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Abstract

NaV1.1 (SCN1A) is a voltage-gated sodium channel mainly expressed in GABAergic neurons. Loss of function
mutations of NaV1.1 lead to epileptic disorders, while gain of function mutations cause a migraine in which cortical
spreading depolarizations (CSDs) are involved. It is still debated how these opposite effects initiate two different
manifestations of neuronal hyperactivity: epileptic seizures and CSD.

To investigate this question, we previously built a conductance-based model of two neurons (GABAergic and
pyramidal), with dynamic ion concentrations (Lemaire et al. in PLOS Comput. Biol. 17(7):e1009239, 2021). When
implementing either NaV1.1 migraine or epileptogenic mutations, ion concentration modifications acted as slow
processes driving the system to the corresponding pathological firing regime. However, the large dimensionality of
the model complicated the exploitation of its implicit multi-timescale structure.

Here, we substantially simplify our biophysical model to a minimal version more suitable for bifurcation analysis.
The explicit timescale separation allows us to apply slow-fast theory, where slow variables are treated as parameters
in the fast singular limit. In this setting, we reproduce both pathological transitions as dynamic bifurcations in the
full system. In the epilepsy condition, we shift the spike-terminating bifurcation to lower inputs for the GABAergic
neuron, to model an increased susceptibility to depolarization block. The resulting failure of synaptic inhibition
triggers hyperactivity of the pyramidal neuron. In the migraine scenario, spiking-induced release of potassium
leads to the abrupt increase of the extracellular potassium concentration. This causes a dynamic spike-terminating
bifurcation of both neurons, which we interpret as CSD initiation.

1 Introduction

NaV1.1 is a voltage-gated sodium channel, coded by the gene SCN1A, which is mainly expressed in GABAergic neurons.
It is a major target of human mutations implicated in pathologies of neuronal excitability [32, 34]. In the case of so-called
loss of function mutations, the mutated NaV1.1 channels are partially or fully inactive, resulting in reduced sodium
current. Such mutations have been found in patients with epileptic disorders. This is for example the case of Dravet
syndrome [10, 46], a severe form of epilepsy, characterized by drug-resistant seizures and developmental delay. On the
other hand, gain of function mutations of NaV1.1 —i.e. mutations enhancing channel activity—have been linked to
familial hemiplegic migraine type 3 (FHM3) [16, 7, 15, 33]. More precisely, those mutations impair the mechanism of
inactivation of the channels, which induces an increased persistent sodium current. FHM3 is a severe subtype of migraine
with aura, for which a proposed pathological mechanism is cortical spreading depolarization (CSD), a wave of transient
intense neuronal firing followed by a sustained depolarization block, which slowly propagates in the cortex [37, 33]. A
recent report provides clinical evidence linking this wave and the migraine aura [31], and it has been suggested that
CSD also causes the headache, through the stimulation of meningeal trigeminal nociceptors [19]. However, it is still
debated how NaV1.1 gain of function contributes to CSD initiation and how loss of function of the same channel leads
to seizure onset. To investigate those pathological mechanisms, we previously developed a detailed conductance-based
model of two neurons, a GABAergic and a pyramidal neuron, with dynamic ion concentrations [29]. In the present
study we continue this modeling work, but in a simpler framework which is more amenable to theoretical analysis.
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NaV1.1 gain of function facilitates CSD induction, both in our detailed computational model [29] and in experimental
systems (FHM3 mouse models [25, 2] and acute pharmacological activation of the channel [9]). We have shown that
neither GABAergic nor glutamatergic synaptic transmission is required for the initiation of this wave [9]. Instead,
a key factor for CSD initiation in the case of FHM3 seems to be a progressive build up of extracellular potassium,
generated by the spiking of GABAergic neurons, which engages the network in a positive loop of hyperexcitability and
extracellular potassium build up, leading to depolarization block of the entire network [29, 9, 2].

The prevailing hypothesis concerning the pathological mechanism of NaV1.1 epileptogenic mutations is the hypoex-
citability of GABAergic neurons [32], which reduces synaptic inhibition, promoting hyperexcitability of neuronal net-
works. Experiments in mouse models of Dravet syndrome suggest that this initial direct effect of the mutations leads
to further network alterations, which may contribute to the phenotype at later stages of the disease [26, 1, 40]. Here,
as in our previous paper [29], we focus on the early period of pre-epileptic hyperexcitability, during which spontaneous
seizures are typically not observed [30, 36]. In our detailed model [29], NaV1.1 epileptogenic mutations made the
GABAergic neuron more susceptible to depolarization block: the external input necessary to trigger this transition was
smaller than in the control condition. Importantly, depolarization block of the GABAergic neuron was associated with
hyperactivity of the pyramidal neuron. This, together with other experimental [5, 47, 6] and computational studies
[27], supports the hypothesis that depolarization block of GABAergic neurons and the resulting failure of inhibitory
restraint is a mechanism giving rise to network hyperexcitability.

In this paper, we are interested in dynamic bifurcation scenarios which can be associated with the onset of CSD or
epileptiform activity caused by NaV1.1 mutations in a multiple-timescale idealized model. Slow-fast dissection [39, 38]
is indeed a powerful tool to study the spectrum of activity regimes in the neuronal context. We initiated this approach
in [29] (see Fig. 11), however the size of the model made it prohibitive to perform a thorough analysis. For this reason,
we build here a 6-dimensional minimal version of the detailed biophysical model. To keep it as simple as possible, we
mainly use polynomial terms, except for the modeling of the aspects which are suspected to play an essential role in
the pathological mechanisms of NaV1.1 mutations: spiking-induced release of potassium in the case of migraine and
synaptic inhibition in the case of epilepsy.

We design the idealized system in such a way to have three explicit timescales. Neuronal dynamics is the fastest, both
neurons being modeled by a two-dimensional oscillator. The extracellular potassium concentration is then an obvious
choice of slow variable to drive the system to pathological regimes. Several computational studies have shown that
neurons depolarization block can be modeled as a slow passage through a Hopf bifurcation, driven by a build-up of
potassium in the extracellular space [3, 21, 45, 43]. Unlike those, in which the pathological behavior is often obtained by
increasing the potassium concentration in a distant reservoir, we directly implement the effect of the mutations on the
firing properties of the GABAergic neuron, and examine the response of the pyramidal neuron. Furthermore, based on
Hübel et al., we introduce a third timescale which is even slower than the potassium [24], an approach also used in [43].
This choice is motivated by the characteristic potassium dynamics at the site of CSD initiation shown in Fig. 1. The
initial progressive accumulation is followed by an abrupt increase, which hints at an additional timescale underlying
potassium dynamics.
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Figure 1: Extracellular potassium dynamics at the site of CSD initiation. We reproduce here the potassium trace shown
in Fig. 8 of [9], which was recorded at the site of CSD initiation. Spatial optogenetic illumination was used to induce hyperactivity
of GABAergic neurons in a predetermined area of the cortex, in order to specifically control the area of CSD initiation, allowing
recordings at the initiation site.

We first perform numerical continuation with the software package AUTO [17], to unravel the complicated bifurcation
structure of the fast layer problem. We then study the slow dynamics of the potassium concentration with tools from
dynamical systems theory such as phase-plane analysis and invariant manifolds. Finally, we gather information obtained
from the slow and fast components to interpret the dynamics of the full system, namely transitions from physiological
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firing to CSD and epileptiform hyperactivity.

2 Model

We consider a pair of neurons: a pyramidal neuron (xe, ye) and a GABAergic interneuron (xi, yi). Each neuron is
modeled using a modified Hindmarsh–Rose system (see Section 2.2). They can be stimulated by an external current
Iext. We implemented an inhibitory synapse from the GABAergic neuron to the pyramidal one, with the current IGABA

(see Section 2.3). We also modeled the dynamics of the extracellular potassium, using a two-dimensional system ([K]+o ,
w) (see Section 2.4). The firing of the neurons releases potassium in the extracellular space, which we account for
with the terms pg(xi) and g(xe) (see Sections 2.5 and 2.6). Conversely, we take into account the depolarizing effect of
extracellular potassium on the neurons. The overall system has three main timescales, see Section 2.1.

The dynamics of the full system is given in (1). Fig. 2 shows a schematic representation of the system. The state
variables are listed in Table 1 and the model parameters in Table 2.

dxe
dt

= ce

(
xe −

x3e
3
− ye + [K]+o + Iext − IGABA(xe, xi)

)
(1a)

dye
dt

=
x2e + dxe − bye + a

ce
(1b)

dxi
dt

= ci

(
xi −

x3i
3
− yi + [K]+o + Iext

)
(1c)

dyi
dt

=
x2i + dxi − byi + a

ci
(1d)

d[K]+o
dt

= ε
(
w − f([K]+o ) + pg(xi) + g(xe)

)
(1e)

dw

dt
= εδ(−[K]+o − α+ βw) (1f)

Pyramidal neuron GABAergic neuron

Extracellular potassium

Figure 2: Schematic representation of the model.

2.1 Slow-fast structure

By construction, there are three main timescales in the six-dimensional model defined by System (1):

• The neuron variables (xe, ye, xi, yi) are faster than the potassium ones ([K]+o , w), through the presence of the small
parameter 0 < ε � 1, which we set to be of order 10−3 in simulations (Table 2). We call the four-dimensional
subsystem (xe, ye, xi, yi) the fast block and the two-dimensional subsystem ([K]+o , w) the slow block or potassium
block.

• Inside this slow block, there are also two separated timescales, [K]+o being faster than w due to the small parameter
0 < δ � 1. See Section 4 for a detailed study of the potassium block.
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Table 1: State variables

Symbol Description Timescale

xe Membrane potential of the pyramidal neuron Fast
ye Gating variable for the pyramidal neuron Fast

xi Membrane potential of the GABAergic neuron Fast
yi Gating variable for the GABAergic neuron Fast

[K]+o Extracellular potassium concentration Slow
w Additional variable for the dynamics of [K]+o Superslow

Table 2: Model parameters

Symbol Description Value

Iext External input 0.35

Slow-fast structure

ε ([K]+o , w) vs. neurons 0.002

δ w vs. [K]+o 0.005

Neuronal dynamics

a 0.56 [14]

b 1.2

ce c for the pyramidal neuron 3 [14]

ci c for the GABAergic neuron Wild-type: 3 [14]
Epilepsy: 1.2

d 1.8

Inhibitory synapse

gGABA Maximal conductance 15

EGABA Reversal potential -2.5

kGABA Sigmoids slope parameter 20

θGABA,1 Increasing sigmoid midpoint -1

θGABA,2 Decreasing sigmoid midpoint 0.1

[K]+o dynamics

zl [K]+o -nullcline local maximum1 0.5

zr [K]+o -nullcline local minimum1 1.5

β Controls w-nullcline slope1 -13

α Controls w-nullcline intercept1 -2.6

K+ release

gK Maximal neuronal contribution 0.015

kK Sigmoid slope parameter 10

θK Sigmoid midpoint 0.6

p K+ release scaling factor Wild-type: 1
Migraine: 4

System (1) is therefore a slow-fast system with four fast, one slow and one superslow variable.

Note that w does not enter the equations of the fast block. By definition, letting ε → 0 in System (1) yields the fast
layer problem [13]. It corresponds to freezing the dynamics of [K]+o and considering it as a parameter of the fast block
(xe, ye, xi, yi). In Section 3, we will study the bifurcation structure of the fast layer problem to better understand the
dynamic transitions in the full system (1).

Inside each neuron model, the membrane potential xe,i is faster than the variable ye,i which models ion channels
dynamics. This timescale separation, which we do not analyze as such in this work, is organized by the parameters ce,i.
However we exploit it to obtain the transition to epileptiform hyperactivity (see Section 2.6.2).
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2.2 Neuronal dynamics

We model each neuron with a two-dimensional system inspired from Hindmarsh and Rose:

dx

dt
= c

(
x− x3

3
− y + I

)
dy

dt
=
x2 + dx− by + a

c

(2)

We took most parameter values from [14], except for b which we increased to shift the fold bifurcation of limit cycles
responsible for the transition to depolarization block to larger values of I (Table 2). Compared to the original model
[23], System (2) has been modified [42] so that spike generation is mediated by a SNIC instead of a saddle homoclinic
bifurcation (Fig. 3). It exhibits thus class 1 excitability.

This is consistent with the experimental input-output relationships in Fig. 2 of [9]. They were recorded in neocortical
pyramidal and fast-spiking GABAergic neurons of mice, before or during the application of the toxin Hm1a which
mimics the effect of NaV1.1 migraine mutations. It is also consistent with Fig. 4 and Supplementary Fig. 4 of [2],
for cortical fast-spiking and regular spiking GABAergic neurons of wild-type or heterozygous Scn1a+/- L1649Q knock-in
mice.
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Figure 3: Dynamics of a single neuron. (a) Bifurcation diagram x vs. I of System (2). The black curves show families of
stable (solid line) or unstable (dashed line) steady states. The purple lines show families of stable or unstable limit cycles. HB:
Hopf bifurcation, here subcritical. SN: Saddle-node bifurcation of steady states. SNIC: saddle-node on invariant circle bifurcation.
(b) Frequency of the limit cycles.

2.3 Inhibitory synapse

Although this model is very simplified with respect to the one developed and studied in [29], we did not remove
the GABAergic synapse from the GABAergic neuron to the pyramidal one. This inhibitory connection is especially
important in the case of the epileptogenic mutations of NaV1.1 (see Section 5.2).

To keep the model as simple as possible, we decided not to use any additional synaptic variable or resetting rule.
Instead, we scale the maximal conductance gGABA of the inhibitory synaptic current IGABA by a function s of the
voltage:

IGABA = gGABAs(xi) (xe − EGABA) .

The function s is inspired from [8]. However, to prevent inhibition during depolarization block of the GABAergic
neuron, we multiply the increasing sigmoid by a decreasing sigmoid of larger midpoint:

s(xi) =
1

1 + e−kGABA(xi−θGABA,1)

1

1 + e−kGABA(−xi+θGABA,2)
.
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2.4 [K]+o dynamics

To model the dynamics of the extracellular potassium, we use a two-dimensional slow-fast block, w being slower than
[K]+o :

d[K]+o
dt

= w − f([K]+o ) + gtot

dw

dt
= δ(−[K]+o − α+ βw)

(3)

where

f([K]+o ) =
([K]+o )3

3
− 1

2
(zl + zr)([K]+o )2 + zlzr[K]+o .

This approach is based on [24], where Hübel et al. model potassium dynamics during SDs. They proposed to take
into account buffering mechanisms taking place at even slower timescales than the usual slow ion concentration vs. fast
membrane potential separation. See for example Fig. 11 of [24].

System (3) is inspired by the FHN model [35, 20]. We wanted to have both a low (physiological) and a high (pathological)
stable steady state for [K]+o , with a region of bistability and a threshold effect for the transition to the high state. System
(3) allows us to obtain those elements (see Section 4) with only polynomial terms. The idea is to reproduce the initially
slow increase of [K]+o followed by a sharp rise, which is observed experimentally at the site of CSD initiation Fig. 1.

2.5 Potassium release

In addition to synaptic inhibition (see Section 2.3), another key aspect we retain from the biophysical model of [29] is
the release of potassium by the neurons. Indeed, we concluded from our experimental [9] and simulation [29] results
that activity-dependent accumulation of potassium plays a key role in CSD initiation.

We model the contribution of each neuron with a sigmoid function g of the voltage, which appears in Eq. (1e):

g(x) = gK
1

1 + e−kK(x−θK)
.

The intended effect is that each action potential increments [K]+o , similarly to what we obtained with the detailed model
in Fig. 3 (C1 - C3) of [29], to model the generated fluxes of K+ ions through voltage-gated channels. It allows us to
model NaV1.1 migraine mutations, see Section 2.6.

2.6 NaV1.1 mutations

Since NaV1.1 is mainly expressed in GABAergic neurons, we assume in our model that the pyramidal neuron is not
affected by mutations of this channel and implement them only for the GABAergic neuron.

2.6.1 Migraine

In our simulations of the detailed model in [29], we observed that NaV1.1 migraine mutations amplify the net potassium
efflux at each action potential of the GABAergic neuron (Fig. 3 (C1 - C3) of [29]). Based on this, for the migraine
condition we scale g(xi) by p = 4 in Eq. (1e). This term represents the release of potassium by the GABAergic neuron
(Section 2.5). In this way, we increase the increments of [K]+o at each spike of the GABAergic neuron.

2.6.2 Epilepsy

In [29] (Fig. 10), both model simulations and experimental recordings on cortical slices from Scn1a+/- mice suggest the
same: NaV1.1 loss of function renders GABAergic neurons more susceptible to depolarization block. This hypothesis
is consistent with other recordings on Scn1a+/- mice, see for example Fig. 5 of [46].

To obtain this effect in our phenomenological model, we reduce the value of the parameter c for the GABAergic
neuron (parameter ci in the full system). For the default parameter values (c = 3), the switch from repetitive firing to
depolarization block occurs through a fold of limit cycle bifurcation at I ≈ 1.52 (Fig. 4 (a1)). When we decrease the
value of c to 1.2 (Fig. 4 (a2)), this transition happens via a supercritical Hopf bifurcation. Compared to the subcritical
Hopf in Fig. 4 (a1), this Hopf bifurcation has been shifted to I ≈ 0.43, see the 2-parameter bifurcation diagram in the
(I, c) parameter plane in Fig. 4 (b). What is most important here is not the fact that the transition to depolarization
block is mediated by a different bifurcation, but rather that it can be triggered by much lower input values. Note that
the saddle-node bifurcations are unaffected, since c does not influence the shape of the equilibrium branch. Reducing
the value of ci in the full system is thus a convenient way to model NaV1.1 epileptogenic mutations.
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Figure 4: Modeling NaV1.1 epileptogenic mutations. (a1) Bifurcation diagram x vs. I of System (2) for the default
parameter values (c = 3: wild-type condition). (a2) Bifurcation diagram when c is reduced to 1.2 to model NaV1.1 epilepsy
mutations. The bifurcation corresponding to the transition to depolarization block (here supercritical Hopf) occurs at a much
smaller value of I than in (a1). HOM: homoclinic bifurcation. (b) 2-parameter bifurcation diagram in the (I, c) plane. At the
Bautin bifurcation, the criticality of the Hopf changes, from subcritical (like in a1) to supercritical (like in a2). BT: Bogdanov-
Takens bifurcation.

3 Fast dynamics

In this section we consider the fast layer problem, which is derived by taking the limit ε→ 0 in System (1):

dxe
dt

= ce

(
xe −

x3e
3
− ye + [K]+o + Iext − IGABA(xe, xi)

)
dye
dt

=
x2e + dxe − bye + a

ce
dxi
dt

= ci

(
xi −

x3i
3
− yi + [K]+o + Iext

)
dyi
dt

=
x2i + dxi − byi + a

ci

(4)

We are interested in the dynamics of the two neurons, which are coupled through the inhibitory current IGABA, when the
slow extracellular potassium [K]+o is treated as a bifurcation parameter. We focus on the case where Iext = 0.35, which
is the value of external input we use in the simulations of the full system in Section 5. We computed the bifurcation
diagram with respect to [K]+o for ci = 3, which corresponds to the wild-type and migraine conditions (Fig. 5), and when
ci is reduced to 1.2, to model the epilepsy mutation (Fig. 6).

In both cases, the bifurcation structure of the 4-dimensional system is much richer than that of a single neuron
(Section 2.2 and Section 2.6). We find additional limit cycle bifurcations, such as a torus bifurcations (Fig. 5 (a1, b)
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Figure 5: Dynamics of the fast layer problem in the wild-type and migraine conditions. Bifurcation diagram xe
vs. [K]+o (a) and xi vs. [K]+o (b) of System (4) when ci = 3, which corresponds to the wild-type and migraine conditions, for an
external input Iext = 0.35. (a2 - a5) Enlargements near the period-doubling bifurcations (PD). TR: torus bifurcation.

and Fig. 6 (a2)) and cascades of period-doubling bifurcations (Fig. 5 (a2 - a5) and Fig. 6 (a2)) which suggest regions of
chaos. There are also isolas of limit cycles (Fig. 6 (a2)), which often arise in multi-timescale systems displaying complex
oscillations [12, 41, 28]. It is not possible to give a direct biological interpretation for each of those. The essential point
is that the key features which we need to model NaV1.1 mutations are preserved from Fig. 4 (a1) and Fig. 4 (a2).

Note that the coupling between the two neurons is unidirectional: the pyramidal neuron has no influence on the
GABAergic neuron (Fig. 2). The dynamics of (xi, yi) in the fast layer problem is thus exactly as in the two-dimensional
case of Eq. (2).
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Figure 6: Dynamics of the fast layer problem in the epilepsy condition. Bifurcation diagram xe vs. [K]+o (a) and xi
vs. [K]+o (b) of System (4) when ci = 1.2, which corresponds to the epilepsy condition, for an external input Iext = 0.35.

3.1 Migraine vs. wild-type condition

In Fig. 5, we can identify four main activity regimes for the pair of neurons, depending on the extracellular potassium
concentration:

1. For very low [K]+o up to the SNIC bifurcation, both neurons are at rest.

2. For [K]+o beyond the SNIC up to approximately 0.28, the system converges to limit cycles that are of large
amplitude for the GABAergic neuron, corresponding to tonic firing, but of low amplitude for the pyramidal
neuron. This behavior, which we interpret as aborted spikes, is due to the inhibitory current IGABA at each spike
of the GABAergic neuron.

3. For [K]+o between approximately 0.31 and 1.57, the only stable objects are limit cycles of large amplitude for both
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neurons. This interval comprises the range of [K]+o values on the branch of physiological stable equilibria of the
potassium block (3) (Fig. 7). Interestingly, the period-doubling bifurcations allow here for more complex spiking
patterns for the pyramidal neuron than in the single neuron case (Fig. 4 (a1)), with aborted action potentials and
varied spike shapes along a train of action potentials. This is consistent with simulations of the detailed model,
see for example the voltage traces in Fig. 4 of [29].

4. For [K]+o beyond 1.59, the only attractor is a stable equilibrium with high xe,i values. A too large rise of [K]+o
would thus provoke the transition to depolarization block of both neurons, as we will see in the migraine case in
Section 5.1.

3.2 Epilepsy condition

In the wild-type case (Fig. 5), the Hopf bifurcation which occurs at a high value of [K]+o is in fact a double Hopf [22]:
the two pairs of complex conjugate eigenvalues cross the imaginary axes of the complex plane at the same time. To
model the epilepsy mutations, we decreased ci to 1.2 for the GABAergic neuron while keeping ci = 3 for the pyramidal
neuron. As a consequence, the double Hopf splits into two: HL at [K]+o = KL ≈ 0.482 and HU at [K]+o = KU ≈ 1.573
(Fig. 6). When crossing HL from [K]+o < KL to [K]+o > KL, the real part of one of the pairs of eigenvalue becomes
negative: the branch of unstable foci remains unstable but gains two stable directions. At HU, the branch of equilibria
stabilizes as the real part of the two other eigenvalues also becomes negative.

The bifurcation structure in the narrow region (0.477 < [K]+o < 0.483) near HL is complicated (Fig. 6 (a2)). HL gives
rise to a branch of limit cycles and we found isolas, which we computed by continuation starting from stable complex
solutions obtained by direct simulation. Both undergo cascades of period-doubling bifurcations. Before this narrow
region ([K]+o < 0.477), there is a branch of limit cycles which corresponds to aborted spikes of the pyramidal neuron
and firing of the GABAergic neuron. On the other side ([K]+o > 0.483), there is a branch of stable limit cycles for which
the pyramidal neuron spikes but the GABAergic neuron is at steady state.

In fact, we suspect that the torus bifurcation which stabilizes this branch of limit cycles occurs at the same value of
[K]+o as the Hopf bifurcation HL. Without providing a rigorous proof, an important element appears to be the unilateral
forcing from the GABAergic neuron to the pyramidal one. For [K]+o > KL, the (xi, yi) component of the stable limit
cycles is stationary, because the dynamics of the GABAergic neuron cannot be different than in the two-dimensional
case. At HL, limit cycles of small amplitude emerge, which are stable for (xi, yi). When the forcing IGABA onto
the pyramidal neuron becomes periodic, it must cause a qualitative change to the relaxation cycles of (xe, ye), which is
compatible with a torus bifurcation. A similar reasoning can be applied in the case of Fig. 5, where the torus bifurcation
occurs at the same value of [K]+o as the double Hopf, although the criticality of the Hopf is different.

What interests us in this bifurcation structure is the possibility of depolarization block of the GABAergic neuron for
low concentrations of potassium, when the external input is strong enough (here Iext = 0.35). It was not the case in the
wild-type condition (Fig. 5). As we mentioned before, the dynamics of (xi, yi) in the fast layer problem is unchanged
compared to Eq. (2). The enhanced susceptibility of the GABAergic neuron to depolarization block is thus achieved
here in exactly the same way as in the two-dimensional system (Fig. 4), namely by shifting the Hopf bifurcation for the
GABAergic neuron to lower values of potassium or external inputs (Fig. 4).

4 Slow dynamics

We analyze now the flow of the slow and superslow variables, [K]+o and w, respectively.

4.1 Potassium dynamics for a constant efflux gtot from the neurons

We consider first the simplified case where the flux of potassium from the neurons into the extracellular space is constant.
We study thus the system

d[K]+o
dt

= w − f([K]+o ) + gtot

dw

dt
= δ(−[K]+o − α+ βw)

(3)

where gtot is a parameter. Fig. 7 shows its bifurcation diagram with respect to gtot. The lower branch of stable equilibria
in Fig. 7 corresponds to physiological levels of extracellular potassium while the upper one corresponds to pathological
states. When the neurons release too much potassium, only the pathological state remains, but before this threshold,
there is a range of positive values of gtot for which the two states coexist.

To investigate the dynamics in this zone of bistability, we calculated the phase portrait of System (3) for two nearby
values of gtot (Fig. 8). At the intersection of the nullclines, we can see the two stable equilibria and a saddle point
between them, much closer to the lower equilibrium. The stable invariant manifold of this saddle acts as a threshold:
it defines the boundary between the basins of attraction of the two attractors. This threshold is sensitive to variations
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of gtot. To illustrate this effect, we plotted in purple two trajectories from the same initial condition for the two values
of gtot. Even though they are very close, the outcome is completely different. For gtot = 0.0074, the system converges
to the physiological equilibrium while for gtot = 0.0075 it converges to the pathological one.
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Figure 7: Bifurcation diagram [K]+o vs. gtot of System (3). We represented steady states with black lines and limit cycles
with purple lines. In the full system (1) the contribution of neuronal firing to extracellular potassium concentration pg(xi) + g(xe)
is positive, so only positive values of gtot are relevant here.

Note that the potassium block is itself a slow-fast system; its timescale separation is organized by the parameter δ.
When δ is at its default value (δ = 0.005), [K]+o is faster than w. The sensitivity of the stable manifold of the saddle
is preserved even when increasing δ beyond the point where the roles of the two variables are exchanged, w becoming
faster than [K]+o . This is for example the case for δ = 1. Regarding this aspect, having three timescales (superslow, slow
and fast) in the full system is not crucial for modeling the jump to the high potassium state. However, we noticed that
a small value of δ is necessary to obtain an overshoot in the trace of [K]+o before convergence to the upper equilibrium.
Such an overshoot is consistent with the experimental trace of Fig. 1. When [K]+o is the fast variable of the potassium
block, the trajectory is almost horizontal until the cubic nullcline, before moving down slowly along it (dashed purple
line in Fig. 8 (a)). This shapes the overshoot. On the other hand, when w is the fast variable, the trajectory converges
to the upper equilibrium along the w-nullcline, which does not produce any overshoot (not shown).

4.2 Potassium dynamics averaged over one steady state cycle of the fast layer problem

In the previous section, we showed that for larger, constant, efflux of potassium from the neurons, the basin of attraction
of the low-[K]+o stable equilibrium diminishes until only the high-[K]+o stable equilibrium remains. We are now interested
in how neuronal activity can dynamically drive [K]+o to the high state. When the neurons are spiking, [K]+o is perturbed
by increments associated with each action potential. This discontinuous release is modeled in the full system (1) by the
term gtot = pg(xi) + g(xe), which oscillates rapidly (see Fig. 10 (a5, b5, c5)). Those oscillations are so fast compared to
the slow variables ([K]+o , w), that their response is governed by the average value of gtot, as we will illustrate in Fig. 13
(c).

To eliminate the fast spiking dynamics, we base ourselves on the averaging method, which is commonly employed when
modeling ion concentration dynamics [11, 44, 4]. We formulate the following reduced system, in which the derivatives
of the slow variables (Eqs. (1e) and (1f)) are averaged over one period T of the steady state oscillation of the fast layer
problem:

d[K]+o
dt

= w − f([K]+o ) + gtot,∞([K]+o ),

dw

dt
= δ(−[K]+o − α+ βw),

(4)

where

gtot,∞ = pgi,∞ + ge,∞

=
1

T ([K]+o )

(
p

∫ T ([K]+o )

0

g(xi(τ, [K]+o ))dτ +

∫ T ([K]+o )

0

g(xe(τ, [K]+o ))dτ

)
.
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Figure 8: Phase portrait of System (3) for two close values of gtot in the zone of bistability. In both cases there are
two stable equilibria, whose basins of attraction are delimited by the stable invariant manifold of a saddle. We show trajectories
from the same initial condition for both values of gtot. For gtot = 0.0074, the system converges to the low-[K]+o stable equilibria
(solid purple line). For gtot = 0.0075, it converges to the high-[K]+o stable equilibria (dashed purple line, visible closely above the
unstable manifold in panel a, and at the bottom right of panel b).

We then replace gi,∞ and ge,∞ with fitted functions of [K]+o (Fig. 9 (a)), a simplification similar to the one used by
Cressman et al. in [11]. We perform those fits in the region of interest [K]+o ∈ (0.31, 0.95), in which there is a unique
stable limit cycle of the fast layer problem for a given [K]+o .

Fig. 9 (b) shows the bifurcation diagram of the resulting system with respect to the parameter p, which represents the
severity of NaV1.1 migraine mutation. When p is too high, there is no low-[K]+o stable equilibrium (Fig. 9 (c3)). Before
that, when both stable equilibria coexist (there is a high-[K]+o stable equilibrium outside of the range of [K]+o values
shown here), the behavior depends on the basin of attraction the initial conditions lie in. The basin of attraction of the
low stable equilibria, bounded by the stable invariant manifold of the saddle, is reduced when p is increased from its
default value p = 1 (Fig. 9 (c1, c2)). As a consequence, smaller perturbations can trigger the increase of extracellular
potassium to pathological concentrations.

5 Full system

Finally, we examine the dynamics of the full system (1). We compare the configurations: wild-type, migraine and
epileptogenic mutation of NaV1.1 (see Section 2.6). Fig. 10 shows trajectories of the system in the three cases, when
the neurons are stimulated with an external input Iext = 0.35. To understand how the different responses are produced,
we look at the superposition of the full system’s trajectories onto the bifurcation diagram of the fast layer problem with
respect to [K]+o . This procedure of slow-fast dissection is a classical tool to study multiple-timescale systems and was
introduced by J. Rinzel, see for instance [39].
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Figure 9: Approximated average slow subsystem. (a). Potassium efflux from the GABAergic (g(xi)) and pyramidal
(g(xe)) neurons on the stable limit cycle of the fast layer problem, averaged over one period. Dashed red lines: fit of those with
a power function. (b) Bifurcation diagram [K]+o vs. p and (c) phase portraits of System (4), in which gi,∞ and ge,∞ have been
replaced by the corresponding fitted function.

5.1 The route to CSD initiation

In the absence of mutation, extracellular potassium remains at low concentrations, for which the neurons are in a firing
regime (Fig. 10 (a), Fig. 11).

With the migraine mutations, neuronal activity releases by construction more potassium (Fig. 10 (b5) vs. Fig. 10 (a5)).
It accumulates progressively, until a “tipping point” is reached, resulting in an abrupt transition to the high state (Fig. 10
(b3)) with a slight overshoot. This progression is consistent with what is measured experimentally (Fig. 1). As [K]+o
increases, the voltage traces show a good agreement with the bifurcation diagram of the fast layer problem (Fig. 12).
Meanwhile, the firing frequency of the neurons increases considerably (Fig. 10 (b1, b2)), similarly to simulations of the
detailed model (Fig. 5 (e, f) of [29]) and experiments (Fig. 5 (a, b) of [29]). Note that the frequency of the limit cycles
in Fig. 11 is not necessarily the firing frequency: there can be more than one full blown action potential per period,
due to period-doubling bifurcations. The switch from the spiking regime to depolarization block of the two neurons,
which indicates CSD initiation, is achieved via a dynamic bifurcation of limit cycles. It is unclear which is the precise
bifurcation responsible for this transition, since there are several branches of limit cycles in this region (Fig. 5 (a5)) and
[K]+o is undergoing a relatively fast increase. The key point is that [K]+o reaches values for which the depolarized steady
state is the only attractor.

We took a closer look at the threshold between physiological and pathological responses. In Fig. 13, two very close
values of p lead to either regular spiking or depolarization block of the neurons. We can see in the inset of Fig. 13
(a) the critical moment where the two potassium traces separate (blue and orange curves). While [K]+o builds up, the
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Figure 10: Trajectories of the full system (1). Time traces for an external input Iext = 0.35, taking as initial condition the
steady state when Iext = 0. We represented in blue the firing frequency of the neurons averaged on a sliding window of 500 time
units. In the last two rows, we plotted the contribution gtot of neuronal spiking to the extracellular potassium and the inhibitory
current IGABA (black curves), together with their average on a sliding window of 2000 time units (blue curves). (a) Wild type
condition: default parameter values. (b) Migraine condition: p = 4. (c) Epilepsy condition: ci = 1.2.
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contribution gtot of neuronal firing to [K]+o increases as well (Fig. 13 (b)), which creates a positive feedback loop. In
Fig. 13 (c), we projected those trajectories onto the ([K]+o , w) plane, where for each value of p we also represented the
phase portrait of the approximated average slow subsystem (System (4) with fitted gi,∞ and ge,∞). In both cases, the
full system first approaches the saddle along its stable invariant manifold, before either abruptly ascending to high
potassium concentrations, or converging to the low-[K]+o stable equilibrium. The outcome depends on the relative
position of the initial condition with respect to the stable invariant manifold (see insets), which is a validation of our
averaging procedure.
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Figure 11: Wild-type condition: tonic firing of the neurons. We superimposed the trajectories of the full system shown
in Fig. 10 (a) onto the bifurcation diagram of the fast layer problem (4) for ci = 3. (a) Voltage of the pyramidal neuron xe vs.
[K]+o . (b) Voltage of the GABAergic neuron xi vs. [K]+o . (c) Frequency of the limit cycles. We marked in gray the final [K]+o
value of the full system trajectory.

5.2 The route to pre-epileptic hyperactivity

With the epileptogenic mutations, the system first follows the branch of limit cycles for which the pyramidal neuron
produces aborted spikes while the amplitude of the GABAergic neuron’s action potentials diminishes (Fig. 14). Shortly
after surpassing the low Hopf bifurcation HL, the GABAergic neuron enters depolarization block, with a delay due to
the speed of [K]+o . This causes a drop of the inhibitory current (Fig. 10 (c2, c6)). Consequently, the pyramidal neuron
starts spiking at high frequency compared to the wild-type case (Fig. 10 (c1) vs. Fig. 10 (a1)), which we interpret as
pre-epileptic hyperactivity. In this simulation the extracellular potassium concentration remains low. Note that during
a full blown seizure, which is not what we aim to model here, one would expect a larger increase in extracellular
potassium. The limit firing frequency is almost twice as high as for the wild-type case (Fig. 11 (c) vs. Fig. 14 (c)).
In those particular cases, the frequency of the limit cycles corresponds to the firing frequency, since only one action
potential is emitted per period.
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Figure 12: Migraine condition: depolarization block of the two neurons. We superimposed the trajectories of the full
system shown in Fig. 10 (b) onto the bifurcation diagram of the fast layer problem (4) for ci = 3. (a) Voltage of the pyramidal
neuron xe vs. [K]+o . (b) Voltage of the GABAergic neuron xi vs. [K]+o .

What exactly happens at the transition between the two phases for the pyramidal neuron is not straightforward, as the
bifurcation landscape is very intricate (Fig. 6 (a2)). One way to address this would be to study the dynamics closer to
the singular limit by reducing ε and observing which branches play a role for the full dynamics.

6 Conclusion and perspectives

In this paper, we have designed and analyzed a reduced version of our biophysical model [29] of CSD initiation and
epileptiform hyperactivity. We constructed this six-dimensional system to mirror the microcircuit structure of the
detailed model. Namely, we considered two coupled idealized neurons, a pyramidal cell and a GABAergic neuron that
inhibits it, and additional variables to model the dynamics of extracellular potassium, which is the most relevant ion
concentration in this context. Albeit phenomenological in spirit, with mostly polynomial terms and mathematical
excitable models for its three blocks — 2D Hindmarsh-Rose type model for each neuron, FitzHugh-Nagumo (FHN)
type model for the potassium —, this reduced model still retains salient features of the biophysical model, in the form
of the inhibitory synaptic current and the function governing potassium release. In this simpler setting, we managed
to reproduce both pathological transitions upon minimal parameter variation: one parameter for each scenario. We
exploited the minimal structure of the model, as well as its explicit timescales, to identify dynamical mechanisms
underpinning the two pathological transitions. Those mechanisms are robust, in the sense that the only requirement
on the parameter choice is to obtain the suitable bifurcation structure in the fast subsystem and phase-space structure
of the slow block. Many parameter sets will offer such configuration. Now, the transition from a tonic firing scenario
to CSD-like dynamics with a depolarization block is very sensitive to parameter variation, as it is the result of the
interaction between multiple timescales and the underlying excitable structure of the slow block. This is illustrated in
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Figure 13: Activity-mediated jump of the extracellular potassium to pathological elevated concentrations. Sim-
ulations of the full system (1) for an external input Iext = 0.35 and for different values of the parameter p, which controls the
release of potassium by the GABAergic neuron. (a) Extracellular potassium. (b) Total contribution of neuronal firing to the
extracellular potassium, averaged on a sliding window of 2000 time units. (c) Projection of the full system trajectories onto
the ([K]+o , w) plane, where the phase portrait of an approximation of the two-dimensional System (4) is also depicted, for (c1)
p = 2.49 and (c2) p = 2.5.

Fig. 13, where for two close values of p the trajectories are very different.

One important novelty of our model is the possibility to capture the abrupt increase of extracellular potassium in the
CSD scenario, with an overshoot at the beginning of the depolarization block phase. To this end, we introduced a
third timescale and hence modeled the potassium dynamics with two variables, inspiring from [24]. With this approach
the potassium block is a bistable slow-fast system, whose unstable (saddle) equilibrium organizes the transition to
depolarization block via its stable manifold. As we indicated in Section 4, getting rid of the third timescale maintains
the sharp transition to the high potassium state, but without the overshoot that we observed in the experimental data.
We showed that analyzing the planar potassium system, in particular the dependence of the stable separatrix of the
saddle upon neuronal feedback, is enough to grasp the mechanism of CSD initiation in the full system.

In the case of NaV1.1 epileptogenic mutations, we have shown that the main ingredient is a shift in the position of
a Hopf bifurcation in the fast layer problem, obtained by continuing in two parametric dimensions the corresponding
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Figure 14: Epilepsy condition: depolarization block of the GABAergic neuron and high firing frequency of the
pyramidal neuron. We superimposed the trajectories of the full system shown in Fig. 10 (c) onto the bifurcation diagram of
the fast layer problem (4) for ci = 1.2. (a) Voltage of the pyramidal neuron xe vs. [K]+o . (b) Voltage of the GABAergic neuron
xi vs. [K]+o . (c) Frequency of the limit cycles. We marked in gray the final [K]+o value of the full system trajectory.
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Hopf in the GABAergic neuron model. By varying one parameter in the full system, we reproduce the hypothesized
biophysical mechanism: the GABAergic neuron enters depolarization block at low potassium level when the stimulation
is strong enough, hence ceasing to inhibit, which induces an increase of the pyramidal neuron’s firing frequency.

Overall, this model is very similar in terms of its dynamical behavior to the much larger and nonlinear biophysical
model developed and studied in [29]. An interesting avenue for future work would be to exploit the results reported in
this paper to better understand the biophysical model and possibly improve it.

6.1 Towards simpler models

In future projects, the simplification of the model performed here could be taken further, facilitating a more advanced
mathematical analysis. With a very basic model, we could also consider more than two neurons: this would allow us
to take into account network effects involved in the initiation of CSD and seizures or even to study the propagation of
these phenomena.

6.1.1 Extracellular potassium dynamics

Extracellular potassium is crucial for CSD initiation. The modeling of its dynamics in this work is already phenomeno-
logical (Section 2.4). To simplify it further, we could choose to use only one equation instead of a two-dimensional
system. The minimal setup which we need is two stable steady states separated by a threshold. It could be achieved
with an equation such as:

d[K]+o
dt

= (K1 − [K]+o )([K]+o −K2)([K]+o −K3), 0 < K1 < K2 < K3.

The stable equilibrium K1 corresponds to a physiological level of potassium. An increase above the unstable equilibrium
K2, chosen closer to K1 than to K3, would cause a jump to the pathological stable equilibrium K3. The analogous of
K2 in the present model is the stable manifold of the saddle (Fig. 8), which delimits the basins of attraction of the two
stable steady states.

One drawback of this approach is that [K]+o cannot oscillate, preventing the trajectory to the high state to exhibit an
overshoot. With this simplification, we would also lose the biological interpretation related to the slow buffering of
extracellular ions of the two-dimensional slow-fast framework [24].

6.1.2 Neuronal dynamics

Transition to depolarization block is at the center of the pathophysiology of migraine with aura, and our work suggests
that it might also be involved in the onset of seizures. As they are, computationally inexpensive models such as the
theta model [18] cannot reproduce this pathological behavior. An interesting project would be to extend one of those
simple models such that the neuron enters depolarization block when excessively stimulated. The motivation behind it
is to build networks.

In the theta neuron, the transition from quiescence to repetitive firing occurs at a SNIC. For the extension mentioned
above, we would need an additional bifurcation to mediate the transition from repetitive firing to depolarization block.
The following example illustrates this idea:

dθ

dt
= (I − cos θ)(cos θ + IDB + 1− I), θ ∈ S1. (5)

A branch of stable limit cycles emerges through a SNIC at I = 1 and terminates at another SNIC at I = IDB. If we
define the voltage v = sin(θ), the branch of stable equilibria created by the second SNIC corresponds to higher voltage
values than the subthreshold branch (Fig. 15).

In a framework similar to Eq. (5), if extracellular potassium participates to the input I, a too large accumulation of
this ion would cause depolarization block of the neuron (Fig. 15 (B)), reproducing the mechanism of CSD initiation and
possibly CSD propagation. To model the epilepsy condition, one could reduce the input value at which the transition
to depolarization block occurs (here controlled by the parameter IDB). Having a SNIC as spike-terminating bifurcation
is not ideal: it means that the firing frequency tends to zero when converging to it. This is however not too problematic
in the case of CSD, since the potassium input would not grow linearly, but instead rise relatively fast across the SNIC.
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Figure 15: Depolarization block in a phase oscillator model. Bifurcation diagram sin(θ) vs. I of Eq. (5) and superposition
of trajectories when I slowly increases from 0 to 1.97 (a) or to 5 (b).
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