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Résumé
La coopération sous-marine homme-robot nécessite la
compréhension par le système robotique de la gestuelle
des plongeurs. L’environnement sous-marin représente un
défi, car la turbidité et l’absorption des couleurs dégradent
rapidement la qualité de la perception du robot. Ce tra-
vail présente une classification des gestes des plongeurs
basée sur la détection du squelette du haut du corps, qui
peut compléter la classification de la forme de la main.
Cet article décrit un pipeline pour reconnaître les gestes
à partir des variations angulaires du haut du corps. La so-
lution proposée exploite la dimension temporelle des don-
nées d’angles articulaires en utilisant un réseau neuronal
de type LSTM. L’approche proposée est validée sur un en-
semble de données de capture de mouvement relatives à 15
sujets à qui on a demandé d’exécuter 8 gestes de plongeur
différents dans l’air. Les résultats obtenus montrent la ca-
pacité de l’algorithme à discriminer la plupart des dif-
férents gestes entraînés avec un taux de réussite jusqu’à
88%.
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Reconnaissance des gestes, signes de plongées sous-
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Abstract
The need for a robot to understand basic commands is cru-
cial for human-robot underwater missions. Yet, the un-
derwater environment is a challenge because turbidity and
color absorption quickly degrade the quality of the robot
perception. This work presents a classification of diver ges-
tures based on upper body skeleton detection, which can be
used in addition to hand shape classification. This paper
depicts a pipeline to recognize gestures from angular vari-
ations of the upper body. The proposed solution exploits
the temporal dimension of the joint angles data by using a
LSTM-based neural network. The proposed approach has
been validated on motion capture datasets relative to 15
subjects who were asked to execute 8 different diver ges-
tures in the air. The results obtained prove the ability to
discriminate most of the different gestures trained with a

success rate of up to 88%.
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1 Introduction
Depending on the depth, duration and complexity of the
operations to be carried out, underwater missions are either
performed by divers or underwater robots. Usually, robots
are Remotely Operated Vehicles, controlled by a pilot from
a surface vessel. Recent advances have given Autonomous
Underwater Vehicles (AUV) the computation power that is
crucial for autonomy in tasks of navigation and localiza-
tion. However, human-robot interaction appears to be vital
for more complex applications where the judgement of hu-
man operators is required on site.
In underwater environments, the main bottleneck remains
the ability of the diver and the AUV to exchange informa-
tion in an understandable way (the AUV’s understanding of
the diver’s commands or information, and the notification
to the diver of its correct understanding). Most of the cur-
rent solutions require additional devices/equipments, e.g.
tablets for input or confirmation [1]. Unfortunately, these
solutions are not very intuitive and require the diver to ac-
cept adaptations to communicate with the robot, which can
be tedious for him.
Regarding diver’s gesture recognition, a majority of ex-
isting studies rely on hand detection in monocular im-
ages. Hand detectors usually involve either skin color-
segmentation [2] or predefined colors for the finger to be
easily detectable, as in [3] where the authors put yellow
markers on fingers. Other approaches aim at simplify-
ing the classification by developing a new sign language,
which leads to even more complex commands [2, 4].
This study assumes that the skeleton detection can be
achieved by techniques like OpenPose [5] as in [6]. The
setup uses a motion capture system to simulate a perfect
skeleton detection.
The main contribution of this paper is the classification of
diver gestures based on upper limbs’ movements, hand ex-
cluded, by exploiting time frames of the orientation of the



forearm and the arm with respect to the pelvis, and to iden-
tify the different types of gestures. This method does not
require the use of additional equipment. In addition to the
intuitive nature of the proposed classification method, an-
other advantage is that it does not have to take into ac-
count any physical characteristics of the subject (height,
skin, color etc.).
Section 2 focuses on the state of the art in gesture clas-
sification, starting with airborne applications, which rep-
resent the mainstream application domain, then focusing
on existing approaches in underwater gesture recognition.
Section 3 describes the methodology regarding data pro-
cessing, and the architecture of the neural network used.
Sections 4 and 5 present the experimental setup and the re-
sults, respectively. Conclusion and future work constitute
the last section of this paper.

2 Related work
2.1 Airborne application of gesture recogni-

tion

Gesture recognition is a very popular field of research, as
shown by the multiple surveys [7, 8, 9, 10] carried out
in this field. The work developed in [9] presents the dif-
ferent stages of visual gesture recognition and their lim-
itations. While this work was limited to visual gestures,
the same logic applies to the general gesture recognition
problem. The three different stages are (1) detection-data
acquisition-pre-processing, (2) gesture representation and
feature extraction, and (3) gesture classification. The data
acquisition and pre-processing phase results from multiple
approaches of how the gesture is acquired. Actually, [7]
distinguishes two methodologies, based on the data acqui-
sition techniques, namely glove-sensors-based (wearables
instrumented with different sensors such as strain sensors
or IMUs in order to reconstruct the movement of the hand),
and vision-based. The work of [9] divides the vision-based
approach into multiple techniques based on the nature of
the acquisition instrument (monocular, stereo, RGBD ...).
The pre-processing consists of data treatments, preparing
it for feature extraction, such as image segmentation in
case of visual data. For instance, skin-color segmentation,
or segmentation based on movements, are techniques em-
ployed for hand gestures [7, 10].
The second phase, namely gesture representation, depends
on the model used to represent the gestures. Different ap-
proaches can be noted, based on multiple selection criteria,
whether the model is 3D or 2D [7, 8, 9], and is static or
dynamic [9, 10]. This phase goes hand in hand with the
feature extraction phase of the algorithms, since they are
interdependent. Some examples of the model choices are:
Deformable Gabrait model, or silhouette Geometry model
in the case of 2D gestures, and skeleton model, or motion
models in the case of 3D gestures [8, 9].
Finally, the recognition/classification phase implies differ-
ent classifiers choices, starting with traditional approaches

such as curve fitting, Finite State Machine (FSM), Hidden
Markov Model (HMM) [7, 9, 10], then unsupervised (K-
means) [7] supervised classifiers such Support Vector Ma-
chine (SVM), random forest, or K-Nearest Neighbors (K-
NN) approaches [7, 10], and neural networks [7, 8, 9, 10].
The work of [8] focuses on deep-learning in sequence of
images. It explores different techniques to exploit the tem-
poral dimension of the data. In fact, several approaches
are possible to achieve this goal, such as using 3D con-
volutional neural networks, fusion strategies (with streams
focused on the temporal dimension for instance), or using
a temporal deep learning model such as Recurrent Neural
Networks (RNN), or Long Short Term Memory networks
(LSTM).
In particular, gait analysis in biomechanics can be related
to gesture classification to some extent. For example, for
normal/pathological gaits’ detection [11], angles of lower
limbs were estimated from kinect data and classified using
a LSTM neural network. Our method is based on a similar
classification technique.

2.2 Underwater human robot interactions
In underwater environments, gesture recognition can also
be achieved using a multiple acquisition device. For in-
stance, [12] proposes a smart glove in order to detect the
different gestures and classify them. The glove includes
multiple strain sensors that detect finger movement, and
IMU units that determine the orientation of the hand.
In the work presented in [13], ScubaNet, a dataset of divers
making different gestures in front of an underwater vehicle
was constructed. Although the work presented in [13] is
limited to the detection of the diver and his two hands, the
authors present in [14] a transfer learning method that was
tested on a multiple convolutional neural network architec-
ture in order to classify the different gestures. In this work,
the classification is carried out in two steps, the first step
consists of isolating hand images, while the second step
proceeds to their classification.
Similarly, [4] aimed to create a data set of stereo im-
ages of divers executing gestures. The dataset was based
on a specifically developed communication language pre-
sented in [1]. It also included a part with stereo-footage-
synchronized IMUs measurements located throughout the
diver’s suit (DiverNet) which serves as a ground-truth for
human pose and tracking methods. The work of [3] also
aims to identify the hands of the diver, to feed a classifier
pipeline to obtain the gesture command.
In another work presented in [2], the authors start by ex-
tracting the hand patches of the diver, and resize the hand
images into 32×32 images, to feed a Convolutional Neural
Network (CNN) classifier to infer the corresponding ges-
ture. The gesture sets are then used into an FSM to decode
a set of instructions.
These works base their gesture recognition on a first stage
of hand detection and tracking. In turbid water with the
diver equipped with black gloves on a black suit, hand de-



(a) Tracked points (b) Cameras setup

Figure 1 – Motion capture system.

tection can be difficult or even fail. However, there are
many airborne silhouette-tracking approaches that repre-
sent the human as a skeleton that could be adapted to un-
derwater, such as the work presented in [15] or [16]. Un-
like sign language, most diving gestures involve large, dis-
tinct arm movements. The recognition of gestures from the
movement of arms and forearms can be more robust to the
conditions imposed by the aquatic environment. This paper
aims to identify which gestures can be recognized without
using hand tracking.

3 Methodology
The method introduced in this paper exploits the upper
limbs angle trajectories instead of relying on a static hand
image to classify gestures. This section introduces the
methodology used to (1) acquire data, (2) extract features,
and (3) classify the divers’ gestures.

3.1 Data acquisition
In order to obtain the dataset, a Qualisys motion capture
system was put in place. The setup (Fig. 1b) contains 8
cameras that were placed in an arc configuration to capture
the central portion of the room, at different heights to cover
all the upper part of the body.
Several keypoints were tracked using reflective markers,
namely both shoulder joints, both elbows joints, both
wrists, and two lateral pelvic points (Fig. 1a, 3). Three
additional markers were placed on the face side and chin.
They are not used in the gesture description.
Each subject is requested to perform different gestures, and
the recording was then segmented using the Qualisys Track
Manager Software. It allows extrapolating the data in case
one of the tracked points was lost for a short period of time.
Since our goal is to exploit the temporal variation of the
different angles, each gesture frame was defined by a start
position and an end position. The beginning and end po-
sitions were manually identified using the Qualisys Track
Manager Software. The frame starts from a predetermined
reference position of the user’s arm (Fig. 1a). The frame
ends when the arm comes back to that predefined initial
position. In order to have a uniform input length for the
classification method, all the data samples were resampled
to a constant sample length of n = 400.

3.2 Features selection and extraction
In order to fully describe the motion of the shoulders, arms
and forearms, three different orientations were tracked for
both left and right sides (Fig. 3). The first two rotations are
those formed by the (pelvis-10, shoulder-4, elbow-5) tuple,
and the (shoulder-4, elbow-5, wrist-6) tuple representing
two real joints, which are presented in Fig. 3 by the blue
and yellow angles respectively. In addition, a third virtual
joint defined by the tuple (pelvis-10, shoulder-4, wrist-6)
was tracked since it encodes relevant information about the
rotation of the forearm around the arm. The corresponding
rotation angle is displayed in green on Fig. 3. The elbow
joint has one degree of freedom only, while both shoul-
der angles have three degrees of freedom each. The same
process is carried out symmetrically on the left side of the
body.
To begin with, all tracked points have to be expressed in
a frame attached to the subject body to be independent of
the subject position or orientation in the motion capture
coordinate frame. A local frame attached to the right side
of the pelvis is defined (point 10, Fig. 1a). Two vectors u
and v are defined as the normalized unit vectors going from
the right side of the pelvis to the left side (tuple 10; 11 on
Fig. 1a) and from the right side of the pelvis to the right
shoulder (tuple 10; 4 on Fig. 1a) respectively.
The frame (u,v,w) is defined, where w is the cross-
product of u and v. In order to obtain an orthonormal
frame, the vector v is replaced by v′ = w × u, defined
as the cross-product of w and u. We obtain the orthonor-
mal frame (u,v′,w), where u,v′ and w are defined in the
motion capture reference frame wF , the rotation matrix be-
tween the motion capture frame and the body frame bF is
the following:

bRw = [u|v′|w] (1)

In order to describe the relative orientation of two succes-
sive body segments, the axis-angle (aka rotation-vector)
representation was chosen. This representation allows the
parametrization of a rotation in a three-dimensional space,
this is done using two entities, a unit vector e representing
the direction of the axis of rotation, and an angle value θ.
This representation can either be expressed as an ordered
pair ([ex, ey, ez]

T
, θ) or as one entity eθ [17].

In the axis-angle representation, the vector e is the unit vec-
tor pointing outwards, and θ is the angle value. Starting
with three 3D points, a,b and c, in order to obtain the
axis-angle representation of the angle formed the vectors
x = a − b and y = c − b, two entities are needed, the
vector e and the rotation angle θ. e is defined as the cross-
product of x with y. To obtain θ ∈ [0;π], we compute the
value of sin θ and cos θ:

sin θ =
‖x× y‖
‖x‖‖y‖

(2)

cos θ =
x · y
‖x‖‖y‖

(3)



Figure 2 – The gesture shown from top left are: ok, go up, go down, panting, not well, assemble, stabilize and cold.

Figure 3 – Elbow angles (4,5,6) and (7,8,9), shoulder an-
gles (10,4,5) and (11,7,8), virtual wrist-shoulders angles
(10,4,6) and (11,7,9).

The angle θ is then computed using the atan2 function:

θ = arctan 2(sin θ, cos θ) (4)

Therefore, the motion representation is composed of 2
axis-angle representations (angles in green and blue on
Fig. 3) and one scalar angle value (the angle of the elbow in
yellow in Fig. 3). Each angle-axis representation involves 4
values in the ordered pair representation. We have 9 scalar
values (4 of which are independent) for each arm, with a
total of 18 for both arms. Each gesture consists of 18×n
values, where n is the normalized number of samples.

3.3 Data augmentation
As diver gestures can be done indifferently with the right
hand or the left hand depending on whether people are right
or left-handed, a mirroring operation was carried out, al-
lowing to flip the left and right sides of the body of the
subject.
The aim is to obtain an additional set of points that is
symmetrical to an acquired set of 3D points, where each
point homogeneous representation in the world frame wF
is wP = (wX,w Y,w Z, 1)T . The origin of the frame
sF is defined as the midpoint of the two points defined
by the right and left pelvic points (points 10 and 11 on
Fig. 1a). The base of this frame is defined by the three
vectors u,v′,w previously defined.

We represent the position and orientation of the frame sF
in the world frame wF by the homogenous matrix:

wMs =

[
wRs

wts
0 1

]
(5)

With wRs and ts being respectively the rotation and trans-
lation from sF to wF . All tracked points wPi, i ∈ [1, 11]
are expressed into sF through:

sPi =
sMw

wPi =
wM−1s

wPi (6)

Then they are mirrored across the plane (v′,w)

sPmi = (−sX,s Y,s Z, 1)T (7)

Finally, they are transformed back into the world frame wF
wPmi =

wMs
sPmi (8)

This set of point is then processed to compute the needed
axis-angle definition for the data set inputs.

3.4 Neural network architecture
After extraction and resampling to have standardized input
size, the angle trajectories are classified using a deep learn-
ing method. The neural network architecture used for ges-
ture classification is similar to the work described in [11].
It is a 2 layers bidirectional LSTM with dropout layers in-
between and a dense layer as last layer. The full architec-
ture is depicted on Fig. 4.

Figure 4 – Architecture of the neural network used for clas-
sification. Each layer is formed by 2 layers of 256 LSTM
cells, to allow bidirectionality. The LSTM cells inside the
red dotted line correspond to one bidirectional layer. Each
of the two layers is fed with the output of the dropout layer,
with the difference being the directionality of the layer.



4 Experimental setup and protocol
4.1 Population presentation
The dataset was recorded with 15 different subjects: 10
males and 5 females. The subjects’ age range from 18 to 69
(average age = 34, standard deviation = 16). Five subjects
of the population were not initiated to diving. The differ-
ent gestures were presented to them in a briefing before
recording the series. The rest of the population included 3
beginners (less than 20 dives) and 7 experimented divers.

4.2 Experimental protocol
The number of gestures was limited to the 8 most common
diver gestures, namely go up, go down, ok, not well, stabi-
lize, assemble, cold, and panting, which are illustrated on
Fig. 2. Four of them require both arms: stabilize, assemble,
cold and panting.
The subjects were asked to start and finish each gesture
from a resting position with arms at the side of the body
(Fig. 1a). They were requested to perform the two-armed
gestures 10 times, and the one-armed gestures, 20 times,
10 times with each hand.

5 Results
5.1 Training
The network described in 3.4 was implemented using the
TensorFlow-Keras framework. The dataset was divided
into training, validation, and testing, representing 70%,
20%, and 10% of the data respectively. Data division was
achieved randomly, regardless of the subject. The training
process was repeated more than once to validate repeata-
bility.
The width of the LSTM layers was chosen after iterative
runs to have 256 cells, while the dropout rate was chosen
to be 55%. Actually, the less LSTM cells per layer, the
harder it is for the network to converge, while more LSTM
cells per layers lead to much too long training times with-
out any significant change in accuracy. Similarly, the lower
the dropout rate, the more risk of over fitting on the training
data. This translates into a better accuracy on the training
data, but a lesser accuracy on the validation data. With a
dropout rate significantly higher, the network has conver-
gence problems.
The neural network was trained over 40 epochs. The ac-
curacy results over the last training epochs were 92% and
90% for the training and the validation data, respectively.

5.2 Testing
The inference accuracy of the testing data is 88%. Figure 6
depicts the confusion matrix. The inference has an accu-
racy that is greater than 90% with two exceptions for the
not well and go up gestures. Actually, these two gestures
can be mistaken by the algorithm, with 17% of not well
cases labeled as go up and 17% go up labeled as not well.
Additional minor confusions are, for example, 9% of the
assemble gestures incorrectly labeled as stabilize gestures.

(a) Go up movement

(b) Not well movement

Figure 5 – Angles magnitude.



Figure 6 – Confusion matrices. Vertical axis labels are the
true labels, and horizontal axis labels are the predicted la-
bels.

The analysis of the magnitude variations of the tracked an-
gles (Fig. 5) shows that the variations of the different an-
gles remain very similar among the 5 subjects selected ran-
domly. However, there is a slight notable difference in the
angle (4,5,6) of the not well gesture that features some os-
cillation. This could explain why the classifier was not ca-
pable of separating the go up and not well gestures.
In order to avoid over-fitting of specific features related to
the subjects in the dataset and to confirm the inter-person
transferability of our model, the data of a particular sub-
ject was removed from the initial data. The entire train-
ing and validation process was achieved again, but without
the data of this particular subject. This process was con-
ducted for two different subjects, one female (A) and one
male (B), a beginner and a confirmed diver respectively.
The results are presented on Fig. 7. As expected, these re-
sults are not as good as those presented on Fig. 6. We note
a very high accuracy (more than 80%) for 6 out of the 8
gestures for each subject, showing a capacity of transfer
by our classification. We note a confusion between ok and
go up for subject A, and between assemble and stabilize
for subject B. These confusions can be explained by the
fact that the movement of these gestures are similar in real
life, actually the same confusions can be found in Fig. 6
with smaller magnitude. One additional confusion for sub-
ject B, namely gesture go up, that is incorrectly classified
as go down, can be explained as a subject-dependent vari-
ation, as it does not appear with subject A.

6 Conclusion and Future work
This paper presents a new approach regarding diver ges-
ture classification that only relies on the 3D skeleton pose
without exploiting the data encoded by the hands. This
was made possible by exploiting the temporal dimension

(a) Subject A.

(b) Subject B.

Figure 7 – Leave-one-out results for two subjects.



of the upper limb angular data. The classification was
achieved using a neural network based on a LSTM archi-
tecture, since it allows processing sequences of data. The
results obtained show that it is possible to distinguish be-
tween 6 different gestures out of the 8 under study, while
two of them, namely go up and ok, could be mistaken due
to the similarity of the limb trajectories. Hand shape recog-
nition and identification will therefore be required to make
the decision between similar arm/forearm gestures. In ad-
dition, the solution proposed gives satisfactory results with
respect to inter-subject transferability, with a potential for
improvements.
The application of our approach to the underwater envi-
ronment still needs to be tested. This requires to be able
to achieve an accurate estimation of the diver skeleton on
underwater images. Promising vision-based skeleton de-
tection has been recently applied in underwater conditions
[6], which will be tested to evaluate our classifier on 2D
skeletons.
In addition, the accuracy of the present classifier could be
augmented using a visual classifier, to be used when the
confidence in the pose-exclusive classifier is not enough.
The advantage of the mixed approach would be to keep the
lightweight LSTM network, while taking advantage of the
accuracy of the CNN that takes the image data as input.
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