
HAL Id: hal-04108775
https://hal.science/hal-04108775v2

Preprint submitted on 26 Jun 2023 (v2), last revised 23 Jan 2024 (v4)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

Lazy Code Transformations in a Formally Verified
Compiler
Léo Gourdin

To cite this version:

Léo Gourdin. Lazy Code Transformations in a Formally Verified Compiler. 2023. �hal-04108775v2�

https://hal.science/hal-04108775v2
https://hal.archives-ouvertes.fr

Lazy Code Transformations
in a Formally Verified Compiler

Léo Gourdin

Université Grenoble Alpes, CNRS, Grenoble INP, Verimag

Grenoble, France

Leo.Gourdin@univ-grenoble-alpes.fr

ABSTRACT
Translation validation verifies the results of an untrusted translator—

called an oracle—at the compiler’s runtime using a validator. This

approach enables validating intricate optimizations without having

to prove them directly. Parametrizing such a validator with hints
provided by oracles greatly simplifies its integration within a for-

mally verified compiler—such as CompCert. However, generating

those hints requires adapting state-of-the-art optimizations.

The co-design of a validation framework supporting a class of op-

timizations led us to improve the Lazy Code Motion (LCM) and Lazy
Strength Reduction (LSR) data-flow algorithms of Knoop, Rüthing,

and Steffen. We propose an efficient implementation in OCaml com-

bining both LCM and LSR, operating over basic-blocks, and whose

result is checked by a Coq-verified validator. We show how to gen-

erate invariant annotations from the data-flow equations as hints

for the defensive validation, and we introduce several algorithmic

refinements w.r.t. the original papers.

Our solution is fully integrated within CompCert, and to the best

of our knowledge, it is the first formally verified strength-reduction

of loop-induction variables.

KEYWORDS
Translation Validation, Symbolic Execution, the CompCert Com-

piler, RISC-V, Optimization, Formal Proof.

1 INTRODUCTION
To prevent optimization bugs [33, 37], safety standards mandate

using a certified compiler like CompCert [20, 21], the first veri-

fied compiler for safety-critical embedded systems [15]. However,

compared to GCC and LLVM, it is only moderately optimizing. On

RISC-V, which is a promising candidate for embedded, critical sys-

tems [1, 10, 22], CompCert is much less efficient than GCC. Indeed,

the instruction set architecture (ISA) is truly reduced [35], so the

compiler must be clever to generate efficient assembly code.

ldr x0 ,[x0,w1,sxtw #3]

slli x6,x11 ,3

add x6,x10 ,x6

ld x6 ,0(x6)

Figure 1: AArch64
(top) vs. RISC-V (bot-
tom) addressing

For instance, RISC-V addressing

modes are less sophisticated than

those of the AArch64 ISA, as depicted

in Figure 1. When such a triplet of in-

structions appears in a loop, strength-

reduction (SR), which replaces costly
sequences of operations with simpler

and more efficient alternatives, be-

comes particularly beneficial in order to minimize the number of

cycles per iteration.

Moreover, in embedded systems, it is common to use in-order

cores (i.e. that do not dynamically reorder instructions) with a

simple micro-architecture. Compiler optimizations thus have more

impact on those processors than on complex ones that reorder

instructions and perform speculative execution.

Typically, partial redundancy elimination (PRE) is a code motion-

based optimization that can suppress duplicated computations even

when they are not present on all paths (in contrast to full redun-

dancy elimination, FRE). Lazy Code Motion (LCM) [18] is an im-

proved PRE algorithm limiting the increase of register pressure. In
fact, lifting operations in the control-flow graph (CFG) of the pro-

gram certainly allows removing common subexpressions, but it can

also increase the liverange (i.e., the interval during which a variable

is live
1
). LCM solves two conflicting objectives: reaching compu-

tational optimality thanks to a clever placement of instructions,

and liveness optimality by its “lazy” behavior. It moves operations

high enough in the CFG to satisfy the first goal, but not more than

necessary to limit register pressure (i.e. as late as possible without

loosing computational optimality). Nonetheless, Bodík et al. [3]

show that restructuring the CFG allows more removals than only

moving instructions, as LCM does. Extending their work on code

motion, Knoop et al. [19] proposed a Lazy Strength-Reduction (LSR)

algorithm and an implementation-oriented paper about LCM [17].

Directly proving such optimizations would surely be very dif-

ficult. The translation validation approach [27] circumvents this

issue by noticing that it is much simpler to verify the result of a

transformation rather than the whole algorithm. Rideau and Leroy

[29] leveraged this method for the CompCert register allocation,

and Six et al. [32] for superblock scheduling and instruction rewrit-

ing. Precisely, we have recently implemented a similar, albeit more

general, validator [13] supporting a large class of optimizations

by symbolic execution [16, 26, 30]. Generalizing the approach of

the previously mentioned successes, our method relies on formally

verified defensive programming [4], as we have a co-designed in-

tegration of oracles and validators. In particular, oracles provide

hints to validators, allowing them to avoid replaying some complex

analyses. These hints guide symbolic execution and effectively re-

duce its complexity. Any incorrect hint would result in an error in

the simulation test, preventing the production of erroneous code.

Limitations of LSR. The original LSR algorithm is only operating

on a single instruction CFG, while the LCM proposed in [17] was

simplified and optimized to work on basic-blocks: linear sequences

of instructions with a single entry-point and a single exit-point. No-

tably, the basic-block structure reduces the number of nodes in the

CFG (i.e. nodes become blocks), and consequently the number of

predicates’ values to store. In other words, the results of data-flow

equations are retained at each block rather than at each instruc-

tion, which allows the analyses to converge faster. Basic-blocks are

1
After dead-code elimination, a variable is live at program point 𝑝 if it is read on a

path starting from 𝑝 .

1

https://orcid.org/0009-0008-2187-7764

Léo Gourdin

the standard representation used in most mainstream compilers.

Because of this discrepancy on the supported representation, one

would be forced to redo some computations already performed by

LCM (on basic-blocks) to implement LSR; the latter being relying

on the same base of logical predicates.

On another note, the original LSR does not treat instructions in

their topological order, and inserts a move in place of each replaced

instruction. The problem with this behavior is that it prevents LSR

from handling sequences of reducible operations. In real compilers,

these sequences are often generated by instruction selection. For

example, on RISC-V, a multiplication 𝑐 = 𝑖 × 10 can be replaced

with the less costly sequence “𝑎 = 𝑖 << 1;𝑏 = 𝑖 << 3; 𝑐 = 𝑎 + 𝑏”.
Usually, in a compiler like GCC or LLVM, this would not really be

an issue since one can still apply LSR before the selection. How-
ever, to facilitate its formal proof of correctness, the instruction

selection pass of CompCert operates on a structured intermediate

representation, placed upstream of most other optimizations. Our

LSR, which works on a basic-blocks CFG, must therefore be lo-

cated downstream (to take advantage of other optimizations, and of

the existing CFG-based intermediate language of CompCert which

comes after selection). Let us imagine a loop containing the above

sequence: an addition of the results of two shifts
2
, where 𝑖 is an

induction variable incremented by 3 at each iteration. One would

like to take out of the loop the whole sequence, and to insert an

addition 𝑐 = 𝑐 + 30 instead (i.e. 30 = 3 × 21 + 3 × 23). The increment

on 𝑖 would not be modified, and the resulting code would be much

more efficient. But, the insertion of moves constrains the analyses

by creating new dependencies and makes the original LSR unable

to reduce such sequences.

In practice, instruction selection is not the only source of re-

ducible sequences: they may also appear directly in the source

code, or be produced for calculations of memory addresses during

translations.

Problematic. As of today, CompCert is not proposing any form

of loop-induction variable strength-reduction. With the validation

framework we developed, implementing this kind of global opti-

mization becomes possible as long as we manage to provide it the

right invariants (the so-called hints). We found that LCM & LSR

algorithms are well-suited for this objective by means of their data-

flow results. Nevertheless, the original algorithms are still limited

on some aspects, as highlighted above. Hence, our goal in this work

is to co-design an enhanced version of LSR, integrating LCM, over-

coming those limitations, and capable of feeding the validator with

the expected, correct invariants. We have measured that adding

these optimizations significantly improves the performance of the

code generated by CompCert on 64-bit RISC-V, without degrading

compilation times (including formally verified defensive checks).

Contributions & Outline. This paper focuses on improvements

made to the LCM and LSR algorithms of Knoop et al. [18, 19] in the

context of those works. The main contributions suggest a general-

ization of LSR: (i) that operates over basic-blocks by adapting the

analysis of Knoop et al. [19], as it was done in [17] for LCM; (ii) per-

formed together with LCM in a single transformation; (iii) which

integrates a rewriting procedure to widen the scope of SR over

2
This pattern is actually implemented in the official CompCert for RISC-V.

sequences of operations, rather than on each instruction indepen-

dently; (iv) inferring the invariants needed for the translation vali-

dation from data-flow equations (including liveness analysis). We

provide all the essential information concerning our certified val-

idator [13], although this document is not intended at describing it

in details. Provided with the necessary hints, our certified validator

is able to validate a large class of inter-procedural optimizations,

beyond LCM & LSR. Its formalization in the Coq proof assistant is

therefore out of the scope of this article (it is further detailed in [13]).

The paper is organized as follows: Section 2 describes the valida-

tion of LCM & LSR, and recalls their functioning. Section 3 presents

our adaptation of LCM and covers the common aspects of both

algorithms. Our refinements to LSR are explained in Section 4, and

Section 5 details a method to infer the invariants needed by the

validator. Two experimental evaluations on performance and com-

pilation (validation) time are given in Section 6. Finally, Section 7

discusses related work and concludes.

2 GENERAL OVERVIEW
The principle of LCM & LSR algorithms is to infer information from

data-flow analyses on a CFG. LCM was originally designed for a

single-instruction CFG, and later generalized for basic-blocks. In

addition to the limitations listed in §1, our adaptation of LCM &

LSR is motivated by mainly 3 reasons. (i) Basic-blocks lower the

amount of hints (i.e. invariants) needed for the validation, so that

the communication between the oracles and the validator is more

efficient, as well as the validator itself. (ii) The data-flow approach

helps in generating those invariants (see §5). (iii) They are among

the most efficient algorithms of this kind not based on SSA
3
. From

here, we note “LCM” the basic-block version of it, and “LCT” (for

“Lazy Code Transformations”) the whole oracle combining both

LCM and LSR.

2.1 Quick Background on LCM & LSR
These algorithms assess the validity of certain predicates for each

potential candidate (i.e. operation to move or strength-reduce). A

predicate is classified as global if its value at each CFG block relies

on a forward or backward data-flow analysis. Conversely, a local
predicate only depends on the current block and does not neces-

sitate any fixed point computation. LCM & LSR are built on the

seminal work of Morel and Renvoise [25], in which the authors pro-

pose two global properties, namely availability and anticipability

(of a given candidate)
4
, and a local transparency property. A block

is transparent for a candidate if it does not modify its dependencies.

LCM is based on four purely unidirectional data-flow analyses, by

conceptually splitting basic-blocks in two parts (for each candidate):

an entry part containing every instruction up to (and including) the

last modification of the candidate’s dependencies, and an exit part,
consisting of all remaining statements [17, §2.3]. Consequently, all

predicates (except transparency, which concerns an entire block)

are duplicated for entry/exit parts of blocks. The preliminary step

is to detect candidates: for LCM, any arithmetic operation or load

3
Static Single Assignment algorithms prove to be difficult to formalize in a verified

compiler, as concluded by Demange and Fernandez de Retana [8]. Currently, our

translation validation framework does not support SSA forms.

4
For LCM & LSR, we reuse the vocabulary of Knoop et al. [17] where availability is

called up-safety and anticipability down-safety.

2

Lazy Code Transformations in a Formally Verified Compiler

is subject to be factorized, while LSR only targets multiplicative

operations where one operand is a constant. Then, the goal is to

find for each candidate (whether they are LCM or LSR ones), the

optimal insertion points to pre-compute it in a fresh variable, and

all the replacement points where a redundant occurrence can be

replaced by a move from the fresh variable. Those locations are

deduced from the data-flow predicates, as detailed in §3.1.

The analyses require a CFG devoid of critical edges: edges going

from nodes with multiple successors to nodes with multiple prede-

cessors. The usual approach is to split them by inserting an empty
block, called synthetic node. Actually, we cut every edge leading to

a join point in the CFG (so we insert more synthetic nodes than just

by splitting critical edges). Empty nodes before joins are necessary

due to the constraints imposed by our intermediate representation.

It also facilitates the LCT algorithms. Unused synthetic nodes are

removed by the “tunneling” passes of CompCert [21, §9] afterwards.

2.2 Architecture of Our Solution
We implemented the Block Transfer Language (BTL) as an inter-

mediate representation, similar to the Register Transfer Language

(RTL) used in CompCert [21, §6]. BTL features a syntactical struc-

ture of loop-free (here, basic-)blocks, and an unbounded number of

available registers, due to its pre-register allocation stage.

Globally, our solution works as follows: first, given an RTL pro-

gram 𝑃𝑟𝑡𝑙 , an oracle translates it to a BTL program 𝑃𝑏𝑡𝑙 , while select-

ing basic-blocks with synthetic nodes and eventually performing

some structural duplications/factorizations (e.g. loop-un/rerolling).
This translation is validated in both directions with a specific

checker. Second, the LCT oracle is called on 𝑃𝑏𝑡𝑙 and yields an

optimized program 𝑃 ′
𝑏𝑡𝑙

along with a map of invariants containing,
for each CFG block, two sets of invariants (i.e. hints) that are needed

to help the verification (as explained in §2.3). Third, the certified val-

idator simulates both programs, block-by-block, using the provided

hints: if they are equivalent, the compilation continues (coming

back to RTL); otherwise, it fails and the compilation is aborted.

2.3 Symbolic Simulation Modulo Invariants
Our verified checker is based on symbolic execution (SE), a versatile

technique. The principle is to simulate the execution of blocks

of code with a symbolic representation of registers and memory

(together forming a symbolic state).
The SE validator we implemented simulates the source (from

𝑃𝑏𝑡𝑙) and target (from 𝑃 ′
𝑏𝑡𝑙

) BTL blocks by pairs until reaching a

final state; then, final (symbolic) states are compared to ensure se-

mantics preservation. When the transformation is local to a block,

this is sufficient to prove it correct; otherwise, if the modifications

are global over the function, we must also propagate information

between block executions. To address this, our formally verified

defensive framework asks oracles for two types of invariant anno-

tations: (i) gluing invariants (GI) to anticipate non-trapping opera-

tions, to remember already computed trapping operations, and to

eliminate dead-code; and (ii) history invariants (HI) to share a com-

mon execution past. Together, they establish a semantic relation

“HI(𝑟𝑠 ,𝑚) ∧ 𝑟𝑡 ≡𝑡 GI(𝑟𝑠 ,𝑚)” from a source state (𝑟𝑠 ,𝑚) to a target

state (𝑟𝑡 ,𝑚). The memory state𝑚 is unchanged, but the register

state 𝑟𝑠 becomes 𝑟𝑡 . Here, “≡𝑡 ” is equality of register states only

for target live registers (which are syntactically provided by gluing

invariants). Our implementation imposes that invariants never fail:

this restriction greatly facilitates the simulation proof, and is im-

plicitly part of the history invariant; hence, we cannot anticipate
potentially trapping instructions (e.g. loads) w.r.t. the source.

We provide this brief overview of our simulation as a basis for

the next sections. Let S and T be the source and target blocks,

respectively; we note G𝐼 and G𝐽 (resp. H𝐼 and H𝐽) the in (at the

entry of the current block) and out (at the entry of the next blocks)

gluing (resp. history) invariants.

𝜖 𝛿𝑠0/𝛿𝑡0

𝛿𝑠1

𝛿𝑡1

𝛿𝑠2 ⪰ 𝛿𝑡2

H𝐼

S

⪰ H𝐽

G𝐽

G𝐼

T

Figure 2: Modulo Invariants
Simulation Diagram

Figure 2 resumes how the

validation is performed. Both

blocks start with the same ini-

tial symbolic states 𝛿𝑠0 and

𝛿𝑡0, obtained by applyingH𝐼

on the empty state 𝜖 . On the

source side, we symbolically

execute block S on 𝛿𝑠0 (lead-

ing to 𝛿𝑠1), before applying

the gluing invariants of the

successors’ blocks G𝐽 . Sym-

metrically, on the target side, we apply the gluing invariant of

the current block G𝐼 (leading to state 𝛿𝑡1), and then execute block

T itself. These two steps lead, respectively, to states 𝛿𝑠2 and 𝛿𝑡2.

The overall simulation theorem (proved in Coq)
5
states that

the semantics is preserved under two predicates (in the sense of

CompCert’s forward simulations). First, applying the output history

invariant on 𝛿𝑠1 must yield an identity symbolic state that simu-

lates 𝛿𝑠1 on the source’s variables. This enforces the correctness

of history invariants: as they replay a past execution, they must

already hold on the source’s side. Second, 𝛿𝑠2 must simulate 𝛿𝑡2 on

the target’s variables (so that we implicitly encode a liveness valida-

tion) for the gluing invariants to be correct. Those two properties

are colored in violet in Figure 2, where “⪰” means simulates.

2.4 LCT of a Running Example
Let us explain both LCM and LSR on a simple example illustrating

the anticipability constraint of §2.3. The simple C code of Figure 3

features two loop-invariant computations, the square of “y” and
the load of “*p”, denoted in blue. In addition, the multiplication of

the loop-induction variable “i” by the constant 5 (in teal color) is

prone to be reduced.

long main(long x, long y,
long *p) {

long i = 0, b = 0;
while (i < 100) {

x *= *p;
if (i > 35)

b += y * y;
x += i * 5;
i += 3;

}
return x-b;

}

Figure 3: Running example

Ideally, we would like

these two operations to be

taken out of the loop, as it

would be done by the original

LCM. In fact, one may notice

that the load (whichmay trap)

will always be executed, so it

can be safelymoved out of the

loop without adding any po-

tential failure. However, we

explained that our validation

5
The whole code is available online at: https://gricad-gitlab.univ-grenoble-alpes.fr/
certicompil/Chamois-CompCert.

3

https://gricad-gitlab.univ-grenoble-alpes.fr/certicompil/Chamois-CompCert
https://gricad-gitlab.univ-grenoble-alpes.fr/certicompil/Chamois-CompCert

Léo Gourdin

mechanism is unable to anticipate a trapping operation w.r.t. the

original program.

We tackle this problem by unrolling the first iteration of the

loop before applying LCM. The unrolled code in the left-side of

Figure 4 contains two times the load, and the first occurrence is

now in the loop header. The violet comment of Figure 4 indicates

correspondence between variables. Remark that the multiplication

of “i” (by 5) was decomposed by the CompCert instruction selection

as a sequence of a shift and an addition (still in teal color).

Our improved LCT produces the code in the right-side of Figure 4,

including four fresh variables. The load is now in an auxiliary

variable x12, which replaces x11 in the first instruction of the loop.

The square, a loop-invariant computation, is lifted in the loop header

with variable x13, and the multiplication pattern has been reduced

and lifted as well. To compensate the increment
6
(of 3) over x5, the

oracle inserts a new increment just before the old one. It recognizes

the pattern as a product by 5, and deduces the final amount to add

by multiplying it with the old increment (i.e., 5 × 3).

// x3 = x ; x2 = y ; x1 = p
Head:
x4 = 0
x11 = int64[x1 + 0]
x3 = x3 * x11
x5 = 3; goto Loop

Loop:
x11 = int64[x1 + 0]
x3 = x3 * x11
if (x5 > 35) {
x10 = x2 * x2
x4 = x4 + x10 }

x9 = x5 << 2
x7 = x5 + x9
x3 = x3 + x7
x5 = x5 + 3
if (x5 >= 100) goto Exit
goto Loop

Exit:
x6 = x3 - x4
return x6

Head:
x4 = 0
x12 = int64[x1 + 0]
x3 = x3 * x12
x5 = 3
x13 = x2 * x2
x14 = x5 << 2
x15 = x5 + x14; goto Loop

Loop:
x3 = x3 * x12
if (x5 > 35) x4 = x4 + x13
x3 = x3 + x15
x15 = x15 + 15
x5 = x5 + 3
if (x5 >= 100) goto Exit
goto Loop

Exit:
x6 = x3 - x4
return x6

Figure 4: Unrolled (left) and optimized (right) RTL code

On this example, the “CSE3” (Common Subexpression Elimina-

tion) of Monniaux and Six [24] would also be unable to take out the

load without unrolling, for the same reasons of anticipation. To the

same extent, the transformation becomes feasible for CSE3 when

the first iteration is unrolled (because it corresponds to a FRE); how-

ever, even if the square was duplicated before the loop, CSE3 would

not eliminate it (because it corresponds to a PRE). Furthermore, in

a variant of this example where “b” would be initialized at line 3

by “b = *p” instead of “b = 0”, CSE3 would not factorize the “*p”
redundancy, contrary to our LCM, even without unrolling. Indeed,

“b” being modified in the loop, factorizing the computation of “*p”
requires a fresh register to store this computation. But, in contrast

with LCM, CSE3 does not introduce any fresh register.

Finally, the two original assignments to x9 and x7 have been

rewritten into a single one to x15. This illustrates how we enhanced

the SR algorithm of Knoop et al. [19] by enabling the reduction of

sequences. The reduction of such sequences thus improves Comp-

Cert’s instruction selection.

2.5 Symbolic Simulation of Our Example
6
Knoop et al. [19] name such increments “injuring” operations.

x4 = 0
x12 = ld[x1+0]
x3 = x3 * x12
x5 = 3

x13 = x2 * x2
x14 = x5 << 2
x15 = x5 + x14

x3 = x3 * x12
x5 >? 35

gotox4 = x4 + x13

goto x3 = x3 + x15
x15 = x15 + 15
x5 = x5 + 3
x5 >=? 100

gotox6 = x3 - x4
ret x6

1 2

34

5 6

7

8

9

Figure 5: Optimized BTL

Wenow explain howwe validate

by SE the transformation of Fig-

ure 4. The BTL CFG of the op-

timized code is provided in Fig-

ure 5, where synthetic nodes are

framed in violet, and blocks are

numbered in post-order (for the

fixed point to converge faster).

Notice that block 8 was origi-

nally a synthetic node, having

served as an insertion point.

In our example, the simula-

tion only requires gluing invari-

ants, because the source’s mul-

tiplication “x9=x5<<2” directly

contains the immediate constant.

If the constant was loaded in a

register in an earlier block, then

we would have to maintain an

history invariant between its definition and its uses in loop blocks’

gluing invariants. In particular, it would have been live in the

loop, and so the history invariant too. We represent invariants

as sequences of register assignments, followed by a set of live

registers at the block’s entry. The CFG entry-point is always an-

notated by a pure-liveness invariant
7
; the gluing invariant for

block 9 of Figure 5 is thus “([], alive = {x1,x2,x3})” (“[]” repre-
sents the empty sequence). Block 9 (on the target) pre-computes

the load in x12. To remember its value, the oracle adds an as-

signment in the successor’s invariant (i.e. block 8), in addition

to the liveness information. Therefore, block 8 is annotated with

“([x12:=ld[x1+0]], alive = {x2,x3,x4,x5,x12})”. Following this

principle, the gluing invariants for blocks belonging to the loop

propagate definitions from block 8 across the body. Hence, the same

gluing invariant annotates each loop-body block (i.e. blocks 2 to 7):
“([x12:=ld[x1+0]; x13:=x2*x2; x14:=x5<<2; x15:=x5+x14],

alive = {x3,x4,x5,x12,x13,x15})”. The exit, in block 1, only de-

fines registers x3 and x4 as live.

x9 = x5 << 2

x7 = x5 + x9

x3 = x3 + x7

x5 = x5 + 3

x5 >=? 100

Figure 6: Block
3 source

Since we only rely on gluing invariants, the

simulation check of §2.3 is reduced to the com-

parison between 𝛿𝑠2 and 𝛿𝑡2. Example 2.1 de-

tails a part of the simulation for block 3, where
symbolic states are written as parallel assign-

ments (e.g.“𝑥1 B 𝑥1 + 𝑥2∥𝑥2 B 𝑥1”). They rep-

resent a relation from an initial concrete state

to a final one in which 𝑥1 is incremented by

the initial value of 𝑥2, and 𝑥2 has been assigned to the initial value

of 𝑥1, other variables being dead or unchanged.

Example 2.1. Each exit branch of block 3 must pass the simu-

lation test pictured in Figure 2. Let us consider the “else” branch,

leading to block 2. The source block S is shown in Figure 6, and its

symbolic execution will result in the state 𝛿𝑠1 on left column below.

On the target side, we obtain 𝛿𝑡1 from the execution of G𝐼 , in the

middle column below. As visible with variable x3 in 𝛿𝑠1, we apply

an on-the-fly affine normalization (see §4.3) over values.

7
The validator considers that functions’ parameters may have any value.

4

Lazy Code Transformations in a Formally Verified Compiler

𝛿𝑠1 = 𝑥3 B 𝑥3 + 5 · 𝑥5
∥ 𝑥5 B 3 + 𝑥5
∥ 𝑥7 B 5 · 𝑥5
∥ 𝑥9 B 4 · 𝑥5

𝛿𝑡1 = 𝑥3 B 𝑥3

∥ 𝑥4 B 𝑥4

∥ 𝑥5 B 𝑥5

∥ 𝑥12 B 𝑙𝑑 [𝑥1 + 0]
∥ 𝑥13 B 𝑥2 · 𝑥2
∥ 𝑥15 B 5 · 𝑥5

𝛿𝑠2 = 𝛿𝑡2 =

𝑥3 B 𝑥3 + 5 · 𝑥5
∥ 𝑥4 B 𝑥4

∥ 𝑥5 B 3 + 𝑥5
∥ 𝑥12 B 𝑙𝑑 [𝑥1 + 0]
∥ 𝑥13 B 𝑥2 · 𝑥2
∥ 𝑥15 B 15 + 5 · 𝑥5

Indeed, a naive execution would have assigned to 𝑥3 the value

𝑥3 + 𝑥5 + 𝑥5 · 4 rather than the simplified form 𝑥3 + 5 · 𝑥5. To finish,
we execute G𝐽 and T from 𝛿𝑠1 and 𝛿𝑡1, respectively, and get the

final states 𝛿𝑠2 and 𝛿𝑡2 on the right side above. As expected, consid-

ering the target’s live variables
8
, both symbolic states are equal, so

the optimization is validated. Implicitly, the affine normalization of

this example demonstrated that 𝑥5+ 3+ 4 × (𝑥5+ 3) = 𝑥5+ 4 × 𝑥5+ 15.

3 OUR ANTICIPATION-RESTRAINED LCT
In this section, we implement the base of our LCT algorithm in

two steps: a first phase identical to the LCM of Knoop et al. [17],

that will serve as a base to include LSR in §4; and a second phase

to restrict the LCM’s sets of insertion and replacement points, in

order to respect the anticipation constraint of §2.3.

The type of BTL instructions is parametrized by the target ISA. It

groups together every basic operations under the same constructor,

and features a dedicated constructor for loads. In the specific case

of RISC-V, none of the BTL operations can fail, and loads are always

trapping. Nevertheless, LCMmust be architecture-independent; the

fact is some operations can be trapping on certain backends (e.g.

divisions by zero), and there also exists backends where loads can

be non-trapping (e.g. on KVX [31]).

type cm_ckey_t ::= CMop(trap_mode, op, # »r𝑎𝑟𝑔)
| CMload(trap_mode, chunk, addr, # »r𝑎𝑟𝑔)

Figure 7: LCM candidates’ key type
type cand_t ::= {

lhs : blk ↦→ 𝑆𝑜𝑓 𝑠 ; Left hand-sides positions

state : predicates; Record of bit vectors

vaux : r option; Candidate’s fresh variable

memdep : 𝑏𝑜𝑜𝑙 ; Memory read dependency

was_reduced : 𝑏𝑜𝑜𝑙 ; SR confirmation

updated_args :
»r𝑎𝑟𝑔 option; Substituted arguments

orig_args :
»r𝑎𝑟𝑔 ; } Original arguments

Figure 8: LCT candidates’ value type

For our oracle to work with both operations and loads, we define

a type representing right hand-sides (RHS) of register assignments

in Figure 7, that serves as a key to a hash table whose values in Fig-

ure 8 record candidate information (bold fields are mutable). In §4,

the type of LCM candidates’ keys of Figure 7 will be encapsulated to

also support LSR ones, using the same hash table and values’ type

of Figure 8. Thanks to this structure, we rebuild BTL instructions

from candidates’ keys, and match RHS of instructions to existing

candidates efficiently using the hashed key. Note that both con-

structors of Figure 7 include a boolean to indicate if the candidate

may trap or not. Furthermore, loads are subject to a memory-read

8
In the general case, 𝛿𝑡2 may affect dead registers on the 𝛿𝑠2 side.

dependency that is not syntactically modeled by our intermediate

language (encoded by the memdep boolean of Fig. 8). The LCT data-

flow predicates (see below) are stored in the state field of Figure 8.
They are encoded as bit vectors, whose indices are in 𝑃𝐶 (the set of

block IDs). Except for transparency (which concerns a whole block),

a predicate 𝑃 concerns either the entry (noted ⌈𝑃⌉) or the exit (noted
⌊𝑃⌋) part of blocks, w.r.t. the considered candidate (cf. §2.1). Other

fields of Figure 8 will be introduced as they are explained. Below,

§3.1 gives a decomposition of the common steps for all types of

candidates (i.e. code motion ones, trapping or not; and SR ones),

and our solution to the anticipation problem is presented in §3.2.

3.1 Steps Common to All Candidates
Most implementation parts are common to every kind of candidates.

As indicated in §2.1, the first step is to detect them. We traverse

each block and insert a new mapping for every operation or load.

The lhs field of Figure 8 is a map from block IDs to sets of offsets

(i.e. positions in a given block), recording the points where the

candidate was seen (assigned to a left hand-side) in the CFG. So if a

candidate is detected in multiple places, we simply update the lhs
map with the new position. Once the detection is done, candidates

are sorted by first their appearance block (thanks to the prior post-

order renumbering), and second their offset in the latter. They are

then handled one by one in this topological order by the oracle.

Secondly, we compute local predicates: the transparency (TRANSP),
being true when the candidate is untouched in a block, and the

⌈COMP⌉/⌊COMP⌋ variants of anticipability/availability, that holdwhen
the candidate is computed in the block’s entry/exit part. Obtain-

ing this information is easily done by running through each block,

for each candidate. Thirdly, we compute data-flow and data-flow

based predicates. We prefix them with “↑”, “↓”, or nothing accord-
ing to whether they require a backward, forward, or no analysis,

respectively. Up-safety (↓U-SAFE) and down-safety (↑D-SAFE) indi-
cate if a computation at node 𝑛 does not introduce a new value

for every path leading and starting at 𝑛, respectively; earliestness
(EARL) is true if the candidate cannot be safely placed earlier, with-

out data-flow from the two latter; delayability (↓DELAY) encodes
the possibility to safely move the inserted value from its earliest

down-safe point; latestness (LATEST) represents the optimality of

delayability, the maximum delay, without data-flow from the latter;

and isolation (↑ISOL) detects the case where a computation inserted

at a node would only be used (i.e. isolated) in this node.

More formally, let us assume a graph 𝐺 = (𝐵, 𝐸, 𝑠) with 𝐵 the

set of nodes (basic-blocks), 𝐸 the set of edges, and 𝑠 the unique

entry-point of the code. Functions 𝑠𝑢𝑐𝑐 (𝑛) and 𝑝𝑟𝑒𝑑 (𝑛) return, re-
spectively, the set of successors and predecessors of node 𝑛; with∏

and

∑
the finite conjunction and disjunction over those sets,

respectively. The negation of a predicate 𝑃 is noted 𝑃 . Comparing to

the original LCM, we do not impose 𝐺 to have a unique exit-point

(to be more general); but our predicates’ bit vectors are initialized

to false. After having detected candidates, and computed local pred-

icates, the Knoop et al. [17]’s algorithm solves all the systems of

equations below:

↓

⌈U-SAFE⌉ (𝑛) ≜

{
false if 𝑛 = 𝑠∏

𝑚∈𝑝𝑟𝑒𝑑 (𝑛) (⌊COMP⌋ (𝑚) ∨ ⌊U-SAFE⌋ (𝑚))
⌊U-SAFE⌋ (𝑛) ≜ TRANSP(𝑛) ∧ (⌈COMP⌉ (𝑛) ∨ ⌈U-SAFE⌉ (𝑛))

5

Léo Gourdin

↑
{
⌈D-SAFE⌉ (𝑛) ≜ ⌈COMP⌉ (𝑛) ∨ TRANSP(𝑛) ∧ ⌊D-SAFE⌋ (𝑛)
⌊D-SAFE⌋ (𝑛) ≜ ⌊COMP⌋ (𝑛) ∨∏

𝑚∈𝑠𝑢𝑐𝑐 (𝑛) (⌈D-SAFE⌉ (𝑚))
⌈EARL⌉ (𝑛) ≜

⌈D-SAFE⌉ (𝑛)∧∏
𝑚∈𝑝𝑟𝑒𝑑 (𝑛) (⌊U-SAFE⌋ (𝑚) ∨ ⌊D-SAFE⌋ (𝑚))

⌊EARL⌋ (𝑛) ≜ ⌊D-SAFE⌋ (𝑛) ∧ TRANSP(𝑛)

↓

⌈DELAY⌉ (𝑛) ≜ ⌈EARL⌉ (𝑛) ∨

false if 𝑛 = 𝑠∏

𝑚∈𝑝𝑟𝑒𝑑 (𝑛)

(
⌊COMP⌋ (𝑚)∧
⌊DELAY⌋ (𝑚)

)
⌊DELAY⌋ (𝑛) ≜ ⌊EARL⌋ (𝑛) ∨ ⌈DELAY⌉ (𝑛) ∧ ⌈COMP⌉ (𝑛)
⌈LATEST⌉ (𝑛) ≜ ⌈DELAY⌉ (𝑛) ∧ ⌈COMP⌉ (𝑛)

⌊LATEST⌋ (𝑛) ≜ ⌊DELAY⌋ (𝑛) ∧
(
⌊COMP⌋ (𝑛)∨∑
𝑚∈𝑠𝑢𝑐𝑐 (𝑛) (⌈DELAY⌉ (𝑚))

)

↑

⌈ISOL⌉ (𝑛) ≜ ⌊EARL⌋ (𝑛) ∨ ⌊COMP⌋ (𝑛) ∧ ⌊ISOL⌋ (𝑛)

⌊ISOL⌋ (𝑛) ≜ ∏
𝑚∈𝑠𝑢𝑐𝑐 (𝑛)

(
⌈EARL⌉ (𝑚)∨
⌈COMP⌉ (𝑚) ∧ ⌈ISOL⌉ (𝑚)

)
Finally, the LCM’s insertion and replacement points (IR-points)

are deduced using the formulas below
9
:

• INSERT(𝑝𝑐) ≜ LATEST(𝑝𝑐) ∧ ISOL(𝑝𝑐)
• REPLACE(𝑝𝑐) ≜ COMP(𝑝𝑐) ∧ (LATEST(𝑝𝑐) ∧ ISOL(𝑝𝑐))

When INSERT is true, we store the candidate in its allocated,

unique auxiliary variable (in the vaux field of Fig. 8). In every node

marked as REPLACE, the candidate is replaced by a move from vaux.

3.2 IR-Points for Trapping Instructions
However, the above IR-points let LCM anticipates trapping instruc-

tions, while our validator only allows one to move them if they

were already computed before in the source. We sketch a restrictive

algorithm to calculate IR-points for trapping instructions. The idea

is to start by computing the set of block IDs where we may replace
a trapping candidate

10
. We traverse the CFG from the entry-point,

and remember each block ID satisfying two necessary conditions:

(i) the candidate appears in the entry-part; and (ii) the entry-part is

“up-safe”. Indeed, as stated by (i), we cannot eliminate a trapping

instruction if its dependencies are modified: this means that replace-

able trapping candidates are at block entry. Point (ii) reflects the

availability condition (we cannot eliminate an unavailable compu-

tation). Recall the notion of block’s entry part for candidates of §2.1.

The result is returned by the compute_pot_rep(entry) function
as a set 𝑃 = {𝑝𝑐𝑝 | ⌈COMP⌉ (𝑝𝑐𝑝) ∧ ⌈U-SAFE⌉ (𝑝𝑐𝑝)}.

From there, we need to ensure that these points are actually

reachable from a previous calculation of the candidate. For a given

𝑝𝑐𝑝 ∈ 𝑃 , filter_comp_blocks(𝑝𝑐𝑝) finds the set 𝐼 of available

previous calculations (e.g. usable to factorize the candidate). It is

defined as the set of 𝑝𝑐𝑖 such that 𝑝𝑐𝑖 ≠ 𝑝𝑐𝑝 ∧ (⌈COMP⌉ (𝑝𝑐𝑖) ∨
⌊COMP⌋ (𝑝𝑐𝑖)), and such that there exists a path from 𝑝𝑐𝑖 to 𝑝𝑐𝑝
preserving the transparency property of the candidate. Thus, 𝐼

groups nodes where we should insert and replace the candidate.

9
Either for entry or exit parts by substituting predicates accordingly.

10
We only factorize trapping candidates with a previous computation of the instruction,

so insertion points are also replacement points.

Algorithm 1 IR-points for trapping instructions

1: procedure compute_lcm_targets_trap(entry, cand)
2: 𝑠𝑡 ← cand .state
3: 𝑃 ← compute_pot_rep(entry)
4: for 𝑝𝑐𝑝 ∈ 𝑃 do
5: 𝐼 ← filter_comp_blocks(𝑝𝑐𝑝)
6: if |𝐼 | > 0 then
7: 𝑠𝑡 .⌈REPLACE⌉ (𝑝𝑐𝑝) ← true
8: if 𝑠𝑡 .⌊COMP⌋ (𝑝𝑐𝑝) then
9: 𝑠𝑡 .⌊INSERT⌋ (𝑝𝑐𝑝) ← true
10: 𝑠𝑡 .⌊REPLACE⌋ (𝑝𝑐𝑝) ← true

11: for 𝑝𝑐𝑖 ∈ 𝐼 do
12: if 𝑠𝑡 .⌈COMP⌉ (𝑝𝑐𝑖) then
13: 𝑠𝑡 .⌈INSERT⌉ (𝑝𝑐𝑖) ← true
14: 𝑠𝑡 .⌈REPLACE⌉ (𝑝𝑐𝑖) ← true
15: else if 𝑠𝑡 .⌊COMP⌋ (𝑝𝑐𝑖) then
16: 𝑠𝑡 .⌊INSERT⌋ (𝑝𝑐𝑖) ← true
17: 𝑠𝑡 .⌊REPLACE⌋ (𝑝𝑐𝑖) ← true

Using those two functions, we define in Algorithm 1 the main

procedure used to fill the candidate’s IR-points. When 𝐼 = ∅, we
abandon the potential replacement in block at 𝑝𝑐𝑝 (equivalently to

the isolation predicate of §3.1). Otherwise, ⌈REPLACE⌉ (𝑝𝑐𝑝) is set
to true. Moreover, if the block also contains an exit computation

of the candidate, then the latter must be saved into its auxiliary

variable
11

(lines 8-10 in Alg. 1). Finally (lines 11-17), both INSERT
and REPLACE predicates are set to true for all 𝑝𝑐𝐼 ∈ 𝐼 (we set their
entry variant if the node has an entry computation, and their exit

one otherwise).

4 ITERATIVE LSR WITH SUBSTITUTIONS
Akin to Knoop et al. [19], we refined our LCM into a SR algorithm.

LSR candidates are multiplications of the form “𝑣 × 𝑐”, between
a variable 𝑣 and a constant 𝑐 . The LSR principle is to weaken the

LCM’s notion of transparency by considering that additions 𝑣 =

𝑣 + 𝑐′ with a constant 𝑐′ (named injuring operations), do not break

the transparency. Thus, multiplications are moved as if they were

LCM candidates. To compensate the effect of additions on 𝑣 , the

algorithm inserts update assignments: for a candidate relocated in

auxiliary variable 𝑣 ′, an addition “𝑣 ′ = 𝑣 ′ + (𝑐 ×𝑐′)” may be inserted

in each block containing an injuring addition.

The original—non basic-block based—LSR was refined in three

stages to overcome some of its limitations:

(1) R1: avoids inserting an update addition (i.e. an increment of

the SR variable) if a multiplication (i.e. the candidate itself)

must be inserted on the same path;

(2) R2: finds the “best” insertion point (for the multiplication),

considering lifetime using the delay, latest, and isolation

analyses;

(3) R3: avoids having multiple update additions on the same

path for the same variable.

R1 and R2 concern IR-points: the former finds substitutes for the

original insertion points (without changing replacement points);

and the three additional analyses of the latter minimize the liv-

erange induced by code motion. R3 does not change IR-points, but

11
The candidate being present in both block parts, it probably needs to be recalculated:

otherwise it would have been removed by the CompCert’s CSE beforehand.

6

Lazy Code Transformations in a Formally Verified Compiler

tries to accumulate update assignments. Knoop et al. [19, §3.1.3]

first compute a naive code motion (where INSERT = D-SAFE∧EARL),
and then apply R1, R2, and R3 (in that order). Our basic-block im-

plementation of §3.1 (inspired from Knoop et al. [17]), includes

R2 without R1 (noted R2
♭
) “for free” by unifying the code motion

part of predicate inference
12
. Rather than using R3 directly, we

suggest an alternative, generic representation. Last, we describe a

new technique to propagate results locally from previous iterations,

as a fourth refinement R4 (coming after R3).

Unlike the original LSR, we refine LCM as follows:

R2
♭ (§4.1) → R1 (§4.2.1) → R2 (§4.2.2) →

alternative R3(§4.3) → new R4 (§4.4).

4.1 Instantiating Common LCT Steps for LSR
We extend the common part of §3.1 for LSR. The state field (Fig. 8)
contains either the “real” transparency (TRANSP) for code motion

candidates, or the weak transparency (noted SR-TRANSP) for SR
ones. Specific SR predicates are also stored in state. As LSR targets

multiplications with a constant, we perform a simple constant detec-
tion before the candidate detection of §3.1, that builds a hash map

from registers to immediate load instructions
13
. In the local analysis,

we add an “injuring” predicate (noted INJURED) to the state being

true when an argument is only “injured” by an additive operation

(preserving SR-TRANSP). The TRANSP predicate (still needed in R1)

is rebuilt trivially knowing that TRANSP = SR-TRANSP ∧ INJURED.
Executing steps from §3.1 with this notion of weak transparency

gives us the R2
♭
IR-points.

Example 4.1 highlights the difference between multiplicative

and additive SR candidates, and the separation with LCM-only

candidates. In practice, we encapsulate the type of Figure 7 with

the new candidate key defined in Figure 9.

type sr_t ::= SRmul | SRadd
type ckey_t ::= CCM(cm_ckey_t)

| CSR(sr_t, op, # »r𝑎𝑟𝑔)

Figure 9: LCT candidate’s key type

Example 4.1. CompCert’s instruction selection tries to decompose
multiplications into a sequence of one or two left shifts (powers

of two). When there are two shifts, an addition of their results is

appended to the sequence. Consider the decomposition “𝑥1 = 5 ·𝑥2”
into “𝑥3 = 𝑥2 « 2; 𝑥1 = 𝑥2 + 𝑥3”, and assume it is inside a loop

with an injuring increment over 𝑥2 (i.e., 𝑥2 = 𝑥2+ 1). The reduction
starts by lifting the shift out of the loop in an auxiliary variable

𝑥𝐴, and inserts an update assignment 𝑥𝐴 = 𝑥𝐴 + 4 just before the
increment.

Then, we improve this first transformation by noticing that in

most cases, the shift’s intermediate result is only used to compute

the addition. If applicable, we thus lift the addition too using an

auxiliary variable 𝑥𝐴′, and apply the update (i.e. adding 5, as “4 ·
1 · 𝑥2 + 𝑥2 = 5 · 𝑥2”) on 𝑥𝐴′.

12
In other words, our algorithm naturally includes (and infers) R2

♭
, while R1 is calcu-

lated only when necessary, and after R2
♭
.

13
Such instructions are considered constant as long as their destination register is

never rewritten.

Compensatory updates assignments (i.e. additions) are always

inserted in blocks containing an injuring operation on the candi-

date, but not necessarily in all of them. More specifically, an injured

node must receive an update assignment either if it contains an

occurrence of the candidate (whether in its entry or exit part), or

if it has at least one successor not marked as an insertion point

(for both the entry and exit parts) but identified as an update point.

These blocks are characterized by the least solution of the below

equation, which covers a whole basic-block:

↑ UPDATE(𝑛) ≜
⌈COMP⌉ (𝑛) ∨ ⌊COMP⌋ (𝑛)∨∑
𝑚∈𝑠𝑢𝑐𝑐 (𝑛)

(
⌈INSERT⌉ (𝑚) ∧ ⌊INSERT⌋ (𝑚)
∧ UPDATE(𝑚)

)
After having inserted and replaced candidates, LSR inserts update

additions in every node satisfying both INJURED and UPDATE.

4.2 Generalizing LSR on Basic-Blocks
On the example of Figure 4, a multiplication (in fact, a shift) inside

the loop is replaced by an addition. To keep the code correct, the

multiplication is also inserted before the loop. In some complex

cases (e.g. the nested loops of Knoop et al. [19, Fig.3]), such an in-

sertion of the multiplication may itself need to be compensated by

an addition. This is precisely what R1 seeks to avoid: not placing a

multiplication too early, so that a supplementary addition is unnec-

essary. The applicability of R1 thus depends on the candidate kind:

additive SR candidates are always preceded by a multiplication

(otherwise they are selected as code motion candidates), and do not

require R1. The latter is therefore only computed for multiplicative

SR candidates.

Technically, the first refinement (R1) of Knoop et al. [19] com-

putes a set of critical points from which there exists a path with

no other occurrence of the candidate before the injuring opera-

tion. Then, critical-insertion points are both critical and marked

as insertion (in the sense of R2
♭
), and represent places where the

“naive” (without R1) LSR would place both a multiplication and an

update assignment on the same path. To optimize this inefficiency,

the authors define a predicate substitution-critical that encodes the
set of substitutes (i.e. alternatives) of critical-insertion points. Intu-

itively, R1 simply delays each critical-insertion point until the first

reachable, non-critical point.

4.2.1 NewData-Flow Equations forR1. SR additive candidates keep

R2
♭
IR-points from the first step; but the state of SRmul candidates

is extended with results of R1. Our method to compute R1 on top

of R2
♭
leads to insertion points equivalent to the original R2. We

adapted the original (backward) “critical” predicate below:

↑ CRIT(𝑛) ≜ COMP(𝑛) ∧ (TRANSP(𝑛) ∨∑
𝑚∈𝑠𝑢𝑐𝑐 (𝑛) (CRIT(𝑚)))

to a basic-blocks based analysis by splitting it into:

↑
{
⌈CRIT⌉ (𝑛) ≜ ⌈COMP⌉ (𝑛) ∧ (TRANSP(𝑛) ∨ ⌊CRIT⌋ (𝑛))
⌊CRIT⌋ (𝑛) ≜ ⌊COMP⌋ (𝑛) ∧∑

𝑚∈𝑠𝑢𝑐𝑐 (𝑛) (⌈CRIT⌉ (𝑚))

Deducing the above equations is straightforward; the first step

is to duplicate the original predicate in two variants with ⌈COMP⌉
and ⌊COMP⌋. Since it must be solved backward (i.e. it depends on

the successor relationship), the existential

∑
in the first equation is

replaced with ⌊CRIT⌋. For the exit equation, we remove the trans-

parency term (as it does not depend on basic-blocks parts, and is

already present in the entry equation); finally, noticing that the

7

Léo Gourdin

successor of an exit part is obviously an entry part, the disjunction

over successors is updated with the entry equation.

The bitwise “and” between the entry/exit variants of R2
♭ INSERT

and CRIT gives us the entry/exit “critical-insertion” points noted
⌈CRITINS⌉/⌊CRITINS⌋ (i.e. CRITINS = INSERT ∧ CRIT). Those are
needed to adapt the original “substitution-critical” forward equa-

tion below, in the same fashion as before.

↓ SUBSTCRIT(𝑛) ≜ CRITINS(𝑛)∨
(∑𝑚∈𝑝𝑟𝑒𝑑 (𝑛) COMP(𝑚) ∧ SUBSTCRIT(𝑚))

which can be decomposed, from a reasoning symmetrical to that of

the CRIT predicate, into:

↓

⌈SUBSTCRIT⌉ (𝑛) ≜

⌈CRITINS⌉ (𝑛)∨∑
𝑚∈𝑝𝑟𝑒𝑑 (𝑛)

(
⌊COMP⌋ (𝑚)∧
⌊SUBSTCRIT⌋ (𝑚))

)
⌊SUBSTCRIT⌋ (𝑛) ≜

⌊CRITINS⌋ (𝑛)∨
(⌈COMP⌉ (𝑛) ∧ ⌈SUBSTCRIT⌉ (𝑛))

4.2.2 Pushing Critical Insertion Points Forward. We now update

R2
♭
insertion points based on R1, in order to obtain an INSERT

predicate equivalent to the one of R2. Recall that replacement points

are not impacted by R1.

Algorithm 2 R2 insertion points from R1 & R2
♭

1: procedure find_crit_targets_rec(cand, 𝑝𝑐)
2: 𝑠𝑡 ← cand .state
3: visit(𝑝𝑐)

4: for 𝑠 ∈ succ (𝑝𝑐) do
5: if 𝑠𝑡 .⌈CRIT⌉ (𝑠) ∧ 𝑠𝑡 .⌈SUBSTCRIT⌉ (𝑠) then
6: 𝑠𝑡 .⌈INSERT⌉ (𝑠) ← true
7: else if 𝑠𝑡 .⌊CRIT⌋ (𝑠) ∧ 𝑠𝑡 .⌊SUBSTCRIT⌋ (𝑠) then
8: 𝑠𝑡 .⌊INSERT⌋ (𝑠) ← true
9: else if ¬visited(𝑠) then
10: find_crit_targets_rec(𝑠)

11: procedure find_crit_targets_gen(cand, p_ins, p_ins_crit)
12: reset_visited_blks(void)
13: for 𝑝𝑐 ∈ {𝑝𝑐𝑖 | p_ins_crit (𝑝𝑐𝑖) = true} do
14: p_ins (𝑝𝑐) ← false
15: find_crit_targets_rec(cand, 𝑝𝑐)

The find_crit_targets_gen procedure of Algorithm 2 pushes

forward (in the direction of the control-flow) insertion points for

SR candidates. For each of them, we call the procedure if R1’s

⌈CRITINS⌉ (resp. ⌊CRITINS⌋) is not full of zeros (i.e. not always
false); with p_ins = ⌈INSERT⌉ (resp. ⌊INSERT⌋) and p_ins_crit =

⌈CRITINS⌉ (resp. ⌊CRITINS⌋). First, we set the insert predicate

(which can be either the entry or exit one) to false for every block sat-

isfying the given (entry or exit) critical-insertion predicate. Second,

the find_crit_targets_rec procedure replaces insertion points: it

recurses over successors from the critical-insertion block, and stops

when encountering an already visited block. For entry and exit

parts, if a successor is not critical but substitution critical (lines 5

and 7 of Alg. 2), then its entry/exit INSERT predicate is set to true.

Our insertion points are now equivalent to the second refinement

of Knoop et al. [19, §4.1].

type 𝐶 affine_form ::= Aff_term(𝐶, 𝑟,𝐶 affine_form)
| Aff_const(𝐶)

Figure 10: Polymorphic affine forms

4.3 Affine Forms Strength-Reduction
The third refinement of Knoop et al. [19] accumulates update as-
signments when the source includes multiple injuring operations

(as illustrated in Ex. 4.1). Their solution is to first record program

points where an accumulated update should be inserted, and sec-

ond to define a function that calculates the accumulation effect.

Nonetheless, this idea involves a prior detection of extended basic-
blocks [19, footnote 15]. Mimicking this technique would be possible

with our block-based LSR, even if it seems a bit heavy in our for-

mally verified defensive framework. Moreover, this mechanism is

subsumed by noticing that candidates can either multiply or add

values, which amounts to manipulate affine forms
14
. We simply

define addition and scalar multiplication of affine terms (forming a

semimodule [12]), to accumulate “injuries” over induction variables,

to reduce products between constants, and to factorize additions

on the same variable (cf. the sequence in Ex. 4.1).

Hence, we improve R3 (but only for basic-blocks) with the affine

forms of Figure 10, where 𝐶 is the type for constants (affine forms

are polymorphic on 𝐶 , e.g. 𝐶 might be int64), and 𝑟 for registers.
The oracle maintains a hash-table (𝑝𝑐, 𝑟) ↦→ (𝐶 affine_form), so
we map (block ID, register) pairs to affine values. The detection

phase applies operations over these forms as they occur, and the

substitutions of §4.4 keep the table up-to-date with auxiliary vari-

ables. When inserting the update assignment, we invoke a function

that takes a list of block IDs and the candidate’s auxiliary destina-

tion register (fresh register) to retrieve the compensation amount

that needs to be added.

4.4 Iterative Substitution of Auxiliary Variables
We mentioned in §3.1 that we process candidates in their topologi-

cal order. The original LCM of Knoop et al. [18] does not specify

any order and neither does the original LSR of Knoop et al. [19].

However, as illustrated in the example of §2.4 (and in Ex. 4.1), there

are sometimes—mainly because of the instruction selection, but not

always—sequences of instructions prone to be reduced. In that situ-

ation, the order of treatment is essential: the first instruction of the

sequence must be moved (or reduced) first to detect a new opportu-

nity when initiating the analysis on the following ones. Technically,

after having detected and sorted candidates from the hash table

as a list of (𝑐𝑘𝑒𝑦, 𝑐𝑎𝑛𝑑) pairs, our LCT repeats the four steps be-

low for each pair. (i) Update the current candidate: if its original
arguments (stored in the orig_args field of Fig. 8) were modified

by previous substitutions (through the updated_args field), then
its key of Figure 9 is modified with the substituted arguments

15
.

Furthermore, if the updated arguments do not contain any SR auxil-

iary variable, and if the candidate is of the SRadd type (Fig. 9), then

we “downgrade” it to an LCM candidate (i.e. SR additive candidates

14
Our validator uses a similar representation, as visible in example 2.1.

15
We replace the candidate in the hash table (and take the updated ckey in the sorted

list). If a candidate with the new arguments already exists, the new one is merged with

the old one (by unifying their lhs fields).

8

Lazy Code Transformations in a Formally Verified Compiler

must be preceded by a multiplication, see §4.2). (ii) Initialize predi-
cates (with their default value) and execute the local analysis: the
calculation of TRANSP/SR-TRANSP, ⌈COMP⌉/⌊COMP⌋, and INJURED (if

applicable). (iii) Data-flow analysis. (iv) Eventually rewrite the CFG
if the candidate must be inserted, replaced, or updated.

The original LCM replaces an assignment from a redundant

expression by a “move” from its auxiliary variable. Simply applying

this technique would prevent our propagation of its affine form,

as expressed in (i) above. We thus propose a new refinement that

replaces the early move instruction by direct substitutions with the

auxiliary variable, so that the move is pushed forward as late as

possible in the basic block, enabling the propagation of the affine

form above this move.
Let 𝑝𝑐𝑡 and off 𝑡 be the target block ID and an offset inside this

block (resp.) where we are going to replace the candidate. The

function traverses the basic-block starting from the entry, and,

depending on the current offset off 𝑐 :

• If off 𝑐 < off 𝑡 , simply continue and increment off 𝑐 ;

• If off 𝑐 = off 𝑡 , ensure a match between the current instruc-

tion and the candidate to replace, replace it by a no-op
(no-operation) instruction (rather than directly by a move),
and continue

16
. The algorithm saves the original destina-

tion of the replaced instruction;

• If off 𝑐 > off 𝑡 (meaning the candidate was already replaced

by a no-op), there are two possible subcases:

– A final case when either (i) the auxiliary variable or

the original destination of the candidate is rewritten;

(ii) the current instruction is another occurrence of

the candidate or an injuring operation; (iii) we are

reaching the end of the block.

If so, we insert the move from the auxiliary variable

and stop the substitution algorithm;

– A recursive case otherwise, where we substitute the

previously saved original destination in the

updated_args field of the current candidate by its

auxiliary variable.

5 INFERRING INVARIANTS FROM ANALYSES
Once the main loop of LCT—consisting of the four steps described

in §4.4—terminates, each possible LCT optimization was applied

on the CFG. Before generating invariants annotations, we perform

a liveness analysis and a dead code elimination (DCE). This DCE is

validated “for free”, together with liveness information, and allows

removing “dead” moves inserted by the forward substitution of §4.4.

Invariants annotations are inferred from both the liveness and

the LCT analyses. This process is done for each pair (𝑐𝑘𝑒𝑦, 𝑐𝑎𝑛𝑑)
in the list 𝐿 of candidates (the same list as in §4.4) with a defined
auxiliary variable (i.e. not None) in 𝑐𝑎𝑛𝑑.vaux (of Fig. 8). In other

words, we iterate over the set 𝐶 of candidates defined on line 2 of

Algorithm 3. In fact, a defined auxiliary variable means that the

candidate was moved or strength-reduced and so the validator will

need invariants to ensure the transformation’s correctness. Variable

gm (stands for “gluemap”) in Algorithm 3 is a structure containing

16
At this point, we also update the tables of affine values and constants by copying

the previous mapping (if existing) to a new one bound to the auxiliary variable of the

candidate.

both invariants mappings, gluing and history. The gluing invariants

mapping in gm is already initialized with the above-mentioned

liveness analysis results (so the “alive” sets at each node are filled).

Algorithm 3 Generation of invariants annotations

1: function build_invariants(entry, 𝐿, gm, constants)
2: 𝐶 ← {(𝑐𝑘𝑒𝑦, 𝑐𝑎𝑛𝑑) ∈ 𝐿 | 𝑐𝑎𝑛𝑑.vaux ≠ None}
3: for (𝑐𝑘𝑒𝑦, 𝑐𝑎𝑛𝑑) ∈ 𝐶 do
4: 𝑠𝑡 ← 𝑐𝑎𝑛𝑑.state
5: 𝐺 ← ((𝑠𝑡 .⌈REPLACE⌉ ∧ 𝑠𝑡 .⌈INSERT⌉)∨

(𝑠𝑡 .⌊REPLACE⌋ ∧ 𝑠𝑡 .⌊INSERT⌋))
∨(𝑠𝑡 .ISOL ∧ 𝑠𝑡 .DELAY)

6: if is_trapping(𝑐𝑘𝑒𝑦) then
7: 𝐺 ← 𝐺 ∧ 𝑠𝑡 .⌈U-SAFE⌉
8: const_prod ← is_constant_product(𝑐𝑘𝑒𝑦)
9: ok_reduced ← 𝑐𝑎𝑛𝑑.was_reduced
10: for 𝑝𝑐 ∈ 𝐶𝐹𝐺 do
11: if 𝑝𝑐 ≠ entry ∧ const_prod ∧ ok_reduced then
12: 𝑟𝑐 ← constant_reg(𝑐𝑘𝑒𝑦)
13: 𝑐𝑜𝑝 , 𝑐𝑝𝑐 ← constants[𝑟𝑐]
14: ok_fresh← ¬is_fresh_var(𝑟𝑐)
15: 𝐴← live_inputs(gm, 𝑝𝑐)
16: if 𝑝𝑐 < 𝑐𝑝𝑐 ∧ ok_fresh ∧ (𝐺 (𝑝𝑐) ∨ 𝑟𝑐 ∈ 𝐴) then
17: gm← add_hi(gm, 𝑝𝑐, 𝑟𝑐 , 𝑐𝑜𝑝)
18: if 𝐺 (𝑝𝑐) then
19: op← get_ckey_op(𝑐𝑘𝑒𝑦)
20: gm← add_gi(gm, 𝑝𝑐, 𝑐𝑎𝑛𝑑.vaux, op)
21: return gm

5.1 Preservation Points for Gluing Invariants
Given a pair (𝑐𝑘𝑒𝑦, 𝑐𝑎𝑛𝑑), the vector of block IDs where a gluing

invariant about the candidate must be preserved is named𝐺 (line 5

in Alg. 3). Preservation points depend on four predicates for non-

trapping candidates, and five otherwise. 𝐺 is efficiently calculated

with bitwise operations on predicates.

There are two types of nodes in which we must insert a glu-

ing invariant: one for each alternative of line 5. The first (in teal

color) groups blocks where 𝑐𝑎𝑛𝑑 was replaced, but not inserted. In

this case, the target simulation must retrieve the candidate’s value

from the input gluing invariant (recall the target gluing invariants’

simulation: G𝐼 is applied before executing T). For instance, in Fig-

ure 5, a gluing invariant assignment of the square of x2 in x13 is
needed for block 5, where the candidate is replaced (in entry) but

not inserted. Conversely, a counter-example (where the alternative

is false), arises in block 8: actually, an input gluing invariant would

be wrong to remember the square, since it is not yet executed on

the target side. However, this first alternative is not sufficient be-

cause the candidate’s value must also be preserved in the gluing

invariant if the auxiliary variable is live after (e.g. across loops).

Thus, we define a second alternative (in orange) to insert an in-

put gluing invariant on every node which is neither isolated nor

delayed. Indeed, an isolated candidate is by definition (of INSERT)
never used for insertion (ISOL(𝑛) is true if an insertion at 𝑛 would

be only used at 𝑛 itself). Moreover, it must not be delayed: if 𝑐𝑎𝑛𝑑

is delayed at node 𝑛, we know that its potential insertion can only

happen after 𝑛 (further in the CFG). Still in the example of Figure 5,

9

Léo Gourdin

the loop block 7 satisfies these conditions for the square candidate

(neither isolated nor delayed); thus, in the source side simulation of

block 8, the square of x2 will be defined when executing the output

gluing invariant, as expected (recall the source gluing invariants’

simulation: G𝐽 is applied after executing S).
The disjunction encoded by 𝐺 suffices to obtain preservation

points for non-trapping candidates, but is not strong enough for

trapping ones (e.g. loads). Hence, we restrict𝐺 (line 7 of Alg. 3) by

conjunction with the entry up-safety predicate (as for condition (ii)

of potential replacement points in §3.2). In Figure 5, this stronger

version of 𝐺 holds on the “ld[x1+0]” candidate for blocks 2 to 8,
thus allowing to insert the necessary invariants for x12.

A gluing invariant assignment of the candidate’s operation (in

𝑐𝑘𝑒𝑦) into the auxiliary register 𝑐𝑎𝑛𝑑.vaux is therefore inserted for

every block 𝑝𝑐 ∈ 𝐶𝐹𝐺 such as 𝑝𝑐 ∈ 𝐺 (lines 18-20 of Alg. 3).

5.2 Saving Constants with History Invariants
We saw in §2.5 that if the multiplication to reduce was directly

containing the constant value as an immediate, history invariants

were unnecessary. In contrast, when the constant is stored in a

register, history invariants are necessary to remember its value.

The is_constant_product(𝑐𝑘𝑒𝑦) function (line 8 in Alg. 3) re-

turns true if if the candidate is of type SRmul, and if its constant

is in a register (by seeking in the constants’ table of §4.1). Insert-

ing an history invariant is relevant only if the multiplicative can-

didate was effectively strength-reduced: this is indicated by the

𝑐𝑎𝑛𝑑.was_reduced boolean (defined in Fig. 8, and read at line 9

in Alg. 3). Furthermore, as the CFG entry must only include pure-

liveness invariants (see §2.5); the condition of line 11 checks that

the current block is not the entry-point
17
, along with the two con-

ditions defined above. Nevertheless, some additional checks are

required before inserting an history invariant: (i) the constant must

be defined in a previous block (if it is defined in the current block,

no need for an history invariant); (ii) the constant must not be

in an auxiliary variable (otherwise it will be handled by gluing

invariants); and (iii) either the current block must be in𝐺 , or the

constant’s register live in the block (if these two conditions are false,

there is no need to propagate the constant’s value). The algorithm

first gathers the constant register (line 12), and the constant opera-

tion and block of appearance (line 13) from the constant table (§4.1).

The comparison 𝑝𝑐 < 𝑐𝑝𝑐 then checks condition (i) above; and the

negation of function is_fresh_var(𝑟𝑐) (line 14) ensures (ii). The
set 𝐴 of live variables in the block (line 15) was already computed

before the DCE pass; here, we simply retrieve this information from

gm. Finally, line 16 (the disjunction corresponds to condition (iii))

verifies that the three requirements are satisfied. If so, the algorithm

inserts an history invariant assignment of the constant operation

𝑐𝑜𝑝 into its associated variable 𝑟𝑐 , and add 𝑟𝑐 in the “alive” set of

history invariant at block 𝑝𝑐 (line 17).

Notice that since the alive set for gluing invariants was already

filled by the liveness analysis, we only add information to the alive

set for history invariants here. In the end, the oracle returns both

the new BTL code and the “gluemap” to our certified validator.

6 EXPERIMENTAL EVALUATION
We only implemented LSR on RISC-V, for 64-bits long integers (but

LCMworks on all backends). Nevertheless, our LSR takes advantage

of a promotion
18

pass—also validated by our symbolic simulation

test—that converts 32-bits instructions into 64-bits ones, hence

producing more SR opportunities.

Measurements presented in this section were performed using

benchmarks from four suites: (i) the LLVM test suite
19
; (ii) the

MiBench [14] and (iii) TACLeBench [11] embedded systems ori-

ented suites, and (iv) the PolyBench [28] computational suite.

A more detailed overview of our testing approach, on both per-

formance and debugging aspects of oracles, is provided in [23]
20
.

6.1 Performance Benchmarks
Wemeasured experimentally the performance of the generated code

on a SiFive U740 core (HiFive Unmatched), a dual-issue, in-order

RISC-V processor. Abnormal results with a relative standard deriva-

tion exceeding 2% over five runs were filtered. The performance

gain of a compiler 𝐶 w.r.t. a reference compiler 𝑅 is calculated as

𝑔𝑎𝑖𝑛(𝐶) = ((𝑡𝑖𝑚𝑒 (𝑅) − 𝑡𝑖𝑚𝑒 (𝐶))/𝑡𝑖𝑚𝑒 (𝐶)) × 100, where 𝑡𝑖𝑚𝑒 (𝑋)
represents the execution time, measured in cycles, of a benchmark

compiled with compiler 𝑋 . In order to achieve the utmost level of

optimization, we integrated the CompCert’s fork of Six et al. [32] into
BTL. We refer to this integration as “Base”, which combines their

superblock scheduler, CSE3 [24], and first iteration loop-unrolling.

We comparedGCC-01 (11.3.0), our “Base” fork, and the latter with

LCT activated (i.e. “Base”+LCT) to mainline CompCert (3.12). Glob-

ally, our “Base”+LCT version is 20.7% faster than mainline Comp-

Cert on LLVM tests, 14.7% onMiBench, and 22.83% on TACLeBench;

results for the full PolyBench suite are at line “PolyBench/*” of Ta-

ble 1. The sample results of Table 1 highlights the performance

variability according to inputs. The poor result on MiBench/string-

search is explained by unrolling, that dramatically increases the

register pressure and the code size. Without unrolling, the “Base”

score on this benchmark drops to 0.43%, whereas “Base”+LCT yields

a gain of 39.4%. Both the oracle and the validator scale well on ev-

ery benchmark, and also on randomly generated programs from

Csmith, Yarpgen, or CCG
21
. Finally, our algorithm is able to close

the gap with GCC on a non-negligible set of benchmarks.

6.2 Translation Validation Time Measurements
To ensure that our validator was scaling well even on large ap-

plications, we instrumented the OCaml code generated from Coq

to time each symbolic execution. In practice, after testing it over

every benchmark from our four suites, the worst validation time

was of approximatly 4 seconds. We observe an almost perfect linear

correlation between the validator’s and the LCT oracle’s execution

times (near 99%). Furthermore, if we bound using a threshold (for

our experiment, we set it to 64) the number of LCT’s candidates,

we see that both the validator and the oracle are linear in the total

17
For gluing invariants, this was implicitly ensured by the formula of𝐺 .

18
The underlying oracle is out-of-scope of this paper.

19https://github.com/lac-dcc/Benchmarks
20
And our benchmark measurement toolkit is available online here https://gricad-

gitlab.univ-grenoble-alpes.fr/certicompil/chamois-benchs.
21
See https://github.com/csmith-project/csmith, https://github.com/intel/yarpgen, and

https://github.com/Mrktn/ccg.

10

https://github.com/lac-dcc/Benchmarks
https://gricad-gitlab.univ-grenoble-alpes.fr/certicompil/chamois-benchs
https://gricad-gitlab.univ-grenoble-alpes.fr/certicompil/chamois-benchs
https://github.com/csmith-project/csmith
https://github.com/intel/yarpgen
https://github.com/Mrktn/ccg

Lazy Code Transformations in a Formally Verified Compiler

Table 1: GCC, our fork Base=(scheduling + CSE3 + unroll single), and our fork Base+LCT versus mainline CompCert on RISC-V— Higher is better

Setup GCC-O1 Base Base + LCT
LLVMtest/fpconvert +24.22% +7.9% +17.15%

LLVMtest/matmul +15.9% +115.05% +144.11%

LLVMtest/nbench_bf +74.58% +11.84% +24.51%

MiBench/jpeg +27.75% +20.62% +24.75%

MiBench/sha +92.43% +45.68% +51.73%

MiBench/stringsearch +133.34% +40.28% -10.15%

PolyBench/* +64.05% +38.06% +46.23%

TACLeBench/bsort +49.04% +9% +33.16%

TACLeBench/deg2rad +56.75% +41.5% +50.28%

TACLeBench/md5 +42.18% +18.59% +47.93%

Figure 11: Oracle and Validator times w.r.t. the number of
instructions (logarithmic scale)

number of instructions per BTL function. These results are shown

in Figure 11. On average, and keeping the 64 candidates thresh-

old, the validator is even slightly faster than the oracle for a given

benchmark size.

7 RELATEDWORK AND CONCLUSION
Strength-reduction designates various transformations, from replac-

ing single instructions to linear-function test replacement. The only

form of SR in the official CompCert is a form of peephole
22
, divided

among instruction selection and constant propagation. Modern, un-

trusted compilers rather implement straight-line SR (SLSR), a more

powerful transformation targeting code sequences with arithmetic

statements
23
, that simplifies complex sequences unhandled by loop

SR algorithms. We ported the expansion mechanism recently pro-

posed by Six et al. [32] to BTL, and it could be (as a future work)

extended to perform SLSR as well.

The loop nests SR algorithms in GCC & LLVM are SSA based
24
,

and might be very difficult to adapt in a formally verified con-

text. They can reduce induction variables, but also perform linear-

function test replacement (i.e. completely eliminate the original

22
Replacing an instruction sequence by a more efficient pattern.

23
In LLVM: https://github.com/llvm/llvm-project/blob/main/llvm/lib/Transforms/

Scalar/StraightLineStrengthReduce.cpp;
In GCC: https://github.com/gcc-mirror/gcc/blob/master/gcc/gimple-ssa-strength-
reduction.cc.
24
LoopSR in LLVM: https://github.com/llvm/llvm-project/blob/main/llvm/lib/

Transforms/Scalar/LoopStrengthReduce.cpp; IVOPTS in GCC: https://github.com/gcc-
mirror/gcc/blob/master/gcc/tree-ssa-loop-ivopts.cc.

induction variable). Supporting similar algorithms would require

extending BTL with partial SSA forms (e.g. by encoding phi-nodes

with explicit parallel moves on joining edges [2]). Alternatively, one

might want to extend the SSA validators of Demange [7], Demange

and Fernandez de Retana [8], Demange et al. [9], to support finer

invariants (in addition to strong SSA invariants). Furthermore, both

GCC and LLVM use a scalar evolution (SCEV) analysis, an efficient

technique to find induction variables in specific code regions (e.g.

loops). Proving correct such an analysis would nonetheless be inter-

esting, knowing that it is subject to implementation bugs [36, §3.7,

LLVM Bug #4]. Among state-of-the-art methods for loop SR, there

are two main axes (as documented by Cooper et al. [6, §2]): meth-

ods working “a single loop at a time”, seeking for loop-induction

variables [5] (e.g. SSA based techniques of GCC & LLVM); and data-

flow approaches [25] (e.g. LSR), which do not require control-flow

analyses, and are mostly inspired by code motion & PRE.

Tristan and Leroy [34] proposed the first formally verified LCM

optimization, and experimented it on the top of CompCert. They

used a translation validator replaying some data-flow analyses: the

advantage of their approach is that it does not need hints, because

it redoes the necessary calculations from scratch. However, their

validator is a priori more costly than ours. In contrast with us,

their LCM is also able to anticipate trapping instructions thanks

to an anticipability (also called inevitability) calculus performed

during the validation. On the other hand, they do not have unrolling

mechanisms like ours that increase LCM’s opportunities.

Unfortunately, their work was never integrated in the official

CompCert (for reasons unknown to us). Moreover, the code avail-

able online
25

does not include any information about compatible

CompCert versions, nor about how to compile, integrate, or even

run it. As it dates from 2009, their code is surely based on a Comp-

Cert version older than ten years (e.g. before the support of 64-bits

architectures). Thus, we have not experimentally compared our

LCM with theirs, and the related paper only mentions results about

compilation/validation time.

We implemented, combined, and enhanced the LCM & LSR al-

gorithms of Knoop et al. [18, 19]. Our solution is integrated within

CompCert, and validated by our formally verified general purpose

framework thanks to invariants infered from data-flow equations.

ACKNOWLEDGMENTS
This work is supported by the French National Research Agency

in the framework of the “France 2030” program (ANR-15-IDEX-

0002) and by the LabEx PERSYVAL-Lab (ANR-11-LABX-0025-01).

25https://github.com/jtristan/CompCert-Extensions

11

https://github.com/llvm/llvm-project/blob/main/llvm/lib/Transforms/Scalar/StraightLineStrengthReduce.cpp
https://github.com/llvm/llvm-project/blob/main/llvm/lib/Transforms/Scalar/StraightLineStrengthReduce.cpp
https://github.com/gcc-mirror/gcc/blob/master/gcc/gimple-ssa-strength-reduction.cc
https://github.com/gcc-mirror/gcc/blob/master/gcc/gimple-ssa-strength-reduction.cc
https://github.com/llvm/llvm-project/blob/main/llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp
https://github.com/llvm/llvm-project/blob/main/llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp
https://github.com/gcc-mirror/gcc/blob/master/gcc/tree-ssa-loop-ivopts.cc
https://github.com/gcc-mirror/gcc/blob/master/gcc/tree-ssa-loop-ivopts.cc
https://github.com/jtristan/CompCert-Extensions

Léo Gourdin

We would like to thank Sylvain Boulmé, Frédéric Pétrot, David

Monniaux, and Delphine Demange for their support and advice.

REFERENCES
[1] Jan Andersson. 2020. Development of a NOEL-V RISC-V SoC Targeting Space Ap-

plications. In 2020 50th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks Workshops (DSN-W). 66–67. https://doi.org/10.1109/DSN-
W50199.2020.00020

[2] Andrew W. Appel. 1998. SSA is Functional Programming. SIGPLAN Not. 33, 4
(apr 1998), 17–20. https://doi.org/10.1145/278283.278285

[3] Rastislav Bodík, Rajiv Gupta, and Mary Lou Soffa. 1998. Complete Removal of

Redundant Expressions. In Proceedings of the ACM SIGPLAN 1998 Conference on
Programming Language Design and Implementation (Montreal, Quebec, Canada)

(PLDI ’98). Association for Computing Machinery, New York, NY, USA, 1–14.

https://doi.org/10.1145/277650.277653
[4] Sylvain Boulmé. 2021. Formally Verified Defensive Programming (efficient Coq-

verified computations from untrusted ML oracles). Habilitation Thesis. Université

Grenoble Alpes. https://hal.archives-ouvertes.fr/tel-03356701
[5] John Cocke and Ken Kennedy. 1977. An algorithm for reduction of operator

strength. Commun. ACM 20, 11 (Nov. 1977), 850–856. https://doi.org/10.1145/
359863.359888

[6] Keith D. Cooper, L. Taylor Simpson, and Christopher A. Vick. 2001. Operator

strength reduction. ACM Transactions on Programming Languages and Systems
23, 5 (Sept. 2001), 603–625. https://doi.org/10.1145/504709.504710

[7] Delphine Demange. 2012. Semantic Foundations of Intermediate Program Rep-
resentations. Ph. D. Dissertation. École Normale Supérieure de Cachan, France.

http://people.irisa.fr/Delphine.Demange/papers/DemangePhD.pdf EAPLS Best
PhD Dissertation Award 2012. Gilles Kahn PhD Thesis Award 2013.

[8] Delphine Demange and Yon Fernandez de Retana. 2016. Mechanizing con-

ventional SSA for a verified destruction with coalescing. In 25th International
Conference on Compiler Construction. Barcelona, Spain. https://doi.org/10.1145/
2892208.2892222

[9] Delphine Demange, David Pichardie, and Léo Stefanesco. 2015. Verifying Fast

and Sparse SSA-based Optimizations in Coq. In 24th International Conference on
Compiler Construction, CC 2015. London, United Kingdom. https://doi.org/10.
1007/978-3-662-46663-6_12

[10] Stefano Di Mascio, Alessandra Menicucci, Eberhard Gill, Gianluca Furano, and

Claudio Monteleone. 2019. Leveraging the Openness and Modularity of RISC-V

in Space. 16 (2019), 1–19. https://doi.org/10.2514/1.I010735
[11] Heiko Falk, Sebastian Altmeyer, Peter Hellinckx, Björn Lisper,Wolfgang Puffitsch,

Christine Rochange, Martin Schoeberl, Rasmus Bo Sørensen, Peter Wägemann,

and Simon Wegener. 2016. TACLeBench: A Benchmark Collection to Support

Worst-Case Execution Time Research. In 16th International Workshop on Worst-
Case Execution Time Analysis (WCET 2016) (OpenAccess Series in Informatics
(OASIcs), Vol. 55), Martin Schoeberl (Ed.). Schloss Dagstuhl–Leibniz-Zentrum für

Informatik, Dagstuhl, Germany, 2:1–2:10. https://doi.org/10.4230/OASIcs.WCET.
2016.2

[12] Jonathan S. Golan. 1999. Semimodules over Semirings. In Semirings and their
Applications. Springer Netherlands, Dordrecht, 149–161. https://doi.org/10.1007/
978-94-015-9333-5_14

[13] Léo Gourdin, Benjamin Bonneau, Sylvain Boulmé, David Monniaux, and Alexan-

dre Bérard. 2023. Formally Verifying Optimizations with Block Simulations.

(May 2023). https://hal.science/hal-04102940 preprint.

[14] M.R. Guthaus, J.S. Ringenberg, D. Ernst, T.M. Austin, T. Mudge, and R.B. Brown.

2001. MiBench: A free, commercially representative embedded benchmark suite.

In Proceedings of the Fourth Annual IEEE International Workshop on Workload
Characterization. WWC-4 (Cat. No.01EX538). IEEE, Austin, TX, USA, 3–14. https:
//doi.org/10.1109/WWC.2001.990739

[15] Daniel Kästner, Jörg Barrho, Ulrich Wünsche, Marc Schlickling, Bernhard Schom-

mer, Michael Schmidt, Christian Ferdinand, Xavier Leroy, and Sandrine Blazy.

2018. CompCert: Practical Experience on Integrating and Qualifying a For-

mally Verified Optimizing Compiler. In ERTS2 2018 - 9th European Congress
Embedded Real-Time Software and Systems. 3AF, SEE, SIE, Toulouse, France, 1–9.
https://hal.inria.fr/hal-01643290

[16] James C. King. 1976. Symbolic Execution and Program Testing. Commun. ACM
19, 7 (1976), 385–394. https://doi.org/10.1145/360248.360252

[17] Jens Knoop, Oliver Ruthing, and Bernhard Steffen. 1995. Optimal Code Motion:

Theory and Practice. ACM Transactions on Programming Languages and Systems
16 (Sept. 1995). https://doi.org/10.1145/183432.183443

[18] Jens Knoop, Oliver Rüthing, and Bernhard Steffen. 1992. Lazy code motion.

In Proceedings of the ACM SIGPLAN 1992 conference on Programming language
design and implementation - PLDI ’92. ACM Press, San Francisco, California,

United States, 224–234. https://doi.org/10.1145/143095.143136
[19] Jens Knoop, Oliver Rüthing, and Bernhard Steffen. 1993. Lazy Strength Reduction.

Journal of Programming Languages 1 (1993), 71–91. https://www.clear.rice.edu/
comp512/Lectures/Papers/Knoop-LazyStrengthReduction.pdf

[20] Xavier Leroy. 2009. Formal verification of a realistic compiler. Commun. ACM
52, 7 (2009). HAL:inria-00415861 http://gallium.inria.fr/~xleroy/publi/compcert-
CACM.pdf

[21] Xavier Leroy. 2009. A formally verified compiler back-end. Journal of Automated
Reasoning 43, 4 (2009), 363–446. http://xavierleroy.org/publi/compcert-backend.
pdf

[22] Tao Lu. 2021. A Survey on RISC-V Security: Hardware and Architecture. http:
//arxiv.org/abs/2107.04175 arXiv:2107.04175 [cs].

[23] David Monniaux, Léo Gourdin, Sylvain Boulmé, and Olivier Lebeltel. 2023. Test-

ing a Formally Verified Compiler. In Tests and Proofs - 17th International Confer-
ence, TAP 2023, Held as Part of STAF 2023, July, 2023, Proceedings, Vol. to appear.

Springer. https://hal.science/hal-04096390
[24] David Monniaux and Cyril Six. 2021. Simple, light, yet formally verified, global

common subexpression elimination and loop-invariant code motion. In LCTES
’21: 22nd ACM SIGPLAN/SIGBED International Conference on Languages, Compil-
ers, and Tools for Embedded Systems, Virtual Event, Canada, 22 June, 2021, Jörg
Henkel and Xu Liu (Eds.). ACM, 85–96. https://doi.org/10.1145/3461648.3463850

[25] E. Morel and C. Renvoise. 1979. Global optimization by suppression of partial

redundancies. Commun. ACM 22, 2 (Feb. 1979), 96–103. https://doi.org/10.1145/
359060.359069

[26] George C. Necula. 2000. Translation validation for an optimizing compiler. 83–94.

https://doi.org/10.1145/349299.349314
[27] A. Pnueli, M. Siegel, and E. Singerman. 1998. Translation validation. In Tools and

Algorithms for the Construction and Analysis of Systems, Gerhard Goos, Juris Hart-
manis, Jan van Leeuwen, and Bernhard Steffen (Eds.). Vol. 1384. Springer Berlin

Heidelberg, Berlin, Heidelberg, 151–166. https://doi.org/10.1007/BFb0054170
Series Title: Lecture Notes in Computer Science.

[28] Louis-Noël Pouchet. 2012. the Polyhedral Benchmark suite. http://web.cs.ucla.
edu/~pouchet/software/polybench/

[29] Silvain Rideau and Xavier Leroy. 2010. Validating register allocation and spilling.

In Compiler Construction (CC 2010), Vol. 6011. Springer, 224–243. http://gallium.
inria.fr/~xleroy/publi/validation-regalloc.pdf

[30] Hanan Samet. 1976. Compiler testing via symbolic interpretation. In Proceedings
of the 1976 Annual Conference, Houston, Texas, USA, October 20-22, 1976, John A.

Gosden and Olin G. Johnson (Eds.). ACM, 492–497. https://doi.org/10.1145/
800191.805648

[31] Cyril Six, Sylvain Boulmé, and David Monniaux. 2020. Certified and efficient

instruction scheduling: application to interlocked VLIW processors. Proc. ACM
Program. Lang. 4, OOPSLA (2020), 129:1–129:29. https://hal.archives-ouvertes.
fr/hal-02185883

[32] Cyril Six, Léo Gourdin, Sylvain Boulmé, David Monniaux, Justus Fasse, and

Nicolas Nardino. 2022. Formally Verified Superblock Scheduling. In Certified
Programs and Proofs (CPP ’22). Philadelphia, United States. https://hal.archives-
ouvertes.fr/hal-03200774

[33] Chengnian Sun, Vu Le, Qirun Zhang, and Zhendong Su. 2016. Toward under-

standing compiler bugs in GCC and LLVM. In Proceedings of the 25th International
Symposium on Software Testing and Analysis. ACM, Saarbrücken Germany, 294–

305. https://doi.org/10.1145/2931037.2931074
[34] Jean-Baptiste Tristan and Xavier Leroy. 2009. Verified Validation of Lazy Code

Motion. 316–326. http://gallium.inria.fr/~xleroy/publi/validation-LCM.pdf
[35] Andrew Waterman, Yunsup Lee, David Patterson, Krste Asanovic, Volume I User

level Isa, AndrewWaterman, Yunsup Lee, and David Patterson. 2014. The RISC-V

instruction set manual. Volume I: User-Level ISA’, version 2 (2014).

[36] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. 2011. Finding and under-

standing bugs in C compilers. 283–294. https://doi.org/10.1145/1993498.1993532
[37] Zhide Zhou, Zhilei Ren, Guojun Gao, and He Jiang. 2021. An empirical study

of optimization bugs in GCC and LLVM. Journal of Systems and Software 174
(April 2021), 110884. https://doi.org/10.1016/j.jss.2020.110884

12

https://doi.org/10.1109/DSN-W50199.2020.00020
https://doi.org/10.1109/DSN-W50199.2020.00020
https://doi.org/10.1145/278283.278285
https://doi.org/10.1145/277650.277653
https://hal.archives-ouvertes.fr/tel-03356701
https://doi.org/10.1145/359863.359888
https://doi.org/10.1145/359863.359888
https://doi.org/10.1145/504709.504710
http://people.irisa.fr/Delphine.Demange/papers/DemangePhD.pdf
https://doi.org/10.1145/2892208.2892222
https://doi.org/10.1145/2892208.2892222
https://doi.org/10.1007/978-3-662-46663-6_12
https://doi.org/10.1007/978-3-662-46663-6_12
https://doi.org/10.2514/1.I010735
https://doi.org/10.4230/OASIcs.WCET.2016.2
https://doi.org/10.4230/OASIcs.WCET.2016.2
https://doi.org/10.1007/978-94-015-9333-5_14
https://doi.org/10.1007/978-94-015-9333-5_14
https://hal.science/hal-04102940
https://doi.org/10.1109/WWC.2001.990739
https://doi.org/10.1109/WWC.2001.990739
https://hal.inria.fr/hal-01643290
https://doi.org/10.1145/360248.360252
https://doi.org/10.1145/183432.183443
https://doi.org/10.1145/143095.143136
https://www.clear.rice.edu/comp512/Lectures/Papers/Knoop-LazyStrengthReduction.pdf
https://www.clear.rice.edu/comp512/Lectures/Papers/Knoop-LazyStrengthReduction.pdf
http://gallium.inria.fr/~xleroy/publi/compcert-CACM.pdf
http://gallium.inria.fr/~xleroy/publi/compcert-CACM.pdf
http://xavierleroy.org/publi/compcert-backend.pdf
http://xavierleroy.org/publi/compcert-backend.pdf
http://arxiv.org/abs/2107.04175
http://arxiv.org/abs/2107.04175
https://hal.science/hal-04096390
https://doi.org/10.1145/3461648.3463850
https://doi.org/10.1145/359060.359069
https://doi.org/10.1145/359060.359069
https://doi.org/10.1145/349299.349314
https://doi.org/10.1007/BFb0054170
http://web.cs.ucla.edu/~pouchet/software/polybench/
http://web.cs.ucla.edu/~pouchet/software/polybench/
http://gallium.inria.fr/~xleroy/publi/validation-regalloc.pdf
http://gallium.inria.fr/~xleroy/publi/validation-regalloc.pdf
https://doi.org/10.1145/800191.805648
https://doi.org/10.1145/800191.805648
https://hal.archives-ouvertes.fr/hal-02185883
https://hal.archives-ouvertes.fr/hal-02185883
https://hal.archives-ouvertes.fr/hal-03200774
https://hal.archives-ouvertes.fr/hal-03200774
https://doi.org/10.1145/2931037.2931074
http://gallium.inria.fr/~xleroy/publi/validation-LCM.pdf
https://doi.org/10.1145/1993498.1993532
https://doi.org/10.1016/j.jss.2020.110884

	Abstract
	1 Introduction
	2 General Overview
	2.1 Quick Background on LCM & LSR
	2.2 Architecture of Our Solution
	2.3 Symbolic Simulation Modulo Invariants
	2.4 LCT of a Running Example
	2.5 Symbolic Simulation of Our Example

	3 Our Anticipation-Restrained LCT
	3.1 Steps Common to All Candidates
	3.2 IR-Points for Trapping Instructions

	4 Iterative LSR with Substitutions
	4.1 Instantiating Common LCT Steps for LSR
	4.2 Generalizing LSR on Basic-Blocks
	4.3 Affine Forms Strength-Reduction
	4.4 Iterative Substitution of Auxiliary Variables

	5 Inferring Invariants from Analyses
	5.1 Preservation Points for Gluing Invariants
	5.2 Saving Constants with History Invariants

	6 Experimental Evaluation
	6.1 Performance Benchmarks
	6.2 Translation Validation Time Measurements

	7 Related Work and Conclusion
	Acknowledgments
	References

