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Abstract

Homogenization method is applied to topology optimization of a weakly
coupled three physics problem, where structures are made of periodically
perforated material. The microscopic periodic cell is macroscopically
modulated, where the design is characterized by the material density
and its homogenized Hooke’s law at each point of the domain. The cou-
pling is weak because the three physics involved are solved consecutively:
first, the coupled fluid flow is determined using Biot-Darcy’s law, second,
the thermal model using the convection-diffusion equation and third, the
three-physic problem by solving the linear poro-thermo elasticity system;
our aim is to optimize the homogenized formulation of this system. This
approach permits a computationally low cost of evaluation of load sensi-
tivities using the adjoint-state method. Numerical two-dimensional and
moderately large-scale three-dimensional two or three-physic problems
are presented using the alternate directions algorithm. It is demonstrated
how the implementation can address a variety of design problems.

Keywords: Topology optimization, multi-scale, periodic homogenization,
porous medium, adjoint methods, fluid-structure interaction, convective
heat-transfer
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1 Introduction

The ambition to develop simulation methods making it possible to predict the
integrity or properties of use (e.g. mechanical, diffusive, thermal, electromag-
netic, vibratory, etc.) of structures (e.g. industrial or natural), materials or
processes involved in the development of new advanced technologies is growing
consistently. Herein, homogenization-based method is proposed to investigate
shape optimization problems for a weakly coupled model of heat propagation,
fluid flow and structure strain; and making it possible to consider a weak cou-
pling between the three physics at stake because one can assume that the fluid
domain is fixed at first order. However, we should bear in mind that this weak
coupling is a major simplification and therefore reduces the computational
cost.
A comprehensive overview of shape optimization with the homogenization
method is provided by [1] and, for a general summary of the homogeniza-
tion method, we refer the reader to [2–8] and references therein. It should be
noted that, this approach provides a consistent way for computing effective
material with microstructures (i.e., composite materials) and that, once the
optimal composite is obtained by homogenization-based topology optimization
method, we might need to dehomogenize the solution; see [9] for periodically
perforated materials. The design method described in this paper is strongly
inspired by the works mentioned above as well as being related to modern pro-
duction techniques such as additive manufacturing. It is worth noting that,
there is yet another alternative approach, which amounts to couple (or incorpo-
rate) the homogenization method (inside a domain) with a geometric approach
(for moving the domain’s boundary) in order to combine advantages of both
methods [10].
A typical shape optimization problem arising in this context involves an objec-
tive function, depending on the geometries of the fluid and solid subdomains
and where the whole domain is described by a density function (i.e., material
density) that can take on values in the interval [0, 1], which has to be minimized
under some constraints (e.g. volume or mass constraints). This allows to com-
pute the sensitivities with respect to design variables using the adjoint-state
method [11, 12], introducing adjoint states. For these adjoint states, which are
to be solved, it turns out that the coupling is reversed for the adjoint system:
the elasticity is solved first, followed by the convection-diffusion equation and
the fluid model.
Shape optimization that involve pressure-loaded or thermal fluid-loaded
boundaries has been conducted also by [13–25]. In [13–17], the authors deduce
the topology or layout based on boundary identification schemes: in general,
based on a priori chosen threshold density (i.e., iso-density curves/surfaces
are identified). In [13, 14, 17], the authors employed the iso-density method to
identify the pressure loading facets: Bézier spline curves were used to describe
the pressure-loaded facets. This allows in [13, 14], to evaluate the sensitivities
with respect to design variables using the finite difference formulation and,
in [17], to provide an analytical method to calculate load sensitivities. Note
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1 INTRODUCTION 3

that in [13, 14, 17], the considered sensitivities were restricted to only the
pressure-loaded boundaries.
In contrast, the works in [15, 16, 18] do not account for load sensitivities within
their topology optimization setting: in [15], the pressure-loaded facets are pre-
defined and an additional set of variables is used, which are optimized along
with the design variables; whereas in [16], an element-based search method
is employed to identify the pressure-loaded facets and in [18], an algorithm
based on digital image processing and regional contour tracking is proposed
to generate the pressure loading surface.
On the other hand, in [19], the authors deduce the topology optimization
based on binary structures method to design structures that consider buckling
constraints and loaded by design-dependent fluid pressure loads: it adopts
binary design variables and handles multiple constraints solved by an integer
linear programming scheme, where sensitivity filtering method is proposed.
In contrast to boundary identification schemes, in [20–22], the authors deduce
the topology based on level-set methods: an implicit boundary description
is available that can be used to define the pressure load. In [20], the Dis-
tance Regularized Level-Set Evolution is proposed to capture the structural
boundary and using the zero level contour of a level-set function to represent
the loaded-pressure boundary but did not account load sensitivities; whereas
in [21], the Laplace’s equation approach is employed to compute hydrostatic
fluid pressure fields, and also a flood fill procedure to capture the solid/fluid
interface: shape sensitivities in conjunction with ersatz material interpolation
method are used within their approach. Recently in [22], Hadamard’s method
of shape differentiation is applied to shape and topology optimization of a cou-
pled thermal fluid-structure problem in a level-set mesh evolution framework:
sensitivity analysis is performed with respect to the geometry of the interface
between the fluid and solid domain, using the Hadamard’s method of shape
differentiation, introducing adjoint states.
Moreover, unlike boundary identification schemes or level-set methods, in
[23, 24], the authors deduce the topology using density-based approach: shape
optimization problems are transformed to material distribution problems using
fictitious composite materials without identifying loading surfaces directly. In
[23], a density-based topology optimization is proposed to design both struc-
tures and compliant mechanisms loaded by design-dependent pressure loads:
Darcy’s law in conjunction with a drainage term is proposed to treat the
pressure loads, which are transferred into a design dependent pressure field
using a partial differential equation, which is solved using the finite element
method; the load sensitivities are computed using the adjoint-variable method.
Recently in [24], is developed according to the approach first reported in [23], a
MATLAB implementation TOPress, using the method of moving asymptotes.
In contrast, the density-based method presented in [25] is based on true com-
posite materials: two material constituants (substance and void) are considered
and the microscopic optimal void distribution is considered. An important
feature of the procedure is that the homogenization method is applied to
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determine macroscopic constitutive equations for the material with micro-
scopic material constituants. In [25], the porous material is described as the
Biot continuum derived by the homogenization of two decoupled problems:
deformation of a porous solid saturated by a slightly compressible static fluid,
first, and Stokes flow through the rigid porous structure, second. The effective
medium (or composite) properties are given by the drained skeleton elastic-
ity, the Biot stress coupling, the Biot compressibility coefficients and by the
hydraulic permeability of the Darcy flow model: these are computed using
characteristic responses of the representative unit cell constituted by an elas-
tic skeleton (solid) and by the fluid channel (void); the adjoint-state method
is proposed to evaluate sensitivities of objective functions constituted by the
Biot model coefficients with respect to the underlying pore shape described
by a B-spline box which embeds the whole representative cell and, where the
gradient-based method is employed to solve the optimization problems: the
shape derivatives of the homogenized coefficients are derived using the shape
sensitivity technique and the material derivative approach.
In this article, we present a new approach to design structures subjected to
thermal loads and cooled down by a fluid-pressure. This falls within the gen-
eral framework of density methods where phenomenological laws of equivalent
media are derived by the homogenization method. In this regard, the pre-
sented approach falls within the framework of recent work in [23, 25], where
Darcy’s flow model is used to describe the fluid flow. However, the approach
in [23] is different since the continuous problem does not contain a model
that explicitly couples the fluid pressure to the solid skeleton and thus, it
induces difficulties in the modeling where a volumetric force is added intu-
itively in the elastic problem without being explicitly defined as the result of
a continuous physical law. Moreover, compared to [25], the porous material
is described as the Biot-Darcy continuum derived by the homogenization of a
weakly coupled three physics problem: deformation of a porous-thermoelastic
saturated by incompressible fluid pressure (satisfying Biot-Darcy’s law), first,
the convection-diffusion equation for the temperature, second, and cool down
by a Biot-Darcy’s flow through the rigid porous thermoelastic, third. The
effective medium properties are given by the undrained skeleton elasticity, the
Biot stress coupling, the Biot coefficient, the thermal coefficients and con-
ductivity for the convection-diffusion model and, by hydraulic permeability of
the Darcy flow model: these are computed using characteristic responses of
the representative unit cell, namely, a perforated hexagonal cell in 2-D or the
tetrakaidecahedron cell in 3-D, constituted by a solid phase and void; see Fig. 1
and Fig. 3. Consequently, the fluid pressure and the temperature together
determine the displacement of the solid part in the porous medium. This allows
to provide sensitivities of general ”smooth enough” objective functions with
respect to design variables using the adjoint-state method. The homogenized
coefficients are differentiated using the Lagrangian method and the projected
gradient algorithm: in [25], the shape sensitivity technique and the material
derivative approach are employed. Of course, these shape derivatives are at the
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2 PERIODIC HOMOGENIZATION 5

basis of our gradient-based alternate directions algorithm [26], which is used
for our numerical simulations. In summary, we present the following aspects:

• homogenized Biot-Darcy’s law is used to characterize the fluid flow through
a true composite material,

• the convection-diffusion equation is used for the temperature,
• we weakly couple the fluid loads to the linearized thermoelasticity system
for the solid displacement,

• the approach facilitates computationally inexpensive evaluation of the load
sensitivities with respect to design variables using the adjoint-state method,

• the flow coefficient, Biot’s coefficient and conductivity coefficients are
derived using the homogenization method,

• the approach avoids explicit description of the loading boundary,
• the robustness and efficiency of the approach is demonstrated through
several design problems, using the alternate directions algorithm.

The remainder of this paper is structured as follows: in Section 2, we briefly
recall the necessary ingredients of the homogenization method and we explain
our strategy. First, choose a parametrized periodicity cell. Second, we compute
its effective properties for the entire range of its parameters. In Section 3, we
give a precise account of our weakly coupled model of heat propagation, fluid
flow and structure strain. In Section 4, we introduce the optimization problem
formulation, which turns out to be a simple parametric optimization problem
since our periodicity cell is parametrized. Section 5, is concerned with our
topology optimization algorithm: it is an alternate directions algorithm [26],
which successively computes the stress field through the solving of a weakly
coupled three physics problem. Finally, our numerical results are presented in
Section 6: 2-D and 3-D computations are displayed of various design problems
involving two or three-physic for some objective functions. We summarize our
findings and give an outlook in Section 7.

2 Periodic homogenization

The mathematical framework of the homogenization theory can be found in
[1]. In this section, we briefly present the principles of this method and explain
our strategy. We restrict our analysis to locally periodic hexagonal cell in 2-D
and tetrakaidecahedron cell in 3-D. Note that, it should be possible to adapt
the whole method (or at least part of it) to periodic square cells (in 2-D) or
to other similar geometry as the tetrakaidecahedron cells (in 3-D). Our aim
is to determine the homogenized physical properties of such materials when
varying their parameter; it is a preprocessing stage, which can be performed
off-line. It is independent of the objective function, computational domain,
applied loads or boundary conditions. The Hooke’s laws are computed by solv-
ing the so-called cell problems, that describe the deformation at the scale of
the microstructure, which is a very classical task in homogenization theory.
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6 2.1 Set of admissible microstructures

2.1 Set of admissible microstructures

From now on, we restrain our analysis to a simple class of composites already
introduced in [9], repeated periodically on the whole space.

2.1.1 Smooth honeycomb cell

Here, our interest for the smooth honeycomb relies on its smooth rounded
corners, known to generate lower local concentration stress ([31, 32]), compared
to the classical honeycomb; see Fig. 1 and Fig. 2.

(a) Classical honeycomb (b) Smooth honeycomb

Fig. 1 Isotropic design cells (images taken from [9])

(a) θ = 10% (b) θ = 50% (c) θ = 80%

Fig. 2 Smooth honeycomb cell for different values of the density θ

Let Y be the smooth honeycomb cell in 2-D: a unit regular hexagonal in 2-D
with smooth hexagonal central hole, similar to the classical honeycomb cell,
except that the interior corners of the central hexagonal hole are rounded;
see Fig. 1. Note that, the parameter e displayed by Fig. 1 (a), represents the
relative width of bars of Y , defined by:

e =

√
3

2
(1−

√
1− θ),

where the material density θ, describes the proportion of solid phase in Y ,
which varies from 0 to 1. Note that, because of its rounded corners, the smooth
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2 PERIODIC HOMOGENIZATION 7

honeycomb cell can not reach complete void: i.e., the density θ going to zero is
excluded. In this context, for practical reason, this kind of cell is parametrized
by another parameter h ∈ [0, 1], homogeneous to a distance and describes
(similar to the parameter e) the relative pore diameter of the cell, that is:

h = 1− 2e√
3

Indeed, in order to design the smooth honeycomb cell Y , a parametric curve Γh

(which depends on h) is introduced and represents the boundary of the perfo-
rated smooth central hole: note that, this only applies in 2-D. We now introduce
some notations before giving its polar equation. Let v(t) = (cos(t), sin(t))T

and ni (for i ∈ {0, 1, 2}) represent the normal vectors of the three diagonals of
Y , that are:

n0 =

(
0
1

)
, n1 =


√
3

2
1

2

 , n2 =


√
3

2

−1

2

 . (1)

The polar equation of the parametric curve Γh (of the smooth hexagon hole)
is defined by:

r(t) = h

√
3

2
(

2∑
i=0

|v(t) · ni|k(h))
−1
k(h) with t ∈ [0, 2π], (2)

where k(h) is positive coefficient, which depends on h: for this work, we took
k(h) = 4+20h2. In the following, we give some remarks over the polar equation
of the parametric curve Γh, which can be extended to other polygons. Let H
be a regular unit hexagon, namely, the set of all points such that the maximal

distance of a point in H from the three diagonals is equal to
√
3
2 and, let M(r, t)

be a point, with its polar coordinate denoted (r, t). Thus, M is a point in H if
and only if, its polar coordinate (r, t) satisfies

rmax
i

|v(t) · ni| =
√
3

2
. (3)

Hence, the polar equation of H verifies

r(t) =

√
3

2
(max

i
|v(t) · ni|)−1. (4)

And, we recall that,

(

2∑
i=0

|v(t) · ni|k)
1
k →k→∞ max

i
|v(t) · ni|. (5)
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8 2.1 Set of admissible microstructures

Note that, the polar equation of Γh comes from combining the polar equation
of H and the above limit; the parameter h is added in order to adjust the
diameter of its inner hole.

2.1.2 Tetrakaidecahedron cell

In 3-D, isotropic cells are not so easy to design. Here, we design a regular
tetrakaidecahedron, known as the Kelvin foam, similar to the one introduced
in [9, 34]. It is shown to yield isotropic (or quasi isotropic) homogenized
Hooke’s laws. It features fourteen faces: six unit squares and eight regular
unit hexagons; see Fig 3 and Fig 4. Several approaches are possible in order
to design isotropic cells from this one, parametrized by one parameter, the
local density. A naive approach consists in adding a central tetrakaidecahedron
inclusion characterized by its size in [0, 1].

Fig. 3 Tetrakaidecahedron: an isotropic design cell in 3-D (image taken from [9]).

(a) θ = 10% (b) θ = 50% (c) θ = 80%

Fig. 4 Tetrakaidecahedron (or Kelvin foam) for different values of the material density θ.

Based on the construction method described above, the material density θ has
been used as a control parameter to generate foams of chosen porosities. Upon
increasing θ, one would reach a point where the structure is full of material
(i.e., the central tetrakaidecahedron inclusion will be closed).

8



2 PERIODIC HOMOGENIZATION 9

2.2 Cell problem and homogenized elasticity tensor

Here, we only give a few important results on the theory of homogenization.
The interested reader will find more details in [1].
Assume that, in a given macroscopic domain Ω, there is a periodic distribu-
tion of holes inside an isotropic elastic material, with constant elastic tensor
A. Let ϵ > 0 be the periodic size and, let Y be the unit periodic pattern: either
the regular smooth hexagonal in 2-D or the regular tetrakaidecahedron in 3-
D. The periodicity of Y is defined by the same displacement on two opposite
and parallel faces; hence, for the hexagonal cell in 2-D, there are three direc-
tions of periodicity and for the tetrakaidecahedron cell in 3-D, there are seven
directions of periodicity: see Fig. 1 and Fig. 3. Let Y0 be the solid part in Y
and, we denote by |Y |, the volume of the periodic cell Y ; let Γ be the bound-
ary of the holes (i.e., the solid/void interface) and n be the normal vector to
the boundary Γ.
In addition, assume that whenever ϵ tends to zero, the porous medium can
be considered homogeneous, with effective tensor A∗(x) (defined at each point
x ∈ Ω of the domain). To compute the homogenized tensor A∗, one needs
the so-called correctors wij , corresponding to the local displacements in the
periodic cell Y , defined for each pair (i, j) ∈ {1, .., N} (N ∈ {2, 3}) as the
solutions to the following set of equations:

−div(A(eij + e(wij))) = 0 in Y

A(eij + e(wij)) · n = 0 on Γ

y 7→ wij(y) Y -periodic,

(6)

where eij =
1
2 (ei ⊗ ej + ej ⊗ ei) represents the basis of the symmetric tensors

of order 2. As a consequence, the variational formulation associated to (6) is:
find wij ∈ H1

#(Y,RN ) =
{
w ∈ H1(Y,RN ) | w is Y -periodic

}
such that

∀ϕ ∈ H1
#(Y,RN )

∫
Y

Ae(wij) : e(ϕ) dy +

∫
Y

Aeij : e(ϕ) dy = 0, (7)

which admits a unique solution (up to a rigid displacement field). The entries
of A∗ are then defined in terms of the correctors wij (solutions of (6)):

A∗
ijkl =

1

|Y |

∫
Y

A(eij + e(wij)) : (ekl + e(wkl)) dy ∀i, j, k, l ∈ {1, .., N} (8)

We emphasize that, if the homogenized tensor A∗ is supposed to be isotropic,
only two of its coefficients are needed (e.g., A∗

1122 and A∗
1212) to fully character-

ize A∗. However, all the coefficients were numerically computed to verify that
the homogenized material is isotropic (or quasi-isotropic). Herein, we use a lin-
ear material model with Young’s modulus E = 12 × 109Nm−2 (i.e., 12GPa)
and Poisson’s ratio ν = 0.35. It is worth noting that, if the effective tensor A∗

9



10 2.3 Sensitivity of the homogenized elasticity tensor

is isotropic, it can be written as:

A∗ = 2µ∗I2N + (κ∗ − 2µ∗

N
)IN ⊗ IN , (9)

where κ∗ and µ∗ are the bulk and shear moduli of the homogenized Hooke’s
law A∗, with its first Lamé coefficient defined by: λ∗ = κ∗ − 2µ∗

N . I2N and IN
in (9), represent the fourth order symmetric identity and the identity tensor
of order 2. The entries are defined by:

µ∗ = A∗
ijij

λ∗ = A∗
iijj ∀i, j ∈ {1, ..., N} and i ̸= j

κ∗ = A∗
iijj +

2

N
A∗

ijij

(10)

where the isotropy of A∗ is satisfied if we have the following relations:

∀i, j, k, l ∈ {1, .., N}



A∗
ijkl = A∗

klij

A∗
iijk = 0; if j ̸= k

A∗
iiii = A∗

jjjj

A∗
iijj = A∗

kkll; if i ̸= j, k ̸= l

A∗
iiii = A∗

ijij +A∗
iijj ; if i ̸= j

(11)

Numerical results

The homogenized tensor A∗(θ) has been computed for both periodic cells, for
discrete values (θi)i=1,...,ns of θ: a preprocessing stage, which is performed
offline. Here, a table of the size ns = 1000 is built, which is then used
to compute the local composites during the optimization process: a linear
interpolation approach is used to update the homogenized tensor.
The relative errors with respect to the equalities in (11) are depicted by Fig. 5.
We note that the residuals with respect to the equalities in (11), for the smooth
honeycomb and the Kelvin foam, are sufficiently small, which validates the
isotropy assumption: the relative errors are less than 10−4.

2.3 Sensitivity of the homogenized elasticity tensor

The computation of the sensitivity of the homogenized elasticity tensor with
respect to the design parameter θ of the periodic cell Y is based on the notion of
shape derivative. We define W1,∞

# (Y ; RN ) as the set of Y− periodic Lipschitz

maps from Y with values in RN .

Definition 1 Let δ ∈ W1,∞
# (Y ; RN ). The shape derivative of a function F (Y ) is

defined as the Fréchet derivative in W1,∞ at 0 of the application δ → F ((Id+ δ)Y ),

10



2 PERIODIC HOMOGENIZATION 11

×10−6 ×10−6

×10−5 ×10−5

0 0.2 0.4 0.6 0.8 1
0
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θ

Smooth honeycomb
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∗
1111

A∗
2212/A

∗
1111

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

θ

|A∗
1111 − A∗

2222|/A
∗
1111

|A∗
1122 + A∗

1212 − A∗
1111|/A

∗
1111

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

θ

Kelvin foam

A∗
1123/A

∗
1111

A∗
1113/A

∗
1111

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

θ

|A∗
1111 − A∗

2222|/A
∗
1111

|A∗
2323 − A∗

1313|/A
∗
1111

|A∗
2323 + A∗

1122 − A∗
1111|/A

∗
1111

Fig. 5 The relative errors with respect to the equalities in (11), for the smooth honeycomb
cell in 2-D and the Kelvin foam cell in 3-D.

that is to say:

F ((Id+ δ)Y ) = F (Y ) +

〈
F ′(Y ), δ

〉
+ o(δ) with lim

δ→0

|o(δ)|
∥δ∥W1,∞

,

where F ′(Y ) is a continuous linear form on W1,∞
# (Y ; RN ). Now, let MN be the set

of squared N ×N matrices and Ms
N the subset of symmetric ones. Then

11



12 2.4 Cell problem and homogenized model in conductivity

Lemma 1 The shape derivative of A∗
ijkl is given by:〈(

A∗
ijkl

)′
(Y ), δ

〉
=

∫
Y
A(eij + e(wij) : (ekl + e(wkl)) div(δ) dy

−
∫
Y
A(eij + e(wij) :

〈
de(wkl), δ

〉
dy

−
∫
Y
A(ekl + e(wkl) :

〈
de(wij), δ

〉
dy,

(12)

where de(w) is a linear operator from W1,∞
# (Y ; RN ) to L2(Y ; Ms

N ) defined for

every w ∈ H1
#(Y ; RN ) by〈

de(w), δ

〉
=

1

2
(∇w∇δ +∇δT∇wT ).

See [1, 35], for a proof of Lemma 1: it relies on the Lagrangian method, which
amounts to introduce a Lagrangian, defined as the sum of formula (8) for A∗

ijkl

and of the variational formulation (7). Differentiating with respect to the state
variable gives the adjoint system. It turns out that the problem is self-adjoint,
so no adjoint appears in (12). Differentiating with respect to the shape leads
to the final result.

2.4 Cell problem and homogenized model in conductivity

We now consider a general model problem of thermal or pressure conductivity,
similar to the elasticity system defined in Sect. 2.2. Starting from a microscopic
description of a problem, one seeks a macroscopic or effective model problem
in conductivity K∗ which can either be the permeability of a cold fluid flowing
through a porous material or the conductivity of a hot fluid flowing through
a two-phase material composed of solid and fluid phases. We introduce the
so-called cell problems, similar to the elasticity system. Howbeit, since the
considered cell Y is isotropic, only one of its coefficient (e.g. (K∗)11) could be
computed in order to fully characterize K∗.
Let (ei)i=1,..,N be the canonical basis of RN and, for each unit vector ei, we
consider the following conductivity problem in the periodic cell Y :{

−div(K(ei +∇wi))) = 0 in Y

y 7→ wi(y) Y periodic,
(13)

where wi(y) is the local variation of pressure created by an averaged (or macro-
scopic) gradient ei. The homogenized conductivity K∗ is then given in terms
of the correctors wi (solutions of (13)), defined by:

(K∗)ij =
1

|Y |

∫
Y

K(ei +∇wi) · (ej +∇wj) dy ∀i, j ∈ {1, 2} (14)

where the tensor K∗ describes the effective or homogenized properties of the
heterogeneous microstructure. We recall that, K∗ does not depend on the

12



3 SETTING OF THE THREE-PHYSIC PROBLEM 13

choice of domain Ω, source term, or boundary conditions and, Y = Y0∪(Y \Y0)
is a disjoint reunion of the solid and void phases, where in thermal conductivity,
K can be defined by:

K(y) =

{
ks in y ∈ Y0

kf in y ∈ Y \Y0

(15)

where, ks and kf are some fixed constant thermal conductivities inside the
solid and void phases. Though, in pressure conductivity, K is:

K(y) =

{
ϵ0 in y ∈ Y0

1 in y ∈ Y \Y0

(16)

where ϵ0 is a given small positive value to avoid degeneracy. Note that, in
all generality, K∗ is a tensor of order 2; however, because the chosen cell is
isotropic, we have: ∀i, j ∈ {1, ..., N}, K∗

ii = K∗
jj and K∗

ij = 0, if i ̸= j. Thus,
K∗ is proportional to the identity tensor IN and as such, it can be identified
to the scalar α∗ = K∗

11.

Numerical results

The homogenized conductivity K∗ has been computed for the smooth honey-
comb in 2-D and tetrakaidecahedron in 3-D, for discrete values of θ. On Fig. 6,
we plot (with respect to the smooth honeycomb and Kelvin foam) the homog-
enized conductivity α∗

||α∗||∞ for discrete values (θi)i=1,...,ns
, in comparison to a

given smooth function:

K∗
D(θ) := min

(
ϵ0 + (1− ϵ0)(1− θ)

θ
,K∞

)
, (17)

where ϵ0 and K∞ are some fixed constants: ϵ0 = 10−4, K∞ = 103. Note
that, ||α∗||∞ = sup

θi

α∗(θi). As expected, α∗

||α∗||∞ is a decreasing function with

respect to the density θ. We emphasize that, the residuals |K∗
11 −K∗

22|/K∗
11 ≤

10−6 and K∗
12/K

∗
11 ≤ 10−3 are sufficiently small, which validates the isotropy

assumption. In addition, we note that the homogenized conductivity coefficient
α∗

||α∗||∞ can be approximated by the smooth function K∗
D.

3 Setting of the three-physic problem

Here, we investigate the weakly coupled model of heat propagation, fluid
flow and structure deformation. First, the fluid flow is described using the
Biot-Darcy’s law, second, the heat propagation is characterized using the
convection-diffusion equation and third, the three-physic problem is described
by the linearized poro-thermo elasticity system, for the mechanical displace-
ment.

13



14 3.1 Hydraulic law of Biot-Darcy-type for the pressure variable
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Fig. 6 The homogenized conductivity α∗

||α∗||∞
as a function of θ for the smooth honeycomb

(left) and Kelvin foam (right), compared to K∗
D.

Let Ω be a fixed domain in RN (N = 2 or 3), filled with composite material
periodically perforated by the hexagonal cell in 2-D or tetrakaidecahedron cell
in 3-D and, characterized by one parameter θ (the material density), which
is to be optimized. Let n be the normal vector to the boundary ∂Ω, pointing
outward to the domain Ω. The domain Ω is described by the three physics
system which are governed by three coupled models, that are:

• the motion of the fluid inside the domain Ω described by the pressure field
p, satisfying the Biot-Darcy’s law

• the diffusion of heat inside the whole domain Ω, and its transport by
convection in the fluid domain, resulting in a temperature field T ;

• the deformation of the solid phase, as a result of the stress exerted by the
fluid part and of the dilation induced by thermoelastic effects, characterized
by a mechanical displacement u

The physical equations chosen for the modeling of the state variables p, T and
u with their relevant set of boundary conditions are now described in strong
form in Section 3.1, Section 3.2 and Section 3.3.

3.1 Hydraulic law of Biot-Darcy-type for the pressure
variable

We give a precise account of the weakly coupled fluid model that is based on
the Biot-Darcy’s law; the effect of which is to establish the pressure field as a
function of material density θ.
From a fluid point of view, Darcy’s law describes the fluid ability to flow
through a porous media such as soil, sandstone or rock; it states that, the
fluid flowing through a unit area is directly proportional to the pressure drop

14



3 SETTING OF THE THREE-PHYSIC PROBLEM 15

per unit length ∇p and, inversely, that the resistance of the porous medium is
proportional to the flow µf ([37]), which is defined by:

q := −κf

µf
∇p = −K∗

D∇p, (18)

where q, κf , µf , ∇p, and K∗
D represent the flux (kgm2s−1), permeability (m2),

fluid viscosity (Nm−2s), pressure gradient (Nm−3), and the conductivity coef-
ficient (m4N−1s−1) (which defines the fluid ability to flow through a porous
medium). In order to smoothly and continuously distribute the pressure drop
in the fluid domain and differentiate between solid phase and void in the whole
domain, the homogenized conductivity coefficient K∗ (which we numerically
compute, see Section 2.4) is approximated by a smooth function:

K∗
D(θ) := min

(
ϵ0 + (1− ϵ0)(1− θ)

θ(x)
,K∞

)
, (19)

where ϵ0 and K∞ are given positive values: ϵ0 = 10−4, K∞ = 103. We recall
that an homogenization method was performed on the conductivity coefficient
and we notice that, the homogenized flow coefficient K∗ can be approximated
by the above function; see Fig. 6.
We now assume that the pressure field p is satisfying (a more accurate
description of) the Biot’s law:

p := Mm−Mbevol, (20)

where m,M, b and evol represent the mass of the fluid flow, the so called Biot
modulus, Biot coefficient and the volume variation of the solid phase, defined
as follows:

m(θ) := (1− θ)ρ, M(θ) :=
1− θ

κv
− b(θ)− (1− θ)

κs
, evol := div(u), (21)

where ρ, κv and κs represent the density of the flux and the compressibility of
the void and solid phases. Moreover, in case of an isotropic porous medium,
the Biot’s coefficient b(θ) is explicitly defined as follows:

b(θ) := 1− κs(θ)

κ
, (22)

where, κ and κs(θ) represent the bulk moduli of the elastic tensor A and the
homogenized tensor A∗(x) (at each point x ∈ Ω of the design domain): note
that, A∗ tends to A, when θ tends to 1 and thus, κs(θ) tends to κ. In addition,
the Biot’s law (20) satisfied by the pressure p, is assumed to be related to
Darcy’s law (18):

q := mvf = −K∗
D∇p, (23)

15



16 3.2 Convection-diffusion for the temperature variable

where vf represents the velocity of the flux. Equation (23), allows to render
gradually the pressure drop from the inner pressure boundary to the outer pres-
sure boundary. We emphasize that, this penetrating pressure of Biot-Darcy’s
law is similar to that introduced in [23], which makes this pressure loading
boundary a smeared-out version of an applied pressure load on a sharp bound-
ary. Now, for sake of simplicity, we opted here for a simplified version, that is,
in addition to the Biot-Darcy equation (23), we assume that the state equation
satisfies the law of conservation of mass (in view of incompressible fluid):

∂m

∂t
:= −div(q) = div(K∗

D∇p) = 0 (24)

And by using the Biot-Darcy’s law (24), the weakly coupled fluid model can
be defined as follows:

(Biot-Darcy)


−div(K∗

D∇p) = 0 in Ω,

p = p0 on Γf
D,

qΓ · n = ff on Γf
N ,

qΓ · n = 0 on Γf = ∂Ω\(Γf
D ∪ Γf

N ),

(25)

where, ff is an applied Neumann isoflux condition (or mass flow rate) for the
pressure variable p. The boundary of the fluid phase is the disjoint reunion

∂Ω = Γf
D ∪ Γf

N ∪ Γf

of a Dirichlet (or inlet) part Γf
D where the flow enters with a given pressure

p = p0, a Neumann (or outlet) part Γf
N where normal stress (or mass flow

rate) qΓ · n = ff is imposed, and free interface Γf of ∂Ω. At this stage, it
is assumed that the deformation of the solid domain is sufficiently small so
that no slip boundary conditions hold on: qΓ · n = 0. Therefore, the variable
p depends solely on the material density θ(x), for all x ∈ Ω.

3.2 Convection-diffusion for the temperature variable

We give a precise account of the weakly coupled diffusion of the heat model,
that is based on the convection-diffusion equation: the fluid velocity vf deter-
mines the physical behavior of the temperature T in the whole domain, as a
result of convection and diffusion effects inside the fluid domain and of pure
diffusion inside the solid domain (see e.g. [38]). Here, we chose to use an empir-
ical form of the heat equation for the whole domain featuring fluid and solid
phases (see e.g. [39]). Some authors employ two-equation modeling for each
phase of the medium (see e.g [40]). This modeling difference lies in the fact
that the empirical form at one temperature does not take into account certain
local turbulence effects, which degrades the heat transfer across the interface

16



3 SETTING OF THE THREE-PHYSIC PROBLEM 17

between the fluid and solid phases. However, even in this case, the thermal
capacity is indeed that of the fluid alone.
Assume that, when ϵ tends to 0, the periodic microstructure Ωϵ tends to an
homogeneous domain Ω, filled with fine mixtures of solid and void phases;
let K∗ denote the homogenized thermal conductivity inside the porous media
(which we numerically computed, see Section 2.4), and let cp be the thermal
capacity of the fluid. Then, the weakly coupled diffusion of the heat model is
defined by the convection-diffusion equation:

−div(K∗∇T ) + ϕ(ρcp)fvf∇T = 0 in Ω,

T = T0 on ΓT
D,

−K∗ ∂T

∂n
= h0 on ΓT

N ,

−K∗ ∂T

∂n
= 0 on ΓT = ∂Ω\(ΓT

D ∪ ΓT
N )

(26)

where, the subscript f denotes the restriction to the fluid phase in Ω. The
boundary ∂Ω = ΓT

D ∪ ΓT
N ∪ ΓT is split into a Dirichlet part ΓT

D, where a
temperature T0 is imposed, a Neumann part ΓT

N , where a given incoming heat
flux h0 is applied and a free interface ΓT . Note that, ϕ = 1− θ is the volume
fraction of fluid: i.e., the proportion of the void phase at each point x ∈ Ω.
The convection-diffusion equation (26) is now recast as thermal Biot-Darcy
equation: 

−div(K∗∇T ) + (−cpK
∗
D∇p)f∇T = 0 in Ω,

T = T0 on ΓT
D,

−K∗ ∂T

∂n
= h0 on ΓT

N ,

−K∗ ∂T

∂n
= 0 on ΓT

(27)

where ϕρvf = mvf = −K∗
D∇p is the fluid flow, satisfying the Biot-Darcy

model (25). As a consequence, the convection-diffusion model is defined by
(27).
Similar to the Biot-Darcy model (25), starting from a microscopic description
of a problem, one seeks a macroscopic or effective model problem in conduc-
tivity. We consider a model problem of thermal flow in a periodic medium: an
heterogeneous domain obtained by mixing periodically two different phases,
one being the solid phase and the other being the void inclusions. As seen
in Section 2, to compute the homogenized conductivity K∗, we introduce the
cell problems. Since the considered cell Y is specifically chosen in order to
design isotropic composites, only one of its coefficient (e.g. (K∗)11) could be
computed in order to fully characterize K∗.

3.3 Elasticity with fluid-structure interaction

Finally, the pressure variable p and the temperature T together determine
the displacement u of the solid phase in Ω, which we assume to be isotropic

17



18 3.3 Elasticity with fluid-structure interaction

thermoelastic composite material, with homogenized Lamé coefficients denoted
λ∗, µ∗. Let α be the thermal expansion parameter and Tref be the temperature
at rest; then, the weakly coupled thermal fluid-elastic model is defined by the
linear thermo-elasticity (of Biot-Coussy type):

−div(σ(u, T )) = −b∇p in Ω,

u = u0 on Γs
D,

σ(u, T ) · n = fs on Γs
N ,

σ(u, T ) · n = 0 on Γs,

(28)

where, the homogenized stress tensor is defined as follows:{
σ(u, T ) = A∗(e(u)− α(Ts − Tref )IN

)
and where,

A∗e(u) = 2µ∗e(u) + λ∗Tr(e(u))IN
(29)

IN is the identity tensor. Note that, the source term in (28) is the body force
(i.e., −b∇p) exerted by the fluid part. The boundary ∂Ω is split into a Dirichlet
part Γs

D where a displacement u = u0 is prescribed, a Neumann part Γs
N where

a surface force fs is imposed and, a free part Γs. We recall that the Biot coef-
ficient, defined by Eq. (22) is only valid in the case of a linear isotropic elastic
tensor microscopically homogeneous. Moreover, we emphasize that the above
model (28) is a simplified version of a genuine thermal fluid-solid coupling:

(Biot-Coussy)


−div(σ̃) = 0 in Ω,

σ̃ = σ(u, T )− bpI,

σ(u, T ) = A∗(e(u)− α(T − Tref )I
)
,

p = Mm−Mbevol

where the fluid pressure p is satisfying a more accurate description of fluid-
structure interaction (which features a transition regime and an inertia
regime):

−K∗
D∇p = q = mvf + ρCforv

2
f in Ω,

where Cfor is an inertia parameter of the fluid flow, called Forchheimer coef-
ficient. Here, for sake of simplicity, we opted for a simplified version, which is
justifiable insofar as we wish to obtain a first qualitative result of microstruc-
ture without however sizing as accurately as possible the system. Thanks to
this simplification, the systems (25), (27) and (28) are only weakly coupled:
the resolution is achieved by solving the fluid system (25), then using the
fluid stress resulting from the pressure p in the heat transfer equation (27),
and finally using the fluid stress and the temperature T to solve the linear
poro-thermo elasticity system (28).

18



4 THE OPTIMIZATION PROBLEM FORMULATION AND ITS SENSITIVITY ANALYSIS 19

Remark 1 : Regarding the domain of validity, several characteristics length scales
have been proposed in the literature, i.e., various definitions in the form of mor-
phological parameter (e.g. pore diameter) or hydraulic parameter (e.g. permeability)
have been used as a characteristic length choice. No general consensus has been ever
achieved on this matter and varies from one author to another. However in [38], the
authors numerically demonstrate that, it is insightful to obtain the threshold range of

Reynolds number Redp
(
=

ρvfdp

µf

)
based on pore diameter dp, which can be used to

distinguish the flow regimes and, choose the flow law accordingly. In their numerical
simulation, the authors chose a Kelvin-like structure (i.e., tetrakaidecahedron cell in
3-D) as a computational domain and they numerically distinguished three regimes:

• Redp ≤ 0.3: Darcy regime,
• 0.3 < Redp ≤ 30: Cubic regime,
• Redp > 30: Weak inertia regime

with respect to circular strut cross-section having variable pore diameters and poros-
ity for a given cell size: constant fluid properties were used. As aforementioned, we
opted here for simplified regime, the Darcy regime (which is justifiable insofar as
we wish to obtain a first qualitative result of microstructure without however sizing
as accurately as possible the system). In addition, we opted for isotropic compos-
ite microstructures (i.e., composite periodically perforated by hexagonal cells in 2-D
and tetrakaidecahedron cells in 3-D) and as such, the thermal or hydraulic parame-
ter (e.g. thermal or pressure conductivity) can be identified to scalar values, which
depend solely on the material density θ. Furthermore, regarding the regimes of strong
couplings with respect to those of weak ones, it is worth to recall that, from a mod-
eling point of view, very often, the mechanical deformations and displacements are
small. This implies that the fluid domain is fixed at first order, that is, indepen-
dent of the deformation of the structure. It is therefore natural to consider only a
weak coupling between the three physics at stake and, of course this weak coupling
is a major simplification and it dramatically reduces the computational cost since no
monolithic coupled system has to be solved. We emphasize that, at θ = 0, the stress
field σ = 0 (for instance) vanishes and, which calls for special care in the gradient
method. This lack of continuity at θ = 0 is the mathematical manifestation of the
presence of holes in the computational domain. In practice, the smallest admissible
value of θ is fixed at 10−4, in order to avoid singularities of the effective tensor when
the elasticity problem is solved (i.e., the ersatz method).

4 The optimization problem formulation and
its sensitivity analysis

We present the optimization problem formulation associated to the weakly cou-
pled three-physic problem and discuss the sensitivity analysis for such design
problems. The announced goal is the resolution of the relaxed constrained
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version of the original optimization problem:

min
θ

J∗(θ, p(θ), T (θ), u(θ))

s.t

{
gi(θ, p(θ), u(θ), T (θ)) = 0, 1 ≤ i ≤ p,

hj(θ, p(θ), u(θ), T (θ)) ≤ 0, 1 ≤ j ≤ q,

(30)

where θ denotes the material density of the structure to be optimized. J∗

refers to a given objective function which quantifies the system performance
and which is to be minimized. Classical objective functions commonly encoun-
tered in shape optimization include the compliance of a mechanical structure,
the drag force induced by an airfoil, or the heat stored into a thermal system.
Equality and inequality constraints gi and hj model physical load specifica-
tions; they refer to target values some physical quantities needed to reach (e.g.
a desired volume or mass for the structure) or that should not be exceeded
(e.g. an upper bound limit for the overall temperature). Both objective func-
tion J∗ and constraints gi, hj depend on the optimization variable θ and on
the physical variables p(θ), T (θ), u(θ), which depend themselves on θ through
physical state equations.
For its resolution, we shall rely on the alternate directions algorithm [26]
detailed in Section 5.1, which requires to compute the sensitivity of the above
functionals: here, the adjoint-state method [1] is used to determine the sensi-
tivities of the objective functions and constraints with respect to the design
variable θ. It is worth mentioning that, likewise in [25], the authors employed
the adjoint-state method to evaluate the sensitivities of objective functions
(constituted by the Biot model coefficients with respect to the underlying
pore shape described by a B-spline box which embeds the whole representa-
tive cell) and the gradient-based method to solve the optimization problems.
Howbeit, the considered shape derivatives of the homogenized coefficients are
different: they rely on the shape sensitivity technique and the material deriva-
tive approach. Here, the ”shape” is described by the density θ and, the shape
derivatives are performed using the Lagrangian method and the projected gra-
dient algorithm. In this context, this means computing the derivative of the
mapping:

θ 7→ J∗(θ, p(θ), T (θ), u(θ)),

where θ belongs in general to the set of admissible design variables Uad, defined
as follows:

Uad :=

{
θ ∈ L∞(Ω; R+) | θ(x) ∈ [0, 1],∀x ∈ Ω

}
In contrast, in [25], a general optimization variable α is introduced which is
related to the effective medium parameters: it determines the homogenized
coefficients for any position x ∈ Ω.
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4.1 A fully Lagrangian setting for the sensitivity analysis

We use a fully Lagrangian setting to compute the derivative of general objective
functionals in the simplified setting of Section 3.1 to Section 3.3. The sensi-
tivities of the state variables p(θ), T (θ) and u(θ) are calculated first, in order
to obtain the derivative of an arbitrary objective functional in volume form.
Then, under sufficient regularity assumptions, the adjoint method together
with suitable augmented Lagrangian functional yield derivative formulas.

4.2 A modified objective functional and Lagrangian
derivative

In a gradient-based topology optimization, it is essential to determine sensitiv-
ities of the objective functional and the constraints with respect to the design
variable(s). The starting remark is that the relaxed functional J∗, although
appearing naturally in the formulation of the optimization problem (30) is not
so convenient for the mathematical analysis. Indeed, the domain of definition
of J∗(θ, ., ., .) is a functional space which depends on the first argument θ. In
order to discuss the precise mathematical settings of this three-physic problem,
we introduce the functional spaces which are required, that are:

V (Γf
D) ={q ∈ H1(Ω) | q = 0 on Γf

D}, for the pressure variable p

V (ΓT
D) ={S ∈ H1(Ω) | S = 0 on ΓT

D}, for temperature variable T

V (Γs
D) ={v ∈ H1(Ω)N | v = 0 on Γs

D}, for the displacement u

(31)

In addition, note that the non-homogeneous Dirichlet boundary data u0, p0
and T0 featured in (25) to (28) are seen as the traces on the boundary of H1(Ω)
functions. The state variables p, T and u are then solutions to the following

variational problems: find (p, T, u) ∈
{
p0 + V (Γf

D), T0 + V (ΓT
D), u0 + V (Γs

D)
}

such that,

∫
Ω

K∗
D∇p · ∇q dx+

∫
Γf
N

ff q ds = 0, ∀ q ∈ V (Γf
D),∫

Ω

K∗∇T · ∇S dx+

∫
ΓT
N

h0S ds+

∫
Ω

(−cpSK
∗
D∇p) · ∇T dx = 0, ∀ S ∈ V (ΓT

D),∫
Ω

σ(u, Ts) : e(v) dx−
∫
Γs
N

fs · v ds+

∫
Ω

b∇p · v dx = 0, ∀ v ∈ V (Γs
D)

(32)
In order to address the sensitivity of an arbitrary objective function, the clas-
sical idea is to work within a Lagrangian framework. Therefore, we consider
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22 4.3 Sensitivity analysis for the three-physic problem

the corresponding Lagrangian:

L(θ̂, û, û, p̂, p̂, T̂ , T̂ , ℓ) = J∗(θ̂) +

∫
Ω

(
σ(û, T̂ ) : e(û) + b(θ̂)∇p̂ · û

)
dx

+

∫
Ω

K∗∇T̂ · ∇T̂ dx−
∫
Ω

cpT̂K
∗
D∇p̂ · ∇T̂ dx

+

∫
Ω

K∗
D∇p̂ · ∇p̂ dx+ ℓ

(∫
Ω

θ̂ dx−Θ

)
,

(33)

where again, we point out that J∗ is assumed to be a ”smooth” enough
function, otherwise we cannot apply the adjoint-state method [1, 11].

4.3 Sensitivity analysis for the three-physic problem

The sensitivities are evaluated by differentiating the Lagrangian (33) with
respect to state variables u, p and T in directions ϕu ∈ H1(Ω)N , ϕp ∈ H1(Ω)
and ϕT ∈ H1(Ω). Let (u, u) ∈ H1

0 (Ω; RN )2 be a stationary point of L. Then,
the derivative of the Lagrangian (33) with respect to u, in direction ϕu ∈
H1(Ω)N is given by:〈

∂L
∂u

, ϕu

〉
=

〈
∂J∗

∂u
, ϕu

〉
+

∫
Ω

(〈
∂σ(û, T̂ )

∂u
, ϕu

〉
: e(û)

)
dx, (34)

while the derivative with respect to p, in direction ϕp ∈ H1(Ω) is given by:〈
∂L
∂p

, ϕp

〉
=

〈
∂J∗

∂p
, ϕp

〉
+

∫
Ω

b∇ϕp · û dx+

∫
Ω

(−cpT̂K
∗
D∇ϕp) · ∇T̂

+

∫
Ω

K∗
D∇ϕp · ∇p̂ dx

(35)

and the derivative with respect to T , in direction ϕT ∈ H1(Ω) is given by:〈
∂L
∂T

, ϕT

〉
=

〈
∂J∗

∂T
, ϕT

〉
+

∫
Ω

〈
∂σ

∂T
, ϕT

〉
: e(û) dx

+

∫
Ω

K∗∇(ϕT ) · ∇T̂ dx+

∫
Ω

(−cpT̂K
∗
D∇p̂) · ∇(ϕT ) dx,

(36)

which, when equations (34), (35) and (36) vanish, are the variational formu-
lation of the adjoint-states. Moreover, the derivatives with respect to u, p and

T , in directions ϕu ∈ H1(Ω)2, ϕp ∈ H1(Ω) and ϕT ∈ H1(Ω) are simply the
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4 THE OPTIMIZATION PROBLEM FORMULATION AND ITS SENSITIVITY ANALYSIS 23

variational form of the state equations:

〈
∂L
∂u , ϕu

〉
=

∫
Ω

(σ(û, T̂ ) : e(ϕu) + b(θ̂)∇p̂ · ϕu) dx,〈
∂L
∂p , ϕp

〉
=

∫
Ω

K∗
D∇p̂ · ∇ϕp dx,〈

∂L
∂T , ϕT

〉
=

∫
Ω

K∗∇T̂ · ∇ϕT +

∫
Ω

(−cpϕTK
∗
D∇p̂) · ∇T̂ dx,

(37)

In Eq. (33), the integration by parts has removed boundary terms (involving
the source terms fs, h0, ff ), so that equations in (37), when vanishing, are
consistent with homogeneous problems. Finally, the partial derivative of the
Lagrangian L with respect to θ, in direction θ̄ ∈ L∞(Ω; R) at the stationary
point (u, u, p, p, T, T ) is given by:〈

dL
dθ

, θ̄

〉
=

〈
∂J∗

∂θ
, θ̄

〉
+

∫
Ω

(
∂σ

∂θ
: e(u) +

∂b

∂θ
∇p · u+

∂K∗
D

∂θ
∇p · ∇p

+
∂K∗

∂θ
∇T · ∇T + (−cpT

∂K∗
D

∂θ
∇p) · ∇T + ℓ

)
θ̄ dx

(38)

Note that Eq. (38) is defined using the adjoint-state method. The term <
∂J∗

∂θ , θ̄ > is the partial derivative of the objective function J∗ with respect to
θ, in direction θ̄, while the term∫

Ω

(
∂σ

∂θ
: e(u) +

∂b

∂θ
∇p · u+

∂K∗
D

∂θ
∇p · ∇p+

∂K∗

∂θ
∇T · ∇T

+(−cpT
∂K∗

D

∂θ
∇p) · ∇T + ℓ

)
θ̄ dx

is used to determine the load sensitivities of the constraints with respect to
θ. Here, u, p and T are the adjoint-state variables, solutions to the adjoint
equations (34)-(36) (which we have to solve first). ℓ is the Lagrange multiplier
associated to the volume constraint: it is numerically adjusted at each iteration

to fulfill the volume constraint. Note that, the homogenized tensor
(
A∗(θ)

)′

has been computed for both periodic cells, for discrete values (θi)i=1,...,ns of
θ, using formula (12) (a preprocessing stage, which is performed offline) and,
a linear interpolation approach is used to update the derivative with respect

to θ of σ:
(
σ(θ)

)′
=

(
A∗(θ)

)′
: e(u). As for the derivative with respect to θ

of K∗(θ),K∗
D(θ) and the Biot coefficient b(θ), they are approximated by the

derivative of smooth ”enough” functions; see equations (17) and (22).
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5 Topology optimization of modulated periodic
composite materials

Here, our numerical algorithm is proposed; we describe how the methodology
applies to the weakly coupled three physics system of (25), (27) and (28).

5.1 Alternate directions method

The problem (30) is solved using the alternate directions algorithm [26].

5.1.1 Minimizing over the stress field

For a given design field θ, the minimization with respect to the stress field
σ amounts to solve the linear poro-thermo elasticity problem (28), with a
material of elasticity tensor equal to A∗. The composite design (θ,A∗(θ)) is
computed by linear interpolation in the table obtained after the preprocessing
stage, performed offline; see Section 2.2.

5.1.2 Minimizing over the density field

For a given stress field σ, the minimization with respect to the density θ
is performed using the projected gradient algorithm. Since the problem (30)
is not self-adjoint, one needs to define the associated adjoint problem. As a
consequence, the descent direction is given by the derivative of L with respect
to θ:〈

∂L
∂θ

, θ̄

〉
=

〈
∂J∗

∂θ
, θ̄

〉
+

∫
Ω

(
∂σ

∂θ
: e(u) +

(∂b
∂θ

∇p · u
)
+

∂K∗
D

∂θ
∇p · ∇p dx

+
∂K∗

∂θ
∇T · ∇T +

(
− cpT

∂K∗
D

∂θ
∇p

)
· ∇T + ℓ

)
θ̄ dx,

(39)

where the descent direction θ̄ = dθ has to be selected such that:〈
∂L
∂θ

(θ, u, u, p, p, T, T , ℓ), dθ

〉
< 0. (40)

It is achieved by choosing

dθ = −
(
∂J∗

1

∂θ
(θ) +

∂σ

∂θ
: e(u) +

∂b

∂θ
∇p · u+

∂K∗
D

∂θ
∇p · ∇p dx+

∂K∗

∂θ
∇T · ∇T

+

(
− cpT

∂K∗
D

∂θ
∇p

)
· ∇T + ℓ

)
(41)
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with < ∂J∗

∂θ , θ̄ >=
∫
Ω

∂J∗
1

∂θ · θ̄ dx. At iteration n, the optimal density θ is then
updated by performing the projected gradient:

θn+1 = P[0,1](θ
n − δdθ), (42)

where δ > 0 is the step size. In practice, we use an adaptive step size δ: at each
iteration, if the newly computed composite structure is accepted (i.e., if the
current objective function J∗(θn) is lower than previous one J∗(θn−1)), the
step size δ is increased by 20%, else, if it is rejected, the step size is divided by
2. P[0,1] is the projection operator on the interval [0, 1]. Numerically, the partial

derivative of the Lagrangian ∂L
∂θ is regularized using an equivalent H1-norm:∫

Ω

(
∂L
∂θ

θ̄ + η2∇∂L
∂θ

· ∇θ̄

)
dx =

〈
∂J∗

∂θ
, θ̄

〉
+

∫
Ω

((∂σ
∂θ

: e(u) +
∂b

∂θ
∇p · u

)
+
∂K∗

∂θ
∇T · ∇T +

(
− cp

∂K∗

∂θ
∇p

)
· ∇T T + ℓ

)
θ̄ dx,

(43)

where η is a small coefficient, which typically depends on the size of the
elements of the mesh: thanks to this coefficient, we are able to numerically
regularize the partial derivative on a length scale of order η and to limit local
instabilities on the density θ (e.g. checkerboard effect).

5.1.3 Complete optimization algorithm.

The alternate directions algorithm is an iterative method, structured as follows:

1. Initialization of the design variable θ such that it satisfies the volume
constraint Θ:

∀x ∈ Ω, θ0(x) =
Θ∫

Ω
1. dx

2. Iteration until convergence, for n ≥ 0 :
(a) Computation of the state variable pn through the Biot-Darcy model (25),

with composite design {θn, A∗(θn)}
(b) Computation of the state variable Tn through the convection-diffusion

equations (27), with composite design {θn, A∗(θn)}
(c) Computation of the stress tensor σn through a problem of the linear

poro-thermo elasticity (28), with composite design {θn, A∗(θn)} and the
descent direction dθn, for a given stress tensor σn, using formulas (41)

(d) Updating the design variable θn+1 using formulas (42), for the descent
direction dθn and then updating the composite design {θn+1, A∗(θn+1)},
by linear interpolation.

6 Numerical results and discussion

We introduce our numerical results in the three physics context detailed in
Section 3. A variety of 2-D and 3-D test cases are presented to demonstrate
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26 6.1 A fluid-structure interaction problem

that our alternate directions algorithm produces physically correct results.
The algorithm (5.1.3) has been implemented in FreeFem++[41], where all the
unknowns are discretized using P1 finite elements. For all our computations,
a linear material model with Young’s modulus E = 12 × 109Nm−2 (12GPa)
and Poisson’s ratio ν = 0.35 are considered. The void (i.e., θ = 0) is replaced
with a very compliant material: the smallest admissible value of θ is fixed at
10−4, in order to avoid singularities of the effective tensor when the elasticity
problem is solved.
We propose five test cases, where four out of five are new to the best of our
knowledge: the first three are 2-D examples and the last two are in 3-D. First,
we propose a poro-mechanical problem (where the convection-diffusion model
(27) is not taken into account), second, a convective heat transfer (where the
linear elasticity model (28) is not taken into account), third, all the three
physics are involved; and for the remaining two examples, we provide the 3-D
analogue of the second and third examples.

6.1 A fluid-structure interaction problem

In this example, the bounding box of the structure is a square of dimension L,
fixed on its boundary Γs

D (of length L
10 ) and subject to surface loading fs on

its boundary Γs
N (of length L

15 ). In addition, a fluid is entering with a given

mass flow rate ff on its Neumann (or outlet) part Γf
N (of length L

5 ), while

submitted to a pressure load p0 on its Dirichlet (or inlet) part Γf
D (of length

L
5 ). On the free interface Γf , zero normal stress is applied. See Fig. 7 for a
sketch of this test case.

L

L

L
5

Γs
N

fs

u = 0 : Γs
D Γs

D : ux = 0

∂p
∂n = ff : Γf

N Γf
D : p = p0

Γf

Γf Γf

Γf Γf

Γf Γf

Fig. 7 Setting for the fluid-structure interaction problem of Section 6.1. The boundary

parts Γf
D,Γf

N and Γs
N are centered.

We neglect the thermal effects (namely, Eq. (27) is ignored), so that Eq. (28),
becomes a poro-linear elasticity system with the forcing induced by the
mechanical load and the fluid. Our aim is to achieve a trade-off between the
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L (m) ff (kg/s) p0 (bar)

0.1 1.5 0

Table 1 Numerical values of the physical parameters for test case of Section 6.1

minimization of the compliance of the solid body and the maximization of the
hydraulic power transferred by the fluid:

J∗(θ, p(θ), u(θ)) = ω

(∫
Ω

A∗e(u) : e(u) dx

)
︸ ︷︷ ︸

Elastic strain energy

+(1− ω)

(
−
∫
Ω

K∗∇p . ∇p dx

)
︸ ︷︷ ︸

Hydraulic power

(44)
for some fixed coefficient ω ∈ [0, 1]: it measures the relative weight given to
each term in (44). The objective function J∗ is minimized using the alternate
directions algorithm of Section 5.1 and subject to a volume constraint Θ = 44%
of volume |Ω|:

1

|Ω|

∫
Ω

θ dx = Θ

In this example, the numerical values of the considered physical parameters
are supplied by Table 1. Here, we consider two cases in (44): either ω = 1 or
ω = 2/5. Note that, unfortunately the fixed coefficient ω is not optimal and so,
the terms composing the objective (44) are very heterogeneous: several values
of ω were considered (e.g. ω ∈ [0, 1[) but we did not achieve a better results
(or trade-off). On Fig. 8, the optimal density is displayed, while on Fig. 9, the
corresponding pressure field and solid displacement are displayed.

(a) ω = 1 (b) ω = 2/5

Fig. 8 The optimal density for the two-physic problem of Section 6.1, in both cases

The optimal density θ is represented in a gray scale: regions where θ = 1 are
black (pure material), whereas white regions correspond to voids. The gray
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28 6.1 A fluid-structure interaction problem

regions correspond to the composite design (with microstructures periodically
perforated by smooth honeycomb cells). The topology of the solution is quite
similar to that expected prior to the optimization. We note that, the algorithm
tends to distribute more material in regions where the pressure gradient is high,
of which we can clearly see a silhouette, although contains a large composite
zone at the center. However, in the case where ω = 2/5, the topology is more
diffuse: it seems to be driven by the hydraulic power term. For the pressure
field p, we emphasize that the boundary conditions are respected: regions with
high pressure gradient are located mainly on the silhouette ”shape” and its
becomes diffuse elsewhere. For this latter, the forcing induced by the fluid and
the mechanical load are displayed by the displacement of solid u; see Fig. 9. On
Fig. 10, we plot the convergence history for this calculation: with ω = 1, the
objective J∗ turns out to be very sensitive with respect to very small variations
of the topology and increases (in the first part of the optimization) due to the
fact that the volume constraint is not yet satisfied.

(a) Pressure field p (b) Displacement

Fig. 9 (a) State variable p (bar) and (b) the solid displacement (amplified by a factor 3)
for the two-physic problem of Section 6.1, with ω = 2/5

0 5 10 15 20

0

1

2

Iterations

J
∗

ω = 1

ω = 2/5

Fig. 10 The convergence history of the objective function J∗, for the two-physic topology
optimization problem of Section 6.1, in both cases
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6.2 A convective heat transfer problem

This second example is similar to that introduced and solved in [22], where
the level-set method and a Stokes model for the fluid flow is employed. The
computational domain is a square of dimension L, where a fluid is entering
with a given mass flow rate ff on its Neumann (or outlet) part Γf

N (of length
L
5 ) and, while submitted to a pressure load p0 on its Dirichlet (or inlet) part Γf

D

(of length L
5 ). In addition, a temperature T1 is entering through the upper and

lower walls (i.e., on its Dirichlet part ΓT
D : T = T1), while an inlet temperature

Tin is flowing through the middle left part of its boundary (i.e., on its Dirichlet
part ΓT

D : T = Tin of length L
5 ). On the free interface Γ = Γf = ΓT , zero

normal stress is applied for both the temperature and the pressure. See Fig. 11
for a sketch of this test case.

L

L

L
5

∂p
∂n = ff : Γf

N

T = Tin : ΓT
D

Γf
D : p = p0

T = T1 : ΓT
D

T = T1 : ΓT
D

Γ

Γ

Γ

Γ

Fig. 11 Setting of the convective heat transfer test case of Section 6.2.

For this example, we neglect the elastic contribution (namely, Eq. (28) is
ignored), so that the example involves only a coupling of the flow (25) and the
heat equation (27). Our aim is to achieve a trade-off between the maximiza-
tion of the hydraulic power dissipated by the fluid and the maximization of
the heat convected by the fluid:

J∗(θ, p(θ), T (θ)) = ω

(
−
∫
Ω

K∗∇p · ∇p dx

)
︸ ︷︷ ︸

Hydraulic power

+(1−ω)

(∫
Ω

cpK
∗
D∇p ·∇T dx

)
,

(45)
for some fixed coefficient ω ∈ [0, 1] and a thermal capacity cp (Jkg−1K−1).
The objective function J∗ is minimized with a volume constraint Θ = 44% of
volume |Ω|. The numerical values of the considered physical parameters are
supplied by Table 2. The balance coefficient is set to ω = 1/2. The optimal
density, the corresponding pressure p and temperature T are displayed on

29



30 6.2 A convective heat transfer problem

L (m) ff (kg/s) p0 (bar) Tin (C) T1 cp (J/kg.K) ks kf (W/m.K)

0.1 1 0 0 10 100 10 1

Table 2 Numerical values of the physical parameters in the convective heat transfer
problem of Section 6.2.

Fig. 12 and Fig. 13. The topology of the result is quite similar to that obtained
in [22] (where the solution is autopenalized).

(a) Density

Fig. 12 The optimal density for the two-physic topology optimization problem of
Section 6.2.

(a) Pressure field p (b) Temperature T

Fig. 13 Pressure p (bar) and temperature T (C) for the optimized configuration of the
two-physic problem of Section 6.2.

We note that, the algorithm tends to distribute more material in regions where
the pressure gradient is low and temperature gradient is high. We can clearly
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6 NUMERICAL RESULTS AND DISCUSSION 31

see a silhouette of a pipe. For the pressure p, we emphasize that the bound-
ary conditions are respected: regions with high pressure gradient are located
mainly at the center of the pipe and becomes diffuse elsewhere. For the temper-
ature T , we notice a cool down of the heat at the center of the pipe and becomes
hot elsewhere, with high temperature gradient; see Fig. 13. On Fig. 14, we
plot the convergence history for this calculation: smooth and relatively rapid
convergence is observed.

0 5 10 15 20

−40

−30

−20

−10

0

Iterations

O
b
je
ct
iv
e
J
∗

ω = 1/2

Fig. 14 Convergence history of the objective function J∗ for ω = 1/2, for the two-physic
topology optimization problem of Section 6.2

6.3 A thermal fluid-structure interaction problem

We finally turn to a topology optimization example in the full three-physic
setting presented in Section 3; a test case which is new to the best of our
knowledge. The computational domain is a square of dimension L, fixed on
its boundary Γs

D (of length L
10 ). A fluid is entering with a given mass flow

rate ff on its Neumann part Γf
N (of length L

5 ). It is submitted to a pressure

load p0 on its Dirichlet part Γf
D (of length L

5 ). In addition, a temperature T1

is entering through the upper and lower walls (i.e., on its Dirichlet part ΓT
D

where T = T1), while a temperature Tin is imposed on the middle left part of
its boundary ΓT

D (of length L
5 ). On the free interface Γ = Γf = ΓT , zero normal

stress is imposed for both the temperature and the pressure. See Fig. 15 for a
sketch of this test case.
Here, the objective

J∗(θ, p(θ), T (θ), u(θ)) := ω1

(∫
Ω

A∗e(u) : e(u) dx

)
︸ ︷︷ ︸

Elastic strain energy

+ω2

(
−
∫
Ω

K∗
D∇p · ∇p dx

)
︸ ︷︷ ︸

Hydraulic power

+ω3

(∫
Ω

cpK
∗
D∇p · ∇T dx

)
,

(46)
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32 6.3 A thermal fluid-structure interaction problem

is to achieve a trade-off between minimization of the compliance of solid,
the maximization of the hydraulic power dissipated by the fluid and the
maximization of the heat convected by the fluid, for some given coefficients
ω1, ω2, ω3 ∈ [0, 1], such that ω1 + ω2 + ω3 = 1.

L

L

L
5

∂p
∂n = ff : Γf

N

T = Tin : ΓT
D

Γf
D : p = p0

T = T1 : ΓT
D

T = T1 : ΓT
D

u = 0 : Γs
D Γs

D : ux = 0

Γ Γ

Γ Γ

Fig. 15 Setting of the three-physic problem of Section 6.3. Here, the boundary parts Γf
D,Γf

N

and ΓT
D are centered.

L (m) ff (kg/s) p0 (bar) Tin (C) Tref T1 α ks kf (W/m.K)

0.1 1 0 0 0 10 1 10 1

Table 3 Numerical values of the physical parameters in the three-physics problem of
Section 6.3.

The objective function J∗ is minimized with a volume constraint Θ = 23% of
volume |Ω|. The thermal capacity of the fluid is set to cp = 0.5 (J/kg.K) and
the remaining numerical values of the considered physical parameters are sup-
plied by Table 3. We consider two cases: ω1 = ω2 = ω3 = 1/3 and ω1 = 1/5,
ω2 = ω3 = 2/5. The optimal density is displayed on Fig. 16. Very interestingly,
we retrieve the fact that in the case where ω1 = ω2 = ω3 = 1/3, the topol-
ogy of the solution contains a large composite zone at the center and a large
contact surface with the fluid at entrance, namely, the middle right wall, so
to reduce the effect of the pressure source; the algorithm tends to distribute
more material in regions where the pressure gradient is high and seems to be
driven by the elastic strain energy. In the case ω1 = 1/5, ω2 = ω3 = 2/5,
the topology of the solution is homogeneous and seems to achieve a trade-
off between the minimization of the compliance (of the solid) induced by the
fluid, the maximization of the hydraulic power and of the heat convected by
the fluid. On Fig. 17 and Fig. 18, the corresponding pressure p, temperature T
and displacement u are displayed, for the case ω1 = ω2 = ω3 = 1/3. We notice
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6 NUMERICAL RESULTS AND DISCUSSION 33

a cool down of the heat at the center of the optimal shape and becomes hot
elsewhere, with high pressure gradient located mainly at large solid regions.

(a) ω1 = ω2 = ω3 = 1/3 (b) ω1 = 1/5, ω2 = ω3 = 2/5

Fig. 16 The optimal density for the three-physic problem of Section 6.3, in both cases.

(a) Pressure field p (b) Temperature field T

Fig. 17 Pressure p and temperature T for the optimized configuration of the three-physic
problem of Section 6.3, with ω1 = ω2 = ω3 = 1/3.
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34 6.4 3-D thermal fluid interaction problem

Fig. 18 The solid displacement for the three-physic topology optimization problem of
Section 6.3, with ω1 = ω2 = ω3 = 1/3 (displacement amplified by a factor 3).

On Fig. 19, we plot the convergence history for the elastic strain energy,
hydraulic power and thermal strain energy (for ω1 = ω2 = ω3 = 1/3) and, the
corresponding objective history (for both cases considered). We note that, the
objective J∗ (as well as the elastic strain energy) increases sometimes substan-
tially (in the first part of the optimization) due to the fact that the volume
constraint is not yet satisfied.

0 20 40 60 80

0

100

200

Iterations

J
∗

ω1 = ω2 = ω3 = 1/3

ω1 = 1/5 < ω2 = ω3 = 2/5

0 20 40 60

0

200

400

600

800

Iterations

Elastic strain energy

Hydraulic power

Thermal strain energy

Fig. 19 The convergence history for the three-physic topology optimization problem of
Section 6.3: to the right, the elastic strain energy (1st term in J∗ (46)), the hydraulic power
(2nd term in J∗) and thermal strain energy (3rd term in J∗), in the case ω1 = ω2 = ω3 = 1/3.

6.4 3-D thermal fluid interaction problem

This example is an attempt to compute a more realistic structure. It is the 3-D
analog of the second example of Section 6.2. The computational domain is a
3-D cubic box of dimension L, where a fluid is entering with a given mass rate
ff on its Neumann part Γf

N (of size L
5 × L

5 ). A temperature T1 is imposed on
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the upper and lower walls ΓT
D and a temperature T = Tin is imposed on the

middle back and left walls ΓT
D (of size L

5 × L
5 ). On Γ = Γf = ΓT , zero normal

stress is imposed for both the temperature and the pressure. See Fig. 20 for a
sketch of this test case.

Γ

Γf
N : ∂p

∂n = ff
ΓT
D : T = Tin

Γf
D : p = p0

∂p
∂n = ff : Γf

N

T = Tin : ΓT
D

Γf
D : p = p0

T = T1 : ΓT
D

T = T1 : ΓT
D

Fig. 20 The setting of the 3-D two-physic problem of Section 6.4, subjected to fluid-thermal
loads.

We recall that, for this example, the elastic model (28) is ignored. Thus, its
involves only a coupling of the flow (25) and heat equation (27). The objective
is to achieve a trade-off between the maximization of the hydraulic power
dissipated by the fluid and the maximization of the heat convected by the fluid.
See (45) for the optimization problem. The functional J∗ (45), is minimized
under the volume constraint Θ = 44% of the volume |Ω|. The numerical values
of the considered physical parameters are supplied by Table 2. We used for
all finite element operations a mesh consisting of 119172 tetrahedral elements
and started from an initial configuration θ0 = Θ, throughout. The algorithm
produces a symmetric layout. The total FreeFEM running CPU time on Intel
Xeon 2.60 GHz for this calculation is 5331 seconds.
Fig. 21 represents the iso-surface θ ≥ 0.5 of the density. In this example, the
iso-surfaces are smooth and embedded into each other as θ increases. The
topology of solution is quite similar to that obtained in 2-D, namely, 3-D pipe-
like ”shape” is observed, although it contains a large composite zone at its
center.
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36 6.5 3-D thermal fluid-structure interaction problem

(a) (b)

Fig. 21 Two views of the solution of the 3-D thermal fluid interaction problem of
Section 6.4. Composite solution represented as the part of the domain where θ ≥ 0.5.

6.5 3-D thermal fluid-structure interaction problem

This last example is the 3-D analog of third example of Section 6.3. The
computational domain is a 3-D cubic box of dimension L, fixed on its boundary
Γs
D (of size L

10 × L
10 ). A fluid is entering with a given mass rate ff on its

Neumann part Γf
N (of size L

5 × L
5 ). A temperature T1 is imposed on the upper

and lower walls ΓT
D and a temperature T = Tin is imposed on the middle back

and left walls ΓT
D (of size L

5 × L
5 ). On Γ = Γf = ΓT , zero normal stress is

applied for both the temperature and the pressure. See Fig. 22 for a sketch of
this test case.

Γ

Γf
N : ∂p

∂n = ff
ΓT
D : T = Tin

Γf
D : p = p0

∂p
∂n = ff : Γf

N

T = Tin : ΓT
D

Γf
D : p = p0

T = T1 : ΓT
D

T = T1 : ΓT
D

Fig. 22 The setting of the 3-D three-physic problem of Section 6.5, subjected to fluid-
thermal loads. On the red rectangles, the solid is clamped.
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We recall that the objective is to achieve a trade-off between the maximization
of the hydraulic power dissipated by the fluid, the maximization of the heat
convected by the fluid and minimization of the compliance of the solid body.
The objective function J∗ (46) is submitted to volume constraint Θ = 30% of
the volume |Ω|. Like in the 2-D test case (6.3), we consider two different sets
of coefficients in Eq. (46): ω1 = ω2 = ω3 = 1/3 and ω1 = 1/5, ω2 = ω3 = 2/5.
On Fig. 23, we display the iso-surface θ ≥ 0.3 of the density for both cases.
On Fig. 24, the corresponding solid displacement is displayed.

(a) ω1 = ω2 = ω3 = 1/3 (b) ω1 = 1/5, ω2 = ω3 = 2/5

Fig. 23 3-D three-physic problem of Section 6.5: composite solution displayed as part of
the domain filled with values of θ ≥ 0.3, in both cases.

Fig. 24 The solid displacement for the three-physic topology optimization problem of
Section 6.5, in the case ω1 = ω2 = ω3 = 1/3 (displacement amplified by a factor 3).

.

Very interestingly, we retrieve the fact that the topology of the result is quite
similar to that obtained in the 2-D case, for both cases; howbeit, in the case
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where ω1 = ω2 = ω3 = 1/3, the topology of the solution contains a large
composite zone at the center and a large contact surface with the fluid at
entrance, so to reduce the effect of the pressure source. In the case where
ω1 = 1/5, ω2 = ω3 = 2/5, the topology of the solution is homogeneous and
seems to achieve a trade-off between the minimization of the compliance (of
the solid) induced by the fluid, the maximization of the hydraulic power and
of the heat convected by the fluid.

7 Conclusions

In this study, we have demonstrated the relevance of shape and topology opti-
mization for generating unconventional design involving two or three-physic
interactions using the homogenization method. In our proposed method, Biot-
Darcy’s law and the convection-diffusion equation are employed to characterize
the pressure (of the fluid flow) and the temperature (of the heat flux), the
effect of which is weakly coupled to the solid phase by solving the associated
PDEs using the standard finite element method. The porosity of each finite
element is related to the material density through a smooth enough function
to ensure a smooth transition between void and solid phases. The physical
parameters (for fluid and heat flow) are numerically computed in the case of
isotropic porous medium. The method facilitates calculation of the load sensi-
tivities with respect to the design variables, using the adjoint-state method. It
is noticed that consideration of load sensitivities within the approach does alter
the composite designs and are particularly important when designing multi-
physic systems. In contrast to methods that use explicit boundary tracking,
the Biot-Darcy’s model, together with our simplified heat transfer equation
offer the potential for relatively straightforward extension to 3-D problems.
The effectiveness and robustness of the proposed homogenization method is
verified by minimizing several objective functionals.
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Saclay (COmUE), 2018.

39



40

[10] Geoffroy-Donders, P. and Allaire, G. and Michailidis, O. and Pantz, O.,
Coupled optimization of macroscopic structures and lattice infill, IJNME,
123(13), (2022) pp.2963-2985.

[11] Allaire, G., Conception optimale de structures, Springer Berlin, Heidel-
berg, (2007).
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rapport 189, univ, Paris VI, (1976).

[28] Henrot, A. and Pierre, M., Variation et optimisation de formes: une
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