × Sn the two fold cover
of Einn,n.

On the other hand, the conformal group of Einn,n is SO(n+1, n+1). A maximal
compact subgroup of it is K1 = SO(n + 1) × SO(n + 1). Up to conjugacy , we
can assume K2 ⊂ K1. Therefore, K2 = SO(n + 1) acts via a homomorphism
ρ = (ρ1, ρ2) : SO(n+ 1)→ SO(n+ 1)× SO(n+ 1).
If SO(n+ 1) is simple, then:
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- either ρ1 or ρ2 is trivial and the other one is bijective, in which case ρ(SO(n+ 1))
does not act transitively on Sn × Sn,
- or both are bijective, and ρ(SO(n+1) is up to conjugacy in SO(n+1)×SO(n+1)
the diagonal {(g, g)/g ∈ SO(n+ 1)}. The latter, too, does not act transitively on
Sn × Sn.

Hence SO(n + 1) must be non-simple which implies n = 1 or n = 3. but n = 1
was excluded, and then remains exactly the case n = 3, for which M is conformally
equivalent to Ein3,3.

4.3. The general case. In this section we will show Theorem 1.1 in the general
case. We suppose that g = s−α⊕ a⊕m⊕ sα⊕ sc⊕ r1. Let us denote by m0 = m∩h
so that so(1, n + 1) ∩ h = a ⊕ sα ⊕ m0. A priori the subalgebra m0 could be of
any dimension in m. Nevertheless the hypothesis m 6⊂ h restricts drastically the
possibilities. So we have:

Proposition 4.8. The subalgebra m0 has codimension n in m.

Proof. If n = 2 then m = so(2). Hence [p, sα] = a ⊕ m for any non null p ∈ s−α.
Recall that s−α preserves the metric so by applying Equation 3 for p = v ∈ s−α,
u ∈ sα we get 〈s−α,m〉 = 0. Thus m ⊂ h which contradicts our hypothesis.

Assume that n ≥ 3 and suppose that m0 has codimension less then n−1. Denote
by M0 the connected subgroup of SO(n) corresponding to m0.

If the action of M0 on s−α ∼= Rn is reducible then M0 preserves the splitting Rd×
Rn−d and hence is contained in SO(d)×SO(n−d). Thus M0 has codimension bigger
than the codimension of SO(d)× SO(n− d) which in turn achieves its minimum if
d = 1 or n− d = 1 and hence M0 = SO(n− 1). One can identify m0 with so(E) for
some n−1 dimensional linear subspace E of s−α. Let then e ∈ s−α such that s−α =
Re ⊕ E. Fix a non zero element x ∈ Θ(E), we have 〈adx(e), X〉 + 〈e, adxX〉 = 0
for every X ∈ s−α and so in particular 〈e, adx e〉 = 0. In addition by Proposition
4.5, [E,Θ(E)] = a⊕m0 ⊂ h thus 〈adx e,X〉 = 0 for every X ∈ E and hence adx e is
orthogonal to s−α. This implies that x∧ e ∈ h∩m = m0 = so(E) which contradicts
the fact that x ∧ e is the infinitesimal rotation of the plane Re⊕ Rx.

The last case to consider is when M0 acts irreducibly. Let m ∈ m0, X ∈ s−α
and y ∈ sc ⊕ r1 then 〈adm(X), y〉 + 〈X, adm y〉 = 0. But adm y = 0 and hence
sc ⊕ r1 is orthogonal to [m0, s−α] which is equal to s−α by irreducibility. Thus
sc ⊕ r1 ⊂ h and we are in the non-compact semi-simple case. Therefore n = 3 and
m ∼= so(3). Non trivial Sub-algebras of so(3) have dimension one and are reducible.
So the only left possibility is m0 = m ∼= so(3) which show that m ⊂ h and this is a
contradiction. �

End of Proof of Theorem 1.1. By Proposition 4.8, m0 is of codimension n in
m. But s−α is paired with g0 = a ⊕ m ⊕ sc ⊕ (r1 ∩ r0). Thus sc ⊕ (r1 ∩ r0) ⊂ h
and we are also in the non-compact semi-simple case. Therefore n = 3 and M is
conformally equivalent to Ein3,3.

[]
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