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Abstract— Designing intelligent and assistive devices for
disabled persons’ mobility requires appropriate asistive tools
and techniques in order to insure efficiency and sairity in use.
In this work we present a new architecture of an atonomous and
communicating mobile robot for disability assistane. This
architecture represents a first step towards an imfgmentation to
an intelligent wheelchair for the mobility of individuals with
motor impairment. The proposed design provides twouse
modules namely the navigation based only on the hira signals
and the intramural mapping of buildings. For the first use
module, our approach exploits the statistical chareteristics of
the brain signal to extract eye movements and trafisrm them
into commands to control the robot. Concerning thentramural
mapping module, our proposed solution is based omaobstacle
detection algorithm implemented on a Raspberry Pl 3board
using the ROS system.

Keywords— EEG; BCIl; Eye mouvements; Intramural
mapping; Autonomous mobile robot

I.  INTRODUCTION

In the field of robotics a booming market is inkgdl This
is a direct consequence of the decline in costedime 90s and
which covered all types of robots namely domiciljar
industrial and leisure robots. This decrease irorawsts has
made it possible to extend applications of thiddfieo the
military, industrial and medical areas. In the eout of
locomotion, the first designed robots were limitbyg the
constraint of stability. This, because it is a fgsoe that
requires skills in robotics, artificial intelligeadAl), industrial
and computer engineering [1].

Nowadays, increasing the autonomy of people irasdns
of disability is in an increasing interest. Thisyniee justified at
a first time by the phenomenon of aging but alsodsnts and
chronic diseases take part in this situation. A®xaample, the
legal definition of disability according to the Rah law of
2005, it covers any limitation of activity to thestriction of
participation in life. According to this examplepre than two
million individuals are administratively recognized disabled
in France, and 60% of whom have motor impairmemtthis

French example, 12% of the reported impairments ar

attributed to accidents. On another hand, 10% are
“early” causes such as complexity of pregnancy,geoital
malformation and even hereditary diseases. In toistext,
assistance robotic has become one of the mosttad/esctors

[2]. This covers sectors from helping robots toikany robots
in life.

With the advent of artificial intelligence, rapidhances
have been made in robotics. These advances have imad
possible to increase the degree of interaction dé&tvhumans
and robots. The refinement of such interactiondilmsved the
appearance of what is called “Assistive RoboticR{A3]. The
aim of such a discipline is to improve the autoncamg life
quality of persons with disabilities. In this coxte
understanding the needs of disabled persons amdirzgithese
needs to robotic services is the serious challeoyeany
assistive robotic system. Given this constrairgjséise robotic
has been regrouped in different axes in order teroa
diversity of choices in disability assistance.

In terms of physical assistance, which is consitlecebe
the direct application of AR, designed systems tirincrease
the individual's independence during a physicalk.taSor
example in the case of muscle degeneration in piperlimb,
self-feeding becomes a tedious, or even an implestibk. To
overcome this deficiency, works from assistive tatso
propose the use of a robotic arm. In this contine,Assistive
Robotic Manipulation (ARM), known as MANUS [4],
represents one of the most commonly studied rolots
literature works. Based on six degrees of freedachan end
effector, the MANUS is intended to be mounted on a
wheelchair for a general handling. This roboticidewhas been
designed for clinical cases where there is a qpidjic patient
or suffering from a neuromuscular disease. In @fdito self-
feeding, the MANUS offers its users simple aids hsuas
opening the door of a room or wearing glasses. ANMS,
several approaches are proposed in the literahdege based
on the residual motor abilities of the individuelowever, in
the case where no motor ability is available, theseotic
systems are of no use. In such a situation, theofissther
approaches is necessary. These approaches caonrelyice
recognition or eye-tracking in order to have a aalihg tool
of a robotic device. However, in cases of extreisatllity, i.e.
no standard neuromuscular peripheral is functiothel;use of
brain signals represents the only overcoming rigiapproach
fo increase the dependence of the patient [2].

In the case of a total motor deficiency, i.e. neideal
motor ability is present; a possibility to overcothés isolation
can be implemented using paradigms based on nooutans
information pipes. These information channels cdoddlike



the Heart Rate Variation (HRV), the Galvanic SkiasRonse
(GSR), eye movements recorded on an eye trackebi
signals which result in respect to the electricalirb activities,
i.e. Electroencephalogram signals (EEG) [5]. Howgetaking
into account the inter-individual variability, bresignals-based
paradigms represent the most reliable solution dieating
communication systems. The use and the analysibraih
activity in relation to intelligent systems has als been
referred to the concept of Brain-Computer Interéa¢BCl)
[6][7]1[8][9]. These interfaces allow communicati@amich does
not require any muscular ability and the user iteis are
mediated through brain signals. Related to the litpbi
assistance, Rebsamen [10] seeks to generate, iustwres
brain, a response following the presentation ofimutus. In
this paradigm, randomly flashed choices are presetu the
user. When the user’s intended selected choicéashdd, a
cerebral response is generated at the central larea This
response is a large positive deflection in therbeignal after
the reception of a stimulus. This deflection is wnoas the
P300 Event Related Potential (ERP) component [Thjs

component is generated at the central brain are@ 3Q

milliseconds after the reception of the stimulum @low
navigation in a typical building, the user selebts desired
direction on a GUI. Apart from the ERP paradigm,| B&n be
designed through exploiting the asynchronous bsigmals.
Unlike ERPs, these signals are voluntarily gendrédig the
user and no stimulation is used. In such a contéh,
imagination of movements is the most used approacugh
literature works. In this realm, Tonin [12] designeontrol
architecture for a telepresence robot based onchsynous

approach is based on obstacle avoidance and aeking. In

order to demonstrate and validate the capabilibésthis

module, a case study was discussed. In this chserobot
simultaneously locates, browses and builds a mapitsof
environment.

The remain of this paper is organized as followsdntion 2
we give a presentation on our adopted model. Wgepteeach
of experimental setups and the adopted approachésth use
modules. In section 3, we present the obtainedltsesa
relation to each use module. These results aredisenssed in
the same section. Finally, perspectives and futuwmeks are
introduced in the conclusion.

Il. ADOPTED MODEL

A. Experimental setups

Since in this work we propose a system with two ohesl
of use, two versions of architecture have beenqweg. The
“light” version implements only the intramural maipg
module. In the “complete” version we have implensenthe
wo modules. In the two proposed versions the hgic
processes are carried out based on a Raspbermiitideed
system which has an ability to implement the Rdbperating
System (ROS). For interfacing the different acttgtthe two
versions are based on Arduino boards. In ordenktagce the
robot autonomy in terms of obstacle avoidance aradl w
tracking, we relied on an ultra-sound sensor. Tedesigned
robots are presented on Figure 1. The common eothie of
the two versions is presented in Figure 2. Conogrrthe
navigation module using the brain signals, our erpental

BCI. This system, based on the imagination of hangyotocol consists of using a single active EEGtedele (Ag/Cl
movements, allows patients in clinics to contraéélepresence electrode) placed at the Fpl position accordinghéo 10-20

robot situated from more than 100 Km. In order ¢t@ub
patients’ attention on movements imagination, sthamntrol is
introduced and is based on automatic obstacle amo&l

In this work, we present a new architecture of 3
communicating autonomous robot. The proposed desig
provides two modules of the robot use, namely &) dontrol
of the robot using only EEG signals and (2) theaimiural
mapping of a building. In the first module, our toh
approach is based on the detection of eye moveneentbe
EEG signal. This approach exploits the statistica
characteristics of the EEG signal. On a graphisal interface
(GUI), and based on his eye movements, the usersnav
cursor to select the robot movement direction. tRertest and
the validation of this module, our experimentatiowsre
conducted using a reference EEG assembly with aacliye
electrode placed at the Fpl position accordinghto 10-20
international system. On another hand, and forsa¥alidation
of the proposed use mode, this experimental prbiactuded
a mal participant with any eye or cognitive impamh As a
test task, the participant was asked to move thetrixom a
departure point and going through three stationforbe
reaching the arrival point. Experimental resultnfrthis first
module show that the precision of the proposed cambr
reached 86%. This result allows us to postulaté shah an
approach could be one of the alternatives for th@rol of a
wheelchair by persons with severe motor disabiligr the
second module, the intramural mapping representsedul
feature for patients with disabilities. To do thisyr adopted

international system.

Fig. 1“Complete” version of the designed robot —a- andlit’ version of
the designed robot
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Fig. 2 —a- ROS communication structure. ROS starts byudiey the
Master which allows to all the ROS executables @&do meet and inter-
communicate. —b- Robot states and actions diagr@mshe left side of the
figure “1” represents a distance greater than #iety distance regarding the
obstacle.

For the validation of the navigation module,
experimental protocol was tested on a volunteejestitfrom
the project team. The subject was trained in théhatkwith
which he has to use the system for experimentafidre
experimentation consists of placing the participarftont of a
GUI on which we present a cursor and the possibbéztibns
for moving the robot on the plan. The participargves his
eyes to select the desired direction for movingrttet.

B. Intramural mapping module

measurements, we propose the models, presentedura #,
for the robot displacement.

C. Eye movements-based navigation module

Our approach for controlling the mobile robot basedy
on brain signals consists on using and improving ega
movement detection algorithm from our previous vgofk3].
This improvement consists in taking into accountnew
parameter which is the power spectral density (P&Dihe
alpha brain wave [8-12 Hz] during the productionaof eye
movement. For the sake of a lack understandinggiwve a
brief description of this algorithm. Our approashbased on
detecting eye movements with the shape of a blch an
approach requires a calibration session in which tryeto
measure a typical eye blink for each user. During $ession,
the user blinks his eyes in different times. The@adntance of
the typical blink, which is specific to each uskes in the
refinement of the detection process during expartmthrough
parametric comparisons. The use of this typicahkblis
explained later in this paper.

The proposed blink detection process is basedatiststal
characteristics of the EEG signal. Isét;) be the measurement
of the EEG signal by the electrode Fpl at the imsta For
each participant, we demonstrate thét) follows a Normal
Gaussian Law, i.es(t)~N (us, 62) whereu, ands? represent
the EEG signal mean and variance respectively. BE@ data
normality leads us to postulate that the pure EB@,dwhich
are not contaminated by other external signalswétfgn the
Gauss’ confidence interval. Taking into-account tinger-
individual variability, this confidence intervaledoted by, is
defined as presented in Eqg.1. In our experimenéschose to

thevary the parametep from 1 to 5 so as to exclude the least

percentage of pure EEG data from the interial

Ic = [us —p*o5,us +p* 0l Eq.l
The next step in a blink identifying process iskésg a
point from the signal which verifie&;) € I, . Once this point
is identified we seek to determine the fisét;) which verifies
s(t;) ~ 0 andt; < t;. On the other hand, we seek to identify
the third point verifyings(t;,) ~ 0 andt;, > t;. The instants;

The robot autonomy in the mapping module mainlyandt;, represent the estimated times of starting andnenalf

concerns obstacle avoidance and wall tracking using
ultrasonic distance sensor. In our approach, wesehim

connect the different sensors and actuators t&Réspberry Pl
which is considered as the logic processing unitoim

architecture. We chose an implementation usingR0&. The
choice of such a system is justified by its fundatakconcept
which offers parallel operations of a large numbafr

executables (called Nodes) in order to make thechanging
information
asynchronous (called Topic).

At the ROSSERIAL stack, communication between RO

on the Raspberry Pl and the Arduino board can tablkshed.
To allow the estimation of the position of the rololoiring a
movement, the ultrasonic sensor allows a measuresteeting
from a known departure position. For such an estimaf the
position and the trajectory based on the odomet

the eye movement. A graphical representation ofsethe
parameters is given on Fig. 3. As a third step e t
identification process, we apply a Fisher-Senedéestr for a
comparison based on the typical blink and the bénfposed
to be identified between instargsand;,.

in a synchronous way (called Service) (

Potential (nv)

s(t;) > ps +p = o5
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Fig. 3 Detection of an eye blink using the signal stadfparameters.
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Fig. 4—a- Translation model. —b-Rotation model.

The use of the Fisher-Snedecor test aims at congpdti
two samples belong to the same population. In @secthe
two samples are the typical blink and the estiméletk. Let
s, be the EEG signal delimited by instagtgndt;,. And lets,
be the EEG signal which composes the typical blivke
denote byn,, andng, sizes ofs, ands, respectively. The
experimental variances of ands, are, respectivel$; and
Sszb as shown in equations Eq.2 and Eq3, and ug, are
means of, ands, respectively.

s,
1 2
Ssze = n_Z(Se(ti) - ﬂse) Eq.2
Se =1
1 &
S8 =— > ()~ s,)”
Sp nSb izl( b\t Sb) Eq3

The two equations lead us to postulate two hypethes
Null Hypothesis H,) corresponds to the case whéfe= SZ .
The Alternative Hypothesis H(;) represents the case of
Sz # SZ . The statistic of the Fisher-Snedecor test imeeffias

follow:

SZ
_552,,
Based on a bilateral test with a specific confidenc

thresholdl. The test can rejects tiig hypothesis with @ risk
if F > A. In the case wher® < A, H, is accepted.

F Eq.4

I1l. RESULTS ANDDISCUSSION

In order to test and validate the capabilitieshef mapping
module, we discussed the case study describedgurd=b. In
this case study, the robot locates tracks and wmebusly
builds a map of its environment. Such a test caodmsidered
as a first step in the SLAM machine learning. Igufe 5 we
present each of the environments where the rolrérpes its
movements and the results obtained in terms of mgpgnd
trajectory estimation without going through the ‘else
encoders. Figure 5 shows that the robot is ablenap the
entire test environment and to accurately estirtatgositions.
On another hand, results from Figure 5 presentaaliion in
mapping. This limitation is translated by the rédatability to
accurately map the corners of the environment. Ehi&hown
on Figure 5 by phenomena “Phenol” and “Pheno2”edad
the principle of the robot navigation consistswb tsteps. The
first consists of a 180° scan of the environmenthwhe
ultrasonic sensor through sampling three points90°, 180°).
Subsequently, the robot moves according to whaiad just
detected based on the algorithm of Figure 2. Tliemait
returns to scanning. The “Pheno2” is justified blye t
servomotor pitch that we have fixed to 90° and digothe
ultrasonic sensor field which detects a wall ondiue despite
having already passed it. On the other hand, Fi§gieows an
approximation between the robot placements (“Ph§ndBis
is due a purely technical problem related to thiteba Indeed,
when the battery charge decreases, the motor famksr and
this affects its displacement, including the raatiwhich
requires more power.

For the navigation module, the validation procesass w
performed based on a mal participant. This validaprocess
focused on measuring the performance, in termscodiracy,
we used metrics of Sensitivity (Sen) and Specifi¢Bpe) as
defined in the following equations:

con_ TP
"=TPYFN Eq.5
oo _FP
Pe =P+ TP Eq.6

where TP represents the number of real detectiome &y the
algorithm, and which are also annotated by a humapert.
FN, represents the number of detections made byhean
expert which were not made by the algorithm. FinakP
represents the number of detections made by thoeitilign and
which are not made by the human expert.

In Tab. 1 we present the results of the chosenuatiah
process. For the selected representative partigipdre
obtained results represent a sensitivity rate d¥8&nd a
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Fig. 5 —a- Test environment for the mapping module. —beiRe of
the mapping module in terms of estimating obstaeled the robot
positions

specificity of 69%. The first metric value refledtee precision
of the proposed algorithm to detect true eye movese
However, concerning the second metric value, wda@xjit by
the test environment influence on the EEG acqaisifiystem.
Indeed, since the acquisition system uses a Bltletmased
information transmission, this transmission charcmlld be
disturbed by the magnetic waves which could be érgin of
the test environment devices. On another hand,xpkaia the
second metric value by the influence of the pauéint's other
biological signals on the EEG acquisition systendeked, the
participant’'s cheeks and neck movements (muscleements
in general) generate electrical potentials whiah iatercepted
by the EEG acquisition system.

Tab. 1 Metrics of the eye movement detection algorithm
Ser Spe
Reprgsgntatlw 86% 69%
participant

V. CONCLUSION

In this paper we presented a new architecture of an
autonomous mobile robot intended for motor disgbili
assistance through a future implementation on aelghair.
The designed architecture offers two modules of Tike first
module allows the intramurals mapping in a typicailding.
Through experimentation, we have demonstrated ithas
possible to map based on a combination of distaaecgsangles
measured by an ultrasonic sensor and servomotasever
the approach incorporated in this fist module pras some
limitations, especially in corners mapping, we camrcome
these limitations by using a filter layer applied the resulting
map in order to eliminate unnecessary points. Agroth
improvement could be envisaged by using data fusésed on
Bayesian networks to improve the robot positiomesion.
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