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Abstract
XLSR-53, a multilingual model of speech, builds a vector repre-
sentation from audio, which allows for a range of computational
treatments. The experiments reported here use this neural
representation to estimate the degree of closeness between audio
files, ultimately aiming to extract relevant linguistic properties.
We use max-pooling to aggregate the neural representations from
a ‘snippet-lect’ (the speech in a 5-second audio snippet) to a
‘doculect’ (the speech in a given resource), then to dialects and
languages. We use data from corpora of 11 dialects belonging
to 5 less-studied languages. Similarity measurements between
the 11 corpora bring out greatest closeness between those that
are known to be dialects of the same language. The findings
suggest that (i) dialect/language can emerge among the various
parameters characterizing audio files and (ii) estimates of overall
phonetic/phonological closeness can be obtained for a little-
resourced or fully unknown language. The findings help shed
light on the type of information captured by neural representations
of speech and how it can be extracted from these representations.
Index Terms: pre-trained acoustic models, language documen-
tation, under-resourced languages, similarity estimation

1. Introduction
The present research aims to contribute to a recent strand
of research: exploring how pre-trained multilingual speech
representation models like XLSR-53 [1] or HuBERT [2] can be used
to assist in the linguistic analysis of a language [3]. XLSR-53, a
multilingual model of speech, builds a vector representation from
an audio signal. The neural representation is different in structure
from that of the audio recording. Whereas wav (PCM) audio
consists in a vector of values in the range [-1:+1], at a bit-depth
from 8 to 32 and a sampling rate on the order of 16,000 Hz, the
XLSR-53 neural representation contains 1,024 components, at a
rate of 47 frames per second. The size of the vector representation
is on the same order of magnitude as that of the audio snippet,
and the amount of information can be hypothesized to be roughly
comparable. But the neural representation, unlike the audio
format, comes in a vector form that is tractable to a range of auto-
matic treatments building on the vast body of work in data mining
and machine learning. The neural representation of speech holds
potential for an epistemological turning-point comparable to the
introduction of the spectrogram 8 decades ago [4, 5, 6].

The experiments reported here use the neural representation
yielded by XLSR-53 (used off-the-shelf, without fine-tuning,
unlike [7, 8]) as a means to characterize audio: estimating the
degree of closeness between audio signals, and (ultimately)
extracting relevant linguistic properties, teasing them apart
from other types of information, e.g. technical characteristics
of the recordings. We start out from 5-second audio snippets,

and we pool neural representations (carrying out mean pooling,
i.e. averaging across frames) to progress towards the level of
the entire audio file, then the entire corpus (containing several
audio files). We thereby gradually broaden the scope of the
neural representation from a ‘snippet-lect’ (the speech present
in an audio snippet1) to a ‘doculect’ (a linguistic variety as it
is documented in a given resource [9]), then towards ‘dialects’
(other groupings could also be used: by sociolect, by speaking
style/genre, etc.) and, beyond, entire languages.

In a set of exploratory experiments, we build neural represen-
tations of corpora of 11 dialects that belong to 5 under-resourced
languages. We then use linguistic probes [10] (i.e. a multiclass
classifier taking as input the frozen neural representation of an
utterance and assigning it to a language, similarly to a language
identification system) to assess the capacity of XLSR-53 to
capture language information. Building on these first results, we
propose to use our probe on languages not present in the training
set and to use its decisions as a measure of similarity between
two languages, following the intuition that if an audio segment
of an unknown language is identified as being of language A, then
the language in the audio segment is “close” to A.

Representations like XLSR-53 have already been used to
develop language identification systems (e.g. [11, 12]), but their
use in the context of under-resourced languages and linguistic
fieldwork datasets raises many challenges. First, there is much
less data available for training and testing these systems both in
terms of number of hours of audio and number of speakers. For
instance, VoxLingua [13], a dataset collected to train language
identification models, contains 6, 628 hours of recordings in
107 languages, i.e. at least an order of magnitude more data
per language than typical linguistic fieldwork corpora. Second,
the languages considered in a language documentation context
have not been used for (pre-)training speech representations and
have linguistic characteristics that are potentially very different
from the languages used for pre-training them (on consequences
of narrow typological scope for Natural Language Processing
research, see [14]). The ability of models such as XLSR-53 to
correctly represent these languages remains an open question.
We also aim to assess to what extent pre-trained models of speech
can address these two challenges.

Similarity measurements between the 11 corpora bring out
greatest closeness between those that are known to be dialects
of the same language. Our findings suggest that dialect/language
can emerge among the many parameters characterizing audio
files as captured in XLSR-53 representations (which also include
acoustic properties of the environment, technical characteristics
of the recording equipment, speaker ID, speaker gender, age,

1‘Snippet-lect’ is coined on the analogy of ‘doculect’ [9], to refer to
the characteristics of a 5-second audio snippet.



social group, as well as style of speech: speaking rate, etc.),
and that there is potential for arriving at useful estimates of
phonetic/phonological closeness. The encouraging conclusion
is that, even in the case of a little-resourced or fully unknown
language, ‘snippet-lects’ and ‘doculects’ can be placed relative
to other speech varieties in terms of their closeness.

An estimation of closeness between speech signals can have
various applications. For computational language documentation
[15, 16, 17, 8], there could be benefit in a tool for finding
closest neighbours for a newly documented language (with a
view to fine-tuning extant models for the newly documented
variety, for instance), bypassing the need for explicit phoneme
inventories, unlike in [18]. For dialectology, a discipline that
traditionally relies on spatial models based on isogloss lines
[19], neural representations of audio signals for cognate words
allow for calculating a phonetic-phonological distance along a
dialect continuum [3]; our work explores whether cross-dialect
comparison of audio snippets containing different utterances also
allows for significant generalizations. Last but not least, for the
community of speech researchers, the task helps shed light on the
type of information captured by neural representations of speech
and how it can be extracted from these representations. This
work is intended as a stepping-stone towards the mid-term goal of
leveraging neural representations of speech to extract typological
features from neural representations of speech signals: probing
linguistic information in neural representations, to arrive at
data-driven induction of typological knowledge [20]. Note that
our work is speech-based, like [21, 22], and unlike text-based
research predicting typological features (e.g. [23]).

This article is organized as follows. In Section 2 we introduce
our system. In Section 3 we briefly review the languages used
in our experiments. Finally, we report our main experimental
findings in Section 4.

2. Probing Language Information in Neural
Representations

Predicting the language of a spoken utterance can, formally, be
seen as a multi-class classification task that aims at mapping
an audio snippet represented by a feature vector to one of the
language labels present in the training set. Our implementation
of this principle is very simple: we use 5-second audio snippets
and use, as feature vector, the representation of the audio signal
built by XLSR-53, a cross-lingual speech representation that
results from pre-training a single Transformer model from the
raw waveform of speech in multiple languages [1]. XLSR-53
is a sequence-to-sequence model that transforms an audio file
(a sequence of real numbers along the time dimension) into
a sequence of vectors of dimension 1,024 sampled at 47 Hz
(i.e. it outputs 47 vectors for each second of audio). We use
max-pooling to aggregate these vectors and map each audio
snippet to a single vector. In all our experiments, we use a logistic
regression (as implemented in the sklearn library [24]) as the
multi-class classifier with ℓ2 regularization.

Importantly, our language identification system uses the rep-
resentations built by XLSR-53without ever modifying them and is
therefore akin to a linguistic probe [10]. We do not carry out fine-
tuning of a pre-trained model. Language identification is a well-
established task in the speech community and has been the focus of
much research; our work does not aim at developing a state-of-the-
art language identification model, but at showing that neural repre-
sentations encode language information, and that this information
can be useful for language documentation and analysis. Said

differently, we do not aim to leverage “emergent abilities” of large
language models [25], but to explore one of their latent abilities.

Our experimental framework allows us to consider several
questions of interest to linguists. We can use various sets of labels,
e.g. language names, or any level of phylogenetic (diachronic)
grouping, or again typological (synchronic) groupings. We can
also vary the examples the classifier is trained on. Among the
many possibilities, we consider three settings:
• a dialect identification setting in which the classifier is trained

on recordings of N language varieties (dialects) and is then
used (and evaluated) to recognize one of these;

• a language identification setting which differs from the
previous setting only by the definition of the label to predict:
the goal is now to identify languages, which constitute groups
of dialects. Importantly, this classifier can be used to predict
the language affiliation of a dialect that is not present in the
train set, so that it can be used to predict, for instance, the
language to which a hitherto unknown dialect belongs;

• a similarity identification setting which differs from the first
setting only by the definition of the train set: in this setting, we
use our model on utterances of a dialect that is not present in
the train set. Since the classifier cannot predict the exact dialect
(as its label is not available from within the train set), it seems
intuitively likely to choose the label of a dialect with similar
characteristics. Crucially, we believe that this setting will there-
fore allow to identify similarities between language varieties.

3. Information on Languages and Dialects
In all our experiments, we use datasets from the Pangloss Collec-
tion [26],2 an open archive of (mostly) endangered languages.Our
experiments focus on 11 dialects that belong to five languages:
• two dialects of Nepali: Achhami (Glottocode [27]: doty1234)

and Dotyal (doty1234);
• two dialects of Lyngam (lyng1241): Langkma and Nongtrei;
• three varieties of Na-našu, a dialect of Shtokavian Serbo-

Croatian (shto1241) spoken by Italian Croats;
• two dialects of War (khas1268): Amwi (warj1242) and

Nongtalang (nong1246);
• two dialects of Na (yong1270): Lataddi Na (lata1234) and

Yongning Na (yong1288).
We also consider two additional languages, Naxi (naxi1245) and
Laze (laze1238), because of their closeness to Na [28].

For the sake of consistency in the experiments reported here,
we use “dialect” as the lowest-level label, and “language” for
the first higher level, as a convention. We are aware that the
distance between “dialects” (and between “languages”) varies
significantly from one case to another. We do not assume that the
distance between Achhami and Dotyal (dialects of Nepali) is (even
approximately) the same as that between Langkma and Nongtrei
(dialects of Lyngam), or between Lataddi Na and Yongning Na.
The key assumption behind our use of terms is that language
varieties referred to as “dialects” of the same language are close
enough that it makes sense to assume that the degree of phonetic
similarity between them can serve as a rule-of-thumb estimate for
the distance that separates them, without requiring higher-level
linguistic information (of the type used to train a language model).

In this preliminary study we have decided to focus on a small
number of languages and to focus on qualitative analysis of our
results, rather than running a large-scale experiment on dozens of

2Website: pangloss.cnrs.fr. A tool for bulk downloads and for
tailoring reference corpora is available: OutilsPangloss.



utterance split file split
precision recall F1 precision recall F1

Achhami 0.98 0.91 0.95 0.88 0.93 0.90
Dotyal 1.00 0.98 0.99 1.00 0.30 0.46
Laze 0.96 0.98 0.97 0.80 0.96 0.87
Langkma 0.89 0.90 0.90 0.74 0.96 0.83
Nongtrei 1.00 1.00 1.00 1.00 1.00 1.00
Acquaviva Collecroce 0.93 0.88 0.90 0.80 0.95 0.87
Montemitro 0.92 0.91 0.92 0.94 0.80 0.87
San Felice del Molise 0.89 0.97 0.93 0.87 0.87 0.87
Naxi 0.99 0.96 0.97 0.85 0.95 0.90
Lataddi Na 0.97 0.98 0.97 0.93 0.96 0.94
Amwi 0.94 0.93 0.93 0.67 0.89 0.76
Nongtalang 0.93 0.95 0.94 0.90 0.84 0.87
Yongning Na 0.97 0.97 0.97 0.95 0.97 0.96

macro average 0.95 0.95 0.95 0.87 0.88 0.86

Table 1: Result of our dialect identification experiments.
“Utterance split” refers to the setting in which data from the
same file can appear both in the train and test sets. “File split”
corresponds to the setting in which we require that the files of
the train and test sets are different.

languages. The languages are chosen according to the size of the
available corpora and specific properties. We favored continuous
speech (we left aside corpora consisting solely of word lists or
materials elicited sentence by sentence).

For each of these languages we extracted 2 to 50 files of
variable length (from 33 seconds to 30 minutes).

4. Experiments
In all our experiments, we evaluate the capacity of our classifier
to predict the correct language information (either the label of a
specific dialect or the name of a language) using the usual metrics
for multi-class classification, namely, precision, recall and their
combination in the F1 score.

Dialect Identification To test the ability of a classifier to
recognize a dialect from the representations built by XLSR-53,
we consider a classifier using the names of the 13 dialects or
languages described in Section 3 as its label set. We try out two
configurations. In the first one, all the utterances of a dialect are
randomly divided into a test set (20% of utterances) and a training
set (80%). In the second configuration, the training corpus is
made up of 80% of the files of a dialect and the test corpus contains
the remaining 20%. While the latter configuration is closer to
the real conditions of use of our system (guaranteeing that the
utterances of the test corpus come only from files that have not
been seen at training), it is more difficult to control the size of the
train and test sets, which makes the analysis less straightforward.

The results are reported in Table 1. They show that, in
both configurations, a simple classifier is able to identify the
correct dialect label for an utterance with high accuracy, showing
that XLSR-53 representations encode language information.
Similar observations have already been reported (see, e.g.,
[29]), but to the best of our knowledge, our work is the first
evaluation of the capacity of XLSR-53 representations to identify
under-documented language varieties whose characteristics
are potentially very different from the languages seen at
(pre-)training [8]. Interestingly, the quality of predictions does
not seem to be influenced by the amount of training data (a similar
paradox is reported in the evaluation of another large language
model in multilingual learning: ChatGPT [30]).

The recordings considered in the experiment we have just
described were all collected in the context of linguistic fieldwork,
and thus have some peculiarities that may distort the conclusions

precision recall F1

Laze† 0.97 0.98 0.98
Lyngam 1.00 0.99 0.99
Na 0.96 0.99 0.97
Na-našu 0.99 0.99 0.99
Naxi† 0.89 0.98 0.93
Nepali 1.00 0.46 0.63
War 0.89 0.96 0.93

macro average 0.96 0.91 0.92

Table 2: Performance of a classifier trained to predict languages
(group of dialects). Languages consisting of a single dialect are
indicated with a †.

precision recall F1

Lyngam 0.59 0.81 0.68
Na 0.86 0.83 0.84
Na-našu 0.48 0.75 0.59
Nepali 0.09 0.09 0.09
War 0.74 0.60 0.66

macro average 0.55 0.62 0.57

Table 3: Performance of a classifier trained to predict the
language (group of dialects) of dialects not seen during training.
Naxi and Laze have been left out as there is a single variety of
these languages in our dataset.

we have just drawn. In particular, most of the dialects we con-
sidered have recordings of a single speaker. Moreover, different
dialects of the same language were often recorded by the same
linguist, using the same recording setup (in particular, the same
microphone). We therefore need to check whether our classifiers
just learn to distinguish speakers (in many cases: one per dialect)
or recording conditions. In order to rule out this possibility, we car-
ried out a control experiment in which we tried to predict the file
name (serving as proxy information for the speaker and the record-
ing conditions). A logistic regression trained in the 80-20 condi-
tion described above achieved a macro F1 score of 0.45, showing
that the decision of the classifier is largely based on linguistic infor-
mation, not solely on information about the recording conditions.

Language Identification In a second experiment, we test
the ability of our classifier to identify languages (that is, groups
of dialects). We consider, again, two conditions to train and
evaluate our classifier. In a first condition, the train and test sets
are randomly sampled from all the recordings we consider (with
the usual 80%-20% split) without any condition being imposed
on the files or languages. All dialects are therefore present in both
the test and train sets. In a second condition, the test set is put
together by selecting, for each language (group of dialects), all
the recordings of a randomly chosen dialect. The test set is thus
made up of 5 dialects that have not been seen at training.

Table 2 reports results in the first condition. The classifier
succeeds in identifying the correct language in the vast majority
of cases, a very logical result since the same languages are
present in the train and test sets and the experiments reported
in the previous paragraph proved that it is possible to identify
dialects with good accuracy. To verify that the classifier was able
to extract linguistic information rather than merely memorizing
arbitrary associations between dialects, we performed a control
experiment in which we divided the 13 dialects into 5 arbitrary
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Laze
Laze — 0.3 0.0 1.7 35.0 9.2 6.6 0.0 17.9 0.1 0.1 2.4 26.7

Lyngam
Langkma 6.2 — 0.0 0.6 11.9 0.0 0.0 3.7 4.2 2.5 0.0 5.4 65.5
Nongtrei 0.0 0.0 — 0.0 0.0 0.0 0.0 0.0 0.7 0.0 0.0 0.0 99.3

Na
Lataddi Na 0.6 0.4 0.0 — 52.1 1.3 0.5 0.8 28.5 1.6 0.2 3.5 10.6
Yongning Na 4.4 0.8 0.0 72.4 — 0.0 1.5 0.0 12.5 0.3 0.0 2.1 5.8

Na-našu
Acquaviva Collecroce 0.5 0.5 0.0 4.0 0.2 — 64.2 4.2 8.6 0.0 0.0 3.0 14.8
Montemitro 0.7 0.0 0.0 0.0 0.7 84.4 — 6.4 4.7 0.0 0.0 0.0 3.1
San Felice del Molise 3.3 28.2 0.0 1.5 0.9 11.0 7.7 — 19.3 23.4 0.0 1.5 3.3

Naxi
Naxi 16.5 1.4 0.2 13.0 8.3 0.3 5.7 5.0 — 0.6 1.3 4.0 43.7

Nepali
Achhami 0.6 0.3 0.0 3.4 0.3 0.0 0.0 16.9 20.2 — 0.3 8.3 49.7
Dotyal 0.0 0.0 0.0 20.0 0.0 0.0 0.0 0.0 35.0 0.0 — 35.0 10.0

War
Amwi 0.0 0.1 0.0 9.6 17.0 1.7 0.1 1.1 7.0 5.7 0.0 — 57.5
Nongtalang 5.7 3.2 2.8 8.6 8.4 5.4 1.4 5.0 21.2 5.8 0.1 32.5 —

Table 4: Distribution of the labels predicted by a classifier trained on 12 dialects (in columns) and used on a 13th dialect (unseen at training).
Thus a classifier trained on all except Yongning Na identifies 72.4% of Yongning Na utterances as Lataddi Na and 12.5% as Naxi.

groups having the same size as the languages (dialect groups)
considered in the previous experiment. A classifier considering
these groups as labels achieves a macro F1 score of 0.85. While
this score is high, it is notably lower than the score obtained
by predicting linguistic families, showing that the classifier
decisions are, to a significant extent, based on linguistic criteria.

Table 3 shows the results for the second condition, in which
we evaluate the capacity of a classifier to predict the language
(dialect group) of a dialect that was not part of the train set. Scores
vary greatly by language (group of dialects) and several factors
make it difficult to interpret these results. First, removing a dialect
completely from the train set can result in large variation in its
size and the results of Table 3 are not necessarily comparable with
those reported so far. Second, some confounders seem to cause
particularly poor performance for certain groups of dialects. For
example, recordings of Dotyal are mainly sung epic poetry, so
it is not surprising that any generalization across the two dialects
of Nepali is difficult. Gender seems to be another confounder:
several corpora only contain recordings by speakers of the same
gender, and a quick qualitative study seems to show that a model
trained on a female speaker does not perform well on data by a
male speaker (and conversely). Note, however, that our evaluation
of the performance of the classifier puts it at a disadvantage since
it is evaluated at the level of a 5-second snippet and not of an entire
recording. It is not unlikely that the performance would be better
if we predicted a single label for a whole recording (for example
by taking the most frequent label among those of all snippets).

Similarity Identification Setting In our last experiment,
we trained 12 classifiers, considering all dialects but one for
training and looking at the distribution of predicted labels when
the classifier had to identify snippets of the held-out language.
As explained in Section 2, the classifier cannot predict the correct
label (since the target language is not present in the training
corpus) but might, we believe, pitch on a language with similar
characteristics. Results of this experiment are reported in Table 4.
They allow us to draw several interesting conclusions.

First, these results show that the classifier pitches consistently
on one and the same label. In almost every case, the distribution
of predicted labels is concentrated on a few labels. That means
that the classifier typically identifies almost all snippets from an
audio file as being in the same language. Second, in several cases
(e.g. for dialects of Na, War or Na-našu), the classifier recognizes
the unknown language as a dialect of the same group: for instance
Yongning Na utterances are mainly labelled as Lataddi Na (the
dialect of a nearby village). In addition to its interest for the
automatic identification of dialect groups, this observation proves
that XLSR-53 uncovers representations that somehow generalize
over small dialectal variation.

Further experiments are needed to understand the two cases
where the output of the classifier disagrees with the gold-standard
clustering: the San Felice del Molise dialect of Na-našu, and the
two dialects of Lyngam (Langkma and Nongtrei). (For Nepali,
a plausible confounder was mentioned above: data type – genre –,
as the Dotyal corpus consists of sung epics.)

5. Conclusions

Our exploratory experiments exploring the capacity of XLSR-53
to place audio signals in a language and dialect landscape confirm
the interest of neural representations of speech as an exciting av-
enue of research. Further work is required to ensure that a dialect
identification system bases its decisions on phenomena (detecting
relevant phonetic-phonological structures), not on parameters
such as recording conditions, speaker characteristics (gender,
age...) and speech genre/style, which constitute confounders in a
language identification task. In future work, we plan to reproduce
the experiments on corpora of better-resourced languages, such as
LibriVox or CommonVoice, for which it is easier to control record-
ing conditions, speaker gender, and the amount of training data.
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