Léo Gourdin
email: leo.gourdin@univ-grenoble-alpes.fr

Lazy Code Transformations in a Formally Verified Compiler

Keywords: Software and its engineering → Retargetable compilers, Formal software verification, • Translation Validation, Symbolic Execution, the CompCert Compiler, RISC-V, Optimization, Formal Proof ldr x0 ,[x0 ,w1 , sxtw #3] slli x6 , x11 ,3

Translation validation verifies the results of an untrusted translatorcalled an oracle-at the compiler's runtime using a validator. This approach enables validating intricate optimizations without having to prove them directly. Parametrizing such a validator with hints provided by oracles greatly simplifies its integration within a formally verified compiler-such as CompCert. However, generating those hints requires adapting state-of-the-art optimizations.

The co-design of a validation framework supporting a class of optimizations led us to improve the Lazy Code Motion (LCM) and Lazy Strength Reduction (LSR) data-flow algorithms of Knoop, Rüthing, and Steffen. We propose an efficient implementation in OCaml combining both LCM and LSR, operating over basic-blocks, and whose result is checked by a Coq-verified validator. We show how to generate invariant annotations from the data-flow equations as hints for the defensive validation, and we introduce several algorithmic refinements w.r.t. the original papers.

Our solution is fully integrated within CompCert, and to the best of our knowledge, it is the first formally verified strength-reduction of loop-induction variables.

INTRODUCTION

To prevent optimization bugs [START_REF] Sun | Toward understanding compiler bugs in GCC and LLVM[END_REF][START_REF] Zhou | An empirical study of optimization bugs in GCC and LLVM[END_REF], safety standards mandate using a certified compiler like CompCert [START_REF] Leroy | Formal verification of a realistic compiler[END_REF][START_REF] Leroy | A formally verified compiler back-end[END_REF], the first verified compiler for safety-critical embedded systems [START_REF] Kästner | CompCert: Practical Experience on Integrating and Qualifying a Formally Verified Optimizing Compiler[END_REF]. However, compared to GCC and LLVM, it is only moderately optimizing. On RISC-V, which is a promising candidate for embedded, critical systems [START_REF] Andersson | Development of a NOEL-V RISC-V SoC Targeting Space Applications[END_REF][START_REF] Di Mascio | Leveraging the Openness and Modularity of RISC-V in Space[END_REF][START_REF] Lu | A Survey on RISC-V Security: Hardware and Architecture[END_REF], CompCert is much less efficient than GCC. Indeed, the instruction set architecture (ISA) is truly reduced [START_REF] Waterman | The RISC-V instruction set manual. Volume I: User-Level ISA[END_REF], so the compiler must be clever to generate efficient assembly code. For instance, RISC-V addressing modes are less sophisticated than those of the AArch64 ISA, as depicted in Figure 1. When such a triplet of instructions appears in a loop, strengthreduction (SR), which replaces costly sequences of operations with simpler and more efficient alternatives, becomes particularly beneficial in order to minimize the number of cycles per iteration.

Moreover, in embedded systems, it is common to use in-order cores (i.e. that do not dynamically reorder instructions) with a simple micro-architecture. Compiler optimizations thus have more impact on those processors than on complex ones that reorder instructions and perform speculative execution.

Typically, partial redundancy elimination (PRE) is a code motionbased optimization that can suppress duplicated computations even when they are not present on all paths (in contrast to full redundancy elimination, FRE). Lazy Code Motion (LCM) [START_REF] Knoop | Lazy code motion[END_REF] is an improved PRE algorithm limiting the increase of register pressure. In fact, lifting operations in the control-flow graph (CFG) of the program certainly allows removing common subexpressions, but it can also increase the liverange (i.e., the interval during which a variable is live 1). LCM solves two conflicting objectives: reaching computational optimality thanks to a clever placement of instructions, and liveness optimality by its "lazy" behavior. It moves operations high enough in the CFG to satisfy the first goal, but not more than necessary to limit register pressure (i.e. as late as possible without loosing computational optimality). Nonetheless, Bodík et al. [START_REF] Bodík | Complete Removal of Redundant Expressions[END_REF] show that restructuring the CFG allows more removals than only moving instructions, as LCM does. Extending their work on code motion, Knoop et al. [START_REF] Knoop | Lazy Strength Reduction[END_REF] proposed a Lazy Strength-Reduction (LSR) algorithm and an implementation-oriented paper about LCM [START_REF] Knoop | Optimal Code Motion: Theory and Practice[END_REF].

Directly proving such optimizations would surely be very difficult. The translation validation approach [START_REF] Pnueli | Translation validation[END_REF] circumvents this issue by noticing that it is much simpler to verify the result of a transformation rather than the whole algorithm. Rideau and Leroy [START_REF] Rideau | Validating register allocation and spilling[END_REF] leveraged this method for the CompCert register allocation, and Six et al. [START_REF] Six | Formally Verified Superblock Scheduling[END_REF] for superblock scheduling and instruction rewriting. Precisely, we have recently implemented a similar, albeit more general, validator [START_REF] Gourdin | Formally Verifying Optimizations with Block Simulations[END_REF] supporting a large class of optimizations by symbolic execution [START_REF] King | Symbolic Execution and Program Testing[END_REF][START_REF] Necula | Translation validation for an optimizing compiler[END_REF][START_REF] Samet | Compiler testing via symbolic interpretation[END_REF]. Generalizing the approach of the previously mentioned successes, our method relies on formally verified defensive programming [START_REF] Boulmé | Formally Verified Defensive Programming (efficient Coqverified computations from untrusted ML oracles[END_REF], as we have a co-designed integration of oracles and validators. In particular, oracles provide hints to validators, allowing them to avoid replaying some complex analyses. These hints guide symbolic execution and effectively reduce its complexity. Any incorrect hint would result in an error in the simulation test, preventing the production of erroneous code.

Limitations of LSR. The original LSR algorithm is only operating on a single instruction CFG, while the LCM proposed in [START_REF] Knoop | Optimal Code Motion: Theory and Practice[END_REF] was simplified and optimized to work on basic-blocks: linear sequences of instructions with a single entry-point and a single exit-point. Notably, the basic-block structure reduces the number of nodes in the CFG (i.e. nodes become blocks), and consequently the number of predicates' values to store. In other words, the results of data-flow equations are retained at each block rather than at each instruction, which allows the analyses to converge faster. Basic-blocks are the standard representation used in most mainstream compilers. Because of this discrepancy on the supported representation, one would be forced to redo some computations already performed by LCM (on basic-blocks) to implement LSR; the latter being relying on the same base of logical predicates.

On another note, the original LSR does not treat instructions in their topological order, and inserts a move in place of each replaced instruction. The problem with this behavior is that it prevents LSR from handling sequences of reducible operations. In real compilers, these sequences are often generated by instruction selection. For example, on RISC-V, a multiplication 𝑐 = 𝑖 × 10 can be replaced with the less costly sequence "𝑎 = 𝑖 << 1; 𝑏 = 𝑖 << 3; 𝑐 = 𝑎 + 𝑏". Usually, in a compiler like GCC or LLVM, this would not really be an issue since one can still apply LSR before the selection. However, to facilitate its formal proof of correctness, the instruction selection pass of CompCert operates on a structured intermediate representation, placed upstream of most other optimizations. Our LSR, which works on a basic-blocks CFG, must therefore be located downstream (to take advantage of other optimizations, and of the existing CFG-based intermediate language of CompCert which comes after selection). Let us imagine a loop containing the above sequence: an addition of the results of two shifts 2 , where 𝑖 is an induction variable incremented by 3 at each iteration. One would like to take out of the loop the whole sequence, and to insert an addition 𝑐 = 𝑐 + 30 instead (i.e. 30 = 3 × 2 1 + 3 × 2 3). The increment on 𝑖 would not be modified, and the resulting code would be much more efficient. But, the insertion of moves constrains the analyses by creating new dependencies and makes the original LSR unable to reduce such sequences.

In practice, instruction selection is not the only source of reducible sequences: they may also appear directly in the source code, or be produced for calculations of memory addresses during translations.

Problematic. As of today, CompCert is not proposing any form of loop-induction variable strength-reduction. With the validation framework we developed, implementing this kind of global optimization becomes possible as long as we manage to provide it the right invariants (the so-called hints). We found that LCM & LSR algorithms are well-suited for this objective by means of their dataflow results. Nevertheless, the original algorithms are still limited on some aspects, as highlighted above. Hence, our goal in this work is to co-design an enhanced version of LSR, integrating LCM, overcoming those limitations, and capable of feeding the validator with the expected, correct invariants. We have measured that adding these optimizations significantly improves the performance of the code generated by CompCert on 64-bit RISC-V, without degrading compilation times (including formally verified defensive checks).

Contributions & Outline. This paper focuses on improvements made to the LCM and LSR algorithms of Knoop et al. [START_REF] Knoop | Lazy code motion[END_REF][START_REF] Knoop | Lazy Strength Reduction[END_REF] in the context of those works. The main contributions suggest a generalization of LSR: (i) that operates over basic-blocks by adapting the analysis of Knoop et al. [START_REF] Knoop | Lazy Strength Reduction[END_REF], as it was done in [START_REF] Knoop | Optimal Code Motion: Theory and Practice[END_REF] for LCM; (ii) performed together with LCM in a single transformation; (iii) which integrates a rewriting procedure to widen the scope of SR over sequences of operations, rather than on each instruction independently; (iv) inferring the invariants needed for the translation validation from data-flow equations (including liveness analysis). We provide all the essential information concerning our certified validator [START_REF] Gourdin | Formally Verifying Optimizations with Block Simulations[END_REF], although this document is not intended at describing it in details. Provided with the necessary hints, our certified validator is able to validate a large class of intra-procedural optimizations, beyond LCM & LSR. Its formalization in the Coq proof assistant is therefore out of the scope of this article (it is further detailed in [START_REF] Gourdin | Formally Verifying Optimizations with Block Simulations[END_REF]).

The paper is organized as follows: Section 2 describes the validation of LCM & LSR, and recalls their functioning. Section 3 presents our adaptation of LCM and covers the common aspects of both algorithms. Our refinements to LSR are explained in Section 4, and Section 5 details a method to infer the invariants needed by the validator. Two experimental evaluations on performance and compilation (validation) time are given in Section 6. Finally, Section 7 discusses related work and concludes.

GENERAL OVERVIEW

The principle of LCM & LSR algorithms is to infer information from data-flow analyses on a CFG. LCM was originally designed for a single-instruction CFG, and later generalized for basic-blocks. In addition to the limitations listed in §1, our adaptation of LCM & LSR is motivated by mainly 3 reasons. (i) Basic-blocks lower the amount of hints (i.e. invariants) needed for the validation, so that the communication between the oracles and the validator is more efficient, as well as the validator itself. (ii) The data-flow approach helps in generating those invariants (see §5). (iii) They are among the most efficient algorithms of this kind not based on SSA 3 . From here, we note "LCM" the basic-block version of it, and "LCT" (for "Lazy Code Transformations") the whole oracle combining both LCM and LSR.

Quick Background on LCM & LSR

These algorithms assess the validity of certain predicates for each potential candidate (i.e. operation to move or strength-reduce). A predicate is classified as global if its value at each CFG block relies on a forward or backward data-flow analysis. Conversely, a local predicate only depends on the current block and does not necessitate any fixed point computation. LCM & LSR are built on the seminal work of Morel and Renvoise [START_REF] Morel | Global optimization by suppression of partial redundancies[END_REF], in which the authors propose two global properties, namely availability and anticipability (of a given candidate) 4 , and a local transparency property. A block is transparent for a candidate if it does not modify its dependencies. LCM is based on four purely unidirectional data-flow analyses, by conceptually splitting basic-blocks in two parts (for each candidate): an entry part containing every instruction up to (and including) the last modification of the candidate's dependencies, and an exit part, consisting of all remaining statements [17, §2.3]. Consequently, all predicates (except transparency, which concerns an entire block) are duplicated for entry/exit parts of blocks. The preliminary step is to detect candidates: for LCM, any arithmetic operation or load is subject to be factorized, while LSR only targets multiplicative operations where one operand is a constant. Then, the goal is to find for each candidate (whether they are LCM or LSR ones), the optimal insertion points to pre-compute it in a fresh variable, and all the replacement points where a redundant occurrence can be replaced by a move from the fresh variable. Those locations are deduced from the data-flow predicates, as detailed in §3.1.

The analyses require a CFG devoid of critical edges: edges going from nodes with multiple successors to nodes with multiple predecessors. The usual approach is to split them by inserting an empty block, called synthetic node. Actually, we cut every edge leading to a join point in the CFG (so we insert more synthetic nodes than just by splitting critical edges). Empty nodes before joins are necessary due to the constraints imposed by our intermediate representation.

It also facilitates the LCT algorithms. Unused synthetic nodes are removed by the "tunneling" passes of CompCert [21, §9] afterwards.

Architecture of Our Solution

We implemented the Block Transfer Language (BTL) as an intermediate representation, similar to the Register Transfer Language (RTL) used in CompCert [21, §6]. BTL features a syntactical structure of loop-free (here, basic-)blocks, and an unbounded number of available registers, due to its pre-register allocation stage.

Globally, our solution works as follows: first, given an RTL program 𝑃 𝑟𝑡𝑙 , an oracle translates it to a BTL program 𝑃 𝑏𝑡𝑙 , while selecting basic-blocks with synthetic nodes and eventually performing some structural duplications/factorizations (e.g. loop-un/rerolling). This translation is validated in both directions with a specific checker. Second, the LCT oracle is called on 𝑃 𝑏𝑡𝑙 and yields an optimized program 𝑃 ′ 𝑏𝑡𝑙 along with a map of invariants containing, for each CFG block, two sets of invariants (i.e. hints) that are needed to help the verification (as explained in §2.3). Third, the certified validator simulates both programs, block-by-block, using the provided hints: if they are equivalent, the compilation continues (coming back to RTL); otherwise, it fails and the compilation is aborted.

Symbolic Simulation Modulo Invariants

Our verified checker is based on symbolic execution (SE), a versatile technique. The principle is to simulate the execution of blocks of code with a symbolic representation of registers and memory (together forming a symbolic state).

The SE validator we implemented simulates the source (from 𝑃 𝑏𝑡𝑙) and target (from 𝑃 ′ 𝑏𝑡𝑙) BTL blocks by pairs until reaching a final state; then, final (symbolic) states are compared to ensure semantics preservation. When the transformation is local to a block, this is sufficient to prove it correct; otherwise, if the modifications are global over the function, we must also propagate information between block executions. To address this, our formally verified defensive framework asks oracles for two types of invariant annotations: (i) gluing invariants (GI) to anticipate non-trapping operations, to remember already computed trapping operations, and to eliminate dead-code; and (ii) history invariants (HI) to share a common execution past. Together, they establish a semantic relation "HI(𝑟 𝑠 , 𝑚) ∧ 𝑟 𝑡 ≡ 𝑡 GI(𝑟 𝑠 , 𝑚)" from a source state (𝑟 𝑠 , 𝑚) to a target state (𝑟 𝑡 , 𝑚). The memory state 𝑚 is unchanged, but the register state 𝑟 𝑠 becomes 𝑟 𝑡 . Here, "≡ 𝑡 " is equality of register states only for target live registers (which are syntactically provided by gluing invariants). Our implementation imposes that invariants never fail: this restriction greatly facilitates the simulation proof, and is implicitly part of the history invariant; hence, we cannot anticipate potentially trapping instructions (e.g. loads) w.r.t. the source.

We provide this brief overview of our simulation as a basis for the next sections. Let S and T be the source and target blocks, respectively; we note G 𝐼 and G 𝐽 (resp. H 𝐼 and H 𝐽) the in (at the entry of the current block) and out (at the entry of the next blocks) gluing (resp. history) invariants.

𝜖 𝛿 𝑠0 /𝛿 𝑡 0 𝛿 𝑠1 𝛿 𝑡 1 𝛿 𝑠2 ⪰ 𝛿 𝑡 2 H 𝐼 S ⪰ H 𝐽 G 𝐽 G 𝐼 T Figure 2: Modulo Invariants Simulation Diagram
Figure 2 resumes how the validation is performed. Both blocks start with the same initial symbolic states 𝛿 𝑠0 and 𝛿 𝑡 0 , obtained by applying H 𝐼 on the empty state 𝜖. On the source side, we symbolically execute block S on 𝛿 𝑠0 (leading to 𝛿 𝑠1), before applying the gluing invariants of the successors' blocks G 𝐽 . Symmetrically, on the target side, we apply the gluing invariant of the current block G 𝐼 (leading to state 𝛿 𝑡 1), and then execute block T itself. These two steps lead, respectively, to states 𝛿 𝑠2 and 𝛿 𝑡 2 .

The overall simulation theorem (proved in Coq) 5 states that the semantics is preserved under two predicates (in the sense of CompCert's forward simulations). First, applying the output history invariant on 𝛿 𝑠1 must yield an identity symbolic state that simulates 𝛿 𝑠1 on the source's variables. This enforces the correctness of history invariants: as they replay a past execution, they must already hold on the source's side. Second, 𝛿 𝑠2 must simulate 𝛿 𝑡 2 on the target's variables (so that we implicitly encode a liveness validation) for the gluing invariants to be correct. Those two properties are colored in violet in Figure 2, where "⪰" means simulates.

LCT of a Running Example

Let us explain both LCM and LSR on a simple example illustrating the anticipability constraint of §2.3. The simple C code of Figure 3 features two loop-invariant computations, the square of "y" and the load of "*p", denoted in blue. In addition, the multiplication of the loop-induction variable "i" by the constant 5 (in teal color) is prone to be reduced. Ideally, we would like these two operations to be taken out of the loop, as it would be done by the original LCM. In fact, one may notice that the load (which may trap) will always be executed, so it can be safely moved out of the loop without adding any potential failure. However, we explained that our validation mechanism is unable to anticipate a trapping operation w.r.t. the original program.

We tackle this problem by unrolling the first iteration of the loop before applying LCM. The unrolled code in the left-side of Figure 4 contains two times the load, and the first occurrence is now in the loop header. The violet comment of Figure 4 indicates correspondence between variables. Remark that the multiplication of "i" (by 5) was decomposed by the CompCert instruction selection as a sequence of a shift and an addition (still in teal color).

Our improved LCT produces the code in the right-side of Figure 4, including four fresh variables. The load is now in an auxiliary variable x12, which replaces x11 in the first instruction of the loop. The square, a loop-invariant computation, is lifted in the loop header with variable x13, and the multiplication pattern has been reduced and lifted as well. To compensate the increment6 (of 3) over x5, the oracle inserts a new increment just before the old one. It recognizes the pattern as a product by 5, and deduces the final amount to add by multiplying it with the old increment (i.e., 5 × 3).

// x3 = x ; x2 = y ; x1 = p Head: x4 = 0 x11 = int64[x1 + 0] x3 = x3 * x11 x5 = 3; goto Loop Loop: x11 = int64[x1 + 0] x3 = x3 * x11 if (x5 > 35) { x10 = x2 * x2 x4 = x4 + x10 } x9 = x5 << 2 x7 = x5 + x9 x3 = x3 + x7 x5 = x5 + 3 if (x5 >= 100) goto Exit goto Loop Exit: x6 = x3 -x4 return x6
Head: On this example, the "CSE3" (Common Subexpression Elimination) of Monniaux and Six [START_REF] Monniaux | Simple, light, yet formally verified, global common subexpression elimination and loop-invariant code motion[END_REF] would also be unable to take out the load without unrolling, for the same reasons of anticipation. To the same extent, the transformation becomes feasible for CSE3 when the first iteration is unrolled (because it corresponds to a FRE); however, even if the square was duplicated before the loop, CSE3 would not eliminate it (because it corresponds to a PRE). Furthermore, in a variant of this example where "b" would be initialized at line 3 by "b = *p" instead of "b = 0", CSE3 would not factorize the "*p" redundancy, contrary to our LCM, even without unrolling. Indeed, "b" being modified in the loop, factorizing the computation of "*p" requires a fresh register to store this computation. But, in contrast with LCM, CSE3 does not introduce any fresh register.

x4 = 0 x12 = int64[x1 + 0] x3 = x3 * x12 x5 = 3 x13 = x2 * x2 x14 = x5 << 2 x15 = x5 + x14; goto Loop Loop: x3 = x3 * x12 if (x5 > 35) x4 = x4 + x13 x3 = x3 + x15 x15 = x15 + 15 x5 = x5 + 3 if (x5 >= 100) goto Exit goto Loop Exit: x6 = x3 -x4 return x6
Finally, the two original assignments to x9 and x7 have been rewritten into a single one to x15. This illustrates how we enhanced the SR algorithm of Knoop et al. [START_REF] Knoop | Lazy Strength Reduction[END_REF] by enabling the reduction of sequences. The reduction of such sequences thus improves Comp-Cert's instruction selection. Notice that block 8 was originally a synthetic node, having served as an insertion point.

Symbolic Simulation of Our Example

In our example, the simulation only requires gluing invariants, because the source's multiplication "x9=x5<<2" directly contains the immediate constant. If the constant was loaded in a register in an earlier block, then we would have to maintain an history invariant between its definition and its uses in loop blocks' gluing invariants. In particular, it would have been live in the loop, and so the history invariant too. We represent invariants as sequences of register assignments, followed by a set of live registers at the block's entry. The CFG entrypoint is always annotated by a pure-liveness invariant 7 ; the gluing invariant for block 9 of Figure 5 is thus "([], alive = {x1,x2,x3})" ("[]" represents the empty sequence). Block 9 (on the target) precomputes the load in x12. To remember its value, the oracle adds an assignment in the successor's invariant (i.e. block 8), in addition to the liveness information. Therefore, block 8 is annotated with "([x12:=ld[x1+0]], alive = {x2,x3,x4,x5,x12})". Following this principle, the gluing invariants for blocks belonging to the loop propagate definitions from block 8 across the body. Hence, the same gluing invariant annotates each loop-body block (i.e. blocks 2 to 7): Since we only rely on gluing invariants, the simulation check of §2.3 is reduced to the comparison between 𝛿 𝑠2 and 𝛿 𝑡 2 . Example 2.1 details a part of the simulation for block 3, where symbolic states are written as parallel assignments (e.g."𝑥1 𝑥1 + 𝑥2∥𝑥2 𝑥1"). They represent a relation from an initial concrete state to a final one in which 𝑥1 is incremented by the initial value of 𝑥2, and 𝑥2 has been assigned to the initial value of 𝑥1, other variables being dead or unchanged.

Example 2.1. Each exit branch of block 3 must pass the simulation test pictured in Figure 2. Let us consider the "else" branch, leading to block 2. The source block S is shown in Figure 6, and its symbolic execution will result in the state 𝛿 𝑠1 on left column below. On the target side, we obtain 𝛿 𝑡 1 from the execution of G 𝐼 , in the middle column below. As visible with variable x3 in 𝛿 𝑠1 , we apply an on-the-fly affine normalization (see §4.3) over values.

𝛿 𝑠1 = 𝑥3 𝑥3 + 5 • 𝑥5 ∥ 𝑥5 3 + 𝑥5 ∥ 𝑥7 5 • 𝑥5 ∥ 𝑥9 4 • 𝑥5 𝛿 𝑡 1 = 𝑥3 𝑥3 ∥ 𝑥4 𝑥4 ∥ 𝑥5 𝑥5 ∥ 𝑥12 𝑙𝑑 [𝑥1 + 0] ∥ 𝑥13 𝑥2 • 𝑥2 ∥ 𝑥15 5 • 𝑥5 𝛿 𝑠2 = 𝛿 𝑡 2 = 𝑥3 𝑥3 + 5 • 𝑥5 ∥ 𝑥4 𝑥4 ∥ 𝑥5 3 + 𝑥5 ∥ 𝑥12 𝑙𝑑 [𝑥1 + 0] ∥ 𝑥13 𝑥2 • 𝑥2 ∥ 𝑥15 15 + 5 • 𝑥5
Indeed, a naive execution would have assigned to 𝑥3 the value 𝑥3 + 𝑥5 + 𝑥5 • 4 rather than the simplified form 𝑥3 + 5 • 𝑥5. To finish, we execute G 𝐽 and T from 𝛿 𝑠1 and 𝛿 𝑡 1 , respectively, and get the final states 𝛿 𝑠2 and 𝛿 𝑡 2 on the right side above. As expected, considering the target's live variables 8 , both symbolic states are equal, so the optimization is validated. Implicitly, the affine normalization of this example demonstrated that 𝑥5 + 3 + 4 × (𝑥5 + 3) = 𝑥5 + 4 × 𝑥5 + 15.

OUR ANTICIPATION-RESTRAINED LCT

In this section, we implement the base of our LCT algorithm in two steps: a first phase identical to the LCM of Knoop et al. [START_REF] Knoop | Optimal Code Motion: Theory and Practice[END_REF], that will serve as a base to include LSR in §4; and a second phase to restrict the LCM's sets of insertion and replacement points, in order to respect the anticipation constraint of §2.3.

The type of BTL instructions is parametrized by the target ISA. It groups together every basic operations under the same constructor, and features a dedicated constructor for loads. In the specific case of RISC-V, none of the BTL operations can fail, and loads are always trapping. Nevertheless, LCM must be architecture-independent; the fact is some operations can be trapping on certain backends (e.g. divisions by zero), and there also exists backends where loads can be non-trapping (e.g. on KVX [START_REF] Six | Certified and efficient instruction scheduling: application to interlocked VLIW processors[END_REF]).

For our oracle to work with both operations and loads, we define a type representing right hand-sides (RHS) of register assignments in Figure 7, that serves as a key to a hash table whose values in Figure 8 record candidate information (bold fields are mutable). In §4, the type of LCM candidates' keys of Figure 7 will be encapsulated to also support LSR ones, using the same hash table and values' type of Figure 8. Thanks to this structure, we rebuild BTL instructions from candidates' keys, and match RHS of instructions to existing 8 In the general case, 𝛿 𝑡 2 may affect dead registers on the 𝛿 𝑠2 side.

Steps Common to All Candidates

Most implementation parts are common to every kind of candidates.

As indicated in §2.1, the first step is to detect them. We traverse each block and insert a new mapping for every operation or load.

The lhs field of Figure 8 is a map from block IDs to sets of offsets (i.e. positions in a given block), recording the points where the candidate was seen (assigned to a left hand-side) in the CFG. So if a candidate is detected in multiple places, we simply update the lhs map with the new position. Once the detection is done, candidates are sorted by first their appearance block (thanks to the prior postorder renumbering), and second their offset in the latter. They are then handled one by one in this topological order by the oracle. Secondly, we compute local predicates: the transparency (TRANSP), being true when the candidate is untouched in a block, and the ⌈COMP⌉/⌊COMP⌋ variants of anticipability/availability, that hold when the candidate is computed in the block's entry/exit part. Obtaining this information is easily done by running through each block, for each candidate. Thirdly, we compute data-flow and data-flow based predicates. We prefix them with "↑", "↓", or nothing according to whether they require a backward, forward, or no analysis, respectively. Up-safety (↓U-SAFE) and down-safety (↑D-SAFE) indicate if a computation at node 𝑛 does not introduce a new value for every path leading and starting at 𝑛, respectively; earliestness (EARL) is true if the candidate cannot be safely placed earlier, without data-flow from the two latter; delayability (↓DELAY) encodes the possibility to safely move the inserted value from its earliest down-safe point; latestness (LATEST) represents the optimality of delayability, the maximum delay, without data-flow from the latter; and isolation (↑ISOL) detects the case where a computation inserted at a node would only be used (i.e. isolated) in this node.

More formally, let us assume a graph 𝐺 = (𝐵, 𝐸, 𝑠) with 𝐵 the set of nodes (basic-blocks), 𝐸 the set of edges, and 𝑠 the unique entry-point of the code. Functions 𝑠𝑢𝑐𝑐 (𝑛) and 𝑝𝑟𝑒𝑑 (𝑛) return, respectively, the set of successors and predecessors of node 𝑛; with and the finite conjunction and disjunction over those sets, respectively. The negation of a predicate 𝑃 is noted 𝑃. Comparing to the original LCM, we do not impose 𝐺 to have a unique exit-point (to be more general); but our predicates' bit vectors are initialized to false. After having detected candidates, and computed local predicates, the Knoop et al. [START_REF] Knoop | Optimal Code Motion: Theory and Practice[END_REF]'s algorithm solves all the systems of equations below:

↓          ⌈U-SAFE⌉ (𝑛) ≜ false if 𝑛 = 𝑠 𝑚∈𝑝𝑟𝑒𝑑 (𝑛) (⌊COMP⌋ (𝑚) ∨ ⌊U-SAFE⌋ (𝑚)) ⌊U-SAFE⌋ (𝑛) ≜ TRANSP(𝑛) ∧ (⌈COMP⌉ (𝑛) ∨ ⌈U-SAFE⌉ (𝑛)) ↑ ⌈D-SAFE⌉ (𝑛) ≜ ⌈COMP⌉ (𝑛) ∨ TRANSP(𝑛) ∧ ⌊D-SAFE⌋ (𝑛) ⌊D-SAFE⌋ (𝑛) ≜ ⌊COMP⌋ (𝑛) ∨ 𝑚∈𝑠𝑢𝑐𝑐 (𝑛) (⌈D-SAFE⌉ (𝑚))          ⌈EARL⌉ (𝑛) ≜ ⌈D-SAFE⌉ (𝑛)∧ 𝑚∈𝑝𝑟𝑒𝑑 (𝑛) (⌊U-SAFE⌋ (𝑚) ∨ ⌊D-SAFE⌋ (𝑚)) ⌊EARL⌋ (𝑛) ≜ ⌊D-SAFE⌋ (𝑛) ∧ TRANSP(𝑛) ↓              ⌈DELAY⌉ (𝑛) ≜ ⌈EARL⌉ (𝑛) ∨          false if 𝑛 = 𝑠 𝑚∈𝑝𝑟𝑒𝑑 (𝑛) ⌊COMP⌋ (𝑚)∧ ⌊DELAY⌋ (𝑚) ⌊DELAY⌋ (𝑛) ≜ ⌊EARL⌋ (𝑛) ∨ ⌈DELAY⌉ (𝑛) ∧ ⌈COMP⌉ (𝑛)          ⌈LATEST⌉ (𝑛) ≜ ⌈DELAY⌉ (𝑛) ∧ ⌈COMP⌉ (𝑛) ⌊LATEST⌋ (𝑛) ≜ ⌊DELAY⌋ (𝑛) ∧ ⌊COMP⌋ (𝑛)∨ 𝑚∈𝑠𝑢𝑐𝑐 (𝑛) (⌈DELAY⌉ (𝑚)) ↑          ⌈ISOL⌉ (𝑛) ≜ ⌊EARL⌋ (𝑛) ∨ ⌊COMP⌋ (𝑛) ∧ ⌊ISOL⌋ (𝑛) ⌊ISOL⌋ (𝑛) ≜ 𝑚∈𝑠𝑢𝑐𝑐 (𝑛) ⌈EARL⌉ (𝑚)∨ ⌈COMP⌉ (𝑚) ∧ ⌈ISOL⌉ (𝑚)
Finally, the LCM's insertion and replacement points (IR-points) are deduced using the formulas below9 :

• INSERT(𝑝𝑐) ≜ LATEST(𝑝𝑐) ∧ ISOL(𝑝𝑐) • REPLACE(𝑝𝑐) ≜ COMP(𝑝𝑐) ∧ (LATEST(𝑝𝑐) ∧ ISOL(𝑝𝑐))
When INSERT is true, we store the candidate in its allocated, unique auxiliary variable (in the vaux field of Fig. 8). In every node marked as REPLACE, the candidate is replaced by a move from vaux.

IR-Points for Trapping Instructions

However, the above IR-points let LCM anticipates trapping instructions, while our validator only allows one to move them if they were already computed before in the source. We sketch a restrictive algorithm to calculate IR-points for trapping instructions. The idea is to start by computing the set of block IDs where we may replace a trapping candidate 10 . We traverse the CFG from the entry-point, and remember each block ID satisfying two necessary conditions: (i) the candidate appears in the entry-part; and (ii) the entry-part is "up-safe". Indeed, as stated by (i), we cannot eliminate a trapping instruction if its dependencies are modified: this means that replaceable trapping candidates are at block entry. Point (ii) reflects the availability condition (we cannot eliminate an unavailable computation). Recall the notion of block's entry part for candidates of §2.1. The result is returned by the compute_pot_rep(entry) function as a set 𝑃 = {𝑝𝑐 𝑝 | ⌈COMP⌉ (𝑝𝑐 𝑝) ∧ ⌈U-SAFE⌉ (𝑝𝑐 𝑝)}.

From there, we need to ensure that these points are actually reachable from a previous calculation of the candidate. For a given 𝑝𝑐 𝑝 ∈ 𝑃, filter_comp_blocks(𝑝𝑐 𝑝) finds the set 𝐼 of available previous calculations (e.g. usable to factorize the candidate). It is defined as the set of 𝑝𝑐 𝑖 such that 𝑝𝑐 𝑖 ≠ 𝑝𝑐 𝑝 ∧ (⌈COMP⌉ (𝑝𝑐 𝑖) ∨ ⌊COMP⌋ (𝑝𝑐 𝑖)), and such that there exists a path from 𝑝𝑐 𝑖 to 𝑝𝑐 𝑝 preserving the transparency property of the candidate. Thus, 𝐼 groups nodes where we should insert and replace the candidate.

Algorithm 1 IR-points for trapping instructions

𝑠𝑡 .⌊REPLACE⌋ (𝑝𝑐 𝑖) ← true

Using those two functions, we define in Algorithm 1 the main procedure used to fill the candidate's IR-points. When 𝐼 = ∅, we abandon the potential replacement in block at 𝑝𝑐 𝑝 (equivalently to the isolation predicate of §3.1). Otherwise, ⌈REPLACE⌉ (𝑝𝑐 𝑝) is set to true. Moreover, if the block also contains an exit computation of the candidate, then the latter must be saved into its auxiliary variable 11 (lines 8-10 in Alg. 1). Finally (lines 11-17), both INSERT and REPLACE predicates are set to true for all 𝑝𝑐 𝐼 ∈ 𝐼 (we set their entry variant if the node has an entry computation, and their exit one otherwise).

ITERATIVE LSR WITH SUBSTITUTIONS

Akin to Knoop et al. [START_REF] Knoop | Lazy Strength Reduction[END_REF], we refined our LCM into a SR algorithm. LSR candidates are multiplications of the form "𝑣 × 𝑐", between a variable 𝑣 and a constant 𝑐. The LSR principle is to weaken the LCM's notion of transparency by considering that additions 𝑣 = 𝑣 + 𝑐 ′ with a constant 𝑐 ′ (named injuring operations), do not break the transparency. Thus, multiplications are moved as if they were LCM candidates. To compensate the effect of additions on 𝑣, the algorithm inserts update assignments: for a candidate relocated in auxiliary variable 𝑣 ′ , an addition "𝑣 ′ = 𝑣 ′ + (𝑐 ×𝑐 ′)" may be inserted in each block containing an injuring addition.

The original-non basic-block based-LSR was refined in three stages to overcome some of its limitations:

(1) R1: avoids inserting an update addition (i.e. an increment of the SR variable) if a multiplication (i.e. the candidate itself) must be inserted on the same path; (2) R2: finds the "best" insertion point (for the multiplication), considering lifetime using the delay, latest, and isolation analyses;

(3) R3: avoids having multiple update additions on the same path for the same variable. R1 and R2 concern IR-points: the former finds substitutes for the original insertion points (without changing replacement points); and the three additional analyses of the latter minimize the liverange induced by code motion. R3 does not change IR-points, but tries to accumulate update assignments. Knoop et al. [19,§3.1.3] first compute a naive code motion (where INSERT = D-SAFE∧EARL), and then apply R1, R2, and R3 (in that order). Our basic-block implementation of §3.1 (inspired from Knoop et al. [START_REF] Knoop | Optimal Code Motion: Theory and Practice[END_REF]), includes R2 without R1 (noted R2 ♭) "for free" by unifying the code motion part of predicate inference 12 . Rather than using R3 directly, we suggest an alternative, generic representation. Last, we describe a new technique to propagate results locally from previous iterations, as a fourth refinement R4 (coming after R3).

Unlike the original LSR, we refine LCM as follows: R2 ♭ (§4.1) → R1 (§4.2.1) → R2 (§4.2.2) → alternative R3(§4.3) → new R4 (§4.4).

Instantiating Common LCT Steps for LSR

We extend the common part of §3.1 for LSR. The state field (Fig. 8) contains either the "real" transparency (TRANSP) for code motion candidates, or the weak transparency (noted SR-TRANSP) for SR ones. Specific SR predicates are also stored in state. As LSR targets multiplications with a constant, we perform a simple constant detection before the candidate detection of §3.1, that builds a hash map from registers to immediate load instructions 13 . In the local analysis, we add an "injuring" predicate (noted INJURED) to the state being true when an argument is only "injured" by an additive operation (preserving SR-TRANSP). The TRANSP predicate (still needed in R1) is rebuilt trivially knowing that TRANSP = SR-TRANSP ∧ INJURED. Executing steps from §3.1 with this notion of weak transparency gives us the R2 ♭ IR-points.

Example 4.1 highlights the difference between multiplicative and additive SR candidates, and the separation with LCM-only candidates. In practice, we encapsulate the type of Figure 7 with the new candidate key defined in Figure 9. Figure 9: LCT candidate's key type 12 In other words, our algorithm naturally includes (and infers) R2 ♭ , while R1 is calculated only when necessary, and after R2 ♭ . 13 Such instructions are considered constant as long as their destination register is never rewritten.

Example 4.1. CompCert's instruction selection tries to decompose multiplications into a sequence of one or two left shifts (powers of two). When there are two shifts, an addition of their results is appended to the sequence. Consider the decomposition "𝑥1 = 5 • 𝑥2" into "𝑥3 = 𝑥2 « 2; 𝑥1 = 𝑥2 + 𝑥3", and assume it is inside a loop with an injuring increment over 𝑥2 (i.e., 𝑥2 = 𝑥2 + 1). The reduction starts by lifting the shift out of the loop in an auxiliary variable 𝑥𝐴, and inserts an update assignment 𝑥𝐴 = 𝑥𝐴 + 4 just before the increment.

Then, we improve this first transformation by noticing that in most cases, the shift's intermediate result is only used to compute the addition. If applicable, we thus lift the addition too using an auxiliary variable 𝑥𝐴 ′ , and apply the update (i.e. adding 5, as "4

• 1 • 𝑥2 + 𝑥2 = 5 • 𝑥2") on 𝑥𝐴 ′ .
Compensatory updates assignments (i.e. additions) are always inserted in blocks containing an injuring operation on the candidate, but not necessarily in all of them. More specifically, an injured node must receive an update assignment either if it contains an occurrence of the candidate (whether in its entry or exit part), or if it has at least one successor not marked as an insertion point (for both the entry and exit parts) but identified as an update point. These blocks are characterized by the least solution of the below equation, which covers a whole basic-block:

↑ UPDATE(𝑛) ≜ ⌈COMP⌉ (𝑛) ∨ ⌊COMP⌋ (𝑛)∨ 𝑚∈𝑠𝑢𝑐𝑐 (𝑛) ⌈INSERT⌉ (𝑚) ∧ ⌊INSERT⌋ (𝑚) ∧ UPDATE(𝑚)
After having inserted and replaced candidates, LSR inserts update additions in every node satisfying both INJURED and UPDATE.

Generalizing LSR on Basic-Blocks

On the example of Figure 4, a multiplication (in fact, a shift) inside the loop is replaced by an addition. To keep the code correct, the multiplication is also inserted before the loop. In some complex cases (e.g. the nested loops of Knoop et al. [19,Fig.3]), such an insertion of the multiplication may itself need to be compensated by an addition. This is precisely what R1 seeks to avoid: not placing a multiplication too early, so that a supplementary addition is unnecessary. The applicability of R1 thus depends on the candidate kind: additive SR candidates are always preceded by a multiplication (otherwise they are selected as code motion candidates), and do not require R1. The latter is therefore only computed for multiplicative SR candidates.

Technically, the first refinement (R1) of Knoop et al. [START_REF] Knoop | Lazy Strength Reduction[END_REF] computes a set of critical points from which there exists a path with no other occurrence of the candidate before the injuring operation. Then, critical-insertion points are both critical and marked as insertion (in the sense of R2 ♭), and represent places where the "naive" (without R1) LSR would place both a multiplication and an update assignment on the same path. To optimize this inefficiency, the authors define a predicate substitution-critical that encodes the set of substitutes (i.e. alternatives) of critical-insertion points. Intuitively, R1 simply delays each critical-insertion point until the first reachable, non-critical point.

New Data-Flow Equations for R1. SR additive candidates keep

R2 ♭ IR-points from the first step; but the state of SRmul candidates is extended with results of R1. Our method to compute R1 on top of R2 ♭ leads to insertion points equivalent to the original R2. We adapted the original (backward) "critical" predicate below:

↑ CRIT(𝑛) ≜ COMP(𝑛) ∧ (TRANSP(𝑛) ∨ 𝑚∈𝑠𝑢𝑐𝑐 (𝑛) (CRIT(𝑚)))
to a basic-blocks based analysis by splitting it into:

↑ ⌈CRIT⌉ (𝑛) ≜ ⌈COMP⌉ (𝑛) ∧ (TRANSP(𝑛) ∨ ⌊CRIT⌋ (𝑛)) ⌊CRIT⌋ (𝑛) ≜ ⌊COMP⌋ (𝑛) ∧ 𝑚∈𝑠𝑢𝑐𝑐 (𝑛) (⌈CRIT⌉ (𝑚))
Deducing the above equations is straightforward; the first step is to duplicate the original predicate in two variants with ⌈COMP⌉ and ⌊COMP⌋. Since it must be solved backward (i.e. it depends on the successor relationship), the existential in the first equation is replaced with ⌊CRIT⌋. For the exit equation, we remove the transparency term (as it does not depend on basic-blocks parts, and is already present in the entry equation); finally, noticing that the successor of an exit part is obviously an entry part, the disjunction over successors is updated with the entry equation.

The bitwise "and" between the entry/exit variants of R2 ♭ INSERT and CRIT gives us the entry/exit "critical-insertion" points noted ⌈CRITINS⌉/⌊CRITINS⌋ (i.e. CRITINS = INSERT ∧ CRIT). Those are needed to adapt the original "substitution-critical" forward equation below, in the same fashion as before.

↓ SUBSTCRIT(𝑛) ≜ CRITINS(𝑛)∨ (𝑚∈𝑝𝑟𝑒𝑑 (𝑛) COMP(𝑚) ∧ SUBSTCRIT(𝑚))
which can be decomposed, from a reasoning symmetrical to that of the CRIT predicate, into: The find_crit_targets_gen procedure of Algorithm 2 pushes forward (in the direction of the control-flow) insertion points for SR candidates. For each of them, we call the procedure if R1's type 𝐶 affine_form ::= Aff_term(𝐶, 𝑟, 𝐶 affine_form) | Aff_const(𝐶)

↓                    ⌈SUBSTCRIT⌉ (𝑛) ≜ ⌈CRITINS⌉ (𝑛)∨ 𝑚∈𝑝𝑟𝑒𝑑 (𝑛) ⌊COMP⌋ (𝑚)∧ ⌊SUBSTCRIT⌋ (𝑚)) ⌊SUBSTCRIT⌋ (𝑛) ≜ ⌊CRITINS⌋ (𝑛)∨ (⌈COMP⌉ (𝑛) ∧ ⌈SUBSTCRIT⌉ (𝑛))
Figure 10: Polymorphic affine forms ⌈CRITINS⌉ (resp. ⌊CRITINS⌋) is not full of zeros (i.e. not always false); with p_ins = ⌈INSERT⌉ (resp. ⌊INSERT⌋) and p_ins_crit = ⌈CRITINS⌉ (resp. ⌊CRITINS⌋). First, we set the insert predicate (which can be either the entry or exit one) to false for every block satisfying the given (entry or exit) critical-insertion predicate. Second, the find_crit_targets_rec procedure replaces insertion points: it recurses over successors from the critical-insertion block, and stops when encountering an already visited block. For entry and exit parts, if a successor is not critical but substitution critical (lines 5 and 7 of Alg.

Affine Forms Strength-Reduction

The third refinement of Knoop et al. [START_REF] Knoop | Lazy Strength Reduction[END_REF] accumulates update assignments when the source includes multiple injuring operations (as illustrated in Ex. 4.1). Their solution is to first record program points where an accumulated update should be inserted, and second to define a function that calculates the accumulation effect. Nonetheless, this idea involves a prior detection of extended basicblocks [19, footnote 15]. Mimicking this technique would be possible with our block-based LSR, even if it seems a bit heavy in our formally verified defensive framework. Moreover, this mechanism is subsumed by noticing that candidates can either multiply or add values, which amounts to manipulate affine forms 14 . We simply define addition and scalar multiplication of affine terms (forming a semimodule [START_REF] Golan | Semimodules over Semirings[END_REF]), to accumulate "injuries" over induction variables, to reduce products between constants, and to factorize additions on the same variable (cf. the sequence in Ex. 4.1). Hence, we improve R3 (but only for basic-blocks) with the affine forms of Figure 10, where 𝐶 is the type for constants (affine forms are polymorphic on 𝐶, e.g. 𝐶 might be int64), and 𝑟 for registers. The oracle maintains a hash-table (𝑝𝑐, 𝑟) ↦ → (𝐶 affine_form), so we map (block ID, register) pairs to affine values. The detection phase applies operations over these forms as they occur, and the substitutions of §4.4 keep the table up-to-date with auxiliary variables. When inserting the update assignment, we invoke a function that takes a list of block IDs and the candidate's auxiliary destination register (fresh register) to retrieve the compensation amount that needs to be added.

Iterative Substitution of Auxiliary Variables

We mentioned in §3.1 that we process candidates in their topological order. The original LCM of Knoop et al. [START_REF] Knoop | Lazy code motion[END_REF] does not specify any order and neither does the original LSR of Knoop et al. [START_REF] Knoop | Lazy Strength Reduction[END_REF]. However, as illustrated in the example of §2.4 (and in Ex. 4.1), there are sometimes-mainly because of the instruction selection, but not always-sequences of instructions prone to be reduced. In that situation, the order of treatment is essential: the first instruction of the sequence must be moved (or reduced) first to detect a new opportunity when initiating the analysis on the following ones. Technically, after having detected and sorted candidates from the hash table as a list of (𝑐𝑘𝑒𝑦, 𝑐𝑎𝑛𝑑) pairs, our LCT repeats the four steps below for each pair. (i) Update the current candidate: if its original arguments (stored in the orig_args field of Fig. 8) were modified by previous substitutions (through the updated_args field), then its key of Figure 9 is modified with the substituted arguments 15 . Furthermore, if the updated arguments do not contain any SR auxiliary variable, and if the candidate is of the SRadd type (Fig. 9), then we "downgrade" it to an LCM candidate (i.e. SR additive candidates must be preceded by a multiplication, see §4.2). (ii) Initialize predicates (with their default value) and execute the local analysis: the calculation of TRANSP/SR-TRANSP, ⌈COMP⌉/⌊COMP⌋, and INJURED (if applicable). (iii) Data-flow analysis. (iv) Eventually rewrite the CFG if the candidate must be inserted, replaced, or updated.

The original LCM replaces an assignment from a redundant expression by a "move" from its auxiliary variable. Simply applying this technique would prevent our propagation of its affine form, as expressed in (i) above. We thus propose a new refinement that replaces the early move instruction by direct substitutions with the auxiliary variable, so that the move is pushed forward as late as possible in the basic block, enabling the propagation of the affine form above this move.

Let 𝑝𝑐 𝑡 and off 𝑡 be the target block ID and an offset inside this block (resp.) where we are going to replace the candidate. The function traverses the basic-block starting from the entry, and, depending on the current offset off 𝑐 :

• If off 𝑐 < off 𝑡 , simply continue and increment off 𝑐 ;

• If off 𝑐 = off 𝑡 , ensure a match between the current instruction and the candidate to replace, replace it by a no-op (nooperation) instruction (rather than directly by a move), and continue 16 . The algorithm saves the original destination of the replaced instruction; • If off 𝑐 > off 𝑡 (meaning the candidate was already replaced by a no-op), there are two possible subcases:

-A final case when either (i) the auxiliary variable or the original destination of the candidate is rewritten; (ii) the current instruction is another occurrence of the candidate or an injuring operation; (iii) we are reaching the end of the block.

If so, we insert the move from the auxiliary variable and stop the substitution algorithm; -A recursive case otherwise, where we substitute the previously saved original destination in the updated_args field of the current candidate by its auxiliary variable.

on the CFG. Before generating invariants annotations, we perform a liveness analysis and a dead code elimination (DCE). This DCE is validated "for free", together with liveness information, and allows removing "dead" moves inserted by the forward substitution of §4.4. Invariants annotations are inferred from both the liveness and the LCT analyses. This process is done for each pair (𝑐𝑘𝑒𝑦, 𝑐𝑎𝑛𝑑) in the list 𝐿 of candidates (the same list as in §4.4) with a defined auxiliary variable (i.e. not None) in 𝑐𝑎𝑛𝑑.vaux (of Fig. 8). In other words, we iterate over the set 𝐶 of candidates defined on line 2 of Algorithm 3. In fact, a defined auxiliary variable means that the candidate was moved or strength-reduced and so the validator will need invariants to ensure the transformation's correctness. Variable gm (stands for "gluemap") in Algorithm 3 is a structure containing both invariants mappings, gluing and history. The gluing invariants mapping in gm is already initialized with the above-mentioned liveness analysis results (so the "alive" sets at each node are filled). return gm

Algorithm 3 Generation of invariants annotations

Preservation Points for Gluing Invariants

Given a pair (𝑐𝑘𝑒𝑦, 𝑐𝑎𝑛𝑑), the vector of block IDs where a gluing invariant about the candidate must be preserved is named 𝐺 (line 5 in Alg. 3). Preservation points depend on four predicates for nontrapping candidates, and five otherwise. 𝐺 is efficiently calculated with bitwise operations on predicates.

There are two types of nodes in which we must insert a gluing invariant: one for each alternative of line 5. The first (in teal color) groups blocks where 𝑐𝑎𝑛𝑑 was replaced, but not inserted. In this case, the target simulation must retrieve the candidate's value from the input gluing invariant (recall the target gluing invariants' simulation: G 𝐼 is applied before executing T). For instance, in Figure 5, a gluing invariant assignment of the square of x2 in x13 is needed for block 5, where the candidate is replaced (in entry) but not inserted. Conversely, a counter-example (where the alternative is false), arises in block 8: actually, an input gluing invariant would be wrong to remember the square, since it is not yet executed on the target side. However, this first alternative is not sufficient because the candidate's value must also be preserved in the gluing invariant if the auxiliary variable is live after (e.g. across loops). Thus, we define a second alternative (in orange) to insert an input gluing invariant on every node which is neither isolated nor delayed. Indeed, an isolated candidate is by definition (of INSERT) never used for insertion (ISOL(𝑛) is true if an insertion at 𝑛 would be only used at 𝑛 itself). Moreover, it must not be delayed: if 𝑐𝑎𝑛𝑑 is delayed at node 𝑛, we know that its potential insertion can only happen after 𝑛 (further in the CFG). Still in the example of Figure 5, the loop block 7 satisfies these conditions for the square candidate (neither isolated nor delayed); thus, in the source side simulation of block 8, the square of x2 will be defined when executing the output gluing invariant, as expected (recall the source gluing invariants' simulation: G 𝐽 is applied after executing S).

The disjunction encoded by 𝐺 suffices to obtain preservation points for non-trapping candidates, but is not strong enough for trapping ones (e.g. loads). Hence, we restrict 𝐺 (line 7 of Alg. 3) by conjunction with the entry up-safety predicate (as for condition (ii) of potential replacement points in §3.2). In Figure 5, this stronger version of 𝐺 holds on the "ld[x1+0]" candidate for blocks 2 to 8, thus allowing to insert the necessary invariants for x12.

A gluing invariant assignment of the candidate's operation (in 𝑐𝑘𝑒𝑦) into the auxiliary register 𝑐𝑎𝑛𝑑.vaux is therefore inserted for every block 𝑝𝑐 ∈ 𝐶𝐹𝐺 such as 𝑝𝑐 ∈ 𝐺 (lines 18-20 of Alg. 3).

Saving Constants with History Invariants

We saw in §2.5 that if the multiplication to reduce was directly containing the constant value as an immediate, history invariants were unnecessary. In contrast, when the constant is stored in a register, history invariants are necessary to remember its value.

The is_constant_product(𝑐𝑘𝑒𝑦) function (line 8 in Alg. 3) returns true if if the candidate is of type SRmul, and if its constant is in a register (by seeking in the constants' table of §4.1). Inserting an history invariant is relevant only if the multiplicative candidate was effectively strength-reduced: this is indicated by the 𝑐𝑎𝑛𝑑.was_reduced boolean (defined in Fig. 8, and read at line 9 in Alg. 3). Furthermore, as the CFG entry must only include pureliveness invariants (see §2.5); the condition of line 11 checks that the current block is not the entry-point 17 , along with the two conditions defined above. Nevertheless, some additional checks are required before inserting an history invariant: (i) the constant must be defined in a previous block (if it is defined in the current block, no need for an history invariant); (ii) the constant must not be in an auxiliary variable (otherwise it will be handled by gluing invariants); and (iii) either the current block must be in 𝐺, or the constant's register live in the block (if these two conditions are false, there is no need to propagate the constant's value). The algorithm first gathers the constant register (line 12), and the constant operation and block of appearance (line 13) from the constant table (§4.1). The comparison 𝑝𝑐 < 𝑐 𝑝𝑐 then checks condition (i) above; and the negation of function is_fresh_var(𝑟 𝑐) (line 14) ensures (ii). The 17 For gluing invariants, this was implicitly ensured by the formula of 𝐺.

set 𝐴 of live variables in the block (line 15) was already computed before the DCE pass; here, we simply retrieve this information from gm. Finally, line 16 (the disjunction corresponds to condition (iii)) verifies that the three requirements are satisfied. If so, the algorithm inserts an history invariant assignment of the constant operation 𝑐 𝑜𝑝 into its associated variable 𝑟 𝑐 , and add 𝑟 𝑐 in the "alive" set of history invariant at block 𝑝𝑐 (line 17).

Notice that since the alive set for gluing invariants was already filled by the liveness analysis, we only add information to the alive set for history invariants here. In the end, the oracle returns both the new BTL code and the "gluemap" to our certified validator.

EXPERIMENTAL EVALUATION

We only implemented LSR on RISC-V, for 64-bits long integers (but LCM works on all backends). Nevertheless, our LSR takes advantage of a promotion 18 pass-also validated by our symbolic simulation test-that converts 32-bits instructions into 64-bits ones, hence producing more SR opportunities.

Measurements presented in this section were performed using benchmarks from four suites: (i) the LLVM test suite 19 ; (ii) the MiBench [START_REF] Guthaus | MiBench: A free, commercially representative embedded benchmark suite[END_REF] and (iii) TACLeBench [START_REF] Falk | TACLeBench: A Benchmark Collection to Support Worst-Case Execution Time Research[END_REF] embedded systems oriented suites, and (iv) the PolyBench [START_REF] Pouchet | the Polyhedral Benchmark suite[END_REF] computational suite.

A more detailed overview of our testing approach, on both performance and debugging aspects of oracles, is provided in [START_REF] Monniaux | Testing a Formally Verified Compiler[END_REF] 20 .

Performance Benchmarks

We measured experimentally the performance of the generated code on a SiFive U740 core (HiFive Unmatched), a dual-issue, in-order RISC-V processor. Abnormal results with a relative standard derivation exceeding 2% over five runs were filtered. The performance gain of a compiler 𝐶 w.r.t. a reference compiler 𝑅 is calculated as 𝑔𝑎𝑖𝑛(𝐶) = ((𝑡𝑖𝑚𝑒 (𝑅) -𝑡𝑖𝑚𝑒 (𝐶))/𝑡𝑖𝑚𝑒 (𝐶)) × 100, where 𝑡𝑖𝑚𝑒 (𝑋) represents the execution time, measured in cycles, of a benchmark compiled with compiler 𝑋 . In order to achieve the utmost level of optimization, we integrated the CompCert's fork of Six et al. [START_REF] Six | Formally Verified Superblock Scheduling[END_REF] into BTL. We refer to this integration as "Base", which combines their superblock scheduler, CSE3 [START_REF] Monniaux | Simple, light, yet formally verified, global common subexpression elimination and loop-invariant code motion[END_REF], and first iteration loop-unrolling.

We compared GCC-01 (11.3.0), our "Base" fork, and the latter with LCT activated (i.e. "Base"+LCT) to mainline CompCert (3.12). Globally, our "Base"+LCT version is 20.7% faster than mainline Comp-Cert on LLVM tests, 14.7% on MiBench, and 22.83% on TACLeBench; results for the full PolyBench suite are at line "PolyBench/*" of Table 1. The sample results of Table 1 highlights the performance variability according to inputs. The poor result on MiBench/stringsearch is explained by unrolling, that dramatically increases the register pressure and the code size. Without unrolling, the "Base" score on this benchmark drops to 0.43%, whereas "Base"+LCT yields a gain of 39.4%. Both the oracle and the validator scale well on every benchmark, and also on randomly generated programs from Csmith, Yarpgen, or CCG 21 . Finally, our algorithm is able to close the gap with GCC on a non-negligible set of benchmarks.

Translation Validation Time Measurements

To ensure that our validator was scaling well even on large applications, we instrumented the OCaml code generated from Coq to time each symbolic execution. In practice, after testing it over every benchmark from our four suites, the worst validation time was of approximatly 4 seconds. We observe an almost perfect linear correlation between the validator's and the LCT oracle's execution times (near 99%). Furthermore, if we bound using a threshold (for our experiment, we set it to 64) the number of LCT's candidates, we see that both the validator and the oracle are linear in the total number of instructions per BTL function. These results are shown in Figure 11. On average, and keeping the 64 candidates threshold, the validator is even slightly faster than the oracle for a given benchmark size.

RELATED WORK AND CONCLUSION

Strength-reduction designates various transformations, from replacing single instructions to linear-function test replacement. The only form of SR in the official CompCert is a form of peephole 22 , divided among instruction selection and constant propagation. Modern, untrusted compilers rather implement straight-line SR (SLSR), a more powerful transformation targeting code sequences with arithmetic statements 23 , that simplifies complex sequences unhandled by loop SR algorithms. We ported the expansion mechanism recently proposed by Six et al. [START_REF] Six | Formally Verified Superblock Scheduling[END_REF] to BTL, and it could be (as a future work) extended to perform SLSR as well.

The loop nests SR algorithms in GCC & LLVM are SSA based 24 , and might be very difficult to adapt in a formally verified context. They can reduce induction variables, but also perform linearfunction test replacement (i.e. completely eliminate the original induction variable). Supporting similar algorithms would require extending BTL with partial SSA forms (e.g. by encoding phi-nodes with explicit parallel moves on joining edges [START_REF] Appel | SSA is Functional Programming[END_REF]). Alternatively, one might want to extend the SSA validators of Demange [START_REF] Demange | Semantic Foundations of Intermediate Program Representations[END_REF], Demange and Fernandez de Retana [START_REF] Demange | Mechanizing conventional SSA for a verified destruction with coalescing[END_REF], Demange et al. [START_REF] Demange | Verifying Fast and Sparse SSA-based Optimizations in Coq[END_REF], to support finer invariants (in addition to strong SSA invariants). Furthermore, both GCC and LLVM use a scalar evolution (SCEV) analysis, an efficient technique to find induction variables in specific code regions (e.g. loops). Proving correct such an analysis would nonetheless be interesting, knowing that it is subject to implementation bugs [36, §3.7, LLVM Bug #4]. Among state-of-the-art methods for loop SR, there are two main axes (as documented by Cooper et al. [6, §2]): methods working "a single loop at a time", seeking for loop-induction variables [START_REF] Cocke | An algorithm for reduction of operator strength[END_REF] (e.g. SSA based techniques of GCC & LLVM); and dataflow approaches [START_REF] Morel | Global optimization by suppression of partial redundancies[END_REF] (e.g. LSR), which do not require control-flow analyses, and are mostly inspired by code motion & PRE.

Tristan and Leroy [START_REF] Tristan | Verified Validation of Lazy Code Motion[END_REF] proposed the first formally verified LCM optimization, and experimented it on the top of CompCert. They used a translation validator replaying some data-flow analyses: the advantage of their approach is that it does not need hints, because it redoes the necessary calculations from scratch. However, their validator is a priori more costly than ours. In contrast with us, their LCM is also able to anticipate trapping instructions thanks to an anticipability (also called inevitability) calculus performed during the validation. On the other hand, they do not have unrolling mechanisms like ours that increase LCM's opportunities.

Unfortunately, their work was never integrated in the official CompCert (for reasons unknown to us). Moreover, the code available online 25 does not include any information about compatible CompCert versions, nor about how to compile, integrate, or even run it. As it dates from 2009, their code is surely based on a Comp-Cert version older than ten years (e.g. before the support of 64-bits architectures). Thus, we have not experimentally compared our

In GCC: https://github.com/gcc-mirror/gcc/blob/master/gcc/gimple-ssa-strengthreduction.cc. 24 LoopSR in LLVM: https://github.com/llvm/llvm-project/blob/main/llvm/lib/ Transforms/Scalar/LoopStrengthReduce.cpp; IVOPTS in GCC: https://github.com/gccmirror/gcc/blob/master/gcc/tree-ssa-loop-ivopts.cc. 25 https://github.com/jtristan/CompCert-Extensions LCM with theirs, and the related paper only mentions results about compilation/validation time.

We implemented, combined, and enhanced the LCM & LSR algorithms of Knoop et al. [START_REF] Knoop | Lazy code motion[END_REF][START_REF] Knoop | Lazy Strength Reduction[END_REF]. Our solution is integrated within CompCert, and validated by our formally verified general purpose framework thanks to invariants infered from data-flow equations.

Figure 1 :

 1 Figure 1: AArch64 (top) vs. RISC-V (bottom) addressing

Figure 3 :

 3 Figure 3: Running example

Figure 4 :

 4 Figure 4: Unrolled (left) and optimized (right) RTL code

Figure 5 :

 5 Figure 5: Optimized BTL We now explain how we validate by SE the transformation of Figure 4. The BTL CFG of the optimized code is provided in Figure5, where synthetic nodes are framed in violet, and blocks are numbered in post-order (for the fixed point to converge faster). Notice that block 8 was originally a synthetic node, having served as an insertion point.In our example, the simulation only requires gluing invariants, because the source's multiplication "x9=x5<<2" directly contains the immediate constant. If the constant was loaded in a register in an earlier block, then we would have to maintain an history invariant between its definition and its uses in loop blocks' gluing invariants. In particular, it would have been live in the loop, and so the history invariant too. We represent invariants as sequences of register assignments, followed by a set of live registers at the block's entry. The CFG entrypoint is always annotated by a pure-liveness invariant7 ; the gluing invariant for block 9 of Figure5is thus "([], alive = {x1,x2,x3})" ("[]" represents the empty sequence). Block 9 (on the target) precomputes the load in x12. To remember its value, the oracle adds an assignment in the successor's invariant (i.e. block 8), in addition to the liveness information. Therefore, block 8 is annotated with "([x12:=ld[x1+0]], alive = {x2,x3,x4,x5,x12})". Following this principle, the gluing invariants for blocks belonging to the loop propagate definitions from block 8 across the body. Hence, the same gluing invariant annotates each loop-body block (i.e. blocks 2 to 7):

 "([x12:=ld[x1+0]; x13:=x2*x2; x14:=x5<<2; x15:=x5+x14], alive = {x3,x4,x5,x12,x13,x15})". The exit, in block 1, only defines registers x3 and x4 as live. x9 = x5 << 2 x7 = x5 + x9 x3 = x3 + x7 x5 = x5 + 3 x5 >=? 100

Figure 6 :

 6 Figure 6: Block 3 source

 type sr_t ::= SRmul | SRadd type ckey_t ::= CCM(cm_ckey_t) | CSR(sr_t, op, # » r 𝑎𝑟𝑔)

Figure 11 :

 11 Figure 11: Oracle and Validator times w.r.t. the number of instructions (logarithmic scale)

 2), then its entry/exit INSERT predicate is set to true. Our insertion points are now equivalent to the second refinement of Knoop et al. [19, §4.1].

1 :

 1 function build_invariants(entry, 𝐿, gm, constants)𝐶 ← { (𝑐𝑘𝑒𝑦, 𝑐𝑎𝑛𝑑) ∈ 𝐿 | 𝑐𝑎𝑛𝑑.vaux ≠ None} 𝑐 𝑜𝑝 , 𝑐 𝑝𝑐 ← constants[𝑟 𝑐] 𝑐 𝑝𝑐 ∧ ok_fresh ∧ (𝐺 (𝑝𝑐) ∨ 𝑟 𝑐 ∈ 𝐴) then

	2:	
	3:	for (𝑐𝑘𝑒𝑦, 𝑐𝑎𝑛𝑑) ∈ 𝐶 do
	4:	𝑠𝑡 ← 𝑐𝑎𝑛𝑑.state
	5:	𝐺 ← ((𝑠𝑡 .⌈REPLACE⌉ ∧ 𝑠𝑡 .⌈INSERT⌉)∨
		(𝑠𝑡 .⌊REPLACE⌋ ∧ 𝑠𝑡 .⌊INSERT⌋))
		∨(𝑠𝑡 .ISOL ∧ 𝑠𝑡 .DELAY)
	6:	if is_trapping(𝑐𝑘𝑒𝑦) then
	7:	𝐺 ← 𝐺 ∧ 𝑠𝑡 .⌈U-SAFE⌉
	8:	const_prod ← is_constant_product(𝑐𝑘𝑒𝑦)
	9:	ok_reduced ← 𝑐𝑎𝑛𝑑.was_reduced
	10:	for 𝑝𝑐 ∈ 𝐶𝐹𝐺 do
	11:	if 𝑝𝑐 ≠ entry ∧ const_prod ∧ ok_reduced then
	12:	𝑟 𝑐 ← constant_reg(𝑐𝑘𝑒𝑦)
	13:	
	14:	ok_fresh ← ¬is_fresh_var(𝑟 𝑐)
	15:	𝐴 ← live_inputs(gm, 𝑝𝑐)
	16: if 𝑝𝑐 < 17: gm ← add_hi(gm, 𝑝𝑐, 𝑟 𝑐 , 𝑐 𝑜𝑝)
	18:	if 𝐺 (𝑝𝑐) then
	19:	op ← get_ckey_op(𝑐𝑘𝑒𝑦)
	20:	gm ← add_gi(gm, 𝑝𝑐, 𝑐𝑎𝑛𝑑.vaux, op)
	21:	

Table 1 :

 1 GCC, Base=(scheduling + CSE3 + unroll single), and Base+LCT versus mainline CompCert on RISC-V-Higher is better

	Setup	GCC-O1	Base	Base + LCT
	LLVMtest/fpconvert	+24.22%	+7.9%	+17.15%
	LLVMtest/matmul	+15.9%	+115.05%	+144.11%
	LLVMtest/nbench_bf	+74.58%	+11.84%	+24.51%
	MiBench/jpeg	+27.75%	+20.62%	+24.75%
	MiBench/sha	+92.43%	+45.68%	+51.73%
	MiBench/stringsearch	+133.34%	+40.28%	-10.15%
	PolyBench/*	+64.05%	+38.06%	+46.23%
	TACLeBench/bsort	+49.04%	+9%	+33.16%
	TACLeBench/deg2rad	+56.75%	+41.5%	+50.28%
	TACLeBench/md5	+42.18%	+18.59%	+47.93%

After dead-code elimination, a variable is live at program point 𝑝 if it is read on a path starting from 𝑝.

This pattern is actually implemented in the official CompCert for RISC-V.

Static Single Assignment algorithms prove to be difficult to formalize in a verified compiler, as concluded by Demange and Fernandez de Retana[START_REF] Demange | Mechanizing conventional SSA for a verified destruction with coalescing[END_REF]. Currently, our translation validation framework does not support SSA forms.

For LCM & LSR, we reuse the vocabulary of Knoop et al.[START_REF] Knoop | Optimal Code Motion: Theory and Practice[END_REF] where availability is called up-safety and anticipability down-safety.

The whole code is available online at: https://gricad-gitlab.univ-grenoble-alpes.fr/ certicompil/Chamois-CompCert.

Knoop et al. [19] name such increments "injuring" operations.

The validator considers that functions' parameters may have any value.

Either for entry or exit parts by substituting predicates accordingly.

We only factorize trapping candidates with a previous computation of the instruction, so insertion points are also replacement points.

The candidate being present in both block parts, it probably needs to be recalculated: otherwise it would have been removed by the CompCert's CSE beforehand.

Our validator uses a similar representation, as visible in example 2.1.

INFERRING INVARIANTS FROM ANALYSESOnce the main loop of LCT-consisting of the four steps described in §4.4-terminates, each possible LCT optimization was applied[START_REF] Kästner | CompCert: Practical Experience on Integrating and Qualifying a Formally Verified Optimizing Compiler[END_REF] We replace the candidate in the hash table (and take the updated ckey in the sorted list). If a candidate with the new arguments already exists, the new one is merged with the old one (by unifying their lhs fields).[START_REF] King | Symbolic Execution and Program Testing[END_REF] At this point, we also update the tables of affine values and constants by copying the previous mapping (if existing) to a new one bound to the auxiliary variable of the candidate.

The underlying oracle is out-of-scope of this paper.

https://github.com/lac-dcc/Benchmarks

And our benchmark measurement toolkit is available online here https://gricadgitlab.univ-grenoble-alpes.fr/certicompil/chamois-benchs.

[START_REF] Leroy | A formally verified compiler back-end[END_REF] See https://github.com/csmith-project/csmith, https://github.com/intel/yarpgen, and https://github.com/Mrktn/ccg.

Replacing an instruction sequence by a more efficient pattern.

In LLVM: https://github.com/llvm/llvm-project/blob/main/llvm/lib/Transforms/ Scalar/StraightLineStrengthReduce.cpp;

ACKNOWLEDGMENTS

This work is supported by the French National Research Agency in the framework of the "France 2030" program (ANR-15-IDEX-0002) and by the LabEx PERSYVAL-Lab (ANR-11-LABX-0025-01). We would like to thank Sylvain Boulmé, Frédéric Pétrot, David Monniaux, and Delphine Demange for their support and advice.