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Abstract— Designing intelligent and assistive devices for 
disabled persons’ mobility requires appropriate assistive tools 
and techniques in order to insure efficiency and security in use. 
In this work we present a new architecture of an autonomous and 
communicating mobile robot for disability assistance. This 
architecture represents a first step towards an implementation to 
an intelligent wheelchair for the mobility of individuals with 
motor impairment. The proposed design provides two use 
modules namely the navigation based only on the brain signals 
and the intramural mapping of buildings. For the first use 
module, our approach exploits the statistical characteristics of 
the brain signal to extract eye movements and transform them 
into commands to control the robot. Concerning the intramural 
mapping module, our proposed solution is based on an obstacle 
detection algorithm implemented on a Raspberry PI 3 board 
using the ROS system. 
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I.  INTRODUCTION  

In the field of robotics a booming market is installed. This 
is a direct consequence of the decline in costs since the 90s and 
which covered all types of robots namely domiciliary, 
industrial and leisure robots. This decrease in robot costs has 
made it possible to extend applications of this field to the 
military, industrial and medical areas. In the context of 
locomotion, the first designed robots were limited by the 
constraint of stability. This, because it is a discipline that 
requires skills in robotics, artificial intelligence (AI), industrial 
and computer engineering [1]. 

Nowadays, increasing the autonomy of people in situations 
of disability is in an increasing interest. This may be justified at 
a first time by the phenomenon of aging but also accidents and 
chronic diseases take part in this situation. As an example, the 
legal definition of disability according to the French law of 
2005, it covers any limitation of activity to the restriction of 
participation in life. According to this example, more than two 
million individuals are administratively recognized as disabled 
in France, and 60% of whom have motor impairment. In this 
French example, 12% of the reported impairments are 
attributed to accidents. On another hand, 10% are due to 
“early” causes such as complexity of pregnancy, congenital 
malformation and even hereditary diseases. In this context, 
assistance robotic has become one of the most invested sectors 

[2]. This covers sectors from helping robots to auxiliary robots 
in life. 

With the advent of artificial intelligence, rapid advances 
have been made in robotics. These advances have made it 
possible to increase the degree of interaction between humans 
and robots. The refinement of such interaction has allowed the 
appearance of what is called “Assistive Robotic” (AR) [3]. The 
aim of such a discipline is to improve the autonomy and life 
quality of persons with disabilities. In this context, 
understanding the needs of disabled persons and adapting these 
needs to robotic services is the serious challenge of any 
assistive robotic system. Given this constraint, assistive robotic 
has been regrouped in different axes in order to offer a 
diversity of choices in disability assistance. 

In terms of physical assistance, which is considered to be 
the direct application of AR, designed systems aim to increase 
the individual’s independence during a physical task. For 
example in the case of muscle degeneration in the upper limb, 
self-feeding becomes a tedious, or even an impossible task. To 
overcome this deficiency, works from assistive robotics 
propose the use of a robotic arm. In this context, the Assistive 
Robotic Manipulation (ARM), known as MANUS [4], 
represents one of the most commonly studied robots in 
literature works. Based on six degrees of freedom and an end 
effector, the MANUS is intended to be mounted on a 
wheelchair for a general handling. This robotic device has been 
designed for clinical cases where there is a quadriplegic patient 
or suffering from a neuromuscular disease. In addition to self-
feeding, the MANUS offers its users simple aids such as 
opening the door of a room or wearing glasses. As MANUS, 
several approaches are proposed in the literature and are based 
on the residual motor abilities of the individual. However, in 
the case where no motor ability is available, these robotic 
systems are of no use. In such a situation, the use of other 
approaches is necessary. These approaches can rely on voice 
recognition or eye-tracking in order to have a controlling tool 
of a robotic device. However, in cases of extreme disability, i.e. 
no standard neuromuscular peripheral is functional; the use of 
brain signals represents the only overcoming reliable approach 
to increase the dependence of the patient [2]. 

In the case of a total motor deficiency, i.e. no residual 
motor ability is present; a possibility to overcome this isolation 
can be implemented using paradigms based on non-muscular 
information pipes. These information channels could be like 
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the Heart Rate Variation (HRV), the Galvanic Skin Response 
(GSR), eye movements recorded on an eye tracker and brain 
signals which result in respect to the electrical brain activities, 
i.e. Electroencephalogram signals (EEG) [5]. However, taking 
into account the inter-individual variability, brain signals-based 
paradigms represent the most reliable solution for creating 
communication systems. The use and the analysis of brain 
activity in relation to intelligent systems has always been 
referred to the concept of Brain-Computer Interfaces (BCI) 
[6][7][8][9]. These interfaces allow communication which does 
not require any muscular ability and the user intentions are 
mediated through brain signals. Related to the mobility 
assistance, Rebsamen [10] seeks to generate, in the user’s 
brain, a response following the presentation of a stimulus. In 
this paradigm, randomly flashed choices are presented to the 
user. When the user’s intended selected choice is flashed, a 
cerebral response is generated at the central brain area. This 
response is a large positive deflection in the brain signal after 
the reception of a stimulus. This deflection is known as the 
P300 Event Related Potential (ERP) component [11]. This 
component is generated at the central brain area 300 
milliseconds after the reception of the stimulus. To allow 
navigation in a typical building, the user selects his desired 
direction on a GUI. Apart from the ERP paradigm, BCI can be 
designed through exploiting the asynchronous brain signals. 
Unlike ERPs, these signals are voluntarily generated by the 
user and no stimulation is used. In such a context, the 
imagination of movements is the most used approach through 
literature works. In this realm, Tonin [12] designed control 
architecture for a telepresence robot based on asynchronous 
BCI. This system, based on the imagination of hand 
movements, allows patients in clinics to control a telepresence 
robot situated from more than 100 Km. In order to focus 
patients’ attention on movements imagination, shared control is 
introduced and is based on automatic obstacle avoidance. 

In this work, we present a new architecture of a 
communicating autonomous robot. The proposed design 
provides two modules of the robot use, namely (1) the control 
of the robot using only EEG signals and (2) the intramural 
mapping of a building. In the first module, our control 
approach is based on the detection of eye movements on the 
EEG signal. This approach exploits the statistical 
characteristics of the EEG signal. On a graphical user interface 
(GUI), and based on his eye movements, the user moves a 
cursor to select the robot movement direction. For the test and 
the validation of this module, our experimentations were 
conducted using a reference EEG assembly with a dry active 
electrode placed at the Fp1 position according to the 10-20 
international system. On another hand, and for a first validation 
of the proposed use mode, this experimental protocol included 
a mal participant with any eye or cognitive impairment. As a 
test task, the participant was asked to move the robot from a 
departure point and going through three stations before 
reaching the arrival point. Experimental results from this first 
module show that the precision of the proposed approach 
reached 86%. This result allows us to postulate that such an 
approach could be one of the alternatives for the control of a 
wheelchair by persons with severe motor disability. For the 
second module, the intramural mapping represents a useful 
feature for patients with disabilities. To do this, our adopted 

approach is based on obstacle avoidance and wall tracking. In 
order to demonstrate and validate the capabilities of this 
module, a case study was discussed. In this case, the robot 
simultaneously locates, browses and builds a map of its 
environment. 

The remain of this paper is organized as follow. In section 2 
we give a presentation on our adopted model. We present each 
of experimental setups and the adopted approaches for both use 
modules. In section 3, we present the obtained results in 
relation to each use module. These results are then discussed in 
the same section. Finally, perspectives and future works are 
introduced in the conclusion. 

II. ADOPTED MODEL 

A. Experimental setups 

Since in this work we propose a system with two modules 
of use, two versions of architecture have been proposed. The 
“light” version implements only the intramural mapping 
module. In the “complete” version we have implemented the 
two modules. In the two proposed versions the logical 
processes are carried out based on a Raspberry PI embedded 
system which has an ability to implement the Robot Operating 
System (ROS). For interfacing the different actuators, the two 
versions are based on Arduino boards. In order to enhance the 
robot autonomy in terms of obstacle avoidance and wall 
tracking, we relied on an ultra-sound sensor. The two designed 
robots are presented on Figure 1. The common architecture of 
the two versions is presented in Figure 2. Concerning the 
navigation module using the brain signals, our experimental 
protocol consists of using a single active EEG electrode (Ag/Cl 
electrode)  placed at the Fp1 position according to the 10-20 
international system. 

Fig. 1 “Complete” version of the designed robot –a- and “Light” version of 
the designed robot 



  

 

 
Fig. 3 Detection of an eye blink using the signal statistical parameters. 

Fig. 2 –a- ROS communication structure. ROS starts by executing the 
Master which allows to all the ROS executables (Nodes) to meet and inter-
communicate. –b- Robot states and actions diagrams. On the left side of the 
figure “1” represents a distance greater than the safety distance regarding the 
obstacle. 

For the validation of the navigation module, the 
experimental protocol was tested on a volunteer subject from 
the project team. The subject was trained in the method with 
which he has to use the system for experimentation. The 
experimentation consists of placing the participant in front of a 
GUI on which we present a cursor and the possible directions 
for moving the robot on the plan. The participant moves his 
eyes to select the desired direction for moving the robot.  

B. Intramural mapping module 

The robot autonomy in the mapping module mainly 
concerns obstacle avoidance and wall tracking using an 
ultrasonic distance sensor. In our approach, we chose to 
connect the different sensors and actuators to the Raspberry PI 
which is considered as the logic processing unit in our 
architecture. We chose an implementation using the ROS. The 
choice of such a system is justified by its fundamental concept 
which offers parallel operations of a large number of 
executables (called Nodes) in order to make them exchanging 
information in a synchronous way (called Service) or 
asynchronous (called Topic). 

At the ROSSERIAL stack, communication between ROS 
on the Raspberry PI and the Arduino board can be established. 
To allow the estimation of the position of the robot during a 
movement, the ultrasonic sensor allows a measurement starting 
from a known departure position. For such an estimation of the 
position and the trajectory based on the odometric 

measurements, we propose the models, presented on figure 4, 
for the robot displacement. 

C. Eye movements-based navigation module 

Our approach for controlling the mobile robot based only 
on brain signals consists on using and improving an eye 
movement detection algorithm from our previous works [13]. 
This improvement consists in taking into account a new 
parameter which is the power spectral density (PSD) of the 
alpha brain wave [8-12 Hz] during the production of an eye 
movement. For the sake of a lack understanding, we give a 
brief description of this algorithm. Our approach is based on 
detecting eye movements with the shape of a blink. Such an 
approach requires a calibration session in which we try to 
measure a typical eye blink for each user. During this session, 
the user blinks his eyes in different times. The importance of 
the typical blink, which is specific to each user, lies in the 
refinement of the detection process during experiments through 
parametric comparisons. The use of this typical blink is 
explained later in this paper. 

The proposed blink detection process is based on statistical 
characteristics of the EEG signal. Let �(��) be the measurement 
of the EEG signal by the electrode Fp1 at the instant ��. For 
each participant, we demonstrate that �(�) follows a Normal 
Gaussian Law, i.e. �(�)~�(�	, �	�) where �	 and �	� represent 
the EEG signal mean and variance respectively. The EEG data 
normality leads us to postulate that the pure EEG data, which 
are not contaminated by other external signals, are within the 
Gauss’ confidence interval. Taking into-account the inter-
individual variability, this confidence interval, denoted by 
�, is 
defined as presented in Eq.1. In our experiments, we chose to 
vary the parameter � from 1 to 5 so as to exclude the least 
percentage of pure EEG data from the interval  
�. 


� = ��	 − � ∗ �	, �	 + � ∗ �	� Eq.1 

The next step in a blink identifying process is seeking a 
point from the signal which verifies (��) ∉ 
� . Once this point 
is identified we seek to determine the first ����� which verifies 
����� ≈ 0 and �� < ��. On the other hand, we seek to identify 
the third point verifying ������ ≈ 0 and ��� > ��. The instants �� 
and ��� represent the estimated times of starting and ending of 
the eye movement. A graphical representation of these 
parameters is given on Fig. 3. As a third step in the 
identification process, we apply a Fisher-Senedecor test for a 
comparison based on the typical blink and the blink supposed 
to be identified between instants �� and ���. 



  
Fig. 4 –a- Translation model. –b-Rotation model. 

The use of the Fisher-Snedecor test aims at comparing if 
two samples belong to the same population. In our case, the 
two samples are the typical blink and the estimated blink. Let 
�  be the EEG signal delimited by instants �� and ���. And let �! 
be the EEG signal which composes the typical blink. We 
denote by "	# and "	$ sizes of �  and �! respectively. The 
experimental variances of �  and �! are, respectively %	#�  and 
%	$�  as shown in equations Eq.2 and Eq.3. �	# and �	$ are 
means of �  and �! respectively. 

%	#� = 1
"	#

'�� (��) − �	#�
�

()#

�*+
 Eq.2 

%	$� = 1
"	$

'��!(��) − �	$�
�

()$

�*+
 

Eq.3 

The two equations lead us to postulate two hypotheses. 
Null Hypothesis (,-) corresponds to the case where %	#� = %	$� . 
The Alternative Hypothesis (,.) represents the case of  
%	#� ≠ %	$� . The statistic of the Fisher-Snedecor test is defined as 
follow: 

0 = %	#�
%	$�

 Eq.4 

Based on a bilateral test with a specific confidence 
threshold 1. The test can rejects the ,- hypothesis with a 2 risk 
if 0 > 1. In the case where 0 ≤ 1, ,- is accepted. 

III.  RESULTS AND DISCUSSION 

In order to test and validate the capabilities of the mapping 
module, we discussed the case study described in Figure 5. In 
this case study, the robot locates tracks and simultaneously 
builds a map of its environment. Such a test can be considered 
as a first step in the SLAM machine learning. In Figure 5 we 
present each of the environments where the robot performs its 
movements and the results obtained in terms of mapping and 
trajectory estimation without going through the wheels 
encoders. Figure 5 shows that the robot is able to map the 
entire test environment and to accurately estimate its positions. 
On another hand, results from Figure 5 present a limitation in 
mapping. This limitation is translated by the robot’s inability to 
accurately map the corners of the environment. This is shown 
on Figure 5 by phenomena “Pheno1” and “Pheno2”. Indeed, 
the principle of the robot navigation consists of two steps. The 
first consists of a 180° scan of the environment with the 
ultrasonic sensor through sampling three points (0°, 90°, 180°). 
Subsequently, the robot moves according to what it has just 
detected based on the algorithm of Figure 2. Thereafter, it 
returns to scanning. The “Pheno2” is justified by the 
servomotor pitch that we have fixed to 90° and also by the 
ultrasonic sensor field which detects a wall on the side despite 
having already passed it. On the other hand, Figure 5 shows an 
approximation between the robot placements (“Pheno3”). This 
is due a purely technical problem related to the battery. Indeed, 
when the battery charge decreases, the motor lacks power and 
this affects its displacement, including the rotation which 
requires more power. 

For the navigation module, the validation process was 
performed based on a mal participant. This validation process 
focused on measuring the performance, in terms of accuracy, 
we used metrics of Sensitivity (Sen) and Specificity (Spe) as 
defined in the following equations: 

%4" = 56
56 + 07 Eq.5 

%�4 = 06
06 + 56 

Eq.6 

where TP represents the number of real detection, done by the 
algorithm, and which are also annotated by a human expert. 
FN, represents the number of detections made by the human 
expert which were not made by the algorithm. Finally, FP 
represents the number of detections made by the algorithm and 
which are not made by the human expert. 

In Tab. 1 we present the results of the chosen evaluation 
process. For the selected representative participant, the 
obtained results represent a sensitivity rate of 86% and a 



  
Fig. 5 –a- Test environment for the mapping module. –b-Results of 

the mapping module in terms of estimating obstacles and the robot 
positions. 

specificity of 69%. The first metric value reflects the precision 
of the proposed algorithm to detect true eye movements. 
However, concerning the second metric value, we explain it by 
the test environment influence on the EEG acquisition system. 
Indeed, since the acquisition system uses a Bluetooth-based 
information transmission, this transmission channel could be 
disturbed by the magnetic waves which could be f an origin of 
the test environment devices. On another hand, we explain the 
second metric value by the influence of the participant’s other 
biological signals on the EEG acquisition system. Indeed, the 
participant’s cheeks and neck movements (muscle movements 
in general) generate electrical potentials which are intercepted 
by the EEG acquisition system. 

 

Tab. 1 Metrics of the eye movement detection algorithm 

 Sen Spe 

Representative 
participant 

86% 69% 

 

 

IV.  CONCLUSION 

In this paper we presented a new architecture of an 
autonomous mobile robot intended for motor disability 
assistance through a future implementation on a wheelchair. 
The designed architecture offers two modules of use. The first 
module allows the intramurals mapping in a typical building. 
Through experimentation, we have demonstrated that it is 
possible to map based on a combination of distances and angles 
measured by an ultrasonic sensor and servomotors. However 
the approach incorporated in this fist module presented some 
limitations, especially in corners mapping, we can overcome 
these limitations by using a filter layer applied on the resulting 
map in order to eliminate unnecessary points. Another 
improvement could be envisaged by using data fusion based on 
Bayesian networks to improve the robot position estimation. 
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