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Abstract

Homogenization method is applied to topology optimization of a weakly
coupled three physics problem, where structures are made of periodically
perforated material. The microscopic periodic cell is macroscopically
modulated, where the design is characterized by the material density
and its homogenized Hooke’s law at each point of the domain. The cou-
pling is weak because the three physics involved are solved consecutively:
first, the coupled fluid flow is determined using Biot-Darcy’s law, second,
the thermal model using the convection-diffusion equation and third, the
three-physic problem by solving the linear poro-thermo elasticity system:;
our aim is to optimize the homogenized formulation of this system. This
approach permits a computationally low cost of evaluation of load sensi-
tivities using the adjoint-state method. Numerical two-dimensional and
moderately large-scale three-dimensional two or three-physic problems
are presented using the alternate directions algorithm. It is demonstrated
how the implementation can address a variety of design problems.

Keywords: Topology optimization, multi-scale, periodic homogenization,
porous medium, adjoint methods, fluid-structure interaction, convective
heat-transfer



1 Introduction

The ambition to develop simulation methods making it possible to predict the
integrity or properties of use (mechanical, diffusive, thermal, electromagnetic,
vibratory, etc.) of structures (industrial or natural), materials or processes
involved in the development of new advanced technologies is growing consis-
tently. Herein, homogenization-based method is proposed to investigate shape
optimization problems for a weakly coupled model of heat propagation, fluid
flow and structure strain and, making it possible to consider a weak coupling
between the three physics at stake because one can assume that the fluid
domain is fixed at first order. However, we should bear in mind that this weak
coupling is a major simplification and therefore reduces the computational
cost.

A comprehensive overview of shape optimization with the homogenization
method is provided by [1] and, for a general summary of the homogenization
method, we refer the reader to [2-7] and references therein. It is worth to note
that, this approach provides a consistent way for computing effective material
with microstructures (composite materials) and that, once the optimal com-
posite is obtained by homogenization-based topology optimization method, we
might need to dehomogenize the solution: see [8], for periodically perforated
materials. The design method described in this paper is strongly inspired by
the works mentioned above as well as being related to modern production
techniques such as additive manufacturing.

A typical shape optimization problem arising in this context involves an objec-
tive function, depending on the geometries of the fluid and solid subdomains
and, where the whole domain is described by a density function (material den-
sity) that can take on values in the interval [0, 1], which has to be minimized
under some constraints (e.g., volume or mass constraints). This allows to com-
pute the sensitivities with respect to design variables using the adjoint-state
method [1, 9, 10], introducing adjoint states. For these adjoint states, which
are to be solved, its turns out that the coupling is reversed for the adjoint sys-
tem: the elasticity is solved first, followed by the convection-diffusion equation
and the fluid model.

Shape optimization that involve pressure-loaded or thermal fluid-loaded
boundaries has been conducted also by [11-23]. In [11-15], the authors deduce
the topology or layout based on boundary motion and, using in [11, 12, 15],
the iso-density method to identify the pressure loading facets: Bézier spline
curves were used to describe the pressure-loaded facets. This allows in [11, 12],
to evaluate the sensitivities with respect to design variables using the finite dif-
ference formulation and, in [15], to provide an analytical method to calculate
load sensitivities. Note that in [11, 12, 15], the considered sensitivities were
restricted to only the pressure-loaded boundaries.

In contrast, the works in [13, 14, 16] do not account for load sensitivities
within their topology optimization setting: in [13], the pressure-loaded facets is
predefined and, an additional set of variables is used, which are optimized along
with the design variables; whereas in [14], an element-based search method
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is employed to identify the pressure-loaded facets and in [16], an algorithm
based on digital image processing and regional contour tracking is proposed
to generate the pressure loading surface.

On the other hand, in [17], the authors deduce the topology optimization
based on binary structures method to design structures that consider buckling
constraints and loaded by design-dependent fluid pressure loads: it adopts
binary design variables and handles multiple constraints solved by an integer
linear programming scheme, where sensitivity filtering method is proposed.
In contrast to methods using boundary motion, in [18-20], the authors deduce
the topology based on level-set methods: an implicit boundary description is
available and, using to identify the pressure load. In [18], the Distance Reg-
ularized Level Set Evolution is proposed to capture the structural boundary
and, using the zero level contour of a level-set function to represent the loaded-
pressure boundary but did not account load sensitivities; whereas in [19], the
Laplace’s equation approach is employed to compute hydrostatic fluid pressure
fields and, also, a flood fill procedure to capture the solid/fluid interface: shape
sensitivities in conjunction with Ersatz material interpolation method are used
within their approach. Recently in [20], Hadamard’s method of shape differ-
entiation is applied to shape and topology optimization of a coupled thermal
fluid-structure problem in a level set mesh evolution framework: sensitivity
analysis is performed with respect to the geometry of the interface between the
fluid and solid domain, using the Hadamard’s method of shape differentiation,
introducing adjoint states.

Moreover, unlike boundary motion or level-set methods, in [21, 22], the
authors deduce the topology using density-based approach: shape optimization
problems are transformed to material distribution problems using fictitious
composite materials and, without identifying loading surfaces directly. In [21],
a density-based topology optimization is proposed to design both structures
and compliant mechanisms loaded by design-dependent pressure loads: Darcy’s
law in conjunction with a drainage term is proposed to treat the pressure
loads, which are transferred into a design dependent pressure field using a par-
tial differential equation, which is solved using the finite element method; the
load sensitivities are computed using the adjoint-variable method. Recently in
[22](2023), is developed per the approach first reported in [21], a MATLAB
implementation TOPress, using the method of moving asymptotes.

In contrast, the density-based method presented in [23] is based on true com-
posite materials: two material constituants, substance and void, are considered,
and the microscopic optimal void distribution is considered. An important
feature of the procedure is that the homogenization method is applied to
determine macroscopic constitutive equations for the material with micro-
scopic material constituants. In [23], the porous material is described as the
Biot continuum derived by the homogenization of two decoupled problems:
deformation of a porous solid saturated by a slightly compressible static fluid,
first and, Stokes flow through the rigid porous structure, second. The effective
medium (composite) properties are given by the drained skeleton elasticity, the



Biot stress coupling, the Biot compressibility coefficients, and by the hydraulic
permeability of the Darcy flow model: these are computed using characteris-
tic responses of the representative unit cell constituted by an elastic skeleton
(solid) and by the fluid channel (void); the adjoint-state method is proposed
to evaluate sensitivities of objective functions constituted by the Biot model
coefficients with respect to the underlying pore shape described by a B-spline
box which embeds the whole representative cell and, where the gradient-based
method is employed to solve the optimization problems: the shape deriva-
tives of the homogenized coefficients are derived using the shape sensitivity
technique and the material derivative approach.

In this article, we present a new approach to design structures subjected to
thermal loads and cooled down by a fluid-pressure and, this falls within the
general framework of density methods where phenomenological laws of equiv-
alent media is derived by the homogenization method. In this regard, the
presented approach falls within the framework of recent work in [21, 23] where
Darcy’s flow model is used to describe the fluid flow. However, the approach
in [21] is different since the continuous problem does not contain a model
that explicitly couples the fluid pressure to the solid skeleton and thus, it
induces difficulties in the modeling where a volumetric force is added intu-
itively in the elastic problem without it being explicitly defined as the result
of a continuous physical law. Moreover, compared to [23], the porous material
is described as the Biot-Darcy continuum derived by the homogenization of a
weakly coupled three physics problem: deformation of a porous-thermoelastic
saturated by incompressible fluid pressure (satisfying Biot-Darcy’s law), first,
the convection-diffusion equation for the temperature, second and, cool down
by a Biot-Darcy’s flow through the rigid porous thermoelastic, third. The
effective medium properties are given by the undrained skeleton elasticity, the
Biot stress coupling, the Biot coefficient, the thermal coefficients and con-
ductivity for the convection-diffusion model and, by hydraulic permeability of
the Darcy flow model: these are computed using characteristic responses of
the representative unit cell, namely, a perforated hexagonal cell in 2-D or the
tetrakaidecahedron cell in 3-D, constituted by a solid phase and void; see Fig. 1
and Fig. 3. Hence, the fluid pressure can be seen as a pore pressure acting on
the solid part of the ”equivalent porous thermoelastic” through a Biot coeffi-
cient, which is density-dependent and, where the physical laws derived from the
mechanics of porous media make it possible to link this coefficient to the local
(matrix) and global (porous medium) moduli of compressibility of the solid
system. This allows to provide sensitivities of general ”smooth enough” objec-
tion functions with respect to design variables using the adjoint-state method,
introducing adjoint-states; the homogenized coefficients are derived using the
Lagrangian method and the projected gradient algorithm: in [23], the shape
sensitivity technique and the material derivative approach are employed. Of
course, these shape derivatives are at the basis of our gradient-based alter-
nate directions algorithm [1], which is used for our numerical simulations. In
summary, we present the following aspects:
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® homogenized Biot-Darcy’s law is used to characterize the fluid flow through
a true composite material,

® the convection-diffusion equation is used for the temperature,

® we weakly couple the fluid loads to the linearized thermoelasticity system
for the solid displacement,

® the approach facilitates computationally inexpensive evaluation of the load
sensitivities with respect to design variables using the adjoint-state method,
introducing adjoint-states,

® the flow coefficient, Biot’s coefficient and conductivity coefficients are
derived using the homogenization method,

® the approach avoids explicit description of the loading boundary,

® the robustness and efficiency of the approach is demonstrated through
several design problems, using the alternate directions algorithm.

The remainder of this paper is structured as follows: in Section 2, we briefly
recall the necessary ingredients of the homogenization method and we explain
our strategy. First, choose a parametrized periodicity cell. Second, we compute
its effective properties for the entire range of its parameters. In Section 3, we
give a precise account of our weakly coupled model of heat propagation, fluid
flow and structure strain. In Section 4, first, we introduce the optimization
problem formulation, which turns out to be a simple parametric optimization
problem since our periodicity cell is parametrized. Section 5, is concerned with
our topology optimization algorithm: it is an alternate directions algorithm,
which successively computes the stress field through the solving of a weakly
coupled three physics problem. Finally, our numerical results are presented in
Section 6: 2-D and 3-D computations are displayed of various design prob-
lems involving two or three-physic for arbitrary objective functions; and we
summarize our findings and give an outlook in Section 7.

2 Periodic homogenization

The mathematical framework of the homogenization theory can be found in
[1]. In this section, we briefly present the principles of this method and explain
our strategy. We restrict our analysis to locally periodic hexagonal cell in 2-D
and tetrakaidecahedron cell in 3-D. Note that, it should be possible to adapt
the whole method (or at least part of it) to periodic square cells (in 2-D) or
to other similar geometry as the tetrakaidecahedron cells (in 3-D). Our aim
is to determine the homogenized physical properties of such materials when
varying their parameter; it is a preprocessing stage, which can be performed
off-line. It is independent of the objective function, computational domain,
applied loads or boundary conditions. The Hooke’s laws are computed by solv-
ing the so-called cell problems, that describe the deformation at the scale of
the microstructure, which is a very classical task in homogenization theory.



2.1 Set of admissible microstructures

From now on, we restrain our analysis to a simple class of composites already
introduced in [28], repeated periodically on the whole space.

2.1.1 Smooth honeycomb cell.

Let Y be the periodic smooth honeycomb cell: similar to the classical hon-
eycomb cell (i.e., an hexagonal cell with perforated hexagonal central hole),
except that the interior corners of the perforated hexagonal hole are rounded;
see Fig. 1 and Fig. 2. As a consequence, if the density § in [0, 1], tends to 1, the
central smooth hexagon tends to a circle with a diameter going to 0. However,
because of its rounded corners, the smooth honeycomb can not reach com-
plete void: 6 going to zero is excluded. In this context, for practical reason,
the smooth honeycomb is (contrary to the classical one, which is parametrized
by the density) parametrized by another parameter h € [0, 1], homogeneous
to a distance. Indeed, in order to design this kind of cell, a parametric curve
I';, (which depends on h) is introduced and represents the boundary of the
perforated smooth central hole.

We now introduce some notations before giving its polar equation. Let v(t) =
(cos(t),sin(t))? and n; (for i € {0,1,2}) represent the normal vectors of the
three diagonals of Y (h), that are:

v () (o

The polar equation of the parametric curve I', (of smooth hexagon hole) is
defined by:

r(t) = h\?(; () . g MM) T with ¢ € [0, 2], (2)

where k is positive coefficient, which depends on h: for this work, we took
k(h) = 4 + 20h2. Note that h is homogeneous to a distance, similar to the
parameter

mz?(l—\/l—e)7

which denotes the relative width of bars with respect to the size of the periodic
cell Y(h); see Fig. 1(b). In the following, we give some remarks over the polar
equation of the parametric curve I'y,, which can be extended to other polygons.
Let ‘H be a regular unit hexagon, namely, the set of all points such that the
maximal distance of a point in H from the three diagonals is equal to @ and,

let M(r,t) be a point, with its polar coordinate denoted (r,t). Thus, M is a
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point in # if and only if, its polar coordinate (r,t) satisfies

V3

rmlax|v(t) “n;| = - (3)

Hence, the polar equation of H verifies

r(t) = ?(m;@x lo(t) . ni|)*1. (4)

And, as a consequence, we get that

2
O lolt) - )T —hsee maxc [o(t) . - (5)

i=0

Note that, the polar equation of I';, comes from combining the polar equation
of H and the above limit; the parameter h is added in order to adjust the
diameter of its inner hole. Here, our interest for the smooth honeycomb relies
on its smooth rounded corners, known to generate lower local concentration
stress ([29, 30]), compared to the classical honeycomb.

Mh
(a) Classical honeycomb (b) Smooth honeycomb

Fig. 1 Isotropic design cells (images taken from [28])

(a) 0 = 10% (b) 0 = 50% (c) 0 = 80%

Fig. 2 The Smooth honeycomb cell for different values to the density 60



2.1.2 Tetrakaidecahedron cell.

In 3-D, isotropic cells are not so easy to design. Here, we design a regular
tetrakaidecahedron, known as the Kelvin foam, similar to the one introduced
in [28, 32] and, it is shown to yield isotropic (or quasi isotropic) homogenized
Hooke’s laws. Its features fourteen faces: six unit squares and eight regular
unit hexagons; see Fig 3 and Fig 4. Several approaches are possible in order
to design isotropic cells from this one, parametrized by one parameter, the
local density. A naive approach consists in adding a central tetrakaidecahedron
inclusion characterized by the size in [0, 1].

Fig. 3 Tetrakaidecahedron: an isotropic design cell in 3-D (image taken from [28]).

(a) 0 = 10% (b) 0 = 50% (c) 6 = 80%

Fig. 4 Tetrakaidecahedron (i.e., Kelvin foam) for different values of the material density 6.

2.2 Cell problem and homogenized elasticity tensor

Here, we only give a few important results on the theory of homogenization;
the interested reader will find more details in [1].

Assume that, in a given macroscopic domain €2, there is a periodic distribution
of holes inside an isotropic elastic material, with constant elastic tensor A. Let
€ > 0 be the periodic size and, let Y be the periodic pattern: either the regular
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smooth hexagon in 2-D or the regular tetrakaidecahedron in 3-D. The period-
icity of Y is defined by the same displacement on two opposite and parallel
faces; hence for the hexagonal cell in 2-D, there are three directions of period-
icity and for the tetrakaidecahedron cell in 3-D, there are seven directions of
periodicity; see Fig. 1 and Fig. 3. Let Y be the solid part in Y and, we denote
by Y], the volume of the periodic cell Y; let T be the boundary of the holes
(i.e., the interface solid/void) and n be the normal vector to the boundary T
In addition, assume that whenever € tends to zero, the porous medium can be
considered homogeneous, with effective tensor denoted A*(z). To compute the
homogenized tensor A*, one needs the so-called correctors w;;, corresponding
to the local displacements in the periodic cell Y, defined for each pair (i, j) €
{1,.., N} (N € {2,3}) as the solutions to the following set of equations:

div(A(e;; +e(w;;))) =0 inY
Ae;j +e(w) . n=0 onl (6)
y = wij(y) Y -periodic,

where e;; = %(ei ®e; + €; ® e;) represents the basis of the symmetric tensors
of order 2. As a consequence, the variational formulation associated to (6) is
defined, that is: find w;; € H(Y,RY) = {w € H'(Y,R") | w is Y-periodic}
such that

Vo e HY(RY) [ ctwy) )+ [ dey @) =0 @)

which admits a unique solution (up to a rigid displacement field). The entries
of A*(x) are then defined in terms of the correctors w;; (solutions of (6)), that
are:

ikl = |Y| / (eij +e(wij)) : (em +e(ww)) dy Vi, j k,le{l,..,N} (8)

We emphasize that, to compute the homogenized tensor A*, only three of its
coefficients are needed (e.g., A%111, Aj120 and Ajyq,) to fully characterize A*.
However, all the coefficients were computed to demonstrate that the homoge-
nized material is isotropic (or quasi-isotropic). Herein, we use a linear material
model with Young’s modulus E = 12 x 10° Nm~2 (i.e., 12GPa) and Poisson’s
ratio v = 0.35. We recall that, if the effective tensor A* is isotropic, it can be
written as:

2 *
A" =2 Loy + (8" = S Iy © Ly, 9)
where x* and p* are the bulk and shear moduli of the homogemzed Hooke’s

law A*, with its first Lamé coefficient defined by: \* = k* — QL Irny and Iy
in (9), represent the fourth order symmetric identity and the 1dent1ty tensor



of order N. The entries are defined by:

wr= A?jij
M= Az Vi, j € {1,.., N}
K= A%+ %A;‘kaj

where the isotropy of A* is satisfied if we have the following relations:

* _ *
Az’jkl = Aklij

Afijr =0

Vi, g, k1 € {1"'7N} A:nz :A;jjj
Alijj = A ViF G, k#1
A = Afjiy + Aligy

Numerical results

(10)

The homogenized tensor A*(6) has been computed for both periodic cells,
for discrete values (6;)i=1,...n of 6: a preprocessing stage, which is performed
offline. Herein, a table of the size n = 1000 is built, which is then used to
compute the local composites during the optimization process: a linear inter-
polation approach is used to update the homogenized tensor. The errors with

respect to the equalities in (11) are depicted on Fig. 5 and Fig. 6.

—A* | A* * o A*
Ado12 [AT122 + ATo12 — A1l

L5 — A | 150 — [AT111 — Ajgos 1

Fig. 5 The errors with respect to the equalities in (11) for the smooth honeycomb

We note that, the residuals with respect to the equalities in (11), for the smooth
honeycomb (Fig. 5) and the Kelvin foam (Fig. 6) are sufficiently small, which

validates the isotropy assumption: the errors are less than 1074

10



2 PERIODIC HOMOGENIZATION 11

L5 — Afs (| 15 I [AT111 — A3a0a]
— Al — [A3505 — Afz13l
— |AZs03 + Af120 — ATi1y
1}x10~% —

0 02 04 06 038 1
0 0

Fig. 6 The errors with respect to the equalities in (11) for the Kelvin foam

2.3 Cell problem and homogenized model in conductivity

We now consider a general model problem of thermal or pressure conductivity,
similar to the elasticity system defined in (2.2). Starting from a microscopic
description of a problem, one seeks a macroscopic or effective model problem
in conductivity K™* which can either be the permeability of a fluid flowing
through a porous material or a problem of thermal conductivity through a
two-phase material composed of solid and fluid one. We introduce the so-called
cell problems, similar to the elasticity system. Howbeit, since the considered
cell Y is isotropic, only one of its coefficient (e.g., (K*)11) could be computed
in order to fully characterize K*.

Let (e;)i=1,. .~ be the canonical basis of RY and, for each unit vector e;, we
consider the following conductivity problem in the periodic cell Y:

12
y = w;i(y) Y periodic, (12)

{—div(K(ei +Vw;))=0 inY
where w; (y) is the local variation of pressure created by an averaged (or macro-
scopic) gradient e;. The homogenized conductivity K* is then given in terms
of the correctors w; (solutions of (12)), defined by:

(K%)= 7 [ Kleit Vo) o e+ Vw))dy Vioje (12} (13)

where the tensor K* describes the effective or homogenized properties of the
heterogeneous microstructure of periodic size e. We recall that, K* does not
depend on the choice of domain €2, source term f;, or boundary conditions
and, Y =Yy U (Y'\Y)) is a disjoint reunion of the solid phase and void, where
in thermal conductivity, K can be defined by:

K(y)={F Myel (14)
k; inyeY\Yy

11



wherein, ks and ky are some fixed constants thermal conductivity inside the
solid and void. Though, in pressure conductivity, K is some fixed constant:

.
K(y)={© MYeh (15)
1 inyeY\Y

where ¢ is a given threshold.

Numerical results

The tensor K* has been computed for the smooth honeycomb for discrete
values of . For this latter, note that K™ is a matrix of order N, proportional
to the identity matrix:

K*=a"Iy, where o™ = (K")11 = (K")a9,

because the chosen local cell is isotropic and, as a consequence, K* can be
identified to the scalar a*.

On Fig. 7, we plot the homogenized flow W (which is normalized), in
comparison to the defined flow coefficient K7,(6) = min w, K
for discrete values (6;)i=1,....n, With ||| = sup a*(6;); see Section 3.1, for

more details.

—

0.8 J( - ll[j{%m I

0.6 5

0.4 5

0.2 5
N

0 0.2 04 06 0.8 1
0

Fig. 7 The homogenized flow compared to the determined flow K7, for different

o
[l [loo

values of the density 6

As expected, ﬁ is a decreasing function with respect to the density 6. We
emphasize that, the residuals |(K*)1; — (K*)22| < 107% and (K*)12 < 1073 are
sufficiently small, which validates the isotropy assumption. We note that, the
homogenized flow coefficient HWQT can be approximated by the determined

12
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flow coefficient K7,. Note that the above result remain valid for the Kelvin
foam (i.e., the tetrakaidecahedron cell in 3-D).

3 Setting of the three-physic problem

Here, we investigate the weakly coupled model of heat propagation, fluid
flow and structure deformation. First, the fluid flow is described using the
Biot-Darcy’s law, second, the heat propagation is characterized using the
convection-diffusion equation and third, the three-physic problem is described
by the linearized poro-thermo elasticity system, for the mechanical displace-
ment.

Let Q be a fixed domain in RY (N = 2 or 3), filled with composite material
periodically perforated by the hexagonal cell in 2-D or tetrakaidecahedron cell
in 3-D and, characterized by one parameter 6: the material density, which is to
be optimized. Let n be the normal vector to the boundary 912, pointing out-
ward to the domain . The domain 2 is described by three physical variables
which are governed by three coupled models, that are:

® the motion of the fluid inside the domain 2 described by the pressure field
p, satisfying the Biot-Darcy’s law

e the diffusion of heat inside the whole domain 2, and its transport by
convection in the fluid domain, resulting in a temperature field T';

® the deformation of the solid phase, as a result of the stress exerted by the
fluid part and of the dilation induced by thermoelastic effects, characterized
by a mechanical displacement

The physical equations chosen for the modeling of the state variables p, T' and
u with their relevant set of boundary conditions are now described in strong
form in Section 3.1, Section 3.2 and Section 3.3.

3.1 Hydraulic law of Biot-Darcy-type for the pressure
variable

We give a precise account of the weakly coupled fluid model that is based on
the Biot-Darcy’s law; the effect of which is to establish the pressure field as a
function of material density 6.

From a fluid point of view, Darcy’s law describes the fluid ability to flow
through a porous media such as soil, sandstone or rock; it states that, the
fluid flowing through a unit area is directly proportional to the pressure drop
per unit length Vp and, inversely, that the resistance of the porous medium is
proportional to the flow p ([34]), which is defined by:

K: *
q:=—-LVp=—Kp,Vp, (16)
Hr

13



where q, k¢, pf, Vp, and K7, characterize the flux (kgm?s~1), permeability
(m?), fluid viscosity (Nm~2s), pressure gradient (Nm~2), and the flow coef-
ficient (m*N~'s~!) (which defines the fluid ability to flow through a porous
medium). In order to smoothly and continuously distribute the pressure drop
in fluid domain and differentiate between solid and void phase in the whole
domain, the homogenized flow coefficient K*(6(x)) (which we numerically
compute, see Section 2.3) is approximated by a smooth function, that is:

K} (0(x)) :== min <6° +d _5(0251 —¥@), Koo), (17)

where €y and K, are given thresholds, i.e., g = 1074, K, = 103. We recall
that an homogenization method was performed on the flow coefficient and we
notice that, the homogenized flow coefficient K* can be characterized by the
above function; see Fig. 7. We now assume that the density-dependent pressure
field p, satisfies a Biot’s law, defined by:

p:= Mm — Mbe,,, (18)

where M, m and e, are smooth enough functions related to the material
density 6, defined by:

m(0) = (1—0)p, M(#) = =0 _MO=A=0) i), (19)

Ky Ks

where p, Ky, ks, and e,,;, represent the density of the flux, compressibility of
the void, the solid phase, and the volume variation of the solid phase at each
finite element; the parameters M and b are the so called Biot modulus and
Biot coefficient. The Biot’s law (18) is assumed to be related to Darcy’s law
(16) by:

q :==mvy = —KpVp, (20)
where vy represents the velocity of the flux. Thus, the above equation (20),
allows to render gradually the pressure drop from the inner pressure bound-
ary to the outer pressure boundary. Note that, this penetrating pressure of
Biot-Darcy’s law is similar to that introduced in [21], which makes this pres-
sure loading boundary a smeared-out version of an applied pressure load on
a sharp boundary. In addition to the Biot-Darcy equation (20), we assume
that the state equation satisfies the law of conservation of mass in view of
incompressible fluid, that is:

om

= ~div(@) = div(K,Vp) (21)

Consequently, we derive from the Biot’s law (20), the equation:

dp om O€yol
X = M(8() G~ M(O()O() 2,

(22)
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3 SETTING OF THE THREE-PHYSIC PROBLEM 15

and for sake of simplicity, we assume that our fluid model is stationary and
satisfies the law of conservation of mass (in view of incompressible fluid), that
is: 5
m
ke —div(q) = div(KpVp) =0 (23)
We now assume that our design domain is filled with isotropic composite

material and as such, the Biot’s coefficient b(8) can be defined by:
s(0
b(o(x)) = 1 - "20@)) (24)

where, k and k4(0(x)) represent the bulk moduli of the solid phase A and the
homogenized tensor A*(z). Note that A*(x) tends to A, when 6(x) tends to
1; thus, k4(0) tends to k; this article should be approached within such back-
ground, that is, we assume that the weakly coupled fluid model is defined in
the particular case of a porous isotropic medium. Note that the Biot modu-
lus (19) and coefficient (24) are explicitly defined only in the case of a linear
isotropic elastic matrix microscopically homogeneous which is the case herein.
By using the Biot-Darcy’s law (23), the weakly coupled fluid model can be
defined by:

—div(K};Vp) =0 in Q,

_ !
=D on 'y,
(Biot-Darcy) 0 7 (25)
qr .n = fr on I'y,
qr.n=0 on T/ = 9Q\(T', UTY),

In (25), fy is an applied Neumann isoflux condition for the pressure variable
p. The boundary of the fluid phase is the disjoint reunion

o0 =r)urjur’

of a Dirichlet (or inlet) part F£ where the flow enters with a given pressure
P = po, a Neumann (or outlet) part F{V where normal stress is imposed, and
free interface T'/ of ). At this stage it is assumed that the deformation of the
solid domain is sufficiently small so that no slip boundary conditions hold on:

gr - n = 0. Therefore, the variable p depends solely on the material density
O(x), for all z € Q.

3.2 Convection-diffusion for the temperature variable

We give a precise account of the weakly coupled diffusion of the heat model,
that is based on the convection-diffusion equation: the fluid velocity vy deter-
mines the physical behavior of the temperature 7" in the whole domain, as a
result of convection and diffusion effects inside the fluid domain and of pure
diffusion inside the solid domain; see [35], for references.
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Assume that, when € tends to 0, the periodic microstructure {2, tends to an
homogeneous domain §2, filled with fine mixtures of solid and void phase; let k*
denote the homogenized thermal conductivity inside the porous media (which
we numerically computed, see Section 2.3), and let ¢, be the thermal capacity
of the fluid. Then, the weakly coupled diffusion of the heat model is defined
by the convection-diffusion equation, that is:

—div(k*VT) + ¢(pcp) s, VT =0 in Q,

T="1Tp on 'R, (26)
fk*g—z; =h on X,
fk*g—z; =0 on I'T

where, we use the subscripts s for the restriction to fluid phase in Q. The
boundary 92 = TRUTHNUI'T is split into a Dirichlet part, where a temperature
Tp is imposed on T2 a Neumann part where a given incoming heat flux h is
applied on T'Y¥ and free interface I'". The convection-diffusion equation (26) is
now recast as thermal Biot-Darcy equation, that is:

—div(k*VT) + (—c, K5 Vp) VT =0 in Q,

T =T r?
Lo on T (27)
—k*5. =h onI'p,
) on I'T
where ¢gpvy = mvy = — K}, Vp satisfies the Darcy law (25). As a consequence,

the convection-diffusion model is defined by (27), which we assumed stationary.
Similar to the Biot-Darcy model (25), starting from a microscopic description
of a problem, one seeks a macroscopic or effective model problem in conduc-
tivity. We consider a model problem of thermal flow in a periodic medium: an
heterogeneous domain obtained by mixing periodically two different phases,
one being the solid phase and the other being the void inclusions; and as it has
be seen in Section 2, to compute the homogenized conductivity tensor k*, we
introduce the so-called cell problems, and since the considered cell Y is specif-
ically chosen in order to design isotropic composites, only one of its coefficient
(e.g., (k*)11) could be computed in order to fully characterized k*, a scalar
value.

3.3 Elasticity with fluid-structure interaction

Finally, the pressure variable p and the temperature T together determine
the displacement u of the solid phase in €2, which we assume to be isotropic
thermoelastic composite material, with homogenized Lamé coefficients denoted
A*, p*. Let o be the thermal expansion parameter and 7.y be the temperature
at rest; then, the weakly coupled thermal fluid-elastic model is defined by the

16



4 THE OPTIMIZATION PROBLEM FORMULATION AND ITS SENSITIVITY ANALYSIS

linear thermo-elasticity (of Biot-Coussy type):

—div(o(u,T)) = —=bVp in Q,

U= U on I'}, (28)
o(u,T) -n=fs on I'§,
o(u,T) - mn=0 on I's,

where the homogenized stress tensor is defined as follows:

o(u,T) = A*(e(u) — (T — Trey)I) with A%e(u) = 2p*e(u) + A Tr(e(u))I,

(29)
I is the identity matrix. Note that, the source term in (28) is the stress exerted
by the fluid part; the boundary 9§ is split into a Dirichlet part I'}, where a
displacement w = ug is prescribed, a Neumann part I'};, where a stress f; is
imposed and, a free part I'®.

Remark 1 The above model is a simplified version of a genuine thermal fluid-solid
coupling between the solid and fluid phases. A more accurate description of fluid-
structure interaction would feature a transition regime and inertia regime:

q :=muvy + pCfOTvJ%
where Cy,, is an inertia parameter of the fluid flow, called Forchheimer coefficient.
However, for sake of simplicity, we opted for simplified version, which is justifiable
insofar as we wish to obtain a first qualitative result of microstructure without how-
ever sizing as accurately as possible the system. Hence, the Forchheimer coefficient
Ctor is neglected in (27).

Thanks to this simplification, the system (3.1), (27) and (3.3) are only weakly
coupled: its resolution is achieved by solving the fluid system (25), then using
the fluid stress resulting from the pressure p in the heat transfer equation (27),
and finally using the fluid stress and the temperature 7' to solve the linear
poro-thermo elasticity (28).

4 The optimization problem formulation and
its sensitivity analysis

We present the optimization problem formulation associated to the weakly

coupled three-physic problem and discuss the sensitivity analysis for such

design problems. The announced goal is the resolution of relaxed unconstrained
version of the original optimization problem, that is:

min J* (6,p(0), T(0), u(9))

17



where J*, g; and h; are arbitrary relaxed shape objective and constraint
functionals. For its resolution, we shall rely on the alternate minimization algo-
rithm detailed in Section 5.1, which (like any other first order optimization
method) requires to compute the sensitivity of the above functionals: here, the
adjoint-state method [1] is used to determine the sensitivities of the objective
functions and constraints with respect to the design variable 6. It is worth to
mention that, likewise in [23], the authors employed the adjoint-state method
to evaluate the sensitivities of objective functions (constituted by the Biot
model coefficients with respect to the underlying pore shape described by a
B-spline box which embeds the whole representative cell) and the gradient-
based method to solve the optimization problems; howbeit, the considered
shape derivatives of the homogenized coefficients are different: they rely on the
shape sensitivity technique and the material derivative approach. Herein, the
”shape” is describe by the density 6 and, the shape derivatives are performed
using the Lagrangian method and the projected gradient algorithm. In this
context, this means computing the derivative of the mapping:

0 — J*(0,p(0),T(0),u)),

where we recall that 6 belongs in general to the set of admissible design
variables U,4, that is:

Upq = {6 € L=(Q; RY) | 0(x) € [0,1],Vz € Q}

In contrast, in [23], a general optimization variable « is introduced which is
related to the effective medium parameters: it determines the homogenized
coefficients for any position = € €.

4.1 A fully Lagrangian setting for the sensitivity analysis

Although very common and widely used in the literature, an issue with the
adjoint-state method [1, 9] is that the computation of the derivatives depend
very much on the assumptions made on the nature of the considered objec-
tive functional J* (different type of functionals may lead to different strong
forms for the adjoint equations, where this fact is exemplified), which imposes
to redo the analytical derivation whenever the objective function is modified,
and to update the numerical implementation accordingly. Here, we use a fully
Lagrangian setting to compute rigorously the derivative of very general objec-
tive functionals in the simplified setting of Section (3.1) to Section (3.3). The
sensitivities of the state variables p(6), T'(d) and wu(f) are calculated first, in
order to obtain the derivative of an arbitrary objective functional in volume
form. Then, under sufficient regularity assumptions, the well-known adjoint
variable method together with suitable augmented Lagrangian functional yield
general derivative formulas.

18



4 THE OPTIMIZATION PROBLEM FORMULATION AND ITS SENSITIVITY ANALYSIS 19

4.2 A modified objective functional and Lagrangian
derivative

In a gradient-based topology optimization, it is essential to determine sensitiv-
ities of the objective functional and the constraints with respect to the design
variable(s). The starting remark is that the relaxed functional J*, although
appearing naturally in the formulation of the optimization problem (30) is not
so convenient for the mathematical analysis. Indeed, the domain of definition
of J*(0,.,.,.) is a functional space which depends on the first argument 6. In
order to discuss the precise mathematical settings of this three-physic problem,
we introduce the functional spaces which are required, that are:

V(FfD) ={ge H(Q)|g=0o0n Fg}, for the pressure variable p
V(TR) ={S € H'(Q) | S = 0 on TL}, for temperature variable T (31)
V([35) ={ve H(Q)N | v =0o0n T'}}, for the displacement

and, we consider the subspace

HYA(TY) = {v

r, Lo e V)
and its dual space H~/2(T'%); as well the affine spaces associated to the non-
homogeneous Dirichlet boundary data ug € H'/2(T'%,; RY), py € H1/2(1"fD; R)
and Ty, € HY?(I'2; R) featured in (3.1) to (3.3). The state variables p, T
and u are then solutions to the following variational problems: find (p,T,u) €

{po+ V(L) Ty + V(TR), uo + V(T'p) b such that,

Jo KbVp . Va+ Jos frade=0, Vqe V()

Jo k9T VS di + fpy hS ds+ [ (~¢,SKjVp) . VT dz =0, VS € V(IP),

Joo(u,Ts)e(v) de — [o. fs.vds+ [bVp.vdr =0, VoeV(Iy)
(32)

Remark 2 Let us comment on the well-posedness of the coupled system of variational
problems in (32). The volumic source terms are assumed to enjoy H' regularity in
the domain. The surface fluxes h and fs in (27) and (28) are assumed to belong
to L2 spaces. The variational formulation of the thermal equation is not well-posed
in utter generality because of the lack of coercivity induced by the advection term
Jo(=ep K*Vp)VT (27) and of the presence of in-homogeneous Dirichlet boundary
conditions. Though, in usual applications (see [20], for reference), it is customary to
impose a Dirichlet boundary condition T' = Tp ¢ at the inlet of the computational
domain (where —K7,Vp . n < 0) and a Neumann boundary condition —k*VT . n =
0. This together with the incompressibility condition —div(K},Vp) = 0 is easily
shown to imply the coercivity of the bilinear form featured in (32); see e.g. [1].

Eventually, the well-posedness of the linear elasticity problem results from the Lax-
Milgram theorem. In the above context, we aim at solving the minimization problem

19



(30) where the pressure p(6), temperature 7'(6) and elastic displacement u(6) are the
solutions to (25), (27) and (28).

In order to address the sensitivity of an arbitrary objective function, the classi-
cal idea is to work within a Lagrangian framework. Therefore, we consider the
corresponding Lagrangian, which is an augmented function of the objective
function that is:

L£(6,,

>

Bop T T 0) = () + /Q a(~div(o(a,T) + b(B)Vp) de

Q
+Aé(—div(K3<é)Vﬁ)) dz + E(/Q 0 dr —©),

where, (0,4, p,p,T,T) € L®(Q) x HL(Q; RN)2 x HL(Q; R)? x HL(Q; R)?
are independent variables; the positive scalar ¢ is the Lagrange multiplier
designed to satisfy the volume constraint. Note that the objective function
J *(é) depends upon the state variables u, p and T'. By integration by parts,
we get:

£06.00p 110 = I 0)+ [ (@ T) + el@) + 6O 1) do
Q
+/k*VT.Vf—/cpiKBVﬁ~VT+/K};Vﬁ.Vﬁdaﬂ—é(/édm—@),
Q Q Q - Q

(34)

where again, we point out that J* is assumed to be a ”smooth” enough
function, elsewise we cannot apply the adjoint-state method [1, 9].

4.3 Sensitivity analysis for the three-physic problem

The sensitivities are evaluated by differentiating the Lagrangian (34) with
respect to state variables u, p and T in directions ¢, € HY(Q)V, ¢, € H}(Q)
and ¢ € HY(Q). Let (u,u) € H}(Q; RY)? be a stationary point of £. Then,
the derivative of the Lagrangian (34) with respect to u, in direction ¢, €
HY(Q)N is given by:

c 8J* do(a, T .
<8ua¢u> =< Ea@bu > +/Q(< %%ﬁu > 6(@)) d{ZZ, (35)
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4 THE OPTIMIZATION PROBLEM FORMULATION AND ITS SENSITIVITY ANALYSIS

while the derivative with respect to p, in direction ¢, € H'(Q) is given by:

£,¢,, =< ﬂ,qsp > +/ bv¢p.@dx+/(—cpi1(5v¢p)vi’
dp dp Q Q
(36)
+/ KpVo, . Vi dr
Q

and, the derivative with respect to T, in direction ¢ € H'(Q) is given by:

L oJ* do . . -
<6T,¢T> —< % or> +/Q <0 60>+ eli) dw+/ﬂk V(6r) . VT do

+ / (—e, T K5 VPV (1) da,
Q
(37)

which when equations (35), (36) and (37) vanish are nothing more than the
variational formulation associated to the adjoint-states. Moreover, the deriva-
tives with respect u, p and T, in directions ¢, € H' ()2, ¢, € H'(Q) and
¢ € HY () are simply the state equations:

(G} = [@@D)  c(6.) + 0695 0,) (33)

oL .
<6p,¢p> ~ [ Kp%p. Vo, d. (39)

and
oL e A
g / KT . Vér + / (—epdrKpVH)VT dv,  (40)
or Q Q

which when equation (38), (39) and (40) vanish is nothing more than the vari-
ational formulation associated to the state equations: note that to obtain the
adjoint-state equations in [23], the optimality condition for the state variables
is considered and, together with the state variables yield the adjoint state vari-
ables. Finally, the partial derivative of the Lagrangian £ with respect to 6, in
direction § € L>®(£2; R) at the stationary point (u,u,p,p,T,T) is given by:

e\ aJr . do . Ob_ . K. .

- (41)
VT . VT + (—¢,T aoD V)T + e) 0 da

. ok
00

Note that, Eq. (41) is defined using the adjoint-state method. As a conse-
quence, the descent direction 6 = df is defined by solving Eq. (41). The term

21
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< 80 ,9 > is the partial derivative of the objective function J* with respect
to @, in direction , while the term

do o Ob_. . OKh_. . Ok _ . .-
/(ao e(@) + 755 Vp- it =52 Vp-Vp+ - VT - VT

s
= a0

+(—c Vp) - va)ém

is the adjoint. @, p and T are the adjoint-state variables, solutions to the
adjoint equations (35)-(37) (which we have to solve first). We recall that ¢
is the Lagrange multiplier designed to satisfy the volume constraint at each
iteration and, such a constraint is routinely handled in elementary calculus of

variations: here, the dichotomy approach is employed.

5 Topology optimization of modulated periodic
composite materials

Here, our numerical algorithm is proposed; we describe how the methodology
applies to the weakly coupled three physics system of (25-28).

5.1 Alternate minimization method

The problem (30) is solved using the alternate minimization algorithm.

5.1.1 Minimizing over the stress field

For given design field 0, the minimization with respect to the stress field o
amounts to solve the poro-linear thermoelasticity problem (28), with a material
of elasticity tensor equal to A*(z) in Q and where, the design (6, A*) is com-
puted by linear interpolation over a surrogate model of A*(#): a preprocessing
stage, which is performed offline; see Section 2.2.

5.1.2 Minimizing over the density field

The minimization over the density field 8 for a given stress tensor o, is per-
formed using the projected gradient algorithm and, as our problem (30) is
not self-adjoint, one needs to define the associated adjoint problem. As a
consequence, the descend direction h = df is defined by solving:

oL __oJ* do 0b 0KH . o .
<897h> =< W’h>+/ ((99 se(u) + (89Vp u) + 50 Vp . Vpdx

Ok 0K} o
+ag VT - VL + (el

Vp)VT + e) hdz,
(42)
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where the descend direction h = df has to satisfy the inequality

<g§(9uupp,TT€) d0> (43)

which is achieved by choosing

*

(0 do b OKp . . Ok
df = — (a O)+ 25 + e+ 55V ut —2Vp. Vpde + —

vT .V~

*

+(—e,1%EDy )VTf)+£>

00
(44)
with < 89 ,h >= fQ 88‘]0} h dzx. At iteration n, the optimal density 6 is then
updated by performing the projected gradient:

0"t = Py 1)(0™ + 5db), (45)

where § > 0 is the step size and, in practice, we use an adaptive step size J: at
each iteration, if the newly computed composite structure is accepted (that is,
if the current objective function J*(6") is lower than previous one J*(6"1)),
the step size § is increased of 20%, else if it is rejected, the step size is divided by
2. Py 1 is the projection operator on the interval [0, 1]. Numerically, the partial

derivative of the Lagrangian % @ is regularized using an equivalent H'-norm,
that is:
oL n? BE oJ* do 0b
ok* oK™
N A+ (—cp—— TT+/{|hd
+60 VI + (—¢p 50 Vp)VT T + ) x,

(46)

where 7 is a small coeflicient, which typically depends on the size of the
elements of the mesh: thanks to this coefficient, we are able to numerically
regularize the partial derivative on a length scale of order n and to limit the
checkerboard effect on the density 6.

5.1.3 Complete optimization algorithm.

The alternate directions algorithm is an iterative method, structured as follows:

1. Initialization of the design variable 6 such that :

©
Jo1dzx

VreQ, 0°) =
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2. ITteration until convergence, for n > 0 :

(a) Computation of the state variable p™ through the Biot-Darcy model (25),
with the design (6™, A*(x))

(b) Computation of the state variable T™ through the convection-diffusion
equations (27), with the design (6™, A*(x))

(¢) Computation of the stress tensor o™ through the linear poro-thermo
elasticity problem (28), with the design shape (8™, A*(x)) and descend
direction df™ for a given stress tensor o™ using formulas (44)

(d) Updating the design variable §"*! using formulas (45) for the descend
direction df™ and then updating the design (§"*!, A*(x)), by linear
interpolation.

6 Numerical results and discussion

We introduce our numerical results in the three physics context detailed in
Section 3. A variety of 2-D and 3-D test cases are presented to demonstrate
that our alternate directions algorithm produces physically correct results.
The algorithm (5.1.3) has been implemented in FreeFem++[38], where all the
unknowns are discretized using P; finite elements. For all our computations,
a linear material model with Young’s modulus E = 12 x 10 Nm~2 (12GPa)
and Poisson’s ratio v = 0.35 are considered. The void (i.e., # = 0) is replaced
with a very compliant material: the smallest admissible value of 4 is fixed at
104, in order to avoid singularities of the effective tensor when the elasticity
problem is solved.

We propose five test cases, where four out of five are new to the best of our
knowledge: the first three are 2-D examples and the last two are in 3-D. First,
we propose a poro-mechanical problem (where the convection-diffusion model
(27) is not taken into account), second, a convective heat transfer (where the
linear elasticity model (28) is not taken into account), third, all the three
physics are involved; and for the remaining two examples, we provide the 3-D
analogue of the second and third examples.

6.1 A fluid-structure interaction problem

In this example, the bounding box of the structure is a square of dimension L
(m), fixed on the upper middle of the left-right side boundary I'},, on a zone
of width %, while submitted to uniform traction load fs on a small portion of
the upper-middle boundary I'%;. In addition, a fluid of density g, (kgm?s~!)
is flowing through the left-middle side boundary I‘{V, while submitted to a
pressure load py (bar) at the corresponding opposite side F{). All the other
boundaries are insulated from the outside: zero Neumann boundary conditions
hold for the pressure; see Fig. 8 for a schematic of this test case.
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Fig. 8 Setting for the fluid-structure interaction problem of Section 6.1

L q Po

0.1 1.5 0

Fig. 9 Numerical values of the physical parameters for test case of Section 6.1

We neglect the thermal effects (namely, Eq. (27) is ignored), so that (28),
boils down to a poro-linear elasticity system with the forcing induced by the
mechanical load and the fluid. Our aim is to achieve a trade-off between the
minimization of the compliance of the solid body and the maximization of the
hydraulic power transferred by the fluid, subjected to a volume constraint,
that is:

J*(0,p(0),u(f)) =w (/ A%e(u) : e(u) da:) +(1 —w) ( - / K*Vp.Vp dm),
Q Q
Elastic strain energy Hydraulic power
st by Jo 0 dv =6
(47)

for some fixed coefficient w € [0, 1]: it measures the relative weight given to
each term in (47).
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(a)w1:12w2=0 (b)w1=2/5§uJ2=3/5

Fig. 10 The optimal density for the two-physic problem of Section 6.1, in both situations

(a) Pressure field p (b) Displacement

Fig. 11 (a) State variable p (bar) and (b) the corresponding solid displacement (amplified
x4), for the two-physic problem of Section 6.1, in situation where w1 = 2/5 < ws = 3/5

The numerical values of the considered physical parameters are supplied by
Fig. 9. Here, we consider two situations in (47): either w = 1 > wy = 0 or
w1 = 2/5 < wy = 3/5. The functional J* is minimized using the alternate
directions algorithm of Section 5.1, subjected to a volume constraint © = 44%
of the volume |2]. On Fig. 10, the optimal density is displayed, while on Fig. 11,
the corresponding pressure field and solid displacement are displayed. The
optimal density 6 is represented in a gray scale: regions where § = 1 are
black (pure material), whereas white regions correspond to voids and, the
gray regions correspond to the homogenized material with microstructures
(periodically perforated by hexagonal cells); the topology of the solution is
quite similar to that expected prior to the optimization. We note that, the
algorithm tends to distribute more material in regions where the pressure
gradient is high, of which we can clearly see a silhouette in the ”shape” of a
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6 NUMERICAL RESULTS AND DISCUSSION 27

beam, although contains a large composite zone at the center. However, in the
situation where w; = 2/5 < wy = 3/5, the topology is more diffuse: it seems
to be driven by the hydraulic power term.

2 — (A}l:lZUJQ:O 5
7&)1=2/5§UJ2:3/5

Performance
—
T
|

o A

0 5 10 15 20
Iterations

Fig. 12 The convergence history for the two-physic topology optimization problem of
Section 6.1, in both situations

For the pressure field p, we emphasize that the boundary conditions are
respected: regions with high pressure gradient are located mainly on the beam
and its becomes diffuse elsewhere. For this latter, the forcing induced by the
fluid and the mechanical load are displayed by the displacement of solid u:
see Fig. 11. On Fig. 12, we plot the convergence history for this calculation:
smooth and relatively rapid convergence is observed.

6.2 A convective heat transfer problem

This second example is similar to that introduced and solved in [20], where
the level-set method and a Stokes model for the fluid flow is employed. The
computational domain is a square of dimension L (m), with two cavities, where
a fluid of density q, (kgm?s~!) and an inlet temperature T' = Tj, (°C) are
flowing through the left-middle side boundary, while submitted to a pressure
load po (bar) at the corresponding opposite side. In addition, a temperature
T = T, is prescribed on the lower and upper walls. All the other boundaries
are insulated from the outside: zero Neumann boundary conditions hold for
the temperature and pressure; see Fig. 13 for a schematic of this test case.

27



=
op _ .1/ f.op _
W*()'T‘N TN.me
or __ . TN N . 0T __
mfo.r,[ FT.me
op _ f
an =40 I'n b
o 2| Li|Th:p=n
op __ f f . op _
%*O-FN FN'%*O
oT __ . TN N . 0T __
ﬁf().lﬂ,[ I 1“,1‘.2)7*0
S — -
f . op _
F\.m 0

Fig. 13 Setting of the convective heat transfer test case of Section 6.2.

For this example, we neglect the elastic contribution (namely, Eq. (28) is
ignored), so that the example involves only a coupling of the flow (25) and
heat equations (27). Our aim is to achieve a trade-off between the maximiza-
tion of the hydraulic power dissipated by the fluid and the maximization of
the heat transferred by the fluid, subjected to a volume constraint:

Jﬂ&pwaw»::w(—:éIWV%.Vp@»—ﬂl—u&(A;%KBVp.VTd%>

Hydraulic power

st { iy Jo 0 dv =6
(48)

for some fixed coefficient w € [0, 1] and a thermal capacity ¢, (Jkg='K~!). We
note that, the second term in (48) is seen as the opposite of heat transferred
from the inlet F{V to the outlet F£ upon integration by parts:

/ e KpVp . VT = / —cpdiv(K*Vp) T dx —|—/ cp(KpVp.n) T ds
Q Q I9)

:/f cpquds—F/f cp- 0Ty ds
r r

N D

(49)

where the second term is a constant depending on the inlet data. The numerical
values of the considered physical parameters are supplied by Fig. 14. Here, the
fixed coefficient is set to w = 1/2, with volume constraint © = 44%.
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L @ P T, T % ki ky

0.1 1 0 0 10 100 10 1

Fig. 14 Numerical values of the physical parameters in the convective heat transfer problem
of Section 6.2

(a) Density

Fig. 15 The optimal density for the two-physic topology optimization problem of
Section 6.2

(a) Pressure field p (b) Temperature T’

Fig. 16 State variables p (bar), T' (°C) for the optimized configuration of the two-physic
problem of Section 6.2

The optimal density, and the corresponding state variables p and T are dis-
played by Fig. 15 and Fig. 16. The topology of the result is quite similar to
that obtained in [20] (where the solution is autopenalized). We note that, the
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algorithm tends to distribute more material in regions where the pressure gra-
dient is low and temperature gradient is high, of which we can clearly see a
silhouette in the ”shape” of a pipe. For the pressure field p, we emphasize that
the boundary conditions are respected: regions with high pressure gradient are
located mainly at the center of the pipe and its becomes diffuse elsewhere. For
the temperature field, we notice a cold down of the heat at the center of the
pipe and its become hot elsewhere, with high temperature gradient: see Fig. 16.
On Fig. 17, we plot the convergence history for this calculation: smooth and
relatively rapid convergence is observed.

—10 | |

Performance

—30 ]

—40 | i

0 5 10 15 20
Iterations

Fig. 17 Convergence history for the two-physic topology optimization problem of
Section 6.2

6.3 A thermal fluid-structure interaction problem

We finally turn to a topology optimization example in the full three-physic
setting presented in Section 3; a test case which is new to the best of our
knowledge. The computational domain is a square of dimension L (m), clamped
on the middle-superior of the left-right side boundary I'}, on a zone of width
%L. In addition, a fluid of density q, (kgm?s~1), and an inlet temperature T' =
T (°C) are flowing through the left-middle side boundary, while submitted
to a pressure load py (bar) at the corresponding opposite side; a temperature
T = T is prescribed on the lower and upper walls. All the other boundaries
are insulated from the outside: zero Neumann boundary conditions hold for

the temperature and pressure; see Fig. 18 for a schematic of this test case.
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Fig. 18 Setting of the three-physic problem of Section 6.3.

Our aim is to achieve a trade-off between minimization of the compliance of
solid, the maximization of the hydraulic power dissipated by the fluid and
the maximization of the heat transferred by the fluid, subjected to a volume
constraint:

J*(0,p(0),T(0),u(d)) =wr (/ A%e(u) : e(u) da:) +ws (— / K*Vp.Vp dx)
Q Q
Elastic strain energy Hydraulic power
—l—wg(/ cpKpVp . VT dx),
Q

s.t. {ﬁ Jobdx =0
(50)

for some fixed coefficients wy,ws,ws € [0, 1], such that wy + ws + w3 = 1. The
numerical values of the considered physical parameters are supplied by Fig. 19.
Here, we consider two different fixed coefficients in (50): either w1 = we = w3 =
1/3 or wy = 1/5 < wy = wy = 2/5. For this latter, the volume constraint is set
to © = 23%. The optimal density for each situation: either wy = ws = w3 =1/3
or wg = 1/5 < we = w3 = 2/5, is displayed on Fig. 20. Very interestingly, we
retrieve the fact that in situation where wy = we = w3 = 1/3, the topology of
the solution contains a large composite zone at the center and a large contact
surface with the fluid at entrance, namely, the left-middle side wall, so to
reduce the effect of the pressure source; the algorithm tends to distribute
more material in regions where the pressure gradient is high and its seems
to be driven by the compliance (or elastic strain energy). In situation where
w1 = 1/5 < wy = w3 = 2/5, the topology of the solution is homogeneous and
its seems to achieve a trade-off between the minimization of the compliance
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(of the solid) induced by the fluid, the maximization of the hydraulic power
and of the heat transferred by the fluid.

L qo Po T; Trey T « ks ky

01 1 0 0 0 10 1 10 1

Fig. 19 Numerical values of the physical parameters in the three-physics problem of Section
6.3

(a) wi =w2 =w3z =1/3 b)wr =1/ <w2=w3=2/5

Fig. 20 The optimal density for the three-physic problem of Section 6.3, in both situations

(a) Pressure field p (b) Temperature field T

Fig. 21 State variables p (bar) and T (°C) for the optimized configuration of the three-
physic problem of Section 6.3, in situation where wi = w2 = w3z =1/3
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In this example, the objective function J* turns out to be very sensitive with
respect to very small variations of the topology. The corresponding state vari-
ables p, T and deformed mesh are displayed by Fig. 21 and Fig 22, in situation
where w; = wy = w3 = 1/3. For this latter, we notice a cold down of the heat
at the center of the optimal ”shape” and its become hot elsewhere, with high
pressure gradient located mainly at large solid regions: in both situations.

Fig. 22 The solid displacement for the three-physic topology optimization problem of
Section 6.3, in the situation w; = wp = w3 = 1/3

T w1:C¢J2:LU3:1/3 |
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Fig. 23 The convergence history for the three-physic topology optimization problem of
Section 6.3, in both situations

The corresponding objective history in both situations: either wy = ws = w3 =
1/3 or wy = 0.2 < wy = w3 = 0.4, is depicted on Fig. 23, while on Fig. 24, we
plot the convergence history for the elastic strain energy, hydraulic power and
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thermal strain energy, in the situation w; = we = w3 = 1/3. For this latter
case, we note that in the first part of the optimization, J* (as well as the
elastic strain energy) increases sometimes substantially due to the fact that
the volume constraint is not yet satisfied, or due to sudden discontinuities at
topological changes. In addition, we can clearly see that in situation where
w1 = wy = w3 = 1/3, the algorithm is driven by the compliance of the solid
body as displayed by the topology of the result; see Fig. 20.
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Fig. 24 The convergence history for the elastic strain energy, the hydraulic power and
thermal energy, in the situation w1 = w2 = w3z =1/3

6.4 3-D thermal fluid interaction problem

This example is an attempt to compute a more realistic structure; it is the 3-D
analog of the second example in Section 6.2. The computational domain is a
3-D cubic box of dimension L (m), with four cavities, where a fluid of density
qo (kgm?s™'), and an inlet temperature T' = T;,, (°C) are flowing through the
left-middle and back-middle surface of area %L, while submitted to a pressure
load po (bar) at the corresponding opposite sides. In addition, a temperature
T = T is prescribed on the lower and upper walls. All the other surfaces in
this device are insulated from the outside: zero Neumann boundary conditions
hold for the temperature and pressure; see Fig. 25 for a schematic of this test
case.

We recall that for this example, the elastic model (28) is ignored; thus, its
involves only a coupling of the flow (25) and heat equation (27). The objective
is to achieve a trade-off between the maximization of the hydraulic power
dissipated by the fluid and the maximization of the heat transferred by the
fluid, subjected to a volume constraint; see (48) for the minimization problem.
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T:En F’?

T=T :T2

Fig. 25 The setting of the 3-D two-physic problem of Section 6.4, subjected to fluid-thermal
loads.

The functional J* (48), is minimized using the alternate minimization algo-
rithm of Section 5.1, under the constraint that the volume of the solid phase
represent © = 44% of the total domain |2|. The numerical values of the consid-
ered physical parameters are supplied by Fig. 14. We used for all finite element
operations a mesh of size 119172 tetrahedral elements and started from an ini-
tial configuration #° = O, throughout. The algorithm produces a symmetric
layout. The total FreeFEM running CPU time (2.60 GHz) for this calculation
is 5331 seconds.

Fig. 26 3-D thermal fluid interaction problem of Section 6.4: composite solution, with
respect to some fixed iso-surface 6 > 0.5.

The 3-D pictures are harder to visualize. Fig. 26(a) represents the iso-surface
0 > 0.5 of composite density. In this example, the iso-surfaces are smooth and
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embedded into each other as 6 increases. The next picture Fig. 26(b), shows
the design for some fixed rotation (counter-clock wise), the effect of which
is to see another angle of the optimal composite ”"shape”: the topology of
solution is quite similar to that obtained in 2-D, namely, 3-D pipe-like ”shape”
is observed, although contains a large composite zone at its center.

6.5 3-D thermal fluid-structure interaction problem

This final example is the 3-D analog of third example in Section 6.3. A cubic
box is fixed on the middle-superior surface of its four cavities, where a fluid
of density g, (kgm?s~!) and an inlet temperature T = T;,, (°C) are flowing
through, while submitted to a pressure load py (bar) at the corresponding
opposite sides. In addition, a temperature T' = T3 is prescribed on the lower
and upper walls; all the other surfaces in this device are insulated from the
outside: zero Neumann boundary conditions hold for the temperature and
pressure; see Fig. 27 for a schematic of this test case (see similar to the example
in Section 6.4).

We recall that, the objective is to achieve a trade-off between the maximization
of the hydraulic power dissipated by the fluid, the maximization of the heat
transferred by the fluid and minimization of the compliance of the solid body,
subjected to a volume constraint; see (50), for the optimization problem. Like
the 2-D test case (6.3), we consider two different fixed coefficients in (50): either
w1 =ws =ws =1/3 or w; = 0.2 < ws =ws = 0.4; the volume constraint is
set to © = 30%. On Fig. 28, we displayed the iso-surface 8 > 0.3 of composite
density for each situation: either w; = 1> ws = w3 =00rw; = ws = w3z = 1/3;
and on Fig. 29, the corresponding solid displacement is displayed.

0,
g =0 |k
T:Tiu F’][“)

Fig. 27 The setting of the 3-D three-physic problem of Section 6.5, subjected to fluid-
thermal loads. On the red rectangles, the solid are clamped.
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(a)w1:12w2:w320 (b)w1:w2:w3=1/3

Fig. 28 3-D three-physic problem of Section 6.5: composite solution, with respect to some
fixed iso-surface 8 > 0.3, in both situations.

Fig. 29 The solid displacement for the three-physic topology optimization problem of
Section 6.5, in the situation w; = we = w3z = 1/3

Very interestingly, we retrieve the fact that the topology of the result is quite
similar to that obtained in the 2-D case, for both configurations: either w; =
1> w =w3 =0o0rw = wy = w3z = 1/3; howbeit, in situation where
w1 =1 > wy = w3 = 0, the topology of the solution contains a large composite
zone at the center and a large contact surface with the fluid at entrance, so
to reduce the effect of the pressure source; which is to be expected because
the objective (in situation where wy = 1 > wy = ws = 0) is to minimize the
compliance of solid body. In situation where wy = wy = w3y = 1/3, the topology
of the solution is homogeneous and its seems to achieve a trade-off between
the minimization of the compliance (of the solid) induced by the fluid, the
maximization of the hydraulic power and of the heat transferred by the fluid.
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Hence, we emphasize that in 3-D, the topology of the solution is better than
in 2-D, where a large contact surface with the fluid at entrance was observed,
so to reduce the effect of the pressure source; see Fig. 20.

7 Conclusions

In this study, we have demonstrated the relevance of shape and topology
optimization for generating unconventional design problems involving two or
three-physic interactions using the homogenization method. In our proposed
method, Biot-Darcy’s law and the convection-diffusion equation are employed
to characterize the pressure (of the fluid flow) and the temperature (of the heat
flux); the effect of which is to weakly couple to the solid phase by solving the
associated PDEs using the standard finite element method. The porosity of
each finite element is related to the material density through a smooth enough
function to ensure a smooth transition between void and solid phase; the phys-
ical parameters (for fluid and heat flow) are numerically computed in the case
of isotropic porous medium. The method facilitates calculation of the load sen-
sitivities with respect to the design variables, using the adjoint-state method; it
is noticed that consideration of load sensitivities within the approach does alter
the composite designs and, are particularly important when designing multi-
physic systems. In contrast to methods that use explicit boundary tracking,
the Biot-Darcy’s model, together with our simplified heat transfer equation
offer the potential for relatively straightforward extension to 3-D problems.
The effectiveness and robustness of the proposed homogenization method is
verified by minimizing several arbitrary objective functionals.
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