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Université Jean Monnet Saint-Étienne, CNRS, Institut d’Optique Graduate School,

Laboratoire Hubert Curien UMR 5516, F-42023,

SAINT-ETIENNE, France.

carlos.lara@univ-st-etienne.fr

Abstract

Modern SoCs can be protected against software attacks under the
paradigm of secure enclaves, which are built employing technologies like
ARM TrustZone. These protections are meant to enforce access policies
so that the interaction between untrusted/trusted applications and hard-
ware components is limited. However, the possibility of creating covert
channels within the SoC threatens these isolation models. Among other
approaches, it has been shown that it is possible to create covert chan-
nels by exploiting the frequency-modulation technology available in these
platforms. These attacks are devastating, since digital circuits generally
use a single power distribution network. This provides the medium for the
implementation of such covert-channels. Heterogeneous SoCs are particu-
larly vulnerable in this regard, as under these platforms multiple operating
ecosystems coalesce. The problem is exacerbated because these systems
have become more prevalent with each new generation. In this paper,
we explore the implementation of frequency-based covert-channels using
Zynq Ultrascale+ SoCs as case study. Our findings demonstrate that it is
possible to exchange information between Linux-based applications, bare
metal applications, and hardware modules, achieving transmission rates
up to 750 Kbps.

Keywords: Covert channels, Frequency modulation, Multi-cluster, SoC-
FPGAs, Zynq ultrascale+.
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1 Introduction

A covert channel is, as the name suggest, an information pathway which is not
evident to those unaware of the nature of the system. We might be familiar
with a typical example found in classical media: morse code. In that case,
the parties employ blinking patterns, quiet sounds, or discrete movements to
transfer information stealthily. The channel being either the air or the light.
In the context of circuits, the use of blinkers [GZE17] or noise [Gur+17] might
be difficult to exploit. However, within a circuit there are other channels which
can be used to the same end.

A typical system-on-a-chip (SoC) is an heterogeneous array of processing and
memory elements. These components might be implemented within the same die
or in different chips, but they generally share two kinds of wires: supply power
and clocks. These lines are supposed to carry only DC components and square
waves, respectively. But that does not mean that such signals cannot include
additional information. As a practical example we might refer to smart grid
applications [Ma+13]. In the case of clock signals, a modulation of the frequency
of the wave or the duty cycle of the period can be used to encode a message
covertly. For DC components, small power fluctuations can be induced in the
signal to create a pattern which would encode the message. These strategies
can be leveraged by different elements of the SoC to create a covert channel and
transfer information, even if they are not supposed to communicate with each
other.

The sender of the message is potentially a spy process which somehow man-
ages to retrieve critical information from its surroundings (i.e. details from
applications running in the same processor, activation signals, and even mem-
ory contents under certain scenarios). The receiver is then another application
or circuit which can take advantage of this information to perform some pro-
cessing or a different kind of attack. The entity which the channel aims to be
hidden from is usually the owner of the platform; who would restrict the in-
teraction between suspicious applications and circuits. As to where the sender
and receiver might come from, some prime suspects include: kernel modules,
drivers, third-party accelerators, hardware trojans, libraries, and binaries. The
overseer would be the designer of the architecture, in charge of putting every-
thing together. As the complexity of circuits increases, these scenarios result
much more feasible since the use of foreign components becomes a necessity for
speeding-up the design process.

Previous works on covert channels on SoCs [BB18; GER19; Gna+21; Mie+18]
have focused on earlier technologies for these platforms. However, the design
of newer devices has shifted towards an heterogeneous approach. Given the
slowdown in Moore’s Law [Eec17] it became evident that monolithic computing
nucleus could no longer bear the burden of processing. Since then, we have
seen the emergence of multi-core architectures. At the same time, as proposed
by Amdahl’s Law [HM08], optimizing the performance of the platform becomes
more complex as the number of processors in the cluster grows. For this rea-
son, the latest generations of SoCs now feature multiple processing clusters of
different capabilities. Modern SoCs feature low-power processors, application
processors, hardware accelerators, and even reconfigurable nucleus, which make
it possible to integrate a diverse group of operating systems and applications in
the same chip.
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The goal of this work is to explore different approaches for creating frequency-
based covert channels in heterogeneous SoCs. We study the interaction between
different processor clusters of these platforms leveraging the reconfigurable fab-
ric as the shared resource for the implementation of covert channels. These
interactions are achieved by modifying some of the divider values with the in-
tent of producing a change in the clock network. This clock tree is used as
the channel for the covert transmission of data. Our main contributions can be
summarized as follows:

1. We propose, for the first time, the creation of covert channels between
different processor clusters of the SoC

2. We evaluate the performance of these attacks using a clear and well un-
derstood methodology

3. We demonstrate, also for the first time, the feasibility of implementing
frequency-based covert-channels in the Zynq Ultrascale+ family of devices

The rest of the paper is structured as follows. In Section 2 we describe
our experiments and methodology to evaluate the different covert channels in
the Zynq Ultrascale+ SoCs. In Section 3 we provide our conclusions and final
remarks.

1.1 Threat model

In [BB18], the authors used frequency modulation to create covert channels in
the Zynq-7000 SoC. That work demonstrated that these architectures are vul-
nerable to these attacks even when the ARM TrustZone protections are enabled.
In their case, a total of four covert channels were implemented, showing that
the DVFS mechanisms available in SoCs could be used to bypass some ARM
TrustZone protections. Other works, like [GER19] have demonstrated that it
is possible to employ the electromagnetic emanation within the chip to imple-
ment covert channels. The authors exploited the cross-talk between long-wires
to implement covert channels with transmission rates up to 6 Kbps in different
FPGAs. More formally, voltage-based covert channel attacks were reported by
[Gna+21], also for the Zynq-7000 SoCs. In that work, the authors managed to
employ a power-waster circuit to generate fluctuations in the power supply of
the circuit. Then, a sensor implemented in a different part of the reconfigurable
fabric was used to retrieve the message. That work demonstrated that it was
possible to implement power-based covert channels with transmission rates up
to 8 Mbps.

The Zynq Ultrascale+ SoCs allow to use the RPU and the APU indepen-
dently. The real time cores generally would run a real-time operating system like
RTOS [Itu+15] or simply run standalone applications. The application cores,
on the other hand, are complex and their full potential can usually only be
achieved through the use of a kernel like Linux. Our work employs this model,
which is based on reasonable assumptions about the use cases of the Ultrascale+
technology.

These systems also include a power management unit which is in charge of
performing the monitoring and configuration of the Power Distribution Net-
work. It includes anti-tampering characteristics which increase the difficulty of
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modulating the power supply of the chip directly. That is, we might be able
to induce a power fluctuation, but there is a chance that the SoC will go into
lock-down. On the other hand, modifying the frequency of different clocks used
in the architecture can be achieved through simpler mechanisms. By design a
modification of the system frequency will be accompanied with a corresponding
voltage scaling. Thus, the proposed covert channels target the frequency of the
SoC but also affect its voltage.

In Fig. 1 we illustrate part of the clock tree in the Zynq Ultrascale+ SoCs.
Four main reference clocks are available to source the five main PLLs of the ar-
chitecture. To generate the output of these oscillators, the reference sources are
multiplied by a small constant. Subsequently, the output of the PLLs is divided
by up to two six-bit constants to produce multiple clocks for different parts of
the architecture. From the same figure, it can be seen how there are three main
power domains in these chips. The Low Power Domain will source the RPU,
the peripherals, the on-chip memory, and one of the interconnect switches. The
Full Power Domain will supply the APU, the memory management unit, the
memory controller, and the central interconnect switch. And the PL Power
Domain will supply the reconfigurable fabric. For each the low and full power
domains, the five main PLLs can be used to generate clocks after applying one
or two divider values. And for the FPGA, only three of the PLLs can be used
to generate the four clocks available to this component (which come from the
processing system, as it is also possible to use external clocks). Hence, modi-
fying most of the clocks in the platform is just a matter of editing the value of
the main multipliers or any of the dividers.
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Figure 1: The clock tree and power domains of a Zynq Ultrascale+ SoC

2 Materials and Methods

Our work assumes that the spy process can gain access to phase locked loops
(PLL) which can modify the oscillators in the SoC. We propose this assumption
since the target scope of our work includes the Zynq Ultrascale+ SoCs which
feature these components. Next, the receiver must be able to sample the channel
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to retrieve the message. This is achieved with the use of a sensor module which
can be implemented in the reconfigurable fabric. We must note that our work
does not investigate a concrete scenario for these attacks to take place, but
rather we intend to demonstrate the vulnerabilities present in this technology
in order to mitigate such threats.

This work uses the TE0802 SoC (xczu2cg-sbva484-1-e) as target system.
Compared to other Ultrascale+ SoCs, this board offers a reduced set of features.
However, it can be used to demonstrate a wide range of vulnerabilities in this
family of devices. We employ the AMD-Xilinx 2021.1 toolchain to design and
implement the hardware architecture, as well as to develop and deploy the
applications. The library xtime l.h was used to obtain our time measurements.

2.1 Target platform

The Zynq Ultrascale+ SoC is an interesting case study for heterogeneous SoCs.
These chips feature a main processing unit (APU), powered by an array of ARM
Cortex-A53 cores. The secondary processing system (RPU) includes an array of
ARM Cortex-R5F cores. Each one of these processors has independent instruc-
tion and data caches, and up to L2 cache in the case of the APU. The main
memory of the SoC is an external DDR unit, driven by a silicon-based on-chip
memory controller. There is also a smaller on-chip memory which can be shared
by the different cores, and a memory management unit which performs the nec-
essary assignments. What sets these architectures apart from other SoCs is the
availability of an FPGA: an array of reconfigurable elements and silicon accel-
erators. The interconnection between processors and accelerators follows the
AMBA-AXI specification through two main switches. The reconfigurable fabric
of the SoC offers the possibility of implementing a wide range of customized
accelerators.

In Fig. 1, in blue, we illustrate part of the clock tree in the Zynq Ultrascale+
SoC-FPGAs. A main reference clock (PSS REF CLK) is used to source the
five main PLLs of the architecture (RPLL, IOPLL, APLL, VPLL, DPLL). To
generate the PLL output, the reference clocks are multiplied by a constant. The
resulting oscillators are then divided by one or two six-bit constants to produce
specific clock domains for the different parts of the architecture.

From Fig. 1 it can also be seen how there are three main power domains
in these Ultrascale+ SoCs. The Low Power Domain will source the RPU, the
peripherals, the on-chip memory, and one of the interconnect switches. The
Full Power Domain will supply the APU, the memory management unit, the
memory controller, and the central interconnect switch. The PL Power Domain
will supply the reconfigurable fabric. The goal for this separation of power
domains is to improve the energy footprint of the system by allowing to shut
down complete areas of the SoC when these are not required.

For the low and full power domains, the five main PLLs can be used to gen-
erate clocks. For the FPGA, only three of the PLLs (RPLL, IOPLL, DPLL) can
be used to generate the four clocks available to the fabric (from the processing
system, since it is also possible to use external clocks.)

Ultrascale+ SoCs allow to use the RPU and the APU independently. The
cores in the RPU would normally run a real-time operating system like RTOS
[Itu+15] or simply run standalone applications. The cores in the APU, on
the other hand, are more complex and their full potential can best be drawn
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through the use of a kernel like Linux. In this work, we presume that both
clusters can be operated independently. We implement bare metal applications
in the RPU and linux-based applications in the APU. These chips also feature
a power management unit which is in charge of performing the monitoring and
configuration of the power distribution network. It features anti-tampering
characteristics which increase the difficulty of modulating the power supply of
the chip.

2.2 Covert transmission of data

The proposed covert channels exploit the potential of the RPU and the APU for
modifying the oscillators that source the FPGA. The frequency of the different
clocks in Ultrascale+ SoCs can be modified by editing its multiplier or divider
values. The multiplier register will affect the PLL output, and in turn modify
the frequency of all the SoC components which rely on that given oscillator. In
contrast, the divider registers are specific for a given clock and modifying them
will only modify the frequency of a particular clock signal. There are clocks
which use one divider and there are clocks which use two. All the dividers are
stored as a six-bit section of a 32-bit register. To modify the frequency of an
oscillators it is then necessary to edit the contents of these control registers.

At low level, like in bare-metal applications, the control registers of the SoC
can be edited through direct access operations. For example using the xil io

library. However, to edit one of these control registers it is necessary to edit
multiple security and configuration registers so that the frequency change is
enacted. Furthermore, the application performing the operation must have the
appropriate exception level.

In the presence of a kernel this task can be simplified with the help of drivers
which allow to request the modification of specific clocks. For example, the
processor clocks (by using the cpufreq driver of Linux) or the FPGA clocks (by
using the fclk drivers of Xilinx). This scenario is more favorable for attackers
since the complexity of the kernel allows to hide malicious applications more
easily.

The SoC platforms utilized are by default protected with the ARM Trust-
Zone firmware. The fabric is protected by an extension of this technology which
allows to declare an IP as trusted. However, neither of these protections prevent
the use of the clock drivers (cpufreq, fclk) so long as the application has root
access.

2.3 Internal sensors

A delay sensor is a circuit created with digital components which can measure
the variation in the propagation delay of a digital signal. These fluctuations are
generated from variations in the power dissipation, electromagnetic coupling,
and thermal fluctuations of the circuit [ZH12]. For this reason, such sensors
have been employed to perform internal monitoring of the chip [ZS18; Gra+20].
The main types of such sensors are based in TDCs and ROs. The former are
generally more accurate and provide greater resolution in the sampling, but
must be calibrated precisely and placed directly in the platform. In contrast,
the RO-based sensors (RO-S) do not require any fine-grained implementation
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directives and provide sufficient information when enough samples are available.
Our work focuses on the latter.

The main components of a RO-S are shown in Fig. 2. In this case, the
ring of inverters provides a consistent oscillatory wave whose period fluctuates
according to the nominal operation of the circuit. This signal is then used to
source a binary counter which is subsequently sampled by an external clock to
produce a measurement. The number of counts retrieved in a sampling period is
thus correlated to the frequency of the ring, and in turn to the operation of the
circuit. In a conventional binary counter we must consider the problem of carry
propagation, which can drastically affect the critical path of the design. This
problem, together with the need to reset the counter after each measurement,
causes that the use of conventional counter designs derives into sensors with
very low sampling rates. Both of these limitations were addressed by [Gra+19],
who proposed to employ a carry-less ring counter which produces a Johnson
encoding. This updated design is used in our work. However, we are more
interested in the sampling clock of the sensor. By modifying this signal we can
obtain an offset in the measurements due to the periodicity of the ring-counter.

As main sensing module we use the RO-S from [Gra+19]. This design fea-
tures an acquisition rate over 350 Msps thanks to the highly optimized counter.
The output of the sensors can be quantified with just ten bits, using the aver-
age of multiple sensors to mitigate the quantization error. The output of this
module can be read directly from the FPGA, or retrieved from either the RPU
or the APU through an AXI channel.

2.4 Physical characteristics of the channel

To understand the limits of the proposed covert channels we first characterized
the behavior of a PLL in the target platform. Using a digital oscilloscope we
sampled the time-response of these components when requesting a change in
the output frequency. As reference, we generated a digital trigger through the
processor’s GPIOs. We then measured the width of these pulses. We also
captured the activation of the MSB bit in the output of the RO-S (See Fig. 2).
In Fig. 3 we illustrate our observations for this experiment.

Our findings suggest that the minimum response time for a frequency change
is approximately 600ns. That is the time elapsed from the moment one of
the RPU cores modifies the register until the output of the sensor is updated
(tR5FtoFPGA). Therefore, assuming that we could transfer one bit per transition,
the maximum bandwidth for the proposed channels would be 1.6 Mbps. Note
that this is the theoretical limit, without considering the necessary delay to
achieve a consistent transmission (low-error rate).

We observed that the response time to transition from a lower to a greater
frequency differs from the time required to perform the opposite change. How-
ever, explaining this behavior falls out of the scope of our work; we simply
take the maximum of both measurements to determine the minimal maximum-
bandwidth. As we will demonstrate latter in the paper, this asymmetry does
not weight on the feasibility of the proposed attacks.

Next, we intended to characterize the RO-S which would be used in our ex-
periments. For this, we implemented a matrix of 64 RO-S and sampled it using
different frequencies. Results for this experiment are provided in Fig. 4. At
first glance it was possible to clearly differentiate between the multiple sample
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Figure 2: The architecture of the RO-S used in our work. This module is
composed of three main groups of components. A group of sensors that produce
a digital output in function of the operation of the circuit. An encoder for each
sensor, which quantify the output of the counters. And an adder, whom merges
all the encoders’ outputs to mitigate the quantization error. There are also
three main elements within each sensor: a ring oscillator (in yellow), a Johnson
ring-counter (in red), and a register (in cyan). The acquisition rate is defined
with an external sampling clock.

windows. However, for some cases, this separation would not be so apparent for
a computer. The problem being that multiple sample values would overlap for
different sampling frequencies. The outliers can be appreciated in the box dia-
grams included in Fig. 4. This kind of analysis was useful to identify the most
adequate frequencies for implementing the proposed attacks. We selected fre-
quencies that would simplify the implementation of the covert channels without
requiring any filtering (100 MHz, 150 MHz, 300 MHz).

2.5 Covert channels between the RPU and the FPGA

The first class of covert channels we studied were those where an application
running in the RPU (Cortex-R5F@533 MHz) acted as the transmitter, and a
circuit implemented in the FPGA was the receiver. This scenario is illustrated
in Fig. 5. Such attacks might be found in systems which use third party
applications or accelerators. To perform the frequency modulation, the RPU-
based application simply needed to access the CRL APB module and overwrite
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Figure 3: The time-response of a PLL in the Zynq Ultrascale+

the six-bit dividers in the PLX REF CTRL registers (here X represents one of the
four FPGA clocks). In our experimentation, these tasks were performed using
the xil io.h library.

Under this attack model, the bandwidth will be limited by the delay for
the application to modify the target oscillator (t′R5FtoFPGA). This delay is
composed of the time required for a Cortex-R5F processor to modify a CRL APB

register (tR5F ), plus the transition delay of the PLL (tPLL), and the time for
the RO-S to update its output (tRO−S). This model is given in Equation 1.

t′R5FtoFPGA = tR5F + tPLL + tRO−S (1)

We went even further and decided to retrieve the output of the sensor from
the processing system. This experiment sought to minimize t′R5FtoFPGA while
maintaining an error rate of zero over the transmission of 12KB of data. For
this, we used the modulation strategy in Alg. 1. This approach relies on three
different frequencies: two that will represent ones and zeros and a third one that
will act as a separator. By using three symbols it is possible to minimize the
number of samples per window, as long as the different windows remain clearly
differentiable. The results for this experiment are illustrated in Figure 6.

The samples shown in Fig. 6 were retrieved from the RPU by reading
the output of the RO-S through an AXI link. Experimentally, we determined
that t′R5FtoFPGA ≈ 1.83 µs. Whereas the FPGA could sample the output of
the sensors with a rate of 333 MSps (tFPGAtoFPGA = 3 ns), the RPU could
only read the same output with an additional delay (tFPGAtoR5F ). Our ex-
periments found that tFPGAtoR5F = 498 ns. It follows that tR5FtoR5F =
t′R5FtoFPGA+ tFPGAtoR5F = 2.33 µs. This is the latency for a Cortex-R5F core
to communicate with the other Cortex-R5F through a covert channel which uses
the FPGA as shared resource. The corresponding bandwidths are calculated in
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Figure 4: Characterizing the output of the RO-S as a function of the sampling
frequency. The selected frequencies range from 375 MHz (which is the result of
dividing the output of the IOPLL at 1.5 GHz by four) to 75 MHz (the result of
dividing the same oscillator by 20). Each observation consists of 40,000 samples.

Equation 2.

BR5FtoFPGA =
1

2t′R5FtoFPGA

=
1

3.66 µs
≈ 273 Kbps

BFPGAtoR5F =
1

2tFPGAtoR5F
=

1

995 ns
≈ 1 Mbps

BR5FtoR5F =
1

2(t′R5FtoFPGA + tFPGAtoR5F )
≈ 215 Kbps

(2)
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Figure 6: The transmission of a stream of bits over a covert channel from the
RPU to the FPGA. The frequency-modulation is performed according to Alg.
1, with f1 = 100 MHz, f2 = 300 MHz and f3 = 150 MHz.

2.6 Covert channels between the APU and the FPGA

The second type of covert channels under evaluation were those that origi-
nated from an application executed in the APU (Xilinx’ Linux on Cortex-
A53@1.3GHz). As in the previous attack, our intended receiver was the RO-S
in the FPGA. This scenario is depicted in Fig. 7.

A regular Linux kernel, if configured properly, will feature the cpufreq driver
which allows to modify the frequency of the underlying system. This might be
leveraged to implement a covert channel between different cores controlled by
the same operating system. In the case of the Xilinx’ distribution of Linux,
the kernel also features a set of APIs (/sys/devices) which allow to modify
the frequency of the FPGA clocks. These two mechanisms use configuration
files which can be managed from the application space. Thus, performing the
modification of some oscillator is a matter of locating the adequate file, opening
it, modifying its contents, and closing it again (the file must be closed for the
change to be detected). Evidently, this is much more time intensive than writing
a register. Therefore, for these attacks the bandwidth of the covert channel will
be limited by the delay for the application (operating system) to modify the
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Algorithm 1 A frequency-modulation strategy for low-width windows

Require: f1, f2, f3: A given set of frequencies.
for byte in message do
for bit in byte do
if bit then
fclk ← f1

else
fclk ← f2

end if
fclk ← f3

end for
end for
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Figure 7: The information flow through a covert channel between the APU
(Sender) and the FPGA (Receiver)

oscillator (tOStoFPGA). This model is given in Equation 3.

tOStoFPGA = tOS + tPLL + tRO−S (3)

In this case, since we expected tOStoFPGA to be much greater than tR5FtoFPGA

we used the frequency modulation strategy in Alg. 2. Unlike the previous model,
when there is a large number of samples it is possible to differentiate a trans-
mitted zero from a one by adding a small delay (δ) in the transmission. If a
divider value with minimum delay (tbit) is used to separate the windows, then
only two frequency values are required. The advantage of the new modulation
strategy is that only three windows are used to encode two bits, rather than
four. This results critical when the windows contain many samples. The results
for an experiment with this type of channels are presented in Fig. 8.

For this experiment we saw it necessary to add a delay in the acquisition
(ζ = 10 µs) to reduce the number of samples collected. The data was retrieved
using the RPU with a sampling period t′FPGAtoR5F = tFPGAtoR5F + ζ (it was
experimentally corroborated that t′FPGAtoR5F = 11.05 µs). We observed that
tbit = 33 × t′FPGAtoR5F = 365 µs and tbit + δ = 39 × t′FPGAtoR5F = 431 µs, so
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tbit tbit δ tbit

tbittbit

Figure 8: The transmission of a stream of bits over a covert channel from
the Linux kernel to the FPGA. In this channel the modulation is performed
according to Alg. 2, with f1 = 150 MHz, f2 = 300 MHz and δ ≈ 66µs.

Algorithm 2 A frequency-modulation strategy for large sample-windows

Require: f1, f2: A given set of frequencies.
for byte in message do
for bit in byte do
if bit then
fclk ← f1
wait(δ)

else
fclk ← f1

end if
fclk ← f2

end for
end for

δ ≈ 66 µs (in practice δ was implemented as usleep(1)) and tOStoR5F = tbit.
It follows that tOStoFPGA = tbit − tFPGAtoR5F ≈ 354 µs. As suspected, the
transmission delay for this covert channel was about 200 times greater than
the delay between the RPU and the PL (tR5FtoFPGA). The corresponding
bandwidths are given in Equation 4.

BOStoR5F =
1

2tbit + 0.5δ
=

1

795.94 µs
≈ 1.31 Kbps

BOStoFPGA =
1

2tbit + 0.5δ − tFPGAtoR5F
≈ 1.33 Kbps

(4)

As it can be observed, the bandwidth for these covert channels is much lower
than in the previous cases. However, modifying the clock frequency from the
kernel space has two evident advantages: arguably it would easier to introduce
malicious applications in a piece of software as large as Linux and the attacker
does not need any specific knowledge of the architecture under attack. Which
increases the range of potential targets.

2.7 Covert channels between the APU and the RPU

The experiments in the previous Subsection assumed that the transmitter in
the Linux-enabled Cortex-A53 would use the /sys/devices APIs to perform
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the frequency modulation of the FPGA clocks. However, this is not necessary
if the application has access to the physical registers. To achieve this goal we
can map the kernel memory through the devmem utility, then a register value
can be read and written as any pointer from a C-language application.

Revisiting the case where a transmitter in the Cortex-A53 intends to send
data covertly to an application in the Cortex-R5F (illustrated in Fig. 9), we
now expected the number of samples per window to be much lower. Thus we
continued to use the encoding from Alg. 1. Again, the APU transmitter would
perform the frequency modulation but now through direct access to the PLL
dividers. Then the RO-S in the FPGA would detect the frequency change, and
its output would be read from the RPU. The total delay for the revisited covert
channel from the APU to the RPU is modeled in Equation 5.

APU
A530 A531

RPU
R50 R51

DDR4
DDRC

L2 CacheSCU

I/D Cache

Low Power Switch

Power Management Unit

I/D Cache

MMU

Central Switch

FPGA

RO

TDC DMA

PLL MMCM

PWC
Peripherals

GE

SPI CAN

I2C UART

USB

Low Power Domain Full Power Domain PL Power Domain

PSS_REF_CLK

RPLL

IOPLL

APLL

VPLL

DPLL

DIV DIV DIV DIV DIV DIV DIV DIV DIV DIV

33.33 MHz

DIVDIVDIVDIV

Figure 9: The information flow through a covert channel between the APU
(Sender) and the RPU (Receiver) using the FPGA in the middle

tA53toR5F = tA53 + tPLL + tRO−S + tFPGAtoR5F (5)

Experimentally, we determined that it was possible to achieve a zero-error
transmission over 30 KB of data with a small delay (η). In this case, the sender
required to wait η after editing the register value. On the other hand, the
receiver could continuously read the RO-S output.

It results difficult to accurately measure tA53toFPGA from the kernel space,
however, using the data in Fig. 10a we can estimate that tA53toR5F ≈ 3 ×
tFPGAtoR5F . With a conservative guess, we can then calculate the bandwidth
for this cover channel as provided in Equation 6.

BA53toR5F =
1

6tFPGAtoR5F
=

1

2.99 µs
≈ 335 Kbps (6)

This experiment contributed to demonstrate that both the Cortex-R5F and
the Cortex-A53 cores can read and edit the registers in the CRL APB module.
Which means that we could simply create a register-to-register channel without
the need to wait for the activation of the PLL. The results for this experiment
are shown in Fig. 10b. With this approach the accuracy in the transmission
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(a) using the FPGA as the shared resource
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(b) using the registers of the CRL APB module as the shared resource

Figure 10: The transmission of a stream of bits over a covert channel from the
APU (Cortex-A53) to the RPU (Cortex-R5F). In this case the modulation is
performed according to Alg. 1, with f1 = 100 MHz, f2 = 300 MHz and f3 = 150
MHz.

increases considerably, to the point it is possible to use more complex modulation
strategies, for example to increase the difficulty of detection, like the one in Alg.
3.

Formally, the difference in the register-register covert channel is that the
Cortex-R5F application didn’t have to retrieve the data from the FPGA (a
difference of ∼ 90 ns). This is reflected in the delay model of Equation 7.
Nonetheless, it remained difficult to estimate tA53 accurately.

t′A53toR5F = tA53 + tPLL + tRO−S + tR5F (7)

Then, from Fig. 10b, since the sampling period can be considered equiv-
alent to tR5F and there are approximately five samples per bit transmitted,
t′A53toR5F ≈ 5× tR5F . The updated bandwidth is given in Equation 8.

B′
A53toR5F =

1

5tR5F
=

1

2.04 µs
≈ 490 Kbps (8)

Finally, we revisited the case where the transmitter would be the application
in the Cortex-R5F and the receiver would be an application in a Linux-enabled
Cortex-A53. In this case both applications could operate without any additional
delay. We could measure the transmission delay for the channel, and by using
the average number of samples per window estimate the delay for the Cortex-
A53 to access a register in the CRL APBmodule. Figure 11 illustrates some results
for this experiment. From this evaluation we estimated that tA53 = 243 ns, and
by consequence B′

R5FtoA53 ≈ 750 Kbps. The limiting factor being tR5F .
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Algorithm 3 A more complex frequency-modulation strategy

Require: f1, f2, f3: A given set of frequencies.
for byte in message do
for bit in byte do
if bit then
fclk ← f1
fclk ← f2
wait(δ)

else
fclk ← f2
fclk ← f1

end if
fclk ← f3

end for
end for
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Figure 11: The transmission of a stream of bits over a covert channel from the
Cortex-R5F to the Cortex-A53 using the registers of the CRL APB module as the
shared resource. As in the previous experiment, we do not sample the output
of the RO-S but the value of a register. For this channel the modulation is also
performed according to Alg. 1, with f1 = 100 MHz, f2 = 300 MHz and f3 = 150
MHz.

2.8 Summary

In this Section we have described multiple covert channels which can be im-
plemented between different clusters of the SoC and the reconfigurable fabric.
For each experiment we have sought to maintain zero transmission errors and
to estimate the minimum delay. While the performance results vary consider-
able between some of the attacks, it is necessary to remember that they have
different use cases and advantages. In Table 1 we summarize our findings.

We have also retrieved results for selected works in the literature, which have
implemented covert channels in SoCs and FPGAs. A direct comparison should
be avoided since the implementation technologies differ. It is important to note
that the qualitative characteristics of the channel should outweigh quantitative
criteria such as the bandwidth.

In [BB18], the authors used frequency modulation to create covert channels
in the Zynq-7000 SoC. That work demonstrated that these architectures are vul-
nerable to these attacks even when the ARM TrustZone protections are enabled.
In their case, a total of four covert channels were implemented, showing that
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Ref. Sender Receiver Shared resource Bandwidth (Kbps)
[BB18] Cortex-A9 Spectrum analyzer PDN 333
[BB18] Cortex-A9 Cortex-A9 PLL 60
[BB18] Cortex-A9 FPGA PLL 125,000
[BB18] FPGA Cortex-A9 PLL -

[GER19] FPGA FPGA Long wires 6
[Gna+21] FPGA FPGA PDN 8,000
This work Cortex-R5F FPGA PLL 273
This work Cortex-R5F Cortex-R5F FPGA 215
This work Cortex-A53 (API) FPGA PLL 1.33
This work Cortex-A53 (API) Cortex-R5F FPGA 1.31
This work Cortex-A53 Cortex-R5F FPGA 335
This work Cortex-A53 Cortex-R5F Register 490
This work Cortex-R5F Cortex-A53 Register 750

Table 1: Summary of the proposed covert channels

the DVFS mechanisms available in SoCs could be used to bypass some ARM
TrustZone protections. Other works, like [GER19] have demonstrated that it
is possible to employ the electromagnetic emanation within the chip to imple-
ment covert channels. The authors exploited the cross-talk between long-wires
to implement covert channels with transmission rates up to 6 Kbps in different
FPGAs. More formally, voltage-based covert channel attacks were reported by
[Gna+21], also for the Zynq-7000 SoCs. In that work, the authors managed to
employ a power-waster circuit to generate fluctuations in the power supply of
the circuit. Then, a sensor implemented in a different part of the reconfigurable
fabric was used to retrieve the message. That work demonstrated that it was
possible to implement power-based covert channels with transmission rates up
to 8 Mbps.

3 Final remarks

In this work, we have explored different alternatives for implementing covert
channels in heterogeneous SoCs. Through experimentation we have demon-
strated that it is possible to create covert channels between different components
of these platforms. Using the Zynq Ultrascale+ SoCs as case study, we managed
to create covert channels which achieved different transmission rates, going from
a few Kbps to 750 Kbps. At the same time, we modeled the transmission delays
and transmission bandwidth of the different covert channels adjusting the data
with our empirical observations. These findings can be used to design more
effective countermeasures for potential attacks based on covert channels.

As an additional contribution we characterized the response times of the
PLLs in the Zynq Ultrascale+ SoCs. We demonstrated how these circuits have
an asymmetric behavior as a function of the requested transition. For an as-
cending change from 100 MHz to 150 MHz we observed a transition delay of
600ns; the equivalent descending change showed a slightly shorter transition
delay.

We can conclude that, from an efficiency point of view, writing and reading
the registers directly is the best option to implement covert channel communi-
cations. However, this assumes that the attacker has a) the necessary access
level to read/write the control registers of the SoC and b) precise knowledge of
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the architecture under attack. These assumptions limit the application of these
kind of covert channels. On the other hand, performing frequency modulation
from the kernel space is not so efficient, but it allows to mitigate these limita-
tions. For the point a), it is much easier to sneak a malicious application into a
large component like an operating system, and for the point b), the kernel will
make sure that the drivers and APIs are pointing to the appropriate control
registers regardless of the platform.

When comparing our results against the state of the art it is possible to
reach mixed conclusions. However, we note that it is difficult to come up with
a fair metric for comparison. First, because the implementation technologies
and underlying phenomena are fundamentally different. And second, because
the main goal of a covert channel is not to transfer a lot of data, but to do it
stealthily. Finally, our work is not incremental to the related research; they are
complementary. The vulnerabilities identified in this paper are architectural in
nature, thus it would be possible to combine our work with other circuit-level
principles for covert transmissions.

As future work, we intend to explore the impact of the modulation of the
sampling frequency in the fine-output of the RO-S, which was not used in this
work. We also intend to explore the possibility of creating the same covert chan-
nels when more restrictive control policies are implemented in the SoC, for ex-
ample under trusted execution environments and power management software.
Lastly, it might also be interesting to evaluate the application of the proposed
covert channels under different SoCs which might not necessarily include an
FPGA. This could be achieved through the use of hardware components which
can be used to implement delay sensors [Gra+21].
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