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1 Introduction

1.1 Context
It is a sacred rule in programming that each action must leave a trace. Computers and communication devices are
constantly recording their states and various failures in log files, with a high level of detail. These flows of information
stay widely unexploited, due to their technical complexity and overwhelming volume. However, they contain invaluable a
posteriori observations of the interactions of applications, in particular regarding the eventual flaws or malfunctions.

The intelligent treatment of log files is the starting point of process mining. This recent field is developed both in
the academic community and in the industry. In the latter case, the target technique is the streaming process mining, in
which the generated data is immediately handled. This is the main service offered by Softbridge Technology, through a
platform implemented in Java.

One of the aims of Softbridge is to detect latency in a process. The proposed method implies to approximate the
distribution of durations of the events contributing to this process, such that outliers may be identified. However, the
choice of an on-line treatment of incoming data puts a constraint on the representation of these durations, since each event
must be processed only once. Consequently, some basic-but-efficient methods such as histogram representations are ill-
adapted, since the range of datas is not known a priori. Instead, one can use a specific class of parametric representations,
under the assumption that the parameters may be updated on-line. It is the case, for instance, of the generic estimators
of the mean and standard deviation of a given probability law (see Section 1.2).

This project arises from a technical difficulty encountered in the implementation of the parametric approach. The
duration of a process, denoted xi, is expressed in milliseconds (following the classical POSIX representation). Some
processes may run up to 10 months, and the associated xi becomes so large that x2

i overflows the memory allocated by the
primitive type long of Java. The language implements a class BigInteger that virtually achieves unbounded precision,
but at the expense of a greater computational cost and possible loss of portability. The purpose of this document is to
find the most efficient workaround, respecting the constraints of streaming estimation, using only primitive types, and
maximizing the precision.
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1.2 Formulation of the problem
In the sequel, the processes will be observed only through their duration in milliseconds, generically denoted xi. Suppose
that N observations are available, and denote

µN =
1

N

N∑
i=1

xi , SN =
1

N

N∑
i=1

x2
i ,

as the mean and mean of the squares respectively. Our aim is to parametrize the distribution of processes by either a
normal or a log-normal law. Recall that the normal and log-normal distributions are given by

f [µ, σ](x) =
1√
2πσ

exp

(
− (x− µ)2

2σ2

)
, and g[µ, σ](x) =

1

x
√
2πσ

exp

(
− (ln(x)− µ)2

2σ2

)
,

An on-line estimation of the relevant moments to compute and plot the distribution is given by the following algorithm:

Algorithm 1: Naive algorithm
1 Set N = 0, µ0 = 0 and S0 = 0.
2 while the program is running do
3 Get a new duration xN+1.
4 Update the mean by µN+1 := (N × µN + xN+1) /(N + 1).
5 Update the sum of squares by SN+1 :=

(
N × SN + x2

N+1

)
/(N + 1).

6 if the law is evaluated then
7 Compute σN+1 =

√
SN+1 − µ2

N+1.

8 Compute and plot the chosen distribution.
9 end

10 end

In practice, N · SN is the value stored and input into the formula for the standard deviation σ. This poses two issues
associated with overflow in this algorithm, both occurring at line 5.

Problem 1. If the process has duration xi > 232 − 1 then overflow will occur when squaring.

Problem 2. The sum of squares N · SN can become unbounded and will cause overflow if stored directly.

2 Proposed solutions
In theory, Java has a non-primitive type called BigInteger which allows for an adaptivity from the int type into a long
type when an overflow is detected. In practice however, this solution is not satisfactory since this type is not generic
and its storage in memory is not necessarily controlled. Furthermore, Softbridge seeks a solution methodology which
is independent of the language and equipment. We thus propose two solutions which address the problems posed by
Problems 1 and 2 which use only integer or floating-point encodings. Each method is explained and detailed in the
following sections. We then characterize the possible advantages and drawbacks realized using these approaches.

2.1 Emulation of the behavior of BigInteger

The first proposed approach consists in emulating the operations of the BigInteger type using only operations on the
int type until the variance is accessed. The central idea behind this approach is to use modular arithmetic to have a
larger representation of an integer greater than 263−1. We consider an emulation of the behavior of the BigInteger type
of Java, by decomposing the duration using two values A,B, each stored as primitive types.

Following the Java convention of signed natural numbers, we define the following sets.

Definition 1 (Int64). A natural number x admits a representation as an Int64 if it belongs to J−263, 263 − 1K.

Definition 2 (MyBigInt). A natural number x admits a representation as a MyBigInt if it is written as x = A× 2e +B,
where A,B are Int64, and e ∈ J6, 24K .

The range defining the exponent will be clarified based on the operation carried out using this solution. Note that,
the set of MyBigInt does not coincide with the set of numbers represented in Java as BigInteger.
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Assumption 1 (Range of incoming data). In the following, we will assume that the incoming values (xi)i are all exactly
represented as Int64.

As a consequence of Assumption 1, the mean values (µN )N are all exactly represented in 64-bits integers.

Assumption 2 (Range of the squares). We will also assume that at any given N , the sum
∑N

i=1 x
2
i has a representation

as a MyBigInt.

Let // denote the integer division, i.e. a//b = ⌊a/b⌋, and mod be the modulo operation (for completeness, let us
point that we consider the multiplication to have priority upon the modulo, and denote abmod c = (ab)mod c).

Remark 1 (Range of validity of the assumptions). Assumptions 1 and 2 are based on the following computations: a
process lasting 4 years will take

α = 4× 365× 24× 3600× 1000 = 126144000000 ≃ 236 ms

to complete. This number still admits a representation as an 64-bits integer. On the other hand, the achievable precision
of a MyBigInt is of the order of magnitude of (22e − 1)22e ≃ 24e. Hence, in the worst case where all the processes last 4
years and taking e = 24, the number of processes N such that N × α overflows the MyBigInt representation is at least

24×e//α2 + 1 = 4 979 048.

In comparison, the number of 4-year processes needed for the sum of squares to overflow the double representation is
around 10285. We consider this to be a reasonable amount.

The manipulation of MyBigInt relies on the following lemma.

Lemma 1 (Operations). Let x ∈ R+ be given by x = a2e + b, where a and b belong to J0, 2e − 1K. Then its square x2

may be written as A× 22e +B, where

A = a2 +
(
2ab2e + b2

)
//22e, and B = (2ab2e mod 22e + b2)mod 22e. (1)

Let now xi = Ai2
2e +Bi, with Ai, Bi ∈ J0, 22e − 1K and i ∈ {0, 1}.

1) The sum x0 + x1 writes A22e +B, where A = A0 +A1 + (B0 +B1)//2
2e and B = (B0 +B1)mod 22e.

2) Assume that x0 ⩾ x1, and denote s = 0 if B0 ⩾ B1, and s = 1 if B0 < B1. The difference x0 − x1 writes as
A22e +B, where A = A0 −A1 − s, and B = B0 −B1 + s 22e.

3) Let n ∈ N such that nB0 can be represented as an Int64. Then y = nx0 may be represented as C22e + D, where
C = nA0 + (nB0)//2

2e, and D = (nB0)mod 22e.

Remark 2 (Choice of the exponent). When calculating 2aibi2
e, there is a risk of overflowing. We can circumvent this

issue by considering an adapted value for the exponent e. If we assume that any given duration is less than four year
(∼ 237) then we have that a ∈ [0, 237−e] =⇒ a2 ∈ [0, 274−2e]. Since we require 74 − 2e < 63, as a lower bound we have
e > 5. As an upper bound, we note that since a ∈ [0, 237−e] and b ∈ [0, 2e − 1] then 2 · a · b · 2e ∈ [0, 238+e] hence we require
e < 25. In practice we take e ∈ [6, 24].

Proof. Notice that
x2 = (a2e + b)2 = a222e + 2ab2e + b2.

Recall that abmod c = ((amod c)(bmod c)) mod c. The expression (1) follows from

B = x2 mod 22e =
(
2ab2e + b2

)
mod 22e =

(
(2ab2e)mod 22e + b2

)
mod 22e,

and, since all the terms are nonnegative,

A = x2//22e =

⌊
a222e + 2ab2e + b2

22e

⌋
= a2 +

(
2ab2e + b2

)
//22e.

Item 1) is straightforward. Item 2) may be treated by disjunction, and Item 3) follows the same reasoning as Item 1).

To completely re-implement the naive algorithm Algorithm 1, one needs to have an approximation of the square root
of a natural number x = A22e +B. Our implementation amounts to compute

√
x ≃

√
A+B/22e × 2e, (2)

where the first part is encoded as a double. A lot of submethods may arise from this point, by considering the order of
operations and the point to which the encoding falls back into double. The current implementation turns B into a double,
then performs the division B/22e in floating-point, and converts A to a double on the way.
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Remark 3 (Alternative). Historically, we considered an approximation as
√
A0 ∗ 22e/(A0 + 1) +B0/(A0 + 1)×

√
A0 + 1

in order to reduce the magnitude of the stored numbers, but the results turn out to be unsatisfactory (see Section 3.2).

Altogether, our first solution strategy can be implemented as the following pseudocode algorithm:
Algorithm 2: Emulation of BigInteger algorithm
1 Set N = 0, µ0 = 0 and S0 = 0.
2 while the program is running do
3 Get a new duration xN+1.
4 Update the mean by µN+1 := (N × µN + xN+1) /(N + 1).
5 Decompose x2

N+1 in MyBigInt representation.
6 Perform the sum SN+1 := SN + x2

N+1 in MyBigInt representation using the formula (1).
7 if the law is evaluated then
8 Decompose (N + 1)× µ2

N+1 in the MyBigInt representation (using a truncation).
9 Perform the difference A22e +B := SN+1 − (N + 1)µ2

N+1 in MyBigInt.
10 if A = 0 then
11 Compute directly the square root of B,
12 else
13 Compute the square root as in (2).
14 end
15 Divide by

√
N + 1 to obtain σ.

16 Compute and plot the chosen distribution.
17 end
18 end

2.2 Re-scaling using floating-point encoding
As a second proposed solution, as initially hinted by Softbridge, we consider a dynamic re-scaling of the sum of squares.
Let λ > 0 denote our re-scaling parameter and let σ2

λ := λσ2. A re-scaled distribution takes the equivalent form

f [µ, σ](x) =
1√
2πσ

exp

(
− (x− µ)2

2σ2

)
=

√
λ√

2πσλ

exp

(
−λ

(x− µ)2

2σ2
λ

)
=: fλ[µ, σλ](x).

In the above expression, λ may be dynamically chosen small in order to keep the value σλ in ranges of values that may
be represented in floating-point encoding (see 4) with sufficiently high precision. Note here that the terms λx2

i have no
reason to stay natural numbers and that by taking λ = 1 we recover the case where each number is simply turned into a
float.

Remark 4 (Double-Precision). The IEEE standard floating-point encoding of double precision uses 64 bits, broken down
into the following sections:

• a first sign bit s.

• 11 bits of exponent, encoding a number p ∈ J0, 211 − 1K.

• 52 bits of mantissa, that we will label in decreasing order as b51, b50, b49, · · · , b0, encoding a multiplier m ∈ [1, 2[ by
m = 1 +

∑52
i=1 b52−i2

−i.

The floating-point double will then be represented as

x = (−1)s ×m× 2p−1023 = (−1)s ×

(
1 +

52∑
i=1

b52−i2
−i

)
× 2p−1023.

We will say that a real number x is encodable if it may exactly be represented in double floating-point encoding. Given a
fixed exponent p, the encodable values are equally distributed in the interval [−(2− 2−52)2p−1023, (2− 2−52)2p−1023], with
a step of 2−52 × 2p−1023.

Re-scaled operations

The computation of the mean remains unchanged, however the computation of the sum of squares becomes

Sλ
N+1 =

N × Sλ
N + λx2

N+1

N + 1
=

N

N + 1
× Sλ

N +
1

N + 1

(√
λxN+1

)2
.
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The computation of the re-scaled deviation at step N will be

σ2
λ = Sλ

N − (
√
λ× µN )2.

The last modification of the naive algorithm will intervene in the evaluation of the law, that has to take into account the
parameter λ. The modification will depend on the particular expression of the distribution. The correct expression of the
re-scaled normal and log-normal laws are the following:

fλ[µ, σλ](x) :=

√
λ

σλ

√
2π

exp

(
−λ

(x− µ)2

2σ2
λ

)
and gλ[µ, σλ](x) :=

√
λ

xσλ

√
2π

exp

(
−λ

(ln(x)− µ)2

2σ2
λ

)
. (3)

Implementation as an on-line algorithm

Given the wide range of possible durations, the choice of λ is somewhat arbitrary. We consider two possible implementa-
tions:

• Fixing λ a priori, allowing us to detect whether a small or a large value of λ is well-suited.

• Update λ dynamically as the inverse of the current maximum of xi, or the current maximum of x2
i , reducing the

order of magnitude of the data.

If we denote λN as the choice of λ at step N , an algorithm for the proposed second solution strategy is as follows:
Algorithm 3: Re-scaling algorithm
1 Set N = 0, µ0 = 0, S0 = 0 and λ0 = 1.
2 while the program is running do
3 Get a new duration xN+1.
4 Update the mean by µN+1 := N

N+1 × µN + xN+1/(N + 1).
5 Update the scaling parameter λN+1 (while still storing λN ).
6 Update the sum of squares by S

λN+1

N+1 := SλN

N × λN+1

λN
+ λN+1x

2
N+1.

7 if the law is evaluated then

8 Compute σN+1 =
√
S
λN+1

N+1 /(N + 1)− λN+1µ2
N+1.

9 Compute and plot the re-scaled chosen distribution as in (3).
10 end
11 end

3 Numerical results

3.1 Testing environment
In order to assess the different proposed solutions, we designed a range of test cases. We divide them into deterministic
test cases, in which every parameter is analytically known at every time, at the expense of being non-realistic, and random
test cases that mimic the industrial context. A test case is determined by

1. a method to provide the sequence (xi)i∈N,

2. a set of expected parameters µN and σN in function of the number N of available processes.

Let µ̂N (resp. σ̂N ) be the numerical approximation of µN (resp. σN ). As a measure of the error for the proposed
algorithms, we consider the following indicators:

• a measure of the overflow, equal to 0 if the program is completed without overflowing, and +∞ otherwise,

• the relative error in mean eµ := |µ̂N − µN | /µN ,

• the relative error in standard deviation eσ := |σ̂N − σN | /σN ,

The reported results do not show problems of overflow, and we do not mention it.
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Deterministic test cases

As deterministic test cases, we consider the following two trials

1. the constant test case: xi = x a fixed value. The expected parameters are µN = x and σN = 0 at any step N .

2. the cyclical test case: the values of xi will cycle through a given finite set X = {x1, x2, · · · , xm}. Let µ be the mean
of X, and S = 1

m

∑m
i=1 x

2
i . The expected parameters are given by

µN =
1

N

N∑
i=1

xi =
N//m

N
mµ+

1

N

N%m∑
i=1

xi, and σN =

√√√√ 1

N

N∑
i=1

x2
i − µ2

N =

√√√√N//m

N
mS +

1

N

N%m∑
i=1

x2
i − µ2

N .

Random test cases

In the random case, the samples xi are drawn from a given law. Consequently, the values of µN and σN will only be
approximated by their numerical counterparts for a large number of samples. We keep the law fixed with respect to N ,
so that the expected parameters µ = µN and σ = σN are independent of N . We consider the following two trials.

1. The uniform discrete distribution U(1,K) between 1 ms and K ms, where K is even and is taken as a large duration

of ≈ 10 months. The expected parameters are given by µ = (1 +K)/2, and the standard deviation is σ =
√

k2−1
12 .

2. The normal distribution N (µ, σ) for known mean and standard deviation.

3.2 Comparison of methods
In all the following, the number of simulated processes is taken as N = 100 for deterministic test cases, and N = 10 000
for random ones. We compare the different methods against an implementation using BigInteger. The plotted errors
are computed as the mean of relative errors over the last 10 iterations.

We begin by some very simple deterministic cases to assess the method. The first test case (represented in Figure 1)
considers a constant sequence of durations xi ≡ x. The value of x is set to 2i, with i varying in J8, 38K in order to make
the sum of squares S overflow the long representation.

(a) (b)

Figure 1: Relative error in S (a) and σ (b), constant test case.

The x axis represents the natural number i ∈ J8, 28K such that x = 2i. The y axis shows the relative error on,
respectively, the sum of the squares S =

∑N
i=1 x

2
i , and the standard deviation σ =

√
S/N − µ2. The method

scaling max corresponds to the choice of λN = max(λN−1, xN ), with λ0 = 0. The method float corresponds to
the constant choice of λ = 1. The method emul 1 corresponds to the Algorithm 2, with the approximation of the

square root performed as in (2). Unrepresented methods are giving far larger errors (see Tables 1 and 2).

The second test case (see Figure 2) considers a sequence xi alternating between 1 and the value 2i. The i is chosen
increasingly as before.

To conclude with analytically known test cases, the Figure 3 considers a periodic sequence over a fixed set of values,
whose maximum is again set to 2i, with i varying as before.

6



(a) (b)

Figure 2: Relative error in S (a) and σ (b), alternating in {1, 2i}.
The series of data labeled scaling min is an instance of the scaling algorithm for a fixed value λ = 1e− 12. The
series emul 2 refers to the emulation of BigInteger behavior, with an implementation of the square root with a

division by the largest factor (see Remark 3). The remaining labels are identical to Figure 1.

To get closer to reality, we also considered random test cases. The error represented in the following figures is computed
relatively to the mean and standard deviation of the laws that we sample, and the reader may keep in mind that part of
the error may be due to the random sampling. Figure 4 presents the sampling of the uniform distribution in [1, 2i], with
i increasing as previously.

Figure 5 shows the sampling of a normal law of increasing mean and fixed standard deviation at 200. This case is the
most relevant in the given context.

At first sight, it seems natural that the scaling method should give better results for a suitably adapted parameter λ,
that would keep the stored quantities into reasonable intervals. To assess this, Figure 6 represents the variation of the
relative error of S and σ for a given λ, ranging from 1 to 10−38. The test case is chosen to be the alternation between 1
and 28, so that the error is not influenced by a random sampling.

The comparison is summarized with better precision in the following tables, in which the numbering of simulation
coincide with that of the corresponding figures.

Simulation n° error scaling max float scaling min emul 1 emul 2
1 max 3.88e-17 3.88e-17 4.61e-16 0.00e+00 0.00e+00
1 mean 1.12e-17 1.12e-17 4.30e-16 0.00e+00 0.00e+00
2 max 1.19e-15 1.19e-15 2.20e-15 0.00e+00 0.00e+00
2 mean 8.33e-17 8.33e-17 1.05e-15 0.00e+00 0.00e+00
3 max 1.03e-15 1.03e-15 9.70e-16 0.00e+00 0.00e+00
3 mean 1.06e-16 1.06e-16 3.87e-16 0.00e+00 0.00e+00
4 max 2.24e-02 2.24e-02 2.24e-02 0.00e+00 0.00e+00
4 mean 6.98e-03 6.98e-03 6.98e-03 0.00e+00 0.00e+00
5 max 7.64e-03 7.64e-03 7.64e-03 0.00e+00 0.00e+00
5 mean 6.20e-04 6.20e-04 6.20e-04 0.00e+00 0.00e+00

Table 1: Errors for the sum of squares S
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(a) (b)

Figure 3: Relative error in S (a) and σ (b) alternating in a broader range of values.

For each x ∈ J8, 37K, the values are taken periodically in the set {1000, 2x, 6000, 3000, 5× 2x//2}.

(a) (b)

Figure 4: Relative error in S (a) and σ (b), uniform distribution in [1, 2i].

Simulation n° error scaling max float scaling min emul 1 emul 2
1 max 0.00e+00 0.00e+00 2.90e+03 0.00e+00 0.00e+00
1 mean 0.00e+00 0.00e+00 1.93e+02 0.00e+00 0.00e+00
2 max 2.17e-07 2.17e-07 2.17e-07 2.61e-03 nan
2 mean 2.17e-08 2.17e-08 2.17e-08 2.25e-04 nan
3 max 9.21e-08 9.21e-08 9.21e-08 3.41e-04 nan
3 mean 5.26e-09 5.26e-09 5.26e-09 5.70e-05 nan
4 max 9.00e-03 9.00e-03 9.00e-03 1.35e-02 nan
4 mean 2.85e-03 2.85e-03 2.85e-03 3.56e-03 nan
5 max 4.75e+01 4.73e+01 5.49e+01 1.16e+03 1.15e+03
5 mean 2.82e+00 2.82e+00 3.14e+00 1.82e+02 1.82e+02

Table 2: Errors for the standard deviation σ
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(a) (b)

Figure 5: Relative error in S (a) and σ (b), normal distribution with mean 2i and standard deviation 200.

(a) (b)

Figure 6: Relative error in S (a) and σ (b), alternating test case and varying λ.

The scaling parameter λ is chosen as 10−x, where x ∈ J0,−38K lies on the first axis.

Conclusion
Our project explored two methods to avoid overflowing in a stream process mining used by Softbridge technologies, namely

1. emulating BigInteger with long types: decompose a large number in order to store it as A× 2e +B, where A and
B may be represented as long values,

2. re-scaling the parameters: store a scaled version of the parameters, thus converting any long to double at the
beginning of the process.

In regard of the first method, we observed that we could represent the sum of the square without any loss of information.
However, for the computation of σ, there is a non-negligible loss of precision associated with the square root operation.
We have tested many options to calculate the square root, and presented the results for some factorisations. Improving
the computation of the square root may allow more precise results of the σ.

On the second method, the loss of precision occurs in the computation of the sum of the squares. Nevertheless, this
loss is mitigated when calculating the standard deviation, showing better results than method 1. We also observed that
the choice of the scaling parameter λ does not have a significant influence on the results.

In conclusion, our advice to the Softbridge company would be to turn to a double encoding. This choice is by far the
most easily implemented, and the above study shows that it may outperform more refined methods.
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