N

HAL

open science

Participatory Design and Prototyping
Wendy E. Mackay, Michel Beaudouin-Lafon

» To cite this version:

Wendy E. Mackay, Michel Beaudouin-Lafon.

Participatory Design and Prototyping. Handbook of
Human Computer Interaction, Springer International Publishing, pp.1-33, 2023, 978-3-319-27648-9.

10.1007/978-3-319-27648-9 31-1 . hal-04108636

HAL Id: hal-04108636
https://hal.science/hal-04108636
Submitted on 27 May 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-04108636
https://hal.archives-ouvertes.fr

Prototyping for Participatory Design

Wendy E. Mackay and Michel Beaudouin-Lafon

Abstract Participatory design actively involves users throughout the design process,
from initial discovery of their needs to the final assessment of the system. As in all
forms of interaction design, this requires two complementary processes: generating
new ideas that expand the design space, and selecting specific ideas, thus contracting
the design space. Interaction designers create prototypes that help them generate
and explore this space of possibilities, ideally with the ongoing participation of
users. Successful prototypes represent different aspects of the system that highlight
specific design questions. We classify prototypes based on: Representation, which
refers to their physical form, ranging from paper, cardboard or foam mock-ups to
complete software or hardware simulations; Precision, which refers to the level of
detail, ranging from simple hand-drawn sketches or physical mock-ups to polished
computer-generated images or 3D printed objects; Interactivity, which refers to the
level of interaction possible, ranging from no interaction, such as a video scenario, to
partial interaction, when a designer “walks through” a scenario, to fully interactive,
either simulating interaction with the Wizard-of-Oz method or trying an operational
software or hardware prototype; Life cycle, which refers to the expected evolution
of the prototype, from “throw away” prototypes in the earliest design phase to
successively more developed prototypes in later design phases, to actual components
of the final system; and Scope, which refers to the aspects of the final system covered
by the prototype, including breadth-first horizontal prototypes, depth-first vertical
prototypes, or path-based story prototypes. This chapter explains how to create and
use these different kinds of prototypes, with examples selected from key phases of
the interaction design process.

Keywords: Prototyping, Participatory design, User-centered design, Rapid pro-
totyping, Paper prototyping, Video prototyping, Software prototyping, Taxonomy,

Wendy E. Mackay
Inria and Université Paris-Saclay, 91405 Orsay, France, e-mail: wendy.mackay @inria.fr

Michel Beaudouin-Lafon
Université Paris-Saclay, 91405 Orsay, France e-mail: michel.beaudouin-lafon @universite-paris-
saclay.fr

2 Wendy E. Mackay and Michel Beaudouin-Lafon

Prototype representation, Prototype precision, Prototype interactivity, Prototype life
cycle, Prototype scope, Wizard-of-Oz, Wireframe, Mock-up, Physical prototype,
Functional prototype, Software prototype, Fidelity.

Prototyping for Participatory Design 3

1 Introduction

Prototypes serve as an essential design resource for interaction designers, especially
within a user-oriented participatory design process. Because it is impossible to
consider all design possibilities at once, designers create prototypes to help them
assess specific design alternatives. Prototypes also help designers articulate ideas
and communicate them to other design team members, as well as users, clients,
management and other stakeholders.

This chapter first defines participatory design, also called co-design, and explains
its role as a key form of user-centered design. We then introduce the concept of a de-
sign space, and how participatory design involves continually transitioning between
gathering new information that enlarges the design space and making specific design
choices that reduce the design space. We show how prototypes can both inspire
new possibilities, but also enable comparison of details that clarify specific design
choices.

We next define what we mean by a “prototype”, and introduce a taxonomy for
describing, analyzing and choosing prototypes with the appropriate focus, at the
appropriate level of detail, for a given phase of the design process. We conclude
with a range of specific examples, from early-stage rapid prototyping to more highly
refined, computer-based prototypes more appropriate later in the process.

4 Wendy E. Mackay and Michel Beaudouin-Lafon

2 Participatory design

Interaction design should be both user-centered—the user is the focus of the design—
and iterative—design concepts are successively regenerated and revised (Norman
and Draper, 1986). However, in practice, user-centered design is often limited to
questioning users to get a basic idea of their needs (“need-finding”) at the beginning
of the design process, and then performing user studies to evaluate the resulting
system at the end of the process.

Participatory design (Muller and Kuhn, 1993; Schuler and Namioka, 1993) is
a special case of user-centered design, with the specific goal of actively involving
users throughout the design process, from early identification of user needs to final
assessment of the system. Originally called “co-operative design” (Greenbaum and
Kyng, 1991), the approach was explored extensively in Scandinavia in the 1960s
and *70s to empower users and give them a voice in technology design. Within the
field of Human-Computer Interaction (HCI), Muller and Druin (2002, p. 3) define
participatory design as “a set of theories, practices, and studies related to end-users
as full participants in activities leading to software and hardware computer products
and computer-based activities.” Over the past 30 years, participatory design has
become increasingly popular, and includes a diverse set of practices that support
what Bgdker and Buur (2002) call the “many-voiced nature of design”. Today, the
term “co-design” is sometimes used a synonym for participatory design, especially
within the user experience (UX) design community.

Early and active involvement of users helps designers develop a deeper under-
standing of the actual design problem and avoid faulty design paths. Obtaining user
input at each phase also changes the nature of the final system evaluation, changing
the focus to fine-tuning the interface rather than discovering major usability prob-
lems. Although it may sound expensive, especially if gaining access to “real” users
is difficult, participatory design is often significantly cheaper in the long run. By
refocusing the design on actual user needs, participatory design helps avoid “minor”
design errors that lead to catastrophic failures and can even benefit from unexpected
user innovations.

One common misconception about participatory design is that designers are
expected to abdicate their responsibilities as designers, and leave the design to users.
This is never the case: designers must always consider what users can and cannot
contribute. Normally, users’ key contributions lie in their deep understanding of the
subject matter and the context of use, as well as the specific needs that arise within
that context. A few individuals may also generate “user innovations” or solutions to
a common problem that would benefit other users in similar situations. Although
innovative ideas may arise from both users and designers, it is the design team who
must judge each idea’s feasibility. Because they must design and implement the final
system, designers and developers are responsible for considering the range of options
and constraints and for balancing the trade-offs among them.

One of the challenges of conducting true participatory design is how to success-
fully involve users in each phase of the design process. Muller and Druin (2002) de-
scribe how low-tech prototypes bring users into new relationships with technologies,

Prototyping for Participatory Design 5

Fig. 1 Designers and users collaborate on creating a physical prototype in a participatory design
session. Here, participants are creating a simulated screen with movable sticky notes that represent
pop-up menus and windows, which will later become the basis for a video prototype.

not only to think about technologies or applications they have not previously expe-
rienced, but also to use low-tech materials to reshape those technologies. Because
prototypes are shareable, physical artifacts, they serve as an effective communica-
tion medium for users and the design team. Collaborating on prototype design is an
effective way of involving users, since they provide a medium for users to articulate
their needs and reflect upon the efficacy of proposed design solutions.

We contrast our approach to that of Lim et al. (2008), who describe prototypes
in the context of a fundamentally uni-directional process where designers, ranging
from architects to interaction designers, use prototypes to filter the design space and
concentrate on a few key design issues at a time. We focus instead on interaction
designers who use prototypes in a fundamentally bi-directional process, as a means
of engaging users throughout the design process, as they explore how users will
interact with the yet-to-be-developed system.

Although prototypes are useful in all forms of user-centered design, they offer a
particularly effective method of involving users as full participants in the specification
and evaluation of the design. Users can help construct personas and define how they
would interact with both existing and future technologies. Interaction designers
may also use prototypes to communicate with users and enable them to imagine,
experience and influence diverse aspects of the final system, long before it is built.
Prototypes play an important role in bringing these stories to life: not only to identify
interesting new design directions, but equally important, to highlight key breakdowns
and potential workarounds when the technology is used in a realistic setting. Users
can also create their own prototypes, especially paper mock-ups or quick video
scenarios (Mackay, 2020) (Fig. 1), to generate new ideas and explore interesting
alternatives.

6 Wendy E. Mackay and Michel Beaudouin-Lafon

Every participatory design process incorporates a variety of different types pro-
totypes, created by both designers and users, at all stages of the design process. Each
prototype reveals the strengths and weaknesses of a specific design option, and can
be contextualized to illustrate how users would interact with the final system in a
real-world setting. Prototypes clarify functional requirements and identify potential
usability and performance issues. Because they are concrete and detailed, prototypes
let designers explore and compare realistic scenarios that users can assess relative
to their actual needs. Designers can also compare prototypes to other existing sys-
tems and use them to better understand users’ work practices and context of use.
Each prototype, whether a quick paper prototype or an elaborate functional system,
provides an opportunity for both designers and users to interpret and reassess users’
needs.

2.1 Prototypes help explore the design space

The goal of interaction design is to create something new that meets the needs of
users. Although designers are not scientists, they often borrow findings and methods
from both the natural and social sciences (Mackay, 1988). However, designers also
require additional design methods that help them generate new ideas and balance
complex sets of trade-offs as they develop and refine those ideas.

Paul (Laseau, 1980) describes design as an on-going process that involves idea
elaboration, as designers search for new opportunities and idea reduction, as they
make specific design choices. In 2005, the British Design Council Design Council
(2005) presented this in the form of a Double Diamond, a simplified visual repre-

@mmun\wH°W
Appe

Fig.2 A quick, hand-drawn design space where each dimension includes multiple options. Different
design alternatives are shown in different colors.

Prototyping for Participatory Design 7

sentation of the design process, to capture the alternation between exploring an issue
more widely (divergent thinking) and taking focused action (convergent thinking).
Designers use the concept of a design space to articulate the set of possible design
ideas and constraints that result from divergent thinking. Exploring the design space
allows designers to reject certain ideas and leave others open for creative exploration.

A design space comprises multiple dimensions and individual ideas can be com-
pared based on their place within each dimension. Designers use many different
strategies for representing a design space, including tables, two- or three-dimensional
graphs, and RADAR diagrams, such as the one shown in Fig. 2. This sketch shows
six dimensions relating to the design of “Communication Apps”, including: number
of participants (2-3 people, small group, big group), type of information (audio, im-
ages, video), what participants see (symmetric or asymmetric), continuity (discrete,
mixed or continuous), and what information is captured (drawing, typing, shooting
images, or detecting biometric information).

Designers can use colors to highlight different design options within this design
space. Here, the blue line represents a screen-based image exchange system, modeled
after the “Video Probe” idea (Hutchinson et al., 2003). The yellow line represents an
idea for a live audio heart-beat shared between two people. The orange line represents
a shared video recording and collaborative editing system for a small group. As the
details of a particular design are narrowed down, many of these dimensions become
fixed and the designer considers additional, usually more detailed design dimensions.
For example, the designers might decide that sharing a heart beat is too intrusive
and identify other bio-metric information that might be shared between members of
a small group of workout enthusiasts.

The designer can expand the design space by adding more options, more dimen-
sions or identify gaps at the intersections of two or more dimensions. For example,
the Octopocus dynamic guide (Bau and Mackay, 2008) uses progressive feedfor-

level of
detail
PaperPDA templates
whole B B
gesture Cheat Sheet Hover Widget
Contextual animation
portion of ' OctoPocus
gesture 2l e
. Hierarchical
direction | MarkingMenu Marking Menu
N
only >
once multi-step continuous update rate

Fig. 3 The design space comparing Octopocus (green) with other techniques for providing users
with in-context help, with update rate on the X-axis, and level of detail on the Y-axis.

8 Wendy E. Mackay and Michel Beaudouin-Lafon

ward to show which gesture commands are available in a gesture-based interface.
The design space shown in Fig. 3 compares existing systems according to their level
of detail and update rate, and shows a major gap that Octopocus fills, since the guide
is continuously updated as the user draws the gesture.

Design space ideas come from many sources: existing designs, other designers,
external inspiration or even accidents that prompt new ideas. Designers are respon-
sible for creating a design space that is specific to a particular design problem. They
explore this design space, expanding and contracting it as they add and eliminate
ideas. The process is iterative, more cyclic than reductionist. That is, the designer
does not begin with a rough idea and successively add more precise details until the
final solution is reached. Instead, she begins with a design problem, which imposes
a set of constraints, and generates a set of ideas to form the initial design space. She
then explores this design space, preferably with users, and selects a particular design
direction to pursue. Each exploration closes off part of the design space, but opens up
new possibilities to be explored. The designer can expand the design space by adding
new options along any particular dimension, or adding entirely new dimensions. She
can then explore the expanded design space, paying special attention to gaps that
appear or interesting new intersections, and make new design choices.

All designers work with constraints: not just limited budgets and programming
resources, but also design constraints. Working with constraints is actually impor-
tant, since a designer cannot be creative along all dimensions at once. However,
some constraints are unnecessary, derived from poor framing of the original design
problem. If we consider a design space as a set of ideas and a set of constraints, the
designer has two options. She can modify ideas within the specified constraints or
modify the constraints to enable new sets of ideas.

The ability to consider different kinds of constraints is correlated with different
kinds of education. For example, engineering students are trained to treat the design
problem as a given, whereas design students are encouraged to challenge, and if
necessary, change the initial design problem. If the designer reaches an impasse,
she can either generate new ideas or redefine the problem (and thus change the
constraints). Some of the most effective design solutions derive from a more careful
understanding and re-framing of the design brief.

Note that all members of the design team, including users, may contribute ideas
to the design space and help select design directions from within it. However, the
activities of expanding and contracting the design space are normally kept separate
from each other. Expanding the design space requires creativity and openness to new
ideas. During this phase, participants should avoid criticizing ideas and concentrate
on generating as many as possible. Clever ideas, half-finished ideas, “silly” ideas,
impractical ideas——all contribute to the richness of the design space and improve
the quality of the final solution.

By contrast, contracting the design space requires critical evaluation of ideas.
Designers and users should work together to consider constraints and weigh the
trade-offs. Each major design decision must eliminate part of the design space—
rejecting ideas is necessary in order to experiment and refine others and make
progress in the design process. Choosing a particular design direction should spark

Prototyping for Participatory Design 9

new sets of ideas, and those new ideas are likely to pose new design problems. In
summary, exploring a design space is the process of moving back and forth between
creativity and choice. Note that this shift between expanding the design space and
making specific choices can occur at any time, not only when shifting from one
design phase to another, but even within a specific design activity.

One of the best ways to explore the design space is by creating prototypes, which
act as concrete representations of new ideas and clarify specific design directions.
The next two sections describe the types of prototypes that have proven most useful
in research and product development.

10 Wendy E. Mackay and Michel Beaudouin-Lafon

3 A Taxonomy of Prototypes

A prototype is a concrete representation of part or all of an interactive system—a
tangible artifact, not an abstract description that requires interpretation. A successful
prototype highlights essential features that should be investigated at a particular
moment in the design process. Various stakeholders, including designers, managers,
developers, clients and users, can all engage with prototypes to explore different
design possibilities and to envision and reflect upon the final system.

Prototypes are both artifacts in their own right and important components of the
design process. When viewed as artifacts, successful prototypes support creativity
by helping the designer capture and generate ideas, facilitate the exploration of
the design space, and uncover relevant information about users and their work
practices. Prototypes also encourage communication by providing a common ground
for designers, users, and other stakeholders to interact with each other, generate ideas
and choose among design alternatives. Prototypes support early assessment, since
they can be evaluated in various ways, from informal user feedback to traditional
user studies, at each phase of the design process.

Bill Buxton (2007) argues that sketching is a critical design activity, essential both
for “getting the design right and the right design”. The act of sketching or building
prototypes helps designers to think, whether solving specific design problems or
generating new ideas. Prototypes may uncover issues or help designers refine their
ideas. They also let designers compare options or choose among alternatives. Lim
et al. (2008) describe prototypes as “filters” that highlight certain aspects of the
design problem and minimize others. In each case, the prototype acts as an important
resource, integral to the design process. Design is fundamentally about making
choices, not only among different design solutions, but about what type of prototype
is most appropriate when, as well as how to address a particular design issue. We
classify prototypes along five primary dimensions:

* Representation describes the physical form of the prototype, from rough sketches
to wireframes to full computer simulations.

* Precision describes the level of detail, from rough and informal to highly polished.

» Interactivity describes the level of interaction with the prototype, from pre-
recorded video or animations to fully interactive.

» Lifecycle describes the expected evolution of the prototype, from rapid “throw-
away” prototypes to components of the final system.

¢ Scope refers to the part of the final system that is covered by the prototype,
including breadth-first horizontal prototypes, depth-first vertical prototypes and
path-based story prototypes.

Prototyping for Participatory Design 11

3.1 Representation

Prototypes serve different purposes and thus take different forms. A series of quick
paper sketches can be considered a prototype; so can a detailed computer simulation.
Both are useful: each supports the design process in different ways. We distinguish
among three forms of representation: physical prototypes made of paper or other ma-
terials, non-functional software prototypes that illustrate visual or dynamic elements;
and functional software or hardware prototypes that actually work.

* Physical prototypes, often referred to as paper prototypes, include paper sketches,
illustrated storyboards and paper, cardboard or foam mock-ups (Fig. 4) and may be
hand-drawn or printed from a computer. Their most salient characteristic is their
rapid creation, usually in the early stages of design, and they are often discarded
when they have served their purpose.

Non-functional prototypes include wireframes, animations, and interactive video
presentations that are created with computer design tools, as well as three-
dimensional user interface mock-ups created with computer-aided design (CAD)
software and laser cutters or 3D printers. Compared to physical prototypes, these
non-functional prototypes usually provide more detailed representations of each
idea.

Functional prototypes include either working software programs or working hard-
ware that implement part or all of the design, so that users can interact with them
as if they were the real system. They can be programmed using a variety of

Fig. 4 Left: A physical prototype composed of multiple sticky notes. Right: A paper prototype
layered onto a smartphone, with movable elements. The designers move these elements to create
the illusion of interacting with the system.

12 Wendy E. Mackay and Michel Beaudouin-Lafon

tools, including scripting languages, user-interface frameworks and libraries, and
user-interface builders.

Designers of websites and other screen-based systems usually develop wire-
frames—skeletal drawings of each screen—to show what the user will see on the
screen. They usually begin with rough, hand-drawn sketches that illustrate the basic
layout, as in Fig. 5:left, and then use more advanced tools to create screens that look
like the final system. Each set of wireframes focuses on the key elements of interest
at the time they are drawn.

Unfortunately, designers with extensive experience using specific design tools,
such as Fiema or Adobe Xb, often prefer beginning the design process with non-
functional software prototypes. Programmers often make the same argument in favor
of coding functional prototypes, even at the earliest stages of design. In both cases,
they feel that, given their skill with the tools, they will be able to skip early ideation,
and quickly move directly to more detailed, precise designs.

In our experience, this is never a good strategy, since using a computer-based tool
too early almost always slows the process down, rather than speeding it up. Not only
are physical prototypes quick and inexpensive, which encourages rapid iteration and
more thorough exploration of the design space, they also help prevent the design
team from becoming overly attached to the first reasonable solution.

We argue that designers should begin with physical prototypes (Fig. 5:left) to
explore their ideas, and only use software prototypes, whether non-functional or
functional, to clarify and refine the design (Fig. 5:right). Rapidly created physical
prototypes are also far less likely to constrain how designers think or encourage them
to commit to a particular idea too soon. Every design tool, programming language or
development environment involves a set of underlying assumptions that may or may
not be appropriate for the current design problem. They also require significantly
more effort and making changes is far more time consuming. In addition, the software
libraries that come with each design tool include a set of predefined components
which encourages designers to ignore the details of the interaction and instead focus
on assembling wireframes, often with preexisting “frames” or “views”, instead of
creating novel alternatives that meet the user’s specific design needs. This imposes
specific constraints on both the graphics and the interaction, limits creativity and
restricts the number of ideas that will be considered.

The cost of producing fully functional software or hardware prototypes is even
higher. Skilled programmers or engineers will be required to implement advanced
interaction or visualization techniques or to meet tight performance constraints.
Functional prototypes should thus be created during the later design phases, when
the basic design strategy has been decided.

Finally, and perhaps most importantly, physical prototypes can be created by a
wide range of people, not just programmers, and act as a critical component of
any true participatory design process. Everyone, including designers, programmers,
managers, clients, and users, can all contribute on an equal basis. Unlike using a
design application or programming language, modifying a storyboard or a cardboard
mock-up requires no particular skill. Collaborating on physical prototypes not only
increases participation in the design process, but also improves communication

Prototyping for Participatory Design 13

D‘If)l‘l) le@n
N
\'W";"\-‘
davrk
Enplein GDPR uas\‘)-
P e . sk Our Story
‘ Svbscribe S ‘C‘M-Lk Now
= —
[“ “a “ \

Fig. 5 Left: Rough, low-fidelity hand-drawn wireframe. Right: Precise, high-fidelity Figma wire-
frame created later in the design process.

among team members and increases the likelihood that the final design solution will
be well accepted by both clients and users.

3.2 Precision

Prototypes serve as explicit representations of the design, and help designers, en-
gineers and users reason about the system being built. By their nature, prototypes
require details. A verbal description such as “the user opens the file” or “the system
displays the results” provides no information about what the user actually does or
sees. By contrast, prototypes force designers to show the interaction: Just how does
the user open the file and what are the specific results that appear on the screen?

Precision refers to the relevance of details with respect to the purpose of the
prototype. It defines the tension between what the prototype states (relevant details)
and what the prototype leaves open (irrelevant details). What the prototype includes is
subject to evaluation; what the prototype leaves open is subject to further discussion
and design space exploration.

The form of the prototype must be adapted to the desired level of precision. The
literature often uses the terms low-fidelity and high-fidelity (or lo-fi and hi-fi), but
precision can involve intermediate levels as well, and some mixed fidelity prototypes
include elements of both. For example, when sketching the layout of an interface,
the relative positions of the elements are relevant, but their specific labels are not.
The hand-drawn prototype (Fig. 5:left) uses generic terms and squiggles instead of
the final text. Here, the focus is on the overall layout and use of background color,
not the final wording or style. By contrast, the FigmA prototype (Fig. S:right) is a
high-fidelity prototype with all the specific details of the layout rendered in detail.

We distinguish among three levels of precision: low-fidelity prototypes that limit
detail; mixed-fidelity prototypes that include detail only on selected interface ele-
ments; and high-fidelity prototypes that include all possible relevant detail.

14 Wendy E. Mackay and Michel Beaudouin-Lafon

* Low-fidelity prototypes are typically rough sketches or physical prototypes with
very few details, intended to give a quick, overall impression of what a particular
screen or aspect of the system might look like.

* Mixed-fidelity prototypes render certain aspects of the interface with rich detail,
and quickly sketch the rest. Some designers ‘“sketchify” a computer-generated
layout, to show which parts have been fixed and which remain open to further
iteration.

* High-fidelity prototypes are usually created with a computer and include all the
relevant visual details of what the screen or the hardware will look like.

The level of precision typically increases as successive prototypes are developed
and more and more details are set, which means that the level of precision is often
correlated with the type of representation. Thus physical prototypes tend to be
sketchy and imprecise, whereas software prototypes are more precise, and functional
prototypes are usually very precise. Note, however, that this is not always the case.
The designer can print a screen from a non-functional software prototype, such as
from Fioma, SkercH or Adobe Xp, and make it “interactive” by adding “buttons”
and “menus” made of sticky notes. By contrast, a working functional prototype may
ignore visual style, perhaps by including generic titles and using a monospace font,
and focus only on how different features are implemented.

Hand-drawn physical prototypes can be drawn extremely precisely (Fig. 6:left),
and three-dimensional physical prototypes can be approximate and imprecise
(Fig. 6:right). Of course, physical prototypes are not a panacea. Sometimes, software
or hardware prototypes are necessary to evaluate a particular design idea, especially
when interactivity (section 3.3) is complex. For example, systems that require a rapid
response to user input or complex, dynamic visualizations may require more elabo-
rate working prototypes. Software prototypes can also take advantage of animations
or trigger transitions when the user presses or clicks on a button.

3.3 Interactivity

Designing effective interaction is difficult. While graphic designers can build on
centuries of visual design, interactive software is still relatively new and the inter-
active capabilities of technology are constantly evolving, especially with the advent
of touch-based mobile devices, virtual and augmented reality, full-body interaction,
etc. The quality of interaction is also tightly linked to users and requires a deep
understanding of their work practices. For example, a video editor designed for a
professional videographer requires a different interaction design than one designed
for teenagers. Designers must take the context of use into account when designing
the details of the interaction.

Designers need to consider how users will interact with their designs, under differ-
ent conditions of use. Prototypes that explicitly consider interactivity help designers
avoid creating frustrating or difficult-to-use systems. Although non-interactive pro-
totypes, such as wireframes, can illustrate how users will react to alternative design

Prototyping for Participatory Design 15

Fig. 6 Left: Creating a hi-fi (high precision) 2D physical prototype. Right: Creating a lo-fi (low
precision) 3D physical prototype

Fig. 7 Left: Two designers manipulate the interface while another shoots a video prototype. Right:
One designer pretends to “resize” a paper window, while another designer shoots the interaction.

decisions, we recommend making prototypes feel interactive to the user. We dis-
tinguish among three types of interactivity: non-interactive prototypes that simply
illustrate interaction possibilities, fixed-path prototypes that test pre-specified inter-
action paths; and open prototypes that allow users to experiment with a variety of
interaction options.

* Non-interactive prototypes do not support interaction directly, but instead help
designers consider different interaction possibilities, especially to illustrate or

16 Wendy E. Mackay and Michel Beaudouin-Lafon

Fig. 8 Storyboards illustrate a series of interactions with the system in the form of a scenario. Left:
Drawing a storyboard, with sticky notes that explain the interaction. Right: Working out the details
of the interaction by following the storyboard.

evaluate scenarios of future use. Designers often create video prototypes in the
earliest design phases (Fig. 7:left), where participants can play the role of users
who interact with physical prototypes (Fig. 7:right). In later design phases, design-
ers create more refined, pre-computed animations to illustrate potential interaction
with non-functional software prototypes.

* Fixed-path prototypes support limited interaction, following a pre-determined
route through the interface. For example, the designer may create a storyboard
that illustrates a series of successive states of the interface, either hand-drawn on
paper or generated with a design tool (Fig. 8.) The user then “interacts” by touching
the relevant part of the drawing or screen, at which point the designer presents
the subsequent page or screen, perhaps with an animation. More sophisticated
versions of this approach can provide multiple alternatives at each step, and an
effective strategy for testing future scenarios.

* Open prototypes support a wide variety of interactions, usually based on a func-
tional prototype that has implemented some, but not necessarily all of the features
of the real system. Here, the user can interact with different parts of the system,
or compare different ways of accomplishing particular tasks. Although these pro-
totypes may appear real, they are usually incomplete, with limited error-handling
or reduced performance relative to the final system.

Designers can create prototypes with different levels of interactivity to address
design challenges at different points of the design process. Non-interactive prototypes
let designers focus on what the proposed interaction will look like, and include
different kinds of representation and levels of precision, ranging from quick videos
of the interaction with rough physical prototypes in the earliest phase of the design,
to highly polished animations or marketing videos that present an idealized view of
the future system at the end of the design process. Fixed-path prototypes are more
common in the middle phase of the design process, since they provide designers and
users with the experience of interacting with the prototype, but only in pre-specified
situations. These are most useful when designers must choose among alternative
forms of interacting with the system. Finally, open prototypes are only possible near

Prototyping for Participatory Design 17

R
|

Fig. 9 Left: Hand-drawn, low-fidelity sketch of a website. Right: High-fidelity non-functional
prototype of the same website.

the end of the design process, since they require extensive technical work to create
them, but are extremely useful for discovering usability problems and understanding
the details of how users will interact with the system in real-world settings.

Designers often create maps that consider how the user will transition from one
state of the interface to the next. Fig. 9 (left) shows a hand-drawn sketch of a series
of wireframes, to show how the user will move from screen to screen. Fig. 9 (right)
shows the same system, but rendered as a higher-precision, non-functional software
prototype, using Ficma. Clicking on one screen enlarges it and lets the user navigate
to different screens.

One of the most important roles of a prototype is to illustrate how the user
will interact with the future system. While it may seem easier and more natural to
explore interaction with fully functional working prototypes, it is essential to work
out the details of the interaction before committing to a major software development
effort. Although designers can use any form of prototype to explore interaction,
manipulating physical prototypes is by far the fastest.

The most common approach is called the “Wizard-of-Oz” method (see section
4.1.2), where one person, the “Wizard”, presents screens and manipulates the proto-
type in response to the actions of the person playing the role of the “user” (Fig. 7:left).
This lets the design team explore different interaction possibilities and test whether
certain actions are particularly easy or difficult.

However, as noted above, while physical prototypes can create highly sophis-
ticated representations of the system, sometimes more highly developed software
prototypes are necessary. Designers can also take advantage of the Wizard-of-Oz
method with functional prototypes that implement certain interactions with the sys-
tem (Fig. 7:right).

18 Wendy E. Mackay and Michel Beaudouin-Lafon

3.4 Lifecycle

Prototypes have different life spans—some are created quickly and thrown away
when no longer needed, others play an on-going, evolving role throughout the design
process. We distinguish among rapid prototypes that are created for a specific purpose
and then discarded; iterative prototypes that evolve, either to work out some details
or to explore various alternatives; and evolutionary prototypes that are designed to
become part of the final system.

* Rapid prototypes are typically physical or non-functional software prototypes that
are inexpensive and easy to produce. Typically created during the early and middle
design phases, they allow designers to quickly explore a wide variety of possible
alternatives, without investing too much time in creating them. Rapid prototypes
are often created to inform a particular design choice, such as ensuring that a
specific interaction can be implemented with a sufficient level of performance.

» [Iterative prototypes are developed as a reflection of the design as it progresses
through each iteration. Designing such prototypes can be difficult given the tension
between evolving toward the final solution and exploring an unexpected new
design directions, any of which may be adopted or thrown away completely.
Some prototype iterations thus explore different variations of the same theme,
while others increase precision and work out the finer details of the interaction.

» Evolutionary prototypes are a special case of iterative prototypes, where the proto-
type evolves into part or all of the final system, such as Agile (Abrahamsson et al.,
2017; Fowler and Highsmith, 2001) programming projects that tightly couple
design and implementation. These functional prototypes require more planning
and practice than the above prototypes, since they act both as representations of
the final system and the final system itself. In general, these prototypes should
be combined with lighter weight prototypes, since evolutionary prototypes are
relatively expensive and make it more difficult to explore alternative designs.

3.5 Scope

The scope of a prototype refers to the part of the interactive system that it covers.
Designers must decide what role prototypes should play with respect to the final
system, as well as the order of creating different prototype elements. We distinguish
among horizontal prototypes that provide an overview of the entire system; vertical
prototypes that focus on a particular feature or interaction; and path-based prototypes
that illustrate specific scenarios of the use of the system in a realistic context.

* Horizontal prototypes help designers represent the entire interactive system to get
an overview of the design. They are particularly useful to get an overall picture
of the system from the user’s perspective and address issues such as consis-
tency (similar functions are accessible through similar user actions), coverage
(all required functions are supported) and redundancy (the same function is/is not

Prototyping for Participatory Design 19

Fig. 10 Wizard of Oz: Left: One designer manipulates a paper prototype for another designer, who
plays the role of the user. Right: A design team tries a functional prototype, as they follow a scripted
scenario.

accessible through different user actions). Early horizontal prototypes are usually
physical and then refined into software prototypes. They can also be functional,
e.g. by using an interface builder without creating the underlying functionality
in order to get an early sense of the overall interface. Such functional prototypes
tend to be evolutionary, as functionality is progressively added to transform them
into the final system.

» Vertical prototypes help designers explore specific features or interactions in
depth. The goal is to assess the feasibility of the feature or interaction, including
testing it with real users. Vertical prototypes are generally high-fidelity, functional
prototypes because their goal is to validate an idea at the system level. They
are usually created early in the project, before the overall architecture has been
decided, and focus on a single design question at a time.

* Path-based prototypes help designers explore specific scenarios of how the system
would be used in a real-world setting. Scenarios are stories that describe a se-
quence of events and how the user reacts. A good scenario includes both common
and unusual situations, and should explore patterns of activity over time. Some
scenarios also focus on potential breakdowns, to help designers consider prob-
lems users may encounter under different circumstances. Path-based prototypes
focus on the features and interactions relevant to the scenario, and range from
non-interactive pre-recorded video prototypes (Fig. 10:left) to fully interactive,
Wizard-of-Oz prototypes (Fig. 10:right). The goal is to create realistic situations
where users can experience the system in real-world contexts, even if they only
address a subset of the planned functionality, and are useful throughout the design
process.

3.6 Summary

Table 1 summarizes the taxonomy of prototypes described above. The values of
each dimension roughly match progress in the design process, from early stages

20 Wendy E. Mackay and Michel Beaudouin-Lafon

where physical, low-fidelity, rapid prototypes help designers explore the design space
and make early decisions, to the final design stages where high-fidelity functional
prototypes can evolve into the final product. Note, however, that design is highly
iterative and it is perfectly possible, indeed often necessary, to create prototypes
with different combinations of dimensions. So a designer can, for example, create a
high-fidelity physical prototype that uses screens printed from a computer in a paper-
prototyping session, and a functional prototype may be developed with the explicit
goal of throwing it away, in order to test a design idea. Designers are encouraged
to mix and match these dimensions to create the optimal type of prototype for a
particular set of design questions at different points in the design process.

Table 1 A taxonomy of prototypes for interactive systems.

Representation Physical Non-functional Functional
Precision Low fidelity Mixed fidelity High fidelity
Interactivity Non-interactive Fixed-path Open

Life cycle Rapid Iterative Evolutionary

Scope Horizontal Vertical Path-based

Prototyping for Participatory Design 21

4 Methods and tools for rapid prototyping

The goal of rapid prototyping is to explore ideas in a fraction of the time it would
take to develop a working system. Shortening the prototype-evaluation cycle lets
the design team evaluate more alternatives and iterate the design several times,
which increases the likelihood of finding a solution that truly meets users’ needs.
Rapid prototypes also help cut off unpromising design directions, saving time and
money. Rejecting an idea based on a rapid prototype is far easier than rejecting a
more fully developed software prototype, functional or not. The methods and tools
presented in this section are organized according to the three types of representation
described in the previous section, from most rapid to most elaborate, including
physical prototypes, as well as both non-functional and functional software (and
hardware) prototypes.

4.1 Physical rapid prototyping methods

Because they do not involve software, physical prototyping methods are often used
as a tool for thinking through the design issues, to be thrown away when they are no
longer needed. We describe four methods: simple paper and pencil sketches, three-
dimensional foam or cardboard mock-ups, Wizard-of-Oz simulations and video
prototypes.

Paper & pencil sketches are the fastest form of prototyping: Designers simply
sketch the interface using paper, transparencies and sticky notes (Mackay, 2020),
and use simple visual effects to animate them in response to the user’s actions
(Fig. 11). For example, a tiny arrow drawn at the end of a long strip cut from a

Fig. 11 Multiple designers manipulate transparencies to show what happens when the user moves
the mouse, represented by an arrow drawn on another transparency.

Wendy E. Mackay and Michel Beaudouin-Lafon

22
transparency makes a handy mouse pointer that the designer can move in response to
the user’s actions. Sticky notes, with pre-prepared lists, can act as “pop-up menus”.
A rectangular cutout in a sheet of paper can be used to illustrate scrolling by sliding
another sheet behind it with the content being scrolled. Playing the roles of both the
user and system helps designers assess multiple layout and interaction alternatives
in a very short period of time. For designers who lack visual design training, we
recommend Greenberg et al. (2010), which offers a systematic approach for learning

how to sketch interactive devices and systems.

4.1.1 Mock-ups

Mock-ups are physical prototypes created with cardboard, foam-core or other found
materials to simulate physical interfaces on mobile devices and other interactive
objects. Creating and interacting with a mock-up helps designers explore how users
will interact with the physical device, and is especially helpful for simulating the use
of mobile devices in different future settings. Mock-ups may be fully simulated, as
in Fig. 12, or take advantage of existing devices, as in Fig. 4, which adds sticky notes
and dots to a smart phone to ensure that the interface is effective at that small scale.

4.1.2 Wizard of Oz

The Wizard of Oz method (Kelley, 1983) gives users the impression that they are
working with a real system, even before it exists. The name comes from the scene

’ [

Fig. 12 A cardboard mockup of an interactive screen from a participatory design project for air

traffic controllers at EuroControl.

Prototyping for Participatory Design 23

in the 1939 movie of the same name where the heroine Dorothy encounters the
“Wizard of Oz”, a giant green human head who breathes smoke and speaks with a
deep voice. She later discovers that the Wizard is in fact a frail old man, the “man-
behind-the-curtain” who pulls levers to make the mechanical Wizard of Oz move
and speak.

The software version of the Wizard of Oz operates on the same principle. A
user sits at a screen and interacts with what appears to be a working program. A
designer at another computer plays the wizard, watching what the user does and
responding directly to the user’s actions. The wizard thus creates the illusion of
a working software program. Alternatively, the wizard can operate from the same
computer, for example by using a display that mirrors what the user sees, or the
user can interact with a projected image operated by the wizard. This method lets
users interact with partially-functional computer systems in a realistic way. Note that
designers may choose whether or not they reveal that the system is actually controlled
by a person. However, for ethical reasons, it is important that the designer debriefs
users appropriately, after the session.

4.1.3 Video prototyping

Video prototypes (Mackay, 1988) use video to illustrate how users will interact with
the new system in a real-world context. Video prototypes may build upon paper
& pencil prototypes and cardboard mock-ups, and can also use the Wizard-of-Oz
method as well as images of real-world settings. Designers use video prototypes to
explore the user’s interaction with the system, including highlighting and assessing
potential breakdowns and workarounds. We distinguish these from tutorial or “how
to” videos that show how to perform specific tasks independent of context, and mar-
keting videos that show an idealized version of the future system without examining
potential problems. Designers should treat video prototypes as an opportunity for
thinking deeply about the proposed system from the user’s perspective.

Creating a video prototype begins with making a storyboard that presents the
scenario as a series of illustrations (either of the system or of users interacting with
it), as well as accompanying dialog and instructions for shooting the video (Fig. 8).
Designers shoot video prototypes using a variation of the Wizard-of-Oz method,
where a camera person shoots video of one or more users as they interact with the
physical or software prototype, while other designers manipulate the prototype in
response to the user(s) actions.

A storyboard, even an informal one, is essential for guiding the shoot. In our
experience, a small design team with a well-designed storyboard can shoot a 3-5
minute video prototype in an hour or two, with no post-hoc video editing. However the
same video prototype can take many hours or even days if shot without a storyboard,
and post-hoc editing is usually required. Title cards, as in silent movies, separate the
clips or sections of the storyboard, and make it easier to navigate the video. A typical
video prototype starts with a title, followed by an establishing shot that shows the
user in the context defined by the scenario. Next, a series of close-up and mid-range

24 Wendy E. Mackay and Michel Beaudouin-Lafon

Fig. 13 A storyboard for a video prototype.

shots, interspersed with title cards, show the actual interactions. A final title card
at the end holds the credits. Fig. 13 shows an example from Mackay (2020), which
provides more detailed examples and guidelines for creating video-based prototypes.

Video prototypes take several forms. In some, a narrator explains each event
and several people on the sidelines may be necessary to move images and illustrate
the interaction. In others, actors simply perform the movements and the viewer is
expected to understand the interaction without a voice-over. Simple special effects
can help illustrate the interactions. “Time-lapse photography” makes images appear
and disappear based on the user’s interaction. For example, to show that pressing a
button pops up a window, first shoot a clip of the user pressing the button. Then,
without the user moving their hand, add the pop-up window and proceed to shoot
the next clip. When played back, the video will give the illusion of immediate
system feedback. Fig. 14 shows one designer shooting video of another designer
who performs the role of the user. For higher fidelity video prototypes, one can use
more sophisticated techniques. For example, MoNTAGE (Leiva and Beaudouin-Lafon,
2018) uses chroma keying to combine video with digital animated sketches.

Prototyping for Participatory Design 25

Fig. 14 One designer plays the role of the user, while the other shoots a video clip.

Combining Wizard-of-Oz and video is a particularly powerful prototyping method
because it gives the person playing the user a real sense of what it might actually feel
like to interact with the proposed tool, long before it has been implemented. Seeing
a video clip of someone else interacting with a simulated tool is more effective than
simply hearing about it; but interacting with it directly is more powerful still. Video
prototyping is also effective for showing software developers how users will interact
with the functionality envisioned by the designers, and reproduce it as faithfully
as possible. This is particularly useful when moving from physical to functional
prototypes.

4.2 Rapid non-functional software prototyping methods

The goal of rapid non-functional software prototyping is to create higher-precision
prototypes than can be achieved with physical prototyping methods. Such prototypes
are important for communicating ideas to key stakeholders, not only users and
developers, but also clients and managers. They also help the design team fine tune
the details of each layout or interaction, and highlight any design problems that were
not apparent in less precise prototypes. Some non-functional software prototypes
are low fidelity prototypes that require highly dynamic interactions or visualizations
that would be difficult or impossible to create with a paper-based physical prototype.

26 Wendy E. Mackay and Michel Beaudouin-Lafon

This section describes methods according to their level of interaction, beginning
with non-interactive animations; followed by interactive simulations that provide
fixed or multiple-path interaction; and concluding with scripting languages that
support open-ended interaction.

4.2.1 Animations

Animations represent what a person would see of the system if he or she were watch-
ing over the user’s shoulder. They are useful when physical prototypes, including
video, fail to capture a particular aspect of the interaction and it is important to have
a quick prototype to evaluate the idea.

Animations can be created with specialized tools such as PRINCIPLE, but also with
any authoring tool that can create images. For example, a slide-making application
such as Microsoft PowERPOINT can be used to draw successive states of the interface
in separate slides. Playing the slide deck then illustrates how the interface would
behave. In a similar vein, many Web designers use Adobe PHOTOSHOP to create
simulations of their web sites. PHoTosHOP images are composed of layers that
overlap like transparencies. The visibility and relative position of each layer can
be controlled independently. Designers can quickly add or delete visual elements,
simply by changing the characteristics of the relevant layer. This permits quick
comparisons of alternative designs and helps visualize multiple pages that share a
common layout or banner.

Even a spreadsheet program can be used for prototyping: Berger (2006) describes
the use of Microsoft EXcEL to prototype form-based interfaces, taking advantage of
the table structure to create grid layouts. The designer can use ExceL’s workbook
feature to create multiple pages accessible by tabs. Quickly flipping among the tabs
illustrates the effect of different interactions.

4.2.2 Interactive simulations

Interactive simulations are digital artifacts that support limited interaction and can
be created without programming. Designers can use tools such as Adobe PHoTOSHOP
and Microsoft POWERPOINT to create simple interactive simulations. With PHoTO-
sHoP, the effect of dragging an icon with the mouse can be obtained by placing the
icon of a file in a layer, and by moving the layer with the PHoTOosHOP panning tool.
With PowerPoINT, animations and transitions can be triggered by clicking on the
slide. Multiple-path interactions can be created by attaching different animations to
different areas on the slide.

Historically, richer tools such as Apple HyPERCARD (Goodman, 1987) and Macro-
media DirRecTor were heavily used to create interactive simulations. HYPERCARD
was based on a card metaphor. Cards shared a background and could contain input
fields and buttons, with associated actions. Macromind DirRecTOrR was based on a
timeline where animations triggered by user actions could be attached to sprites.

Prototyping for Participatory Design 27

Both HypercarD and Director featured a scripting language for programming
advanced behaviors.

More recently, a new breed of tools designed specifically for creating interactive
simulations has emerged. Fiema, SkercH and Adobe Xp are now widely used by
designers of visual interfaces. Both are based on the notion of views (or frames)
that represent different states of the interface. Views contain visual and interactive
elements, and interactions such as clicks can trigger the switch to another view. These
tools come with large collections of components that can be easily reused, such as
interface elements that correspond to the visual aspect of the standard platforms.
However, these tools support only a limited set of interactive behaviors, which leads
to extremely standardized interfaces where most interactions are based on clicks and
taps. As with development tools (see below), these tools tend to shape the designs,
reducing rather than expanding the design spaces that can be explored.

4.2.3 Scripting languages

Scripting languages are the most advanced of on-line rapid prototyping tools. They
make it easy to create throw-away prototypes, in as little as a few hours, or a few days.
Scripting languages are complete programming languages that are both lightweight
and easy to learn. They are interpreted, which means that changes to the program
can be tested immediately. They have all the power of a full-fledged programming
language, enabling the programming of advanced interactions. Widely available
libraries add functionalities to the language, facilitating programming. For example,
the D3.5s (Bostock et al., 2011) library for JavaScripT is widely used to create
interactive visualizations.

Tcr and Tk (Ousterhout, 1994) provided an excellent language and user interface
library for quickly creating graphical user interfaces. However, although they are
still used by PyTHoN, they are now considered quite dated. More recent and widely
used scripting languages for interaction include ProcEessiNG (Reas and Fry, 2010)
and JAvAScriPT. PROCESSING was created primarily for visual artists but supports
simple forms of interaction, and is particularly well-suited for exploring rich, real-
time mappings between user input and visual output, for example, controlling a
visualization with the x,y position of a mouse cursor.

JavaScripr is “the language of the web”. It complements HTML and CSS, which
describe web content and web layout, to define the interactive behavior of the content
of a web page. A huge ecosystem has developed around JavaScript, with hundreds
of libraries. However, as with the design tools described in the previous section, most
of these libraries target “standard” interactions based on clicking menus and buttons
and filling out forms. JavAScripT can nevertheless be used to create more creative
and non-standard interfaces, although this requires in-depth knowledge of HTML
and CSS. Since many modern interactive applications are web applications that run
in a web browser, prototypes developed with JavaScript often are evolutionary
prototypes that are progressively transformed into the final application.

28 Wendy E. Mackay and Michel Beaudouin-Lafon

4.3 Tools for developing functional prototypes

Prototypes may also be developed with traditional software development tools. In par-
ticular, high-fidelity prototypes usually require a level of performance that cannot be
achieved with the rapid on-line prototyping methods described above. Evolutionary
prototypes, which are intended to become the final product, require more traditional
software development approaches. Finally, even shipped products are not “final”,
since subsequent releases can be viewed as initial designs for prototyping the next
release.

The lowest-level tools are graphical libraries that provide hardware-independence
for painting pixels on a screen and handling user input, and window systems that
provide an abstraction (the window) to structure the screen into several “virtual
terminals”. User interface toolkits structure an interface as a tree of interactive objects
called widgets, while user interface builders provide an interactive application to
create and edit those widget trees. Application frameworks build on toolkits and
UI builders to facilitate the creation of typical functions such as cut/copy/paste,
undo, help and interfaces based on editing multiple documents in separate windows.
Model-based tools semi-automatically derive an interface from a specification of the
domain objects and functions to be supported. Finally, user interface development
environments, or UIDEs, provide an integrated collection of tools for developing
interactive software. This section covers the three tools most relevant to prototyping:
user interface toolkits, user interface builders, and applications frameworks.

Note that it is not always best to use the highest-level available tool for prototyping.
Higher-level tools constrain the types of interfaces that can be created. For example
user interface toolkits contain a limited set of “widgets”, and application frameworks
typically assume a stereotyped application with menus and a main window. High-
level tools are most valuable in the long term because they make it easier to maintain
the system, port it to various platforms or localize it to different languages. But these
issues are irrelevant for vertical and throw-away prototypes, so a higher-level tool
may prove less effective than a lower-level one.

Finally, developers must fully master these tools, especially when prototyping in
support of a design team. Success depends upon the programmer’s ability to quickly
modify the details or the overall structure of the prototype. A programmer will always
be more productive when using a familiar tool than if forced to use a more powerful
but unknown tool.

4.3.1 User interface toolkits

User interface toolkits are libraries that implement the standard “look and feel” of the
typical applications of a particular platform. All major platforms (Linux, MacOS,
Winbpows, 10S and ANDproip) come with at least one standard Ul toolkit. The main
abstraction provided by a UI toolkit is the widget. A widget is a software object
that has three facets that closely match the MVC (Model-View-Controller) model
(Krasner and Pope, 1988): the presentation, which defines the visual aspect of the

Prototyping for Participatory Design 29

widget (the view); the behavior, which defines how it reacts to user actions (the
controller); and the application interface, which links these reactions to application
functions (the model).

One limitation of widgets is that their behavior is limited to the widget itself.
Interaction techniques that involve multiple widgets, such as drag-and-drop, cannot
be supported by the widgets’ behavior alone and require specific support in the UI
toolkit. Some advanced interaction techniques, such as toolglasses or magic lenses
(Bier et al., 1993) break the widget model both with respect to the presentation and
the behavior and cannot be supported by traditional toolkits. Ul toolkits are therefore
useful only when prototyping “standard” interfaces.

However, specialized toolkits go beyond the widget model to address specific
needs. For example, the advent of microcontrollers such as the ARpuiNo or Rasp-
BERRY P1 has prompted the development of a number of toolkits for creating physical
interfaces. p.tooLs (Hartmann et al., 2006) is an advanced toolkit that features a rich
authoring environment for creating information appliances (Fig. 15).

4.3.2 User-interface builders
User interface builders leverage user interface toolkits by allowing the developer of

an interactive system to create the presentation of the user interface, i.e. the tree of
widgets, interactively with a graphical editor. The editor typically features a palette

Fig. 15 The d.tools (Hartmann et al., 2006) authoring environment. A: device designer. B: sto-
ryboard editor. C: GUI editor. D: asset library. E: property sheet. (From Hartmann (2009), with
permission)

30 Wendy E. Mackay and Michel Beaudouin-Lafon

[C] View as:iPad Pro 97" (+R 1R)

Fig. 16 Apple’s INTERFACE BUiLDER. The central pane contains the interface being built, the right
pane contains an inspector to edit the selected widget, and the left panes contain the components
of the project and of the user interface.

of widgets that the designer uses to “draw” the interface as if it were a graphical
editor. The presentation attributes of each widget and the overall layout can be edited
interactively, as well as the mapping to application functions, if these are available.
User interface builders save time that would otherwise be spent writing and fine-
tuning rather dull code that creates widgets and specifies their attributes. It also
makes it extremely easy to explore and test design alternatives.

Apple’s INTERFACE BUILDER (Fig. 16) is one of the most advanced and powerful
interface builders. A functional prototype can be created quickly by dragging widgets
from a palette into the application window and by dragging connectors between these
widgets and the application objects available in a separate palette. A significant part
of the behavior of the interface can therefore be created interactively, without writing
any code. The application can be tested at any time by switching the builder to test
mode, making it easy to verify that it behaves as expected.

User interface builders are widely used to develop prototypes as well as final
applications, which makes them well-suited to evolutionary prototypes. However,
despite their name, they do not cover the whole user interface. Therefore they still
require a significant amount of programming, a good knowledge of the underlying
toolkit and an understanding of their limits, especially when prototyping novel
visualization and interaction techniques.

4.3.3 Application frameworks

Application frameworks are software libraries that provide a set of services and/or
components to create an entire interactive application. They are usually based on

Prototyping for Participatory Design 31

a user interface toolkit, which they complement with support for features such as
copy-paste, drag-and-drop, undo-redo and document management. They avoid the
large amount of boilerplate code that is typically needed when using only a user
interface toolkit. Developing a prototype with an application framework can be very
rapid if the interface follows the patterns supported by the framework.

Popular frameworks for web-based applications include RAILS, REACT, ANGULAR
and VUelS. A common feature of these frameworks is to simplify the binding
between visual elements and the source code of the application so that, for example,
the value typed in a text field is reflected in the value of a variable and vice-versa
(double binding). This facilitates the decoupling between the user interface elements
and the rest of the application. For prototyping, this means that it is relatively easy to
maintain a functional prototype as the design of the interface is iterated (Chatty et al.,
2004). In some cases, it is even possible for a designer with limited programming
knowledge to modify the interface, e.g. by editing the HTML and CSS parts of
the prototype. As long as the visual elements are bound to the right variables and
functions, the prototype will still be functional.

Enacrt (Leiva et al., 2019) further facilitates the collaboration between designers
and developers (Fig. 17). A designer can demonstrate a touch-based interaction
and create a storyboard and a timeline with the key states of the interaction; The
developer can then create a state machine and develop the necessary code to bring
the interaction to life. The designer can then adjust parameters, test the interaction
on the mobile device, and refine the design.

Target Device

Device Mirror

Storyboard

Input Timeline
State Machine
Code Editor

Fig. 17 Enacr (Leiva et al., 2019) uses a mobile device and a desktop interface with five areas:
a storyboard with consecutive screens, an event timeline with a handle for each screen, a state
machine, a code editor and a device mirror.

32 Wendy E. Mackay and Michel Beaudouin-Lafon

4.4 Summary

Table 2 summarizes the methods and tools described above according to the three
representations of prototypes from the previous section. The precision and interac-
tivity of the resulting prototypes increase for the first two rows from left to right.
For the third row, since functional prototypes tend to be higher-precision and more
interactive than physical and non-functional prototypes, the tools are ordered from
less to more powerful. It should be noted that scripting languages are becoming
more and more powerful and efficient and are therefore now often used to create
fully functional prototypes and even final applications. Some of these languages can
be used by non-programmers, blurring the roles of designers and programmers in
a design and development team. These teams are nevertheless encouraged to use
the full gamut of methods and tools so as to combine the speed of rapid physical
prototyping and the precision of functional prototypes according to the stage of the
design process and the scope of the desired prototype.

Table 2 A taxonomy of methods and tools for rapid prototyping.

Representation Methods and tools

Physical Mock-ups Wizard of Oz Video prototyping
prototype

Non-functional Animations Simulation Scripting language
prototype

Functional User interface toolkits ~ User interface builders Application frameworks

prototype

Prototyping for Participatory Design 33

S Summary

Design is an active process of continually expanding and contracting the design space,
where prototypes help designers envision new possibilities and then reflect upon and
assess their design decisions. Prototypes are diverse and can fit within any part of
the design process, from the earliest ideas to the final details of the design. Perhaps
most important, prototypes offer an extremely effective means of communication
between designers and other stakeholders. They serve as a fundamental component
of participatory design, enabling users to participate and contribute at every stage.

This chapter describes the role of prototyping in participatory design, with the
goal of actively involving users throughout the design process. We briefly discuss
the benefits of collaborating with users to generate new ideas that expand the design
space, and selecting from among those ideas to contract the design space. We show
how incorporating hands-on prototyping allows users from any age or background
to contribute, both to clarify their needs in real-world contexts, and to find realistic
solutions.

We provide a taxonomy of prototypes and explain how to create and use them:
Representation refers to the physical form of the prototype, from a paper, cardboard
or foam mock-up to a fully developed software or hardware simulation. Precision
refers to the level of detail expressed in the prototype, from rough, hand-drawn
sketches to highly polished images or objects, usually created with a computer.
Interactivity refers to the level of interaction possible with the prototype, from simply
showing what the interaction looks like without the ability to change it, to partially
interactive scenarios where a user can follow a pre-defined path, to fully interactive
Wizard-of-Oz simulations or operational prototypes. Lifecycle refers to how the
prototype evolves over time, from quick paper prototypes that are thrown away, to
more developed prototypes, some of which may become actual components of the
final system. Finally, Scope refers to which elements of the system are addressed
by the prototype. This may include breadth-first horizontal prototypes, depth-first
vertical prototypes, or path-based story prototypes.

We conclude with a review of methods and tools for rapid prototyping, from
making physical prototypes to creating video prototypes that express both the ad-
vantages and the potential breakdowns of the proposed system. We also describe
diverse strategies for creating interactive prototypes with a variety of software tools.

In their chapter “User-Centred Design Approaches and Software Development
Processes” in this volume, Larusdéttir et al. categorize software development ac-
tivities as: analysis, design, implementation and testing. Although usually viewed
primarly as a design activity, prototyping can also play an important role in all aspects
of software development, albeit with a user-centered rather than a software-centered
focus. For example, in the analysis phase, scenario-based video prototypes can ex-
press users’ needs in realistic contexts. In addition to supporting all phases of design,
from early, rough sketches to complete working functional prototypes, prototypes
let developers translate the design as envisioned by the design team into working
software. Prototypes created with interface builders or other interface design tools
can often be incorporated directly into the final software, and prototypes of all forms

34 Wendy E. Mackay and Michel Beaudouin-Lafon

can be used to test the system, and ensure that the system is, to paraphrase Bill
Buxton (2007), not only designed right, but in fact the right design.

The methods presented in this chapter have been used extensively in both research
and industrial settings to create both novel interactive systems and real products. Our
approach of combining participatory design with rapid prototyping has proven to be
a very effective and low-cost way to develop innovative interfaces that truly match
the users’ needs.

Prototyping for Participatory Design 35

Acknowledgements This work was partially supported by European Research Council (ERC)
grants #321135 “CREATIV: Creating Co-Adaptive Human-Computer Partnerships” and #695464
“ONE: Unified Principles of Interaction”, and is based on our earlier work on prototyping and
participatory design (Beaudouin-Lafon and Mackay, 2007).

References

Abrahamsson P, Salo O, Ronkainen J, Warsta J (2017) Agile software development
methods: Review and analysis. arXiv preprint arXiv:170908439

Bau O, Mackay WE (2008) Octopocus: A dynamic guide for learning gesture-
based command sets. In: Proceedings of the 21st Annual ACM Symposium on
User Interface Software and Technology (UIST ’08), Association for Computing
Machinery, New York, NY, USA, p 37-46, DOI 10.1145/1449715.1449724

Beaudouin-Lafon M, Mackay WE (2007) Prototyping Tools and Techniques, CRC
Press, Boca Raton, USA, p 1017-1040

Berger N (2006) The Excel story. Interactions 13(1):14-17, DOI
10.1145/1109069.1109084

Bier EA, Stone MC, Pier K, Buxton W, DeRose TD (1993) Toolglass and magic
lenses: The see-through interface. In: Proceedings of the 20th Annual Con-
ference on Computer Graphics and Interactive Techniques (SIGGRAPH ’93),
Association for Computing Machinery, New York, NY, USA, p 73-80, DOI
10.1145/166117.166126

Bgdker S, Buur J (2002) The design collaboratorium: A place for usabil-
ity design. ACM Trans Computer-Human Interaction 9(2):152-169, DOI
10.1145/513665.513670

Bostock M, Ogievetsky V, Heer J (2011) D3 data-driven documents. IEEE
Trans Visualization and Computer Graphics 17(12):2301-2309, DOI
10.1109/TVCG.2011.185

Buxton B (2007) Sketching User Experiences: Getting the Design Right and the
Right Design. Morgan Kaufmann, San Francisco, CA, USA, DOI 10.1016/B978-
0-12-374037-3.X5043-3

Chatty S, Sire S, Vinot JL, Lecoanet P, Lemort A, Mertz C (2004) Revisiting
visual interface programming: Creating gui tools for designers and program-
mers. In: Proceedings of the 17th Annual ACM Symposium on User Inter-
face Software and Technology, Association for Computing Machinery, New
York, NY, USA, UIST ’04, p 267-276, DOI 10.1145/1029632.1029678, URL
https://doi.org/10.1145/1029632.1029678

Design Council (2005) A study of the design process — the double diamond. Tech.
rep., Design Council UK, URL http://www.designcouncil.org.uk/sites/default/
files/asset/document/ElevenLessons_Design_Council%20%282%29.pdf

Fowler M, Highsmith J (2001) The agile manifesto. Software development 9(8):28—
35

36 Wendy E. Mackay and Michel Beaudouin-Lafon

Goodman D (1987) The Complete HyperCard Handbook. Bantam Books, New York,
NY

Greenbaum JM, Kyng M (1991) Design at work : cooperative design of computer
systems. L. Erlbaum Associates Inc., USA

Greenberg S, Carpendale S, Marquardt N, Buxton B (2010) Sketching User Ex-
periences: The Workbook. Morgan Kaufmann, San Francisco, CA, USA, DOI
10.1016/C2009-0-61147-8

Hartmann B (2009) Gaining design insight through interaction prototyping tools.
PhD thesis, Stanford University

Hartmann B, Klemmer SR, Bernstein M, Abdulla L, Burr B, Robinson-Mosher A,
Gee J (2006) Reflective physical prototyping through integrated design, test, and
analysis. In: Proceedings of the 19th Annual ACM Symposium on User Interface
Software and Technology (UIST ’06), Association for Computing Machinery,
New York, NY, USA, p 299-308, DOI 10.1145/1166253.1166300

Hutchinson H, Mackay W, Westerlund B, Bederson BB, Druin A, Plaisant C,
Beaudouin-Lafon M, Conversy S, Evans H, Hansen H, Roussel N, Eiderbiack
B (2003) Technology probes: Inspiring design for and with families. In: Proceed-
ings of the SIGCHI Conference on Human Factors in Computing Systems (CHI
’03), ACM, New York, NY, USA, pp 17-24, DOI 10.1145/642611.642616

Kelley JF (1983) An empirical methodology for writing user-friendly natural lan-
guage computer applications. In: Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems (CHI ’83), Association for Computing
Machinery, New York, NY, USA, p 193-196, DOI 10.1145/800045.801609

Krasner E, Pope S (1988) A cookbook for using the model-view-controller user
interface paradigm in Smalltalk-80. Journal of Object-Oriented Programming pp
27-49

Laseau P (1980) Graphic Thinking for Architects and Designers. Van Nostrand
Reinhold

Leiva G, Beaudouin-Lafon M (2018) Montage: A video prototyping system to re-
duce re-shooting and increase re-usability. In: Proceedings of the 31st Annual
ACM Symposium on User Interface Software and Technology (UIST *18), As-
sociation for Computing Machinery, New York, NY, USA, p 675-682, DOI
10.1145/3242587.3242613

Leiva G, Maudet N, Mackay W, Beaudouin-Lafon M (2019) Enact: Reducing de-
signer—developer breakdowns when prototyping custom interactions. ACM Trans
Computer-Human Interaction 26(3), DOI 10.1145/3310276

Lim YK, Stolterman E, Tenenberg J (2008) The anatomy of prototypes: Prototypes
as filters, prototypes as manifestations of design ideas. ACM Trans Computer-
Human Interaction 15(2), DOI 10.1145/1375761.1375762

Mackay W (1988) Video prototyping: A technique for developing hypermedia sys-
tems. In: Proceedings of CHI’88, Conference on Human Factors in Computing

Mackay W (2020) Designing with sticky notes. In: Christensen BT, Halskov K,
Klokmose CN (eds) Sticky Creativity: Post-It® Note Cognition, Computers, and
Design, vol Explorations in Creativity Research, Science Direct, Elsevier B.V, pp
231-256, DOI 10.1016/C2017-0-04695-5

Prototyping for Participatory Design 37

Muller M, Druin A (2002) Participatory design: The third space in hci. Handbook
of HCI

Muller MJ, Kuhn S (1993) Participatory design. Commununications of the ACM
36(6):24-28, DOI 10.1145/153571.255960

Norman D, Draper S (eds) (1986) User Centered System Design. Lawrence Erlbaum
Associates, Hillsdale, NJ

Ousterhout J (1994) Tcl and the Tk Toolkit. Addison Wesley, Reading, MA

Reas C, Fry B (2010) Getting Started with Processing. Make: Community

Schuler D, Namioka A (1993) Participatory design: Principles and practices. CRC
Press

Index

Agile methodology, 18
animation, 10, 11, 26, 32
application framework, 30, 32

co-design, 4
co-operative design, 4

design constraints, 7, 8

design space, 7
contracting, 8
expanding, 8

interactive simulation, 26, 32
iterative design, 8

marketing video, 23

mock-up, 11, 12, 22, 23, 32
model-view-controller, 28

MVC, see also model-view-controller

participatory design, 4, 5
persona, 5
progressive feedforward, 8
prototype, 10
evolutionary, 18, 19, 20, 27, 28, 30
fixed-path, 16, 16, 20
functional, 11, 18-20, 28
hand-drawn, 11, 13, 14
hardware, 11, 12, 14
hi-fi, 13
high-fidelity, 13, 14, 19, 20, 28
horizontal, 18, 20
iterative, 18, 20
lo-fi, 13
low-fidelity, 13, 14, 20, 25
low-tech, 4
mixed-fidelity, 14, 20

non-functional, 11, 16, 18, 20, 25, 32
non-interactive, 15, 16, 19, 20
open, 16, 16, 20
paper, 11
path-based, 19, 20
physical, 5, 11, 12, 19-21, 32
rapid, 18, 20, 21
software, 11, 12, 14, 16, 18, 19
vertical, 19, 20
video, 16, 19, 23, 32
working, 14, 17
prototype taxonomy, 10, 20
interactivity, 10, 15, 20, 32
life cycle, 10, 18, 20
precision, 10, 13, 20, 32
representation, 10, 11, 20, 21, 32
scope, 10, 18, 20, 32
prototyping, see also prototype

scenario, 16, 19, 23
scripting language, 12, 27, 32
sketch, 10-12, 17, 21
software tools
Adobe Photoshop, 26
Adobe Xd, 12, 14, 27
Angular, 31
Apple Hypercard, 26
Apple Interface Builder, 30
Arduino, 29
D.tools, 29
D3.js, 27
Enact, 31
Figma, 12-14, 17, 27
JavaScript, 27
Macromedia Director, 26
Magic Lens, 29
Microsoft Excel, 26

39

40

Microsoft Powerpoint, 26
Montage, 24
Octopocus, 7
Principle, 26
Processing, 27
Python, 27
Rails, 31
Raspberry Pi, 29
React, 31
Sketch, 14, 27
Tel, 27

Tk, 27
Toolglass, 29

Video Probe, 7
VuelS, 31
storyboard, 11, 12, 16, 23

tutorial video, 23

user interface builder, 12, 29, 32
user interface toolkit, 12, 28, 31, 32
user-centered design, 4, 5

widget, 28, 29
wireframe, 10, 11, 12, 13, 17
Wizard of Oz, 17, 19, 22, 23, 25, 32

Index

