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Résumé

Les récentes avancées liées aux véhicules sous-marins au-
tonomes impliquent la nécessité de pouvoir localiser préci-
sément ces derniers dans leur environnement. Cependant,
la précision des systemes de positionnement acoustique
n’est pas suffisante. Une localisation plus fine pourrait
alors étre obtenue en utilisant les observations visuelles
du robot. Dans cette étude, nous évaluons des méthodes
de I’état de I'art de localisation visuelle développées en
milieu terrestre sur le jeu de données sous-marin Eiffel To-
wer. Celui-ci contient des images issues de quatre visites de
la méme cheminée hydrothermale étendues sur cing ans.
Nous montrons que ces méthodes ont du mal a localiser
des images issues d’années différentes. Nous menons en-
suite une analyse pour évaluer les facteurs qui peuvent étre
responsables de cette baisse de performance.

Mots Clef

Localisation visuelle, robotique sous-marine.

Abstract

With the advent of autonomous underwater vehicles comes
the need to localize them precisely in their environment.
The robot’s location is usually retrieved using acoustic po-
sitioning systems. However, in the context of autonomous
vehicles, these systems may not be available or sufficiently
accurate. A finer localization could be obtained using the
robot’s visual observations. In this study, we benchmark
state-of-the-art visual localization methods that were deve-
loped for terrestrial applications on the Eiffel Tower deep-
sea dataset. The latter embeds four visits of the same hy-
drothermal vent over five years. We show that these me-
thods struggle to localize images collected in different
years. We conduct an analysis to assess which factors may
be responsible for this performance hit.

Keywords

Visual localization, marine robotics.

FIGURE 1 — Structure-from-Motion (SfM) reconstruction
of the Eiffel Tower hydrothermal vent off the Azores Is-
lands, visited four times between 2015 and 2020.

1 Introduction

Autonomous robots such as self-driving cars or delivery
drones are increasingly developed. However, while most
popular applications are either terrestrial or aerial, under-
water vehicles have also much to gain from advances in this
area. Underwater applications such as coastal surveillance,
underwater cartography, or even robots that regularly mo-
nitor a site of scientific interest could benefit from the ex-
tended autonomy. A key step towards this goal is the abi-
lity for the robot to localize itself in its surroundings. In
underwater environments, and more specifically in deep
sea, absolute localization has proven to be a challenging
problem. To tackle it, underwater robots make use of mul-
tiple sensors. Working class Remotely Operated underwa-
ter Vehicles (ROV) or Autonomous Underwater Vehicles
(AUV) are equipped with high grade sensors including an
Utra-Short Baseline acoustic positioning system (USBL),
an Inertial Navigation System (INS), a Doppler Velocity
Log (DVL) and a depth sensor. The sensor data are fu-
sed to compute the navigation of the system with regard to
the ship. Absolute position is then retrieved by localizing
the ship with GPS. However, this estimate is coarse and its
margin of error is proportional to the distance between the
vehicle and the ship.



This paper investigates a specific scenario in which a ROV
is used to visit a site of scientific interest on a yearly basis
in order to monitor its evolution. The costs of ROV opera-
tions being high, we sought to perform future visits using
an AUV. In this situation, the AUV needs to localize itself
with respect to the observations made in previous visits by
the ROV. Because of the margin of error of aforementio-
ned sensors, we take an interest in the information provi-
ded by the camera of the robot. More specifically, this pa-
per focuses on localizing the robot in a previously visited
environment based on its visual observation, a problem ter-
med visual localization [1, 2]. Most existing methods have
been designed for terrestrial applications, and their transfer
to underwater environments may not be trivial. Indeed, the
explored site may be subject to changes, e.g. sedimenta-
tion, and underwater images exhibit very singular charac-
teristics, e.g., backscattering and wavelength absorption.

Most state-of-the-art algorithms rely on deep-learning ba-
sed features [3, 4], or estimate 3D scene coordinates di-
rectly from a single image using neural networks [5, 6, 7].
However, these approaches require a large amount of data
for training. While such data is available in great quantity
for terrestrial applications, they are much more scarce in
underwater scenarios, hence the interest in evaluating the
performance of existing methods in this environment. We
have therefore used the publicly available Eiffel Tower da-
taset [8] with data from four different ROV visits of the
same hydrothermal vent between 2015 and 2020 (Fig. 1).
A 3D model of the scene was built from acquired images
by performing Structure-from-Motion (SfM) using COL-
MAP [9, 10] and loose poses priors computed from the
system navigation. This dataset presents a vast panel of un-
derwater image characteristics. Moreover, it includes some
particularly challenging scenarios because of the evolu-
tion of the site and the changes in the environment during
the different visits. We benchmarked four renowned me-
thods in terrestrial localization on the Eiffel Tower data-
set. Some of the techniques rely on deep-learned features
trained on terrestrial datasets [3, 4] while in others the fea-
tures are learned specifically for each scene [7, 11]. Results
show that on the underwater dataset, during the same vi-
sit and thus without change of environment, these methods
achieve results comparable with their performance on ter-
restrial datasets. Conversely, none of them perform close to
the terrestrial results when evaluated across different visits,
even in comparable scenarios where visits are performed in
mismatched day/night conditions or in different seasons.
This suggests the need to develop methods specific to the
underwater conditions.

Section 2 reviews visual localization datasets, benchmarks
and previous work on underwater pose estimation. Section
3 is dedicated to the presentation of the dataset and the
benchmarked localization methods. Section 4 details the
experimental setup and parameters used for each method.
Section 5 presents and discusses the benchmark results.

2 Related work

Because of the interest in visual localization, numerous lo-
calization methods have been proposed [12, 11, 6, 3, 7, 4].
With recent advances in machine-learning, many of these
methods rely on data-driven approaches [11, 6, 3, 7, 4],
e.g., deep-learned features. Such models require a large
amount of data for training, which led to the creation of
several visual localization datasets. Common datasets for
benchmarking visual localization algorithms include Aa-
chen Day-Night, RobotCar Seasons and CMU Seasons in-
troduced in [2] and Cambridge [11], 7-Scenes [13] and 12-
Scenes [14]. All of them are terrestrial. 7-Scenes and 12-
Scenes are collected in an indoor setting, while all others
are composed of outdoor environments. Sattler et al. da-
tasets [2] exhibit some difficult localization scenarios like
day/night observations. In some cases, hand-labelling 2D-
3D matches were even necessary to accurately estimate
the camera poses. While there exist many terrestrial data-
sets, such data is scarce and difficult to access in under-
water scenarios. Moreover, while terrestrial images might
be coupled with GPS or odometry data, AUVs operate in
a GPS-less environment, making it much more difficult to
have access to georeferenced data. Existing underwater da-
tasets [15, 16] focus on providing data for the development
of underwater SLAM algorithms. AQUALOC dataset [16]
provides underwater images synchronized with inertial and
depth data for 3 different sites off Corsica’s shore. One of
these sites is a harbor lying at a depth of 3 to 4 m and the
other two are archaeological sites that lie at a depth of 270
m and 380 m. Images were acquired with a monochroma-
tic camera. While sequences follow different trajectories,
all different visits occurred during the same day, not cove-
ring all the possible changes that can happen in this envi-
ronment, e.g., salinity variation that can alter the pinhole
model, increased turbidity, sedimentation or marine popu-
lation changes.

Visual localization benchmarks on terrestrial datasets were
already conducted in [1, 2, 17]. Nielsen et al. evaluated
PoseNet [11], an end-to-end visual localization neural net-
work, on an underwater dataset [18]. Other works also ta-
ckled the particularities of underwater images in other sce-
narios. Some studies [19, 20] focused on the estimation of
the pose of known objects in an underwater environment.
Other researchers trained a neural network to estimate the
pose between two teamed-up underwater robots [21].
Visual localization datasets require reference camera poses
for each of the images, which can be constructed in dif-
ferent ways. For example, PoseNet’s underwater evalua-
tion [18] was conducted on an unconventional dataset
where camera poses were obtained with an underwater mo-
tion capture system. Most common methods to access such
information as well as the scene’s geometry rely on SfM or
depth-based SLAM. However, in a deep-sea environment,
motion capture is out of the question due to the difficulties
in deploying such a system, and depth-based SLAM is dif-
ficult to set up because of the absorption of infrared light in



FIGURE 2 — Example of the challenging nature of the tar-
geted underwater data. Backscatter and color absorption at-
tenuate the image signal in a distance-dependent manner,
making it difficult to observe far off elements of the scene.

water. Thereby, SfM appears to be a sensible choice for es-
timating the camera poses and the scene’s geometry in the
underwater environment. Nevertheless, Brachmann et al.
showed that the performance of a localization method on
a given dataset is greatly impacted by the method used to
build the “ground-truth” of this dataset [17]. Indeed, me-
thods that minimize the same error as the algorithm used
for estimating the ground-truth poses have an advantage
because they lead to the same local minima. This paper will
discuss results obtained by taking into consideration that
the ground-truth of the underwater dataset was constructed
using SfM.

3 Method

The work presented here consists in generating a 3D mo-
del and corresponding image poses of a hydrothermal vent
using SfM and evaluating the performance of different lo-
calization methods on this model.

3.1 Dataset

Over the last decade, the EMSO-Azores observatory moni-
tored a hydrothermal vent field off the Azores Islands in the
Mid-Atlantic Ridge. One of the hydrothermal vents, named
Eiffel Tower was visited by a ROV operated by the French
Research Institute for the Exploitation of the Sea (Ifremer)
in 2015, 2016, 2018 and 2020. It lies at a depth of approxi-
mately 1700 meters and spans over 800 m?.

During each visit, 4000 to 6000 images have been acquired

by the ROV Victor 6000, embedding a camera with a spe-
cial optical lens designed to correct glass-water diffraction.
The ROV navigation was obtained from its USBL, INS,
DVL and depth sensors. It provides an estimate of the vehi-
cle’s localization that is consistent for each individual visit.
Because no light from the surface reaches such depths, the
robot was also equipped with an artificial lighting system
to illuminate the hydrothermal vent.

The dataset exhibits underwater imagery specificities, i.e.,
strong distortion and poor range of vision because of light
absorption (Fig. 2). Moreover, because the scene is al-
ways illuminated by a light source placed near the camera,
backscattering is accentuated and illumination is constantly
changing. In addition, the investigated site also shows some
peculiar characteristics, like moirage (smoke) coming from
the chimneys.

3.2 3D Model

Using aforementioned images and available navigation
data, a sparse 3D model of all visits was built using COL-
MAP SfM [9]. Navigation data was used to perform spa-
tial matching within each year. A vocabulary tree was
then used for matching images between different years and
images that lack navigation data. The resulting model is
used as ground-truth for the camera poses and scene geo-
metry. The scale of the model was retrieved by aligning
2016 poses with poses priors obtained with navigation.

3.3 Visual localization methods

We will evaluate 4 different visual localization methods,
each using data-based models for different tasks.

PoseNet In [11] Kendall et al. replaced the classification
layer of a deep neural network to regress camera poses.
From a simple inference, this new network directly pre-
dicts a camera pose given its image. The model’s parame-
ters were optimized by minimizing a loss function that de-
fines the error between ground-truth and estimated poses.
However, the design of the loss function is challenging be-
cause it needs to embed an error in SE(3) into a scalar to
be optimized through gradient backpropagation. This pa-
per evaluates a PoseNet-like network with two different
loss functions : i) PoseNet loss [11] weights translation
and rotation errors by a fixed factor 5 ii) Homoscedas-
tic loss [22] weights translation and rotation errors through
two learnable factors 5, and §, trained during the optimi-
zation.

hLoc This approach [3] divides the localization problem
into two main steps. First, images that are similar to the cur-
rent observation are retrieved. Then local features between
the retrieved images and the current observation are mat-
ched. The final pose is then computed with PnP and RAN-
SAC. Global retrieval and local matching are both perfor-
med with deep neural networks.

PixLoc In [4] Sarlin et al. designed an end-to-end pipe-
line for performing photometric alignment. They localized
a query image by aligning it with multiple previously seen



FIGURE 3 — Global retrieval of a 2016 test image on 2015 train images using NetVLAD. Test image pose is in green.
Retrieved images are in red. All images in the train set are in blue.

images. To do so, the authors minimized a photometric er-
ror on multiple levels, from coarse to fine. This photometric
error was computed on multi-level deep-learned features.
Previously seen images were retrieved by using deep glo-
bal features matching just as in the first step of hLoc. The
authors also suggested that the pose may be initialized with
hLoc and then further refined with this method. We refer to
this approach as hLoc + PixLoc.

DSAC#* With this method, Brachmann et al. once again
improve their end-to-end localization pipeline introduced
in DSAC [5] and revisited in DSAC++ [6]. Using a neu-
ral network, they first estimated 3D scene coordinates for
some pixel grids of the image. Then, for RGB images,
they followed a differentiable PnP/RANSAC scheme to es-
timate the pose of the camera.

4 Experiments

We evaluate the performance of the aforementioned me-
thods in two different scenarios. To begin with, the me-
thods are validated by localizing images acquired within
the same visit, i.e., during the 2015 dive. One every five
frame is sequentially selected to be part of the test set, and
the rest of the frames is used for the train set. This par-
ticular dataset split does not suffer from any environment
change, furthermore we ensure no regions of the scene re-
main unseen during training. Subsequently, all methods are
benchmarked on every year starting from 2016, in a setting
quite similar to the target application yet much more chal-
lenging due to mismatches between train and test. Follo-
wing a chronological rationale, image poses of each year
are estimated using data from all the previous available
years. For instance, 2018 image poses are retrieved using



Set  Method Median errors lem,1° 2cm,2° 3em,3° S5cm,5° 25cm,2° 50cm,5° 500 cm, 10°
PixLoc 0.001m, 0.019° 96.72%  97.95%  98.26%  98.77% 99.08% 99.18% 99.28%
hLoc 0.001m, 0.021° 98.46% 99.59% 99.79% 100.00% 100.00% 100.00 % 100.00 %

2015 hLoc+PixLoc 0.001m, 0.014° 99.08% 99.59%  99.59% 100.00% 100.00% 100.00% 100.00 %
DSAC* 0.533m, 4.900° 0.00% 0.21% 0.31% 1.44% 18.67% 42.36% 69.64%
PoseNet 0.250m, 0.837° 0.00% 0.10% 0.31% 0.92% 45.44% 87.38% 99.79%
Homoscedastic ~ 0.138m, 0.820° 0.21% 0.62% 2.36% 6.36% 76.10% 96.62% 100.00 %
PixLoc 7.741m, 45.254° 0.32% 0.86% 1.68% 3.59% 7.40% 8.81% 13.94%
hLoc 0.437m, 4.827° 2.51% 8.08% 12.94%  24.86% 44.91% 49.15% 51.88%

2016 hLoc+PixLoc 0.426m, 4.696° 2.19% 7.74% 13.07%  25.28% 45.03% 49.26 % 51.96 %
DSAC* 12.080m, 67.454°  0.00% 0.00% 0.00% 0.00% 0.16% 1.30% 6.46%
PoseNet 4.805m, 26.199° 0.00% 0.00% 0.00% 0.00% 0.03% 0.41% 21.72%
Homoscedastic ~ 4.045m, 22.277° 0.00% 0.00% 0.00% 0.00% 0.08% 1.78% 27.91%
PixLoc 12.635m, 61.073°  0.25% 0.47% 0.55% 0.73% 1.25% 4.22% 8.68%
hLoc 1.632m, 15.320° 1.23% 2.32% 2.91% 3.64% 9.07% 27.69 % 47.80%

2018 hLoc+PixLoc 1.628m, 15.289° 1.37% 2.24% 2.88% 3.60% 9.21% 27.51% 47.83%
DSAC* 13.239m, 70.808°  0.00% 0.00% 0.00% 0.00% 0.00% 0.30% 3.49%
PoseNet 3.289m, 17.974° 0.00% 0.00% 0.00% 0.00% 0.02% 0.61% 31.57%
Homoscedastic ~ 2.817m, 14.407° 0.00% 0.00% 0.00% 0.02% 0.00% 1.57% 38.30%
PixLoc 10.580m, 58.616°  0.00% 0.03% 0.08% 0.18% 2.21% 4.00% 7.33%
hLoc 4.199m, 32.348° 0.03% 0.20% 0.46 % 2.67% 28.79% 36.53% 41.22%

2020 hLoc+PixLoc 4.190m, 32.338° 0.03% 0.18% 0.43% 2.42% 29.03% 36.55% 41.27%
DSAC* 14.066m, 93.291°  0.00% 0.00% 0.00% 0.00% 0.00% 0.03% 0.66%
PoseNet 2.586m, 10.047° 0.00% 0.00% 0.00% 0.00% 0.08% 1.76% 45.62%
Homoscedastic ~ 1.795m, 9.054° 0.00% 0.00% 0.00% 0.00% 0.31% 4.25% 52.06%

TABLE 1 — Median localization errors and percentage of poses localized within given thresholds in meters and degrees

2015 and 2016 images, poses and scene geometry.
Hereby, we present the parameters used for each of the me-
thods.

PoseNet We re-implemented the network as described
in [11], except for replacing the GoogLeNet backbone with
a more modern MobileNetV2 [23]. We used 3 = 500 for
PoseNet loss as suggested in [11] for the outdoor Cam-
bridge dataset, and initialized the Homoscedastic loss as
suggested in [22], i.e., 5; = 0.0 and 5, = —3.0.

hLoc We used the pipeline presented in [3], i.e., NetV-
LAD [24] for global retrieval and SuperPoint [25] along-
side SuperGlue [26] pre-trained on outdoor scenes for local
matching.

PixLoc We used weights of the network pre-trained on
the MegaDepth dataset [27].

DSAC* We initialized the network as suggested by trai-
ning it for 1000000 iterations to directly regress sparse
scene coordinates resulting from SfM. We then trained the
network end-to-end for 100000 iterations.

5 Results & analysis

For each method, we report the median translational and
rotational errors in meters and in degrees, as in [11, 4, 22].
We also report the classical percentage of poses localized
within given thresholds in cm and degrees [3, 4, 2]. Table 1

shows the results on two scenarios : i) train and test sets
composed of images from the same visit in 2015; ii) for
every year starting from 2016 the train set consists in all
visits prior to the given year, and the test set is the given
year.

As previously mentioned, the performance of the methods
is first validated on the 2015 subset. Because this sub-
set was acquired during the same visit, there is almost no
change in the environment and all test camera poses lie on
the trajectory of the train camera poses. These two condi-
tions greatly ease the localization task. This is reflected
by the results obtained on this subset. hLoc and PixLoc
achieve a localization of almost every pose within 1 cm/1°.

However, very poor results are obtained with all methods
on the cross-years splits. Unintuitively, DSAC* shows the
worst results, even though it is directly trained on the un-
derwater scene. The network appears to have failed to ge-
neralize learned scene coordinates to new observations. In-
terestingly, the PosetNet architecture achieves performance
on par with the state-of-the-art localization method hLoc.
Thanks to its much simpler pipeline, and because it was
directly trained on underwater data, the network managed
to generalize to new observations, resulting in more robust
but still coarse localization. The results of hLoc and Pix-
Loc can be partly explained by the struggle of NetVLAD to
match cross-years images. Figure 3 shows the train images
retrieved by NetVLAD for a given test image. It also shows
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(b) Cumulative histogram of the distance between a test image
and its closest image in the train set.

FIGURE 4 — Comparison between NetVLAD and best candidate matches.

all poses for images in the train set, that are possible can-
didates for image retrieval. In this case, it is easy to notice
that there were many better candidates for the test image
than the retrieved NetVLAD images. It appears that the net-
work failed to identify which side of the top of the chimney
was observed, resulting in a large error. As seen in Fig. 3,
this task is not trivial, even for an experimented pilot. To
evaluate the performance of NetVLAD across the whole
dataset, Figure 4a displays a cumulative histogram of the
distance between test images and their top 3 matches in the
train set as retrieved by NetVLAD. According to the histo-
gram on the 2015 subset, built with train and test images of
the same visit, the network matches similar images whose
poses are close when there is no change in the environment.
On the contrary, it shows poor performance on cross-years
matching, with more than half of the retrieved images taken
at least 7 meters apart from the test image. This histogram
can be compared with Fig. 4b that provides a cumulative
histogram of the distance between test images poses and
their closest poses in the train set. All things considered,
since more than 74% of test images have a candidate in the
train set within 2 meters, errors of an amplitude of Fig. 4a
can only be explained by the difficulties encountered by
NetVLAD for matching cross-years images. It is interes-
ting to note that except for the 2015 subset, test images
have closer retrieval candidates each year. This is because
over the different visits, the area covered by the train set
expands. We can also notice that localization results dete-
riorates over the years for all methods except PoseNet and
Homoscedastic, which is unintuitive because more data is
available. By leveraging the observations made on NetV-
LAD, we argue that the more data is available, the more
the network struggles to accurately match images between
different years, as it promotes images with similar environ-
ment conditions.

As shown by Brachmann et al. in [17], different locali-
zation algorithms greatly benefit from different methods
for estimating the ground-truth of the poses and scene
geometry. Because SfM was used as ground-truth in the

present study, methods that minimize the same quanti-
ties as SfM are expected to perform better on the bench-
marked dataset. Such methods include hLoc and to a les-
ser extent, DSAC*. While DSAC* estimates poses with a
PnP/RANSAC scheme, it still relies on “fake” scene coor-
dinates generated by a neural network, unlike hLoc. In a
way, PixLoc also regresses similar quantities as SfM. Ho-
wever, in its final localization pipeline, it minimizes a deep-
learned photometric error. However, these benefits are ne-
gligible compared to the aforementioned problems.

All benchmarked visual localization algorithms rely on
data-driven modules. Typically, these methods require
GPU hardware for real-time processing, which may not
always be readily available, especially on embedded ro-
botic systems. Despite this limitation, these methods are
often necessary to achieve satisfactory performance. For
instance, SIFT features may struggle to provide accurate
matches between images taken in different years, whereas
SuperPoint [25] and SuperGlue [26] provide a clear impro-
vement in such scenarios.

6 Conclusion

In this paper, we benchmarked four different visual lo-
calization methods on a very challenging underwater da-
taset. While they perform on par with terrestrial appli-
cations when localizing within the same visit, these me-
thods struggle to generalize to new observations with ma-
jor changes in the environment. Nevertheless, hLoc shows
some promising results and future work may involve trai-
ning global and local descriptors on underwater data to be
more robust to underwater environment changes that can
be much different from their terrestrial counterparts. Glo-
bal retrieval could also be improved by using sequential
images to disambiguate hard cases.
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