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In this paper, we revisit Dobrushin's uniqueness theorem for Gibbs measures of lattice systems of interacting particles at thermal equilibrium. In a nutshell, Dobrushin's uniqueness theorem provides a practical way to derive sufficient conditions on the inverse-temperature and model parameters assuring uniqueness of Gibbs measures by reducing the uniqueness problem to a suitable estimate of the Wasserstein distance between pairs of 1-point Gibbs measures with different boundary conditions. After proving a general result of completeness for the Wasserstein distance, we reformulate Dobrushin's uniqueness theorem in a convenient form for lattice systems of interacting particles described by Hamiltonians that are not necessarily translation-invariant and with a general complete metric space as single-spin space. Subsequently, we give a series of applications. After proving a uniqueness result at high-temperature that we extend to the Ising and Potts models, we focus on classical lattice systems for which the local Gibbs measures are convex perturbations of Gaussian measures. We show that uniqueness holds at all temperatures by constructing suitable couplings with the 1-point Gibbs measures as marginals. The decay of correlation functions is also discussed.

A core problem of classical and quantum equilibrium statistical mechanics is the description of equilibrium thermodynamic properties of large systems of interacting particles, see, e.g., [START_REF] Wightman | Convexity and the notion of equilibrium state in thermodynamics and statistical mechanics[END_REF]. Literature on mathematical characterisations of the equilibrium thermodynamics of interacting particle systems is extensive: for an account of rigorous methods, see, e.g., [START_REF] Münster | Statistical thermodynamics[END_REF][START_REF] Ruelle | Statistical Mechanics: Rigorous Results[END_REF][START_REF] Israel | Convexity in the theory of lattice gases[END_REF][START_REF] Bratelli | Operator Algebras and Quantum Statistical Mechanics 2[END_REF][START_REF] Simon | The statistical mechanics of lattice gases[END_REF][START_REF] Ruelle | Thermodynamic formalism: The mathematical structures of equilibrium statistical mechanics[END_REF].

A standard way to describe the equilibrium thermodynamics of a large system of interacting particles consists in constructing the equilibrium Gibbs states of the associated infinite system at a given 'temperature' β -1 > 0 and given values of the system parameters. For systems undergoing structural phase transitions, it is expected that the set of equilibrium Gibbs states consists of more than one element corresponding to the different phases. Below, we give a brief account of some rigorous constructions of equilibrium Gibbs states in classical and quantum lattice systems, with an emphasis on lattice systems with unbounded single-spin spaces (also called state spaces).

Equilibrium Gibbs states of classical lattice systems of interacting particles may be represented by Gibbs measures, also called limit Gibbs distributions or DLR (Dobrushin-Landford-Ruelle) measures. A Gibbs measure is the distribution of a random field on the infinite lattice admitting a prescribed family of conditional distributions, see [START_REF] Dobrushin | Existence of a phase transition in two-and three-dimensional Ising models[END_REF][START_REF] Minlos | Limiting Gibbs' distribution[END_REF][START_REF] Minlos | Regularity of the Gibbs limit distribution[END_REF][START_REF] Dobrushin | The description of a random field by means of conditional probabilities and conditions of its regularity[END_REF][START_REF] Dobrushin | Gibbsian random fields for lattice systems with pairwise interaction[END_REF][START_REF] Dobrushin | The problem of uniqueness of a Gibbsian random field and the problem of phase transition[END_REF][START_REF] Dobrushin | Gibbsian random fields. The general case[END_REF][START_REF] Dobrushin | Prescribing a system of random variables by conditional distributions[END_REF][START_REF] Lanford | Observables at infinity and states with short-range correlations in statistical mechanics[END_REF] for pioneering works. Local Gibbs measures may describe local equilibrium Gibbs states of systems of interacting particles in finite domains (the particle interactions are not limited to the interior of these domains) at thermal equilibrium with their exteriors where the configurations of particles are held fixed. The latter play the role of boundary conditions and, as such, determine conditions for the distributions. Gibbs measures are then defined by means of the family of local Gibbs measures as solutions of the equilibrium DLR equation. This approach, called DLR approach, is standard, see, e.g., [START_REF] Georgii | Gibbs Measures and Phase Transitions[END_REF] and references therein. Note that this approach allows one to define Gibbs states of infinite lattice systems without resorting to any limiting procedures.

Local equilibrium Gibbs states of finite-volume quantum systems are traditionally defined as positive normalised linear functionals on the C*-algebra of bounded operators on a Hilbert space, satisfying the KMS (Kubo-Martin-Schwinger) boundary conditions relative to the time-evolution automorphisms describing the dynamics of the systems, see, e.g., [START_REF] Hugenholtz | C*-Algebras and Statistical Mechanics[END_REF] and [START_REF] Bratelli | Operator Algebras and Quantum Statistical Mechanics 2[END_REF]Sec. 5.3]. Accordingly, equilibrium Gibbs states are constructed as limiting states on the C*-algebra of quasi-local observables satisfying the KMS conditions. They are the so-called KMS states. Within this limiting procedure, the formulation of the KMS conditions relative to the time-evolution automorphisms is problematic when considering some quantum lattice systems described by unbounded operators, see, e.g., [START_REF] Park | A characterization of Gibbs states of lattice boson systems[END_REF][START_REF] Park | Quantum statistical mechanics of unbounded continuous spin systems[END_REF]. To construct equilibrium Gibbs states of quantum lattice systems of interacting particles, an alternative to the above algebraic approach is the so-called Euclidean approach, see [START_REF] Høegh-Krohn | Relativistic quantum statistical mechanics in two-dimensional space-time[END_REF][START_REF] Albeverio | Homogeneous random fields and statistical mechanics[END_REF][START_REF] Albeverio | Euclidean Gibbs states of quantum lattice systems[END_REF]. The Euclidean approach relies on a one-to-one correspondence between local Gibbs states, as functionals on C*-algebras of observables, and local Gibbs measures, as Feynman-Kac measures on β-periodic path spaces. To connect both, the Matsubara functions play a key role as they uniquely determine the local Gibbs states. For further details, see, e.g., [START_REF] Albeverio | Euclidean Gibbs measures on loop lattices: existence and a priori estimates[END_REF]Sec. 6] and [START_REF] Kozitsky | Euclidean Gibbs measures of quantum anharmonic oscillators[END_REF]Sec. 2.5]. As such, equilibrium Gibbs states of quantum lattice systems may be represented, analogously to classical lattice systems, by Gibbs measures defined through the DLR approach but with local Gibbs measures living on infinite-dimensional path spaces. They are often called Euclidean Gibbs measures, see, e.g., [START_REF] Albeverio | Euclidean Gibbs states of quantum lattice systems[END_REF].

In the study of Gibbs measures in lattice systems with unbounded single-spin spaces, two main mathematical problems arise: existence and uniqueness. For the case of compact single-spin spaces the existence problem is simpler, see e.g., [START_REF] Dobrushin | The description of a random field by means of conditional probabilities and conditions of its regularity[END_REF][START_REF] Georgii | Gibbs Measures and Phase Transitions[END_REF][START_REF] Simon | The statistical mechanics of lattice gases[END_REF] and [START_REF] Friedli | Statistical mechanics of lattice systems: A concrete mathematical introduction[END_REF]Chap. 6]. At this stage, it should be noted that, as shown in [START_REF] Guerra | The P (ϕ)2 quantum field theory as classical statistical mechanics[END_REF], when the set of Gibbs measures consists of several elements, some may have no physical relevance. As suggested by Euclidean quantum field theories, see, e.g., [START_REF] Simon | The P (ϕ)2 Euclidean field theory[END_REF][START_REF] Guerra | The P (ϕ)2 quantum field theory as classical statistical mechanics[END_REF], the Gibbs measures of interest are those for which the sequence of their moments satisfies some a priori growth limitations at infinity. They are the so-called tempered Gibbs measures. Uniqueness of Gibbs measures characterizes the absence of (first-order) phase transitions.

The existence problem may be solved by constructing Gibbs measures as thermodynamic limits. This may be achieved by proving that the family of local Gibbs measures, indexed by an increasing sequence of bounded regions filling the whole lattice, has at least one limit point in the weak topology, and that this limit point is a Gibbs measure. Sufficient conditions were derived by Dobrushin [START_REF] Dobrushin | The description of a random field by means of conditional probabilities and conditions of its regularity[END_REF][START_REF] Dobrushin | Gibbsian random fields for lattice systems with pairwise interaction[END_REF][START_REF] Dobrushin | Gibbsian random fields. The general case[END_REF] and [START_REF] Dobrushin | Prescribing a system of random variables by conditional distributions[END_REF]Thm. 1]. See also [START_REF] Sinai Ya | Theory of phase transitions: Rigorous results[END_REF]Thm. 1.3]. Dobrushin's existence criteria have been applied to some classical lattice models of Euclidean lattice field theories with singlespin space R in [START_REF] Cassandro | Existence and uniqueness of DLR measures for unbounded spin systems[END_REF][START_REF] Bellissard | Compactness and the maximal Gibbs state for random Gibbs fields on a lattice[END_REF]. Therein, some restrictions on the boundary conditions are necessary. One of the key methods is Ruelle's technique of superstability estimates in [START_REF] Ruelle | Superstable interactions in classical statistical mechanics[END_REF][START_REF] Ruelle | Probability estimates for continuous spin systems[END_REF][START_REF] Lebowitz | Statistical mechanics of systems of unbounded spins[END_REF] which requires the interactions to be translation invariant, superstable and with pair-potentials growing at most quadratically. Applied to some models of Euclidean lattice field theories with single-spin space R, it is proved in [START_REF] Cassandro | Existence and uniqueness of DLR measures for unbounded spin systems[END_REF] that the family of local Gibbs measures associated with a wide class of boundary conditions has at least one accumulation point in the set of 'superstable' Gibbs measures, a subset of the set of tempered Gibbs measures, see [START_REF] Cassandro | Existence and uniqueness of DLR measures for unbounded spin systems[END_REF]Thm. 1.2]. This result was extended to some quantum anharmonic lattice systems with superstable interactions in [START_REF] Park | A characterization of Gibbs states of lattice boson systems[END_REF]Thm 2.6] by extending Ruelle's technique to quantum statistical mechanics, see [START_REF] Park | The cluster expansion of classical and quantum lattice systems[END_REF][START_REF] Park | Quantum statistical mechanics of unbounded continuous spin systems[END_REF]. See also [START_REF] Kozitsky | Euclidean Gibbs measures of quantum anharmonic oscillators[END_REF]Thm. 3.1] covering a wide class of quantum anharmonic lattice systems. In general, for quantum lattice systems where the single-spin spaces are infinite-dimensional, verifying Dobrushin's existence criteria turns out to be challenging, see, e.g., [START_REF] Sinai Ya | Theory of phase transitions: Rigorous results[END_REF]Sec. I.5]. A brief review of methods can be found in [START_REF] Albeverio | Euclidean Gibbs measures on loop lattices: existence and a priori estimates[END_REF]Sec. 2].

Turning to the problem of uniqueness of Gibbs measures, sufficient conditions were derived by Dobrushin in [START_REF] Dobrushin | The description of a random field by means of conditional probabilities and conditions of its regularity[END_REF][START_REF] Dobrushin | The problem of uniqueness of a Gibbsian random field and the problem of phase transition[END_REF] (case of compact single-spin spaces), [START_REF] Dobrushin | Prescribing a system of random variables by conditional distributions[END_REF]Thm. 4] and [19, Thm. 1] (an extension). Dobrushin's uniqueness theorem [START_REF] Dobrushin | Prescribing a system of random variables by conditional distributions[END_REF]Thm. 4] reduces the uniqueness problem to a suitable estimate of the Wasserstein distance between pairs of 1-point (i.e., lattice site) Gibbs measures subject to different boundary conditions. In particular, uniqueness holds provided that the Dobrushin matrix coefficients satisfy the condition of weak dependence [18, Eq. (5.2)]. In practice, this allows one to derive sufficient conditions on β and model parameters assuring uniqueness. Dobrushin's criterion has been applied to some classical lattice models of Euclidean lattice field theories with single-spin space R in [START_REF] Cassandro | Existence and uniqueness of DLR measures for unbounded spin systems[END_REF]Sec. 2]. The key ingredient is an expression of the Wasserstein distance for probability measures on R in terms of their distribution functions. The same criterion has also been applied to some quantum anharmonic lattice models of quantum crystals in [START_REF] Albeverio | Uniqueness of Gibbs states for quantum lattice systems with non-local interaction[END_REF][START_REF] Albeverio | Dobrushin's uniqueness for quantum lattice systems with nonlocal interaction[END_REF] (see also [START_REF] Kozitsky | Euclidean Gibbs measures of quantum anharmonic oscillators[END_REF]Thm 3.4]). Therein, the key ingredient is the representation of the Wasserstein distance by means of the Kantorovich-Rubinstein duality theorem, see, e.g., [START_REF] Edwards | On the Kantorovich-Rubinstein theorem[END_REF]. Finally, we mention that cluster expansion techniques are used in [START_REF] Park | Uniqueness and clustering properties of Gibbs states for classical and quantum unbounded spin systems[END_REF] to prove uniqueness of Gibbs measures in the high temperature regime (in 1-dimensional lattices, uniqueness holds at all temperatures) for a class of quantum anharmonic lattice systems with superstable interactions. Also, in [START_REF] Albeverio | Peierls argument and long-range order behavior of quantum lattice systems with unbounded spins[END_REF] a quantum crystal with double-well potential is shown to have a phase transition using a Peierls-type argument.

As such, Dobrushin's uniqueness theorem [START_REF] Dobrushin | Prescribing a system of random variables by conditional distributions[END_REF]Thm. 4] provides a way to determine sufficient conditions on β and model parameters assuring uniqueness of Gibbs measures by deriving a suitable estimate of the Wasserstein distance between pairs of 1-point Gibbs measures with different boundary conditions. However, this criterion remains difficult to verify in general.

In this paper, we revisit Dobrushin's uniqueness theorem for Gibbs measures of lattice systems of interacting particles at thermal equilibrium in the case where the single-spin space is a general complete metric space. This covers both classical and quantum lattice systems. The main ingredient in the proof of existence of limit Gibbs distribution is the completeness of the Wasserstein space of first order. We show that this is guaranteed whenever the underlying single-spin space is a complete metric space. Our proof does not require separability, and relies on the construction of a well-chosen Prokhorov compact to show the uniform tightness of the probability measures. Further, the method we use to prove the equivalence of weak convergence and convergence in Wasserstein metric would allow the result to be extended to uniform spaces, replacing the Wasserstein metric by a Wasserstein uniformity. In addition to revisiting the proof of Dobrushin's uniqueness theorem, another motivation of this paper is to provide some alternative techniques to prove uniqueness of the limit Gibbs distribution for some classical lattice systems with possibly infinite-range pair potentials. First, we prove a general result of uniqueness at high temperatures with application to the classical Heisenberg model. An extension of the uniqueness result to the Ising and Potts models is given. Second, we revisit the Gaussian free field model with n-dimensional spins. When the local Gibbs measures are convex perturbations of Gaussian measures, we derive a suitable estimate of the Wasserstein distance between pairs of 1-point Gibbs measures by constructing appropriate couplings with the 1-point Gibbs measures as marginals.

Our paper is organised as follows. In Section 2, we recall some properties of the Wasserstein distance and give the completeness result in Theorem 2.1. After recalling some definitions of local and limit Gibbs distributions, Theorem 3.5 in Section 3 is our reformulation of Dobrushin's uniqueness theorem for classical or quantum lattice systems of interacting particles when the single-spin space is a general metric space. Two corollaries related to the decay of correlations in the case of nearest-neighbour interactions are also given. The proof of Theorem 3.5 and the proof of the corollaries are given in Section 4. In Section 5, we focus on some applications of Theorem 3.5 at high-temperature. The main result is Proposition 5.1 with application to the classical Heisenberg model. The Ising and Potts models are treated in Section 5.2. In Section 6, we focus on some applications of Theorem 3.5 to classical lattice systems. The Gaussian free field model with ndimensional spins is revisited in Section 6.1, see Proposition 6.1. The perturbation by a convex self-interaction potential is treated in Section 6.2, see Propositions 6.5 and 6.9. Section 7 contains the proof of Theorem 2.1. The key result for the proof of Theorem 2.1 (ii) is Proposition 7.5. Section 8 is the Appendix. The quantum harmonic crystal model is revisited in Section 8.2, see Proposition 8.4. The decay of Gaussian correlations in classical and quantum lattice systems is discussed in Section 8.3.

Wasserstein distance and completeness.

Let (X , ρ) be a metric space. Denote by B(X ) the Borel σ-algebra of subsets of X . Let M + (X ) denote the set of all finite non-negative Radon measures on X and let P(X ) := {µ ∈ M + (X ) : µ(X ) = 1}, be the set of all Radon probability measures on X . For any µ, ν ∈ P(X ), define the set of Radon couplings of µ and ν as

Ξ X (µ, ν) := {σ ∈ P(X × X ) : σ(A × X ) = µ(A), σ(X × A) = ν(A) for all A ∈ B(X )} .
Let ρ W : P(X ) × P(X ) → R + ∪ {∞} be the Wasserstein distance defined as (see, e.g., [START_REF] Wasserstein | Markov processes on a countable product space describing large systems of automata[END_REF])

ρ W (µ, ν) := inf σ∈Ξ X (µ,ν) X ×X ρ(x, y)σ(dx, dy). (2.1)
Introduce the set P 1 (X ) := µ ∈ P(X ) :

X ρ(x, x 0 )µ(dx) < ∞, for some (and hence all)

x 0 ∈ X , (2.2) 
which is independent of x 0 . Here is the main result of this section Theorem 2.1 (i). The Wasserstein distance ρ W is a metric on P 1 (X ).

(ii). If (X , ρ) is a complete metric space, then so is (P 1 (X ), ρ W ).

The proof of Theorem 2.1 is postponed to Sec. 7 for reader's convenience. We point out that the proof of Theorem 2.1 (ii) relies on Prokhorov's theorem, see, e.g., [START_REF] Bourbaki | Intégration Chapitre IX, Élément de mathématique[END_REF]Sec. IX.5.5]. For a proof with the separability assumption, see, e.g., [START_REF] Bolley | Separability and completeness for the Wasserstein distance[END_REF]. We note that Theorem 2.1 is used in the proof of existence in Dobrushin's theorem in Sec. 4.2. Hereafter, X as in Theorem 2.1 will play the role of state space (i.e., single-spin space).

3 Dobrushin's uniqueness theorem revisited.

Gibbs distributions.

In this section, we recall the definition of local Gibbs distributions and limit Gibbs distributions. Our definitions below are taken from [START_REF] Sinai Ya | Theory of phase transitions: Rigorous results[END_REF]. See also, e.g., [START_REF] Minlos | Limiting Gibbs' distribution[END_REF][START_REF] Dobrushin | The description of a random field by means of conditional probabilities and conditions of its regularity[END_REF][START_REF] Dobrushin | Gibbsian random fields for lattice systems with pairwise interaction[END_REF][START_REF] Dobrushin | The problem of uniqueness of a Gibbsian random field and the problem of phase transition[END_REF][START_REF] Dobrushin | Gibbsian random fields. The general case[END_REF][START_REF] Lanford | Observables at infinity and states with short-range correlations in statistical mechanics[END_REF][START_REF] Dobrushin | Prescribing a system of random variables by conditional distributions[END_REF][START_REF] Lebowitz | Statistical mechanics of systems of unbounded spins[END_REF][START_REF] Georgii | Gibbs Measures and Phase Transitions[END_REF].

Notations. For dimension d ∈ N, let S := {Γ ⊂ Z d : 0 < |Γ| < ∞} be the (countably infinite) set of all non-empty finite subsets of Z d . Here and hereafter, |Λ| denotes the cardinality of Λ ∈ S, Λ c := Z d \ Λ its complement and ∂Λ := {j ∈ Λ c : ∃j ∈ Λ, |j -j | = 1} its boundary. In the following, the state space X is assumed to be a metric space (note that all the definitions below hold for X a topological space). The space of finite configurations in Λ ∈ S and the space of all possible configurations are respectively X Λ and X Z d endowed with the product topology and equipped with the Borel σ-algebra B(X Λ ) and B(X Z d ) respectively. Note that the latter coincides with the σ-algebra generated by the cylinder sets. Configurations in X Λ , Λ ∈ S will be often denoted by ξ Λ and a configuration ξ Λ will be often decomposed as the concatenation ξ Λ = ξ ∆ ξ Λ\∆ for a given ∆ ⊂ Λ. Let P(X Λ ), Λ ∈ S or Λ = Z d denote the set of all Radon probability measures on X Λ . Let P 1 (X Λ ), Λ ∈ S denote the subset similar to (2.2) but with a metric ρ (Λ) on X Λ . Let {Π Λ } Λ∈S denote the family of projection maps Π Λ :

X Z d → X Λ .
Given Λ ∈ S, the energy of a configuration ξ Λ ∈ X Λ is defined by

H(ξ Λ ) := X∈S:X⊂Λ V X (ξ X ), (3.1) 
where for every X ∈ S, the function V X : X X → R stands for the joint interaction energy of the ξ's inside X. The family {V X } X∈S is commonly called a potential, and typically, the V X 's are assumed to be B(X X )-measurable and such that the series in (3.1), and in (3.2) below, exist.

The interaction energy between a configuration ξ Λ ∈ X Λ and η Λ c ∈ X Λ c is defined as

H(ξ Λ , η Λ c ) := X∈S:X∩Λ =∅, X∩Λ c =∅ V X (ξ X∩Λ η X∩Λ c ). (3.2)
In the following, given Λ ∈ S, configurations in X Λ c will play the role of boundary conditions. The total energy of a configuration ξ Λ under the boundary condition η Λ c is then defined as

H Λ (ξ Λ |η Λ c ) := H(ξ Λ ) + H(ξ Λ , η Λ c ). (3.3)
Definition 3.1 The local Gibbs distribution at inverse temperature β > 0 for the domain Λ ∈ S under the boundary condition η Λ c ∈ X Λ c is a probability measure on (X Λ , B(X Λ )) defined as

µ β Λ (A|η Λ c ) := 1 Z β Λ (η Λ c ) A exp -βH Λ (ξ Λ |η Λ c ) j∈Λ µ 0 (dξ j ), A ∈ B(X Λ ), (3.4) 
where

H Λ (• |η Λ c ) is defined in (3.3), Z β Λ (η Λ c ) is a normalisation constant (called partition function) Z β Λ (η Λ c ) := X Λ exp -βH Λ (ξ Λ |η Λ c ) j∈Λ µ 0 (dξ j ), (3.5) 
and the (single-spin) measure µ 0 is a given a priori measure on (X , B(X )), not necessarily bounded.

We now turn to the definition of limit Gibbs distributions. We refer the reader to the disintegration theorem in Sec. 8.1 for the existence of conditional probability measures. Definition 3.2 A limit Gibbs distribution at inverse temperature β > 0 corresponding to the formal Hamiltonian H : X Z d → R given by a potential as follows 

H(ξ) := X⊂Z d V X (ξ X ), is a probability measure µ β on (X Z d , B(X Z d )) such that, for any domain Λ ∈ S, (i). For µ β -a.e. ξ = (ξ Λ , ξ Λ c ), H Λ (ξ Λ |ξ Λ c ) in (3.3) and Z β Λ (ξ Λ c ) in (3.
(• |η Λ c ) for a fixed configuration η Λ c ∈ X Λ c , (ii) reads µ β (• |η Λ c ) • Π -1 Λ = µ β Λ (• |η Λ c ).
Note that the measure

µ β (• |η Λ c ) is concentrated on the set {ξ ∈ X Z d : Π Λ c ξ = η Λ c }.
Remark 3.4 Connection with Gibbsian specification and equilibrium DLR equation. From the local Gibbs distribution in (3.4), we can associate on (X Z d , B(X Z d )) the probability measure

π β Λ (A|η) := X Λ I A (ξ Λ Π Λ c η)µ β Λ (dξ Λ |Π Λ c η), A ∈ B(X Z d ), η ∈ X Z d .
{π β Λ } Λ∈S forms a family of proper probability kernels from B(X Λ c ) to B(X Z d ), see, e.g., [START_REF] Georgii | Gibbs Measures and Phase Transitions[END_REF]. By virtue of the additive structure of the Hamiltonian, the family satisfies the consistency relation

π β Λ π β Λ (A|η) := X Z d π β Λ (A|ξ)π β Λ (dξ|η) = π β Λ (A|η), Λ ⊂ Λ , Λ, Λ ∈ S.
Due to this feature, {π β Λ } Λ∈S is called a Gibbsian specification in Georgii's terminology. In the DLR formalism, a limit Gibbs distribution at β > 0 is defined as a measure µ β ∈ P(X Z d ) satisfying

µ β π β Λ (A) := X Z d π β Λ (A|ξ)µ β (dξ) = µ β (A), (3.6) 
for all Λ ∈ S and all A ∈ B(X Z d ). (3.6) is the equilibrium DLR equation. µ β is said to be specified by {π β Λ } Λ∈S . This definition is equivalent to Definition 3.2 (ii), see, e.g., [START_REF] Georgii | Gibbs Measures and Phase Transitions[END_REF]Rem. 1.24].

3.2 Dobrushin's uniqueness theorem.

Theorem 3.5 below is our reformulation of Dobrushin's uniqueness theorem [START_REF] Dobrushin | Prescribing a system of random variables by conditional distributions[END_REF]Thm. 4] for classical lattice systems of interacting particles at thermal equilibrium. Theorem 3.5 Let (X , ρ) be a complete metric space and µ 0 a given a priori measure on (X , B(X )). Let H : X Z d → R be a formal Hamiltonian of the form

H(ξ) = X⊂Z d V X (ξ X ).
(3.7)

Let β > 0 be fixed. Assume the following, (C1). For all X ⊂ Z d , the functions V X : X X → R are continuous; (C2). Given j ∈ Z d and η ∈ X Z d \{j} , the local partition functions defined as

Z β j (η) := X exp   -β X⊂Z d :j∈X V X ξ j η X\{j}   µ 0 (dξ j ), (3.8) 
are finite and bounded uniformly in j ∈ Z d ; (C3). There exists ξ * ∈ X such that

c 0 := sup j∈Z d X ρ(ξ, ξ * )µ β j (dξ|ξ * Z d \{j} ) < ∞, (3.9) 
where ξ * k = ξ * for all k ∈ Z d . Given j ∈ Z d and η ∈ X Z d \{j} , the 1-point Gibbs distribution reads

µ β j (A|η) := 1 Z β j (η) A exp   -β X⊂Z d :j∈X V X ξ j η X\{j}   µ 0 (dξ j ), A ∈ B(X ). (3.10) 
Then there exists a unique limit Gibbs distribution µ β ∈ P(X Z d ), associated with the Hamiltonian (3.7), with marginal distributions satisfying

sup j∈Z d X ρ(ξ, ξ * )µ β j (dξ) < ∞,
provided that, for all j ∈ Z d and for all (η, η

) ∈ X Z d \{j} × X Z d \{j} , ρ W µ β j (• |η), µ β j (• |η ) ≤ l∈Z d l =j r(l, j)ρ(η l , η l ), (3.11) 
holds for some constants r(l, j) ≥ 0 satisfying, for all j ∈ Z d ,

l∈Z d l =j r(l, j) ≤ λ < 1.
(3.12)

Remark 3.6 For lattice systems described by formal Hamiltonians of the form (3.7), uniqueness of the limit Gibbs distribution usually means absence of phase transition. If uniqueness holds for all β > 0, the system is said to be stable.

Remark 3.7 In Theorem 3.5, (X , ρ) is a general complete metric space. The latter could be the infinite-dimensional space of all continuous and periodic functions on [0, β] equipped with the supremum norm, so that Theorem 3.5 also applies to quantum lattice systems. See Sec. 8.2.

Remark 3.8 Under the conditions of Theorem 3.5, the equilibrium DLR equation (see Remark 3.4) is satisfied in the following sense. For any β > 0, for all Λ 0 , Λ ∈ S such that Λ 0 ⊂ Λ, for all A ∈ B(X Λ0 ) and all B ∈ B(X Λ\Λ0 ) bounded,

B µ β Λ0 (A|ξ Λ\Λ0 ) µ β Λ\Λ0 (dξ Λ\Λ0 ) = µ β Λ (A × B), (3.13) 
where µ β denotes the limit Gibbs distribution from Theorem 3.5 (to distinguish in the notation the marginals of the limit Gibbs distribution from the local Gibbs distributions).

Remark 3.9 In the case of nearest-neighbour interactions only, the conditions (3.11)-(3.12) can be simply replaced with

ρ W µ β j (• |η), µ β j (• |η ) ≤ λ 2d l∈N1(j) ρ(η l , η l ), (3.14) 
where 0 < λ < 1 and N 1 (j) := {j ∈ Z d : |j -j| = 1} is the set of nearest-neighbours of j ∈ Z d .

Below, we give a remark on the assumptions of Theorem 3.5. By a bounded boundary condition, we mean any configuration ϑ ∈ X Z d such that sup j∈Z d ρ(ξ * , ϑ j ) < ∞. Given β > 0 and ∆, Γ ∈ S such that ∆ ⊂ Γ and ϑ ∈ X Z d , introduce on (X ∆ , B(X ∆ )) the probability measure

µ Γ ∆ (• |ϑ Γ c ) := µ β Γ (• |ϑ Γ c ) • (Π Γ ∆ ) -1 , (3.15) 
where µ β Γ (• |ϑ Γ c ) is the local Gibbs distribution for the domain Γ and Π Γ ∆ : X Γ → X ∆ the projection map. Given Λ ∈ S, define the metric ρ (Λ) on X Λ as

ρ (Λ) (ξ Λ , ξ Λ ) := j∈Λ ρ(ξ j , ξ j ),
and let ρ (Λ) W denote the corresponding Wasserstein distance on P(X Λ ) defined similarly to (2.1) but with the metric ρ (Λ) . Remark 3.10 Assumptions (C1)-(C3) together guarantee that, for any domain Λ ∈ S, there exists a constant c ∞ > 0 such that,

sup j∈Λ X ρ(ξ, ξ * )µ Λ j (dξ|ξ * Λ c ) ≤ c ∞ .
See Sec. 4.2 for further details. In particular, the above guarantees that

µ β Λ (• |ξ * Λ c ) ∈ P 1 (X Λ ).

Some corollaries.

The two corollaries of Theorem 3.5 below follow from the proof of existence of Dobrushin's uniqueness theorem in Sec. 4.2. The proofs are deferred to Sec. 4.3.

Corollary 3.11 Consider the special case of nearest-neighbour interactions, i.e., where V X = 0 unless |X| = 1, or |X| = 2 and X = {k, l} with |k -l| = 1. Let β > 0 be fixed and assume that the conditions of Theorem 3.5 hold. Then, given a finite domain ∆ ∈ S, there exists a constant C > 0 such that, for any Λ, Λ ∈ S with ∆ ⊂ Λ ⊂ Λ and for any bounded boundary condition ϑ ∈

X Z d , ρ (∆) W µ Λ ∆ (• |ϑ Λ c ), µ Λ ∆ (• |ϑ Λ c ) ≤ Cλ dist(∆,∂Λ) ,
where dist(∆, ∂Λ) := inf j∈∆,j ∈Λ c |j-j | > 0, and the two probability measures

µ Λ ∆ (• |ϑ Λ c ), µ Λ ∆ (• |ϑ Λ c ) on (X ∆ , B(X ∆
)) are defined similarly to (3.15). In particular, given a Lipschitz-continuous function f : X ∆ → R, i.e. such that,

f (ξ ∆ ) -f (ξ ∆ ) ≤ c f j∈∆ ρ(ξ j , ξ j ),
for a constant c f > 0, we have,

X Λ f (ξ ∆ )µ β Λ (dξ Λ |ϑ Λ c ) - X Λ f (ξ ∆ )µ β Λ (dξ Λ |ϑ Λ c ) ≤ c f Cλ dist(∆,∂Λ) .
A similar statement can be made concerning the decay of correlations. For further related results, see, e.g., [START_REF] Gross | Decay of correlations in classical lattice models at high temperature[END_REF][START_REF] Klein | Dobrushin's uniqueness theorem and the decay of correlations in continuous statistical mechanics[END_REF][START_REF] Dobrushin | Constructive criterion for the uniqueness of Gibbs field, Statistical Physics and Dynamical Systems: Rigorous Results[END_REF], [START_REF] Künsch | Decay of correlations under Dobrushin's uniqueness condition and its applications[END_REF]Sec. 7], and references therein. Corollary 3.12 Consider the special case of nearest-neighbour interactions, i.e., where V X = 0 unless |X| = 1, or |X| = 2 and X = {k, l} with |k -l| = 1. Let β > 0 be fixed and assume that the conditions of Theorem 3.5 hold. Let ∆, ∆ ∈ S such that ∆ ∩ ∆ = ∅. Let f : X ∆ → R and g : X ∆ → R be bounded continuous functions. Then, there exists a constant C > 0 such that, if µ β is the limit-Gibbs measure at inverse temperature β, then

X ∆∪∆ f (ξ ∆ )g(ξ ∆ )µ β ∆∪∆ (dξ ∆∪∆ ) - X ∆ f (ξ ∆ )µ β ∆ (dξ ∆ ) X ∆ g(ξ ∆ )µ β ∆ (dξ ∆ ) ≤ Cλ dist(∆,∆ ) .
4 Proof of Dobrushin's uniqueness theorem.

We recall some notations from Sec. 3.1. Given ∆, Λ ∈ S such that ∆ ⊂ Λ, let Π Λ : X Z d → X Λ and Π Λ ∆ : X Λ → X ∆ be the projection maps. Given a probability measure ν ∈ P(X Z d ), let {ν Λ } Λ∈S be the family of marginal distributions of ν defined as

ν Λ := ν • Π -1 Λ ∈ P(X Λ ). This means that ν Λ (A) = ν(A×X Λ c ) for any A ∈ B(X Λ ). Let {ν(• |η Λ c ), η Λ c ∈ X Λ c } be the conditional probability measures in P(X Z d ) relative to Π Λ c . Note that ν({ξ ∈ X Z d : Π Λ c ξ = η Λ c }|η Λ c ) = 1.

Proof of uniqueness.

The uniqueness follows from the following result Proposition 4.1 Let µ, ν ∈ P(X Z d ) be probability measures with the same family of 1-point conditional distributions µ k (• |ξ), k ∈ Z d and ξ ∈ X Z d \{k} . Given ξ * ∈ X , assume that there exists a constant C > 0 such that max

X Z d ρ(ξ j , ξ * )µ(dξ), X Z d ρ(ξ j , ξ * )ν(dξ) ≤ C, (4.1) 
holds uniformly in j ∈ Z d . Further, assume that for all j ∈ Z d and all

(ξ, ξ ) ∈ X Z d \{j} × X Z d \{j} , ρ W µ j (• |ξ), ν j (• |ξ ) ≤ l∈Z d l =j r(l, j)ρ(ξ l , ξ l ), (4.2) 
holds for some constants r(l, j) ≥ 0 satisfying, for all j ∈ Z d ,

l∈Z d l =j r(l, j) ≤ λ < 1. (4.3) Then µ = ν. 4.1.1 Proof of Proposition 4.1.
The proof is based on the following Lemma, the proof of which is deferred to Sec. 4.1.2.

Lemma 4.2 Let µ, ν ∈ P(X Z d ) be probability measures. Assume that for all > 0 there exists a coupling σ ∈ Ξ X Z d (µ, ν) such that, for every j ∈ Z d ,

X Z d ×X Z d ρ(ξ j , ξ j )σ(dξ, dξ ) < γ j + ,
with γ j ≥ 0. Further, assume that for all j ∈ Z d and all (ξ, ξ ) ∈ X Z d \{j} × X Z d \{j} , (4.2) holds for some constants r(l, j) ≥ 0 satisfying (4.3).

Then, given a finite domain Λ ∈ S, for all > 0, there exists another σ ∈ Ξ X Z d (µ, ν) such that, for every j ∈ Z d ,

X Z d ×X Z d ρ(ξ j , ξ j )σ(dξ, dξ ) < χ(j) + , (4.4) 
where χ(j) = γ j for j / ∈ Λ, and for j ∈ Λ,

χ(j) = l∈Λ c γ l k∈Λ ∞ n=0 r(l, k)(R n Λ ) k,j ,
where the matrix R Λ is defined as

(R Λ ) k,j := r(k, j), if j, k ∈ Λ and j = k, 0, if j, k ∈ Λ and j = k . ( 4.5) 
We now turn to

Proof of Proposition 4.1. We first note that, given σ ∈ Ξ X Z d (µ, ν), (4.1) ensures that,

X Z d ×X Z d ρ(ξ j , ξ j )σ(dξ, dξ ) ≤ X Z d ×X Z d ρ(ξ j , ξ * ) + ρ(ξ * , ξ j ) σ(dξ, dξ ) ≤ X Z d ρ(ξ j , ξ * )µ(dξ) + X Z d ρ(ξ j , ξ * )ν(dξ) ≤ 2C,
uniformly in j ∈ Z d . Let Λ 0 ∈ S be fixed. For any D > 0 define the set

Λ D := {k ∈ Z d : ∃j ∈ Λ 0 , |k -j| ≤ D}.
Fix 0 < < 1 and let N ∈ N be large enough so that

2C λ N +2 1 -λ < 2 . ( 4.6) 
By assumption, there exists

D 1 > 0 such that sup j∈Λ0 l∈Λ c D 1 r(l, j) < 2C . (4.7) 
Continuing by recursion, there exist

D 1 < D 2 < • • • < D N +1 such that sup j∈Λ Dm l∈Λ c D m+1 r(l, j) < 2C , m = 1, . . . , N. (4.8) Set Λ = Λ D N +1 . Applying Lemma 4.2, there exists σ ∈ Ξ X Z d (µ, ν) such that, X Z d ×X Z d ρ(ξ j , ξ j )σ(dξ, dξ ) < χ(j) + 2 , j ∈ Z d ,
where χ(j) = 2C for j / ∈ Λ, and,

χ(j) = 2C l∈Λ c k∈Λ r(l, k) ∞ n=0 (R n Λ ) k,j , j ∈ Λ. (4.9)
Define the matrix norm of R Λ by

R Λ := sup k∈Λ j∈Λ |(R Λ ) j,k |. (4.10)
Note that R Λ ≤ λ < 1 by assumption. To estimate (4.9) with j ∈ Λ 0 , we split the sum over n into the terms with n ≤ N and the rest, and note first that

2C l∈Λ c k∈Λ r(l, k) ∞ n=N +1 (R n Λ ) k,j ≤ 2C sup k∈Λ l∈Z d l =k r(l, k) ∞ n=N +1 R Λ n ≤ 2C λ N +2 1 -λ < 2 ,
uniformly in j ∈ Λ 0 . Here, we used (4.6) in the right-hand side of the last inequality.

The remaining terms, we write as follows

2C l∈Λ c   r(l, j) + N n=1 k1,...,kn∈Λ r(l, k n ) n-1 i=1 r(k n-i+1 , k n-i ) r(k 1 , j)   , j ∈ Λ 0 . Now, 2C sup j∈Λ0 l∈Λ c r(l, j) < ,
by the definition of Λ and (4.7) since

D N +1 > D 1 . Similarly, for n ≥ 1, if k n ∈ Λ Dn , we obtain 2C l∈Λ c N n=1 kn∈Λ Dn r(l, k n )(R n Λ ) kn,j ≤ 2C sup k∈Λ l∈Z d l =k r(l, k) N n=1 R Λ n ≤ λ 1 -λ , uniformly in j ∈ Λ 0 . The term where k n ∈ Λ \ Λ Dn can be written as 2C l∈Λ c N n=1 n-1 p=1 kn∈Λ\Λ Dn • • • kn-p+1∈Λ\Λ D n-p+1 kn-p∈Λ D n-p r(l, k n ) × p s=1 r(k n-s+1 , k n-s ) (R n-p Λ ) kn-p,j .
This is bounded by

2C N n=1 n-1 p=1     sup k∈Λ l∈Z d l =k r(l, k)     R p-1 Λ sup k ∈Λ D n-p    k ∈Λ c D n-p+1 r(k , k )    R n-p Λ ≤ N n=1 n-1 p=1 λ n < λ (1 -λ) 2 ,
where we used (4.8) in the right-hand side of the first inequality. In total, we obtain the following upper bound

ρ (Λ0) (µ Λ0 , ν Λ0 ) ≤ j∈Λ0 X Z d ×X Z d ρ(ξ j , ξ j )σ(dξ, dξ ) < 1 + λ 1 -λ + λ (1 -λ) 2 |Λ 0 | = 1 (1 -λ) 2 |Λ 0 | .
Letting → 0, we conclude that µ Λ0 = ν Λ0 . Since Λ 0 ⊂ Z d is an arbitrary finite subset and the measures are entirely determined by their marginals, µ = ν.

Proof of Lemma 4.2.

We start by proving a local version of the Lemma. Given k ∈ Z d , for all > 0, there exists σ ∈ Ξ X Z d (µ, ν) such that, for every j ∈ Z d ,

X Z d ×X Z d ρ(ξ j , ξ j )σ(dξ, dξ ) < γ j + , (4.11) 
where γ j = γ j for j = k, and

γ k = j∈Z d j =k r(j, k)γ j . (4.12) Let > 0 be fixed. Let σ ∈ Ξ X Z d (µ, ν) be such that, for every j = k, X Z d \{k} ×X Z d \{k} ρ(ξ j , ξ j )σ X Z d \{k} (dξ, dξ ) < γ j + 2 . (4.13) By (4.2), for all (ξ, ξ ) ∈ X Z d \{k} × X Z d \{k} , there exists σ ξ,ξ ∈ Ξ X (µ k (• |ξ), ν k (• |ξ )) such that X ×X ρ(ξ, ξ )σ ξ,ξ (dξ, dξ ) ≤ ρ W µ k (• |ξ), ν k (• |ξ ) + 2 ≤ j∈Z d j =k r(j, k)ρ(ξ j , ξ j ) + 2 . (4.14) For A, B ∈ B(X Z d ), define σ ∈ P(X Z d × X Z d ) as follows σ(A × B) := X Z d ×X Z d I A×B (ξ, ξ), (ξ , ξ ) σ X Z d \{k} (dξ, dξ )σ ξ,ξ (dξ, dξ ). Then taking B = X Z d , σ(A × X Z d ) = X Z d I A (ξ, ξ) X Z d \{k} σ X Z d \{k} (dξ, dξ ) X σ ξ,ξ (dξ, dξ ) = X Z d I A (ξ, ξ) µ X Z d \{k} (dξ)µ k (dξ|ξ) = µ(A). Similarly, σ(X Z d × B) = ν(B). As a result, σ ∈ Ξ X Z d (µ, ν). Moreover, if j = k then X Z d ×X Z d ρ(ξ j , ξ j )σ(dξ, dξ ) = X Z d \{k} ×X Z d \{k} ρ(ξ j , ξ j )σ X Z d \{k} (dξ, dξ ) X ×X σ ξ,ξ (dξ, dξ ) < γ j + 2 ,
which follows from (4.13), and,

X Z d ×X Z d ρ(ξ k , ξ k )σ(dξ, dξ ) = X Z d \{k} ×X Z d \{k} X ×X ρ(ξ k , ξ k )σ ξ,ξ (dξ k , dξ k ) σ X Z d \{k} (dξ, dξ ) ≤ j∈Z d j =k r(j, k) X Z d \{k} ×X Z d \{k} ρ(ξ j , ξ j )σ X Z d \{k} (dξ, dξ ) + 2 < j∈Z d j =k r(j, k)γ j + ,
were we used (4.14) and (4.13) in the first and second inequality respectively. This completes the proof of (4.11)-(4.12). Now, applying the above result to each j ∈ Λ, we find that (4.4) holds with

χ(j) = l∈Z d l =j γ l r(l, j), j ∈ Λ.
We split the sum over l ∈ Z d \ {j} into l ∈ (Λ \ {j}) ∪ Λ c . Then, for each l ∈ Λ \ {j}, we can replace γ l by χ(l) to get an improved bound. In view of (4.5), this yields

χ(j) = l∈Λ c γ l r(l, j) + l∈Λ l =j k∈Z d k =l γ k r(k, l)(R Λ ) l,j = l∈Λ c γ l k∈Λ r(l, k) ((I Λ ) k,j + (R Λ ) k,j ) + l∈Λ γ l (R 2 Λ ) l,j .
Continuing this way, we obtain at the m-th stage

χ(j) = X m (j) + R m+1 (j), with X m (j) := l∈Λ c γ l k∈Λ r(l, k) m n=0 (R n Λ ) k,j R m+1 (j) := l∈Λ γ l (R m+1 Λ ) l,j .
From the matrix norm defined in (4.10), R Λ ≤ λ < 1 by assumption, and hence R m Λ → 0 as m → ∞. As a result, R m+1 (j) → 0 in the limit m → ∞.

Proof of existence.

Let β > 0 be fixed. For convenience, we hereafter drop the β-dependence in our notations. Given Γ ∈ S and ϑ ∈ X Z d such that sup k∈Z d ρ(ξ * , ϑ k ) < ∞, let µ Γ (• |ϑ Γ c ) denote the local Gibbs distribution on (X Γ , B(X Γ )) with bounded boundary condition ϑ Γ c held fixed outside of Γ. Given ∆ ∈ S such that ∆ ⊂ Γ, we introduce on (X ∆ , B(X ∆ )) the probability measure

µ Γ ∆ (• |ϑ Γ c ) := µ Γ (• |ϑ Γ c ) • (Π Γ ∆ ) -1 , (4.15) 
where Π Γ ∆ : X Γ → X ∆ is the projection map. Let Λ ∈ S be fixed. The first part of the proof consists in showing that

sup j∈Λ X ρ(ξ, ξ * )µ Λ j (dξ|ξ * Λ c ) ≤ c ∞ := c 0 1 -λ , (4.16) 
with c 0 > 0 defined in (3.9). Let j ∈ Λ be fixed. By assumption, given > 0 and η ∈ X Λ , there exists a coupling

σ j;η,ξ * ∈ Ξ X (µ j (• |η Λ\{j} ξ * Λ c ), µ j (• |ξ * Z d \{j} )) such that X ×X ρ(ξ, ξ )σ j;η,ξ * (dξ, dξ ) < l∈Λ l =j r(l, j)ρ(η l , ξ * ) + .
Then, we have,

X ρ(ξ, ξ * )µ j (dξ|η Λ\{j} ξ * Λ c ) = X ×X ρ(ξ, ξ * )σ j;η,ξ * (dξ, dξ ) ≤ X ×X (ρ(ξ, ξ ) + ρ(ξ , ξ * )) σ j;η,ξ * (dξ, dξ ) < l∈Λ l =j r(l, j)ρ(η l , ξ * ) + + c 0 .
Letting → 0, we are left with

X ρ(ξ, ξ * )µ j (dξ|η Λ\{j} ξ * Λ c ) ≤ l∈Λ l =j r(l, j)ρ(η l , ξ * ) + c 0 . (4.17) Next, let (K n ) n∈N ⊂ X be an increasing sequence of compact sets such that µ Λ (K Λ n |ξ * Λ c ) → 1 when n → ∞. Define the sequence of K n -restrictions of (4.15) as µ Γ ∆,n (A|ϑ Γ c ) := µ Γ ∆ (A∩K ∆ n |ϑ Γ c ), A ∈ B(X ∆ ). Obviously, for all n ∈ N, we have, sup k∈Λ X ρ(ξ, ξ * )µ Λ k,n (dξ|ξ * Λ c ) < ∞.
Then, we have,

X ρ(ξ, ξ * )µ Λ j,n (dξ|ξ * Λ c ) = X Λ\{j} X I Kn (ξ)ρ(ξ, ξ * )µ j (dξ|η Λ\{j} ξ * Λ c ) µ Λ,n (dη Λ\{j} |ξ * Λ c ) ≤ l∈Λ l =j r(l, j) X Λ\{j} ρ(η l , ξ * )µ Λ,n (dη Λ\{j} |ξ * Λ c ) + c 0 = l∈Λ (R Λ ) l,j X ρ(η l , ξ * )µ Λ l,n (dη l |ξ * Λ c ) + c 0 , (4.18) 
where we used (4.17). Iterating (4.18), we have,

X ρ(ξ, ξ * )µ Λ j,n (dξ|ξ * Λ c ) ≤ l∈Λ (R Λ ) p l,j X ρ(η l , ξ * )µ Λ l,n (dη l |ξ * Λ c ) + c p-1 (4.19)
where, for all integers p ≥ 2,

c p-1 := c 0 p-1 s=0 sup j∈Λ l∈Λ (R Λ ) s l,j = c 0 p-1 s=0 R s Λ ≤ c 0 1 -λ .
Clearly, the first term in the r.h.s. of (4.19) tends to 0 in the limit p → ∞. To conclude the proof of (4.16), we use the monotone convergence theorem to take n → ∞.

To complete the proof of existence, consider a sequence of subsets (Λ n ) n∈N ordered by inclusion and exhausting Z d and let us show that the sequence of probability measures (µ

Λn (• |ξ * Λ c n )) n∈N converges weakly in P(X Z d ). Let Λ 0 ∈ S be fixed. Let n, n ∈ N with n < n sufficiently large such that Λ 0 ⊂ Λ n ⊂ Λ n .
In view of (4.16), by applying Lemma 4.2, for all > 0, there exists a

coupling σ ∈ Ξ X Z d (µ Λn (• |ξ * Λ c n ), µ Λ n (• |ξ * Λ c n )) such that, for all j ∈ Z d , X Z d ×X Z d ρ(ξ j , ξ j )σ(dξ, dξ ) < χ(j) + 2 ,
where χ(j) = 2c ∞ for j / ∈ Λ n and where χ(j) for j ∈ Λ n is given by

χ(j) = 2c ∞ l∈Λ c n k∈Λn ∞ p=0 r(l, j)(R p Λn ) k,j .
As in the proof of Proposition 4.1, we can prove that χ(j) is arbitrarily small for j ∈ Λ 0 provided that dist(Λ 0 , Λ c n ) is large enough. Restricting σ to X Λ0 × X Λ0 , it follows that, for any > 0,

ρ (Λ0) W µ Λn Λ0 (• |ξ * Λ c n ), µ Λ n Λ0 (• |ξ * Λ c n ) < , provided that dist(Λ 0 , Λ c n ) is large enough. This means that (µ Λn Λ0 (• |ξ * Λ c n )) n∈N is a Cauchy sequence in P 1 (X Λ0
), and hence converges since (P 1 (X Λ0 ), ρ (Λ0) ) is complete by Theorem 2.1. As this holds for all finite domains Λ 0 , the sequence (µ

Λn (• |ξ * Λ c n )) n∈N converges weakly in P(X Z d ).
Let µ (ξ * ) denote the limit. We end the proof of existence by showing that, under our conditions, the equilibrium DLR equation follows from the above, see Remarks 3.4 and 3.8. Let Λ 0 , Λ ∈ S such that Λ 0 ⊂ Λ. Let (Λ n ) n be the sequence of subsets as above. Let A ∈ B(X Λ0 ) and B ∈ B(X Λ\Λ0 ) bounded. For all n large enough so that Λ ⊂ Λ n , the consistency relation (see Remark 3.4) yields

B µ Λ0 (A|ξ Λ\Λ0 )µ Λn Λ\Λ0 (dξ Λ\Λ0 |ξ Λ c n ) = µ Λn Λ (A × B|ξ Λ c n ).
By using that (µ Λn

X (• |ξ Λ c n )) n converges weakly to µ (ξ) X := µ (ξ) • Π -1 X , X ⊆ Λ, (3.13) follows.
4.3 Proof of Corollaries 3.11 and 3.12.

Proof of Corollary 3.11. We have, as in the proof of Proposition 4.1, that there exists a coupling

σ ∈ Ξ X Z d (µ Λ ∆ (• |ϑ Λ c ), µ Λ ∆ (• |ϑ Λ c )) such that, for all j ∈ Z d , X Z d ×X Z d ρ(ξ j , ξ j )σ(dξ, dξ ) < χ(j) + ,
where χ(j) = 2c ∞ for j / ∈ Λ, and where χ(j) for j ∈ Λ is given by

χ(j) = 2c ∞ l∈Λ c k∈Λ ∞ p=0 r(l, k)(R p Λ ) k,j .
In the particular case of nearest-neighbour interactions, r(l, k) = 0 unless |k -l| = 1, and hence,

if dist(∆, Λ c ) = D > 0, r(l, k)(R p Λ ) k,j = 0 unless p ≥ D -1. Since R Λ = λ < 1 by assumption, we conclude that χ(j) ≤ 2c ∞ ∞ p=D λ p = 2c ∞ 1 -λ λ D , from which it follows that ρ (∆) W µ Λ ∆ (• |ϑ Λ c ), µ Λ ∆ (• |ϑ Λ c ) ≤ 2c ∞ 1 -λ |∆|λ D .
The second part of the corollary is now straightforward

X Λ f (ξ ∆ )µ β Λ (dξ Λ |ϑ Λ c ) - X Λ f (ξ ∆ )µ β Λ (dξ Λ |ϑ Λ c ) ≤ X Z d ×X Z d f (ξ ∆ ) -f (ξ ∆ ) σ(dξ, dξ ) ≤ c f X Z d ×X Z d j∈∆ ρ(ξ j , ξ j )σ(dξ, dξ ) ≤ |∆|(Cλ D + ),
where c f > 0 is the Lipschitz constant. Taking → 0 this proves the second statement.

Proof of Corollary 3.12. Let Λ ⊂ ∆ c be finite such that ∆ ⊂ Λ. We can write

X ∆∪∆ f (ξ ∆ )g(ξ ∆ )µ ∆∪∆ (dξ ∆∪∆ ) = X Λ c g(ξ ∆ )µ Λ c (dξ Λ c ) X Λ f (ξ ∆ )µ Λ ∆ (dξ Λ |ξ Λ c ).
Hence, it suffices to show that

ρ (∆) W µ ∆ , µ Λ ∆ (• |ξ Λ c ) < Cλ dist(∆,Λ c ) .
This is analogous to the previous corollary.

5 Applications -Part I: Uniqueness of Gibbs measures at high temperature.

5.1 A general result with application to the classical Heisenberg model.

At high temperature, there is in general no phase transition. Dobrushin's uniqueness theorem gives a simple explicit upper bound for the inverse temperature Proposition 5.1 Assume that X is either a compact convex subset of a normed space with metric ρ, or a compact Riemannian manifold. In the latter case, assume that the metric on X is given by ρ(x, y) = 1 0 |ζ(s)|ds, where ζ is a shortest geodesic from x to y. Consider the following formal Hamiltonian with nearest-neighbour interactions defined on X Z d as

H inv (ξ) := j∈Z d V(ξ j ) + j∈Z d l∈N1(j) V l-j (ξ j , ξ l ), (5.1) 
where N 1 (j) := {j ∈ Z d : |j -j| = 1} denotes the set of nearest-neighbours of j ∈ Z d , and where, (i). V : X → R is assumed to be continuous;

(ii). V k : X × X → R, |k| = 1 are supposed to be jointly continuous and Lipschitz-continuous in the second variable, i.e. there exists a constant C 0 > 0 such that, for all (ξ, η, η ) ∈ X × X × X ,

|V k (ξ, η) -V k (ξ, η )| ≤ C 0 ρ(η, η ).
Further, let µ 0 ∈ P(X ) be a probability measure and, for a given β > 0, let µ β j = µ β denote the associated 1-point Gibbs distribution generated by (5.1). Let C 1 > 0 be defined as

C 1 (β) := sup ξ ∈X sup ϕ∈X N 1 (0) X ρ(ξ, ξ )µ β (dξ|ϕ) < ∞.
Then, provided that 12dC 0 C 1 (β)β < 1, there exists a unique limit Gibbs distribution at inverse temperature β > 0 in P(X Z d ) associated with H inv .

As a direct application of Proposition 5.1, consider the classical Heisenberg model. In this model, the single-spin space is the unit sphere S r , r ≥ 1 with normalized Lebesgue measure, and the pair-interaction potential is V l-j (s j , s l ) = -Js j • s l , s j , s l ∈ S r , for some real coupling constant J > 0. Proposition 5.1 guarantees that there is no phase transition for β < (12dπJ) -1 . Indeed, the Riemann metric is bounded by ρ(s, s ) ≤ π so that C 1 ≤ π, and if θ denotes the angle between s and s ,

|V k (s 0 , s) -V k (s 0 , s )| = J|s 0 • (s -s )| ≤ J|s -s | = 2J sin θ 2 ≤ Jθ = Jρ(s, s ).
In fact, considering S r as a subset of R r+1 , the estimate can be slightly improved to β < (24dJ) -1 .

Using the symmetry as in the Ising model in Sec. 5.2 below, the estimate can be improved further.

Proof of Proposition 5.1. Given (η, η ) ∈ X N1(0) × X N1(0) and M ∈ N, we set

η k := 1 - k M η + k M η = η + k M (η -η), k = 0, . . . , M, (5.2) 
if X is a convex subset of a normed space, and we set

η k,l := ζ l k M , k = 0, . . . , M, (5.3) 
where, for l ∈ N 1 (0), ζ l : [0, 1] → X is a minimal-length geodesic from η l to η l if X is a compact manifold. Note that, since X is assumed to be compact, there exist C * > 0 such that l∈N1(0) ρ(ξ l , ξ l ) ≤ C * uniformly in ξ, ξ ∈ X N1(0) × X N1(0) . Our assumptions on X then imply

l∈N1(0) ρ(η k,l , η k-1,l ) = 1 M l∈N1(0) ρ(η l , η l ) < C * M .
(5.4)

In the following, we choose M in (5.2)-(5.3) large enough so that C * < M . Now suppose that the following inequality holds for some λ > 0

ρ W µ β (• |η k ), µ β (• |η k-1 ) ≤ λ l∈N1(0) ρ(η k,l , η k-1,l ), k = 0, . . . , M. (5.5) 
Then, by virtue of the the first equality in (5.4), we have,

ρ W µ β (• |η), µ β (• |η ) ≤ M k=1 ρ W µ β (• |η k ), µ β (• |η k-1 ) ≤ λ l∈N1(0)
ρ(η l , η l ).

(5.6)

In the rest of the proof, we prove an inequality of type (5.5). To do that, we first derive a series of key-estimates for general η, η ∈ X N1(0) . For this part of the proof, it is in fact enough that (X , ρ) is a compact metric space for instance. Given ξ 0 ∈ X and η ∈ X N1(0) , define for β > 0,

f β (ξ 0 |η) := exp   -β   V(ξ 0 ) + l∈N1(0) V l (ξ 0 , η l )     ,
so that (see (3.10))

µ β (A|η) := A f β (ξ 0 |η)µ 0 (dξ 0 ) X f β (ξ 0 |η)µ 0 (dξ 0 ) , A ∈ B(X ).
Let (η, η ) ∈ X N1(0) × X N1(0) be fixed. We now show that for all β > 0 satisfying

θ β := C 0 β l∈N1(0) ρ(η l , η l ) < 1, (5.7) 
and for all A ∈ B(X ), the following holds

µ β (A|η ) -µ β (A|η) ≤ 2θ β (1 + θ β ).
(5.8)

By using the inequality e θ -1 ≤ θ(1 + θ), 0 ≤ θ < 1, (5.9) followed by assumption (ii), we obtain, under conditions (5.7), that

f β (ξ 0 |η ) -f β (ξ 0 |η) = e β l∈N 1 (0) (V l (ξ0,η l )-V l (ξ0,η l )) -1 f β (ξ 0 |η) ≤ θ β (1 + θ β )f β (ξ 0 |η). Denoting Z β (η) := X f β (ξ 0 |η)µ 0 (dξ 0 ), write µ β (A|η ) -µ β (A|η) = 1 Z β (η) A f β (ξ 0 |η ) -f β (ξ 0 |η) µ 0 (dξ 0 ) + µ β (A|η ) Z β (η) X f β (ξ 0 |η ) -f β (ξ 0 |η) µ 0 (dξ 0 ).
Under the conditions (5.7), it then follows from the above that

µ β (A|η ) -µ β (A|η) ≤ (1 + θ β )θ β µ β (A|η) + µ β (A|η ) .
(5.10)

This proves (5.8). Subsequently assume that θ β in (5.7) is small enough so that

κ β := θ β (1 + θ β ) < 1.
(5.11)

Under this condition, we prove the following upper bound for the Wasserstein distance

ρ W µ β (• |η), µ β (• |η ) ≤ 6C 1 (β)κ β .
(5.12)

We follow a strategy similar to the one used in the proof of Proposition 7.5, see Section 7.2 below.

We cover X by a number N of open balls B i ⊂ X , i = 1, . . . , N of radius 1 2 with 0 < < 1, and define

A i := B i \ i-1 j=1 B j , i = 1, . . . , N.
Note that the A i 's form a partition of X . We may assume that µ β (A i |η ) > 0 for all i = 1, . . . , N , and define, for any E ∈ B(X ), the measures

ν β η,η (E) := µ β (E|η) - 1 -κ β 1 + κ β N i=1 µ β (E ∩ A i |η) = 2κ β 1 + κ β µ β (E|η), (5.13) 
νβ η,η (E) := µ β (E|η ) - 1 -κ β 1 + κ β N i=1 µ β (A i |η) µ β (E ∩ A i |η ) µ β (A i |η ) . (5.14) 
Note that (5.13) and (5.14) are both positive measures since (5.10) yields, for all i = 1, . . . , N ,

1 + κ β 1 -κ β µ β (A i |η) ≥ µ β (A i |η ) ≥ 1 -κ β 1 + κ β µ β (A i |η).
Then define in P(X × X )

σ β η,η (E × F ) = 1 -κ β 1 + κ β N i=1 µ β (E ∩ A i |η) µ β (F ∩ A i |η ) µ β (A i |η ) + ν β η,η (E)ν β η,η (F ) ν β η,η (X ) . Note that σ β η,η (X ×F ) = µ β (F |η ) and σ β η,η (E×X ) = µ β (E|η) so that σ β η,η ∈ Ξ X (µ β (• |η), µ β (• |η )). (This follows from the fact that ν β η,η (X ) = νβ η,η (X ) = 2κ β 1+κ β .) Now, X ×X ρ(ξ, ξ )σ β η,η (dξ, dξ ) = 1 -κ β 1 + κ β N i=1 1 µ β (A i |η ) Ai Ai ρ(ξ, ξ )µ β (dξ|η)µ β (dξ |η ) + 1 ν β η,η (X ) X X ρ(ξ, ξ )ν β η,η (dξ)ν β η,η (dξ ).
Using the fact that diam(A i ) ≤ in the first term and the triangle inequality in the second term, we have,

X ×X ρ(ξ, ξ )σ β η,η (dξ, dξ ) ≤ + X ρ(ξ, ξ)ν β η,η (dξ) + X ρ( ξ, ξ )ν β η,η (dξ ),
for some ξ ∈ X . Since the A i 's form a partition of X , the last two terms can be bounded as follows

X ρ(ξ, ξ)ν β η,η (dξ) ≤ 2κ β X ρ(ξ, ξ)µ β (dξ|η) ≤ 2C 1 (β)κ β , X ρ( ξ, ξ )ν β η,η (dξ ) ≤ 1 - 1 -κ β 1 + κ β 2 X ρ(ξ, ξ)µ β (dξ|η ) ≤ 4C 1 (β)κ β .
Gathering the above estimates, the upper bound (5.12) follows after taking the limit → 0.

To conclude the proof of the Proposition, substitute in the right-hand side of (5.12) κ β with its definition in (5.11) and the explicit expression of θ β in (5.7), and then replace (η, η ) by (η k , η k-1 ) (see (5.2)-(5.3)) in both the left-hand side and right-hand side of (5.12). This gives

ρ W µ β (• |η k ), µ β (• |η k-1 ) ≤ 6C 1 (β)C 0 β l∈N1(0) ρ(η k,l , η k-1,l )   1 + C 0 β l∈N1(0) ρ(η k,l , η k-1,l )   .
By virtue of the upper bound in (5.4), M can be chosen large enough so that the condition in (5.11), implying the one in (5.7), is satisfied. Moreover, in view of (5.6), the following upper bound

ρ W µ β (• |η), µ β (• |η ) ≤ 6C 0 C 1 (β)β 1 + C 0 β C * M l∈N1(0) ρ(η l , η l ),
holds for any (η, η ) ∈ X N1(0) × X N1(0) . It remains to take the limit M → ∞ and the upper bound in Proposition 5.1 follows from the condition (3.14) in Remark 3.9.

Remark 5.2

The uniqueness result for sufficiently high temperatures in Proposition 5.1 can be extended to the case of more general interactions, as well as unbounded spins. The conditions of Proposition 5.1 have to be modified accordingly.

5.2

The Ising and Potts models. Potts model in dimension d ≥ 2. The single-spin space is a finite set X = {1, . . . , q} with q ∈ N, q > 1 and the pair-interaction potential is

V k (s j , s k ) = -Jδ sj ,s k , s j , s k ∈ {1, . . . , q},
for some real coupling constant J > 0. The discrete metric is given by ρ(s, s ) := 1 -δ s,s , s, s ∈ {1, . . . , q}, where δ s,s is the Kronecker delta, i.e., δ s,s = 1 when s = s and δ s,s = 0 otherwise. Given two probability measures µ, µ ∈ P(X ), the minimizing measure σ ∈ P(X × X ) for ρ W (µ, µ ) satisfies σ(s, s ) = p s,s , s, s ∈ {1, . . . , q}; q s =1 p s,s = µ({s}), q s=1 p s,s = µ ({s });

(5.15) and minimizes

q s,s =1 ρ(s, s )σ(s, s ) = q s,s =1 s =s p s,s = 1 - q s=1 p s,s , (5.16) 
where, to derive the last identity in the above right-hand side, we used that q s,s =1

p s,s = q s=1 µ({s}) = q s =1 µ ({s }) = 1.
(5.17)

We now claim that

ρ W (µ, µ ) = 1 2 q s=1 |µ({s}) -µ ({s})| . (5.18)
For convenience's sake, the proof of (5.18) is deferred to the next subsection. Denoting E sj (s) := -J l∈N1(j) δ sj ,s l , by using (5.18), we have,

ρ W µ β j (• |s), µ β j (• |s ) = 1 2 q sj =1
e -βEs j (s) q sj =1 e -βEs j (s) -e -βEs j (s ) q sj =1 e -βEs j (s ) .

Notice that

l∈N1(j) δ sj ,s l -δ sj ,s l ≤ l∈N1(j) 1 -δ s l ,s l = l∈N1(j)
ρ(s l , s l ).

Assume now that β > 0 is small enough so that βJ l∈N1(j) ρ(s l , s l ) < 1.

(5.19) By (5.9), we obtain the upper bound e -βEs j (s) -e -βEs j (s ) = e -βEs j (s) 1 -e βJ l∈N 1 (j) (δ s j ,s l -δs j ,s l ) ≤ 2βJe -βEs j (s)

l∈N1(j)
ρ(s l , s l ).

It remains to use that, for any σ ∈ {1, . . . , q} N1(j) , q sj =1 e -βEs j (σ) = k∈N1(j) q sj =1 e βJδs j ,σ k = k∈N1(j)

q -1 + e βJ = q -1 + e βJ 2d ,

which implies ρ W µ β j (• |s), µ β j (• |s ) ≤ 2βJ l∈N1(j)
ρ(s l , s l ).

Note that if 2dβJ < 1, then (5.19) is satisfied. By (3.14) in Remark 3.9, we conclude that there is no phase transition if β < (4dJ) -1 .

Proof of (5.18). In view of (5.16), we need to maximize the diagonal elements of the matrix (p s,s ) 1≤s,s ≤q where the s-th row and s -th column correspond to µ({s}) and µ ({s }) respectively. If µ ({s}) ≥ µ({s}) for some s ∈ {1, . . . , q}, p s,s is maximized when p s,s = µ({s}). Conversely, if µ ({s}) ≤ µ({s}) for some s ∈ {1, . . . , q}, p s,s is maximized when p s,s = µ ({s}). Assume for the moment that, for such a choice of p s,s 's, we can always find some off-diagonal elements p s,s ≥ 0, s = s so that the conditions in (5.15) and (5.17) are fulfilled. Let r := |{s ∈ {1, . . . , q} : µ ({s}) ≥ µ({s})}| with 1 ≤ r < q (as a result of (5.17)). Even if it means renaming the µ({s})'s, we can always assume that µ ({s}) ≥ µ({s}), s ∈ {1, . . . , r}. Then, by using (5.17), we can write, 1 -

q s=1 p s,s = 1 2 1 - q s=r+1 µ ({s}) - r s=1 µ({s}) + 1 2 1 - r s=1 µ({s}) - q s=r+1 µ ({s}) = 1 2 r s=1 (µ ({s}) -µ({s})) + 1 2 q s=r+1 (µ({s}) -µ ({s})) = 1 2 r s=1 |µ ({s}) -µ({s})| .
This proves (5.18). We now show that we can always construct a q × q lower-triangular matrix (p s,s ) 1≤s,s ≤q with diagonal elements p s,s = µ({s}) for s ∈ {1, . . . , r}, p s,s = µ ({s}) for s ∈ {r + 1, . . . , q} and off-diagonal elements p s,s ≥ 0, s = s such that (5.15) and (5.17) are fulfilled.

Set p s := µ({s}) and p s := µ ({s}), s ∈ {1, . . . , q}. Hereafter, we use (i, j) in place of (s, s ) for the matrix indices. Let r := |{i ∈ {1, . . . , q} : p i ≥ p i }| with 1 ≤ r < q. As before, even if it means renaming the p i 's, we can always assume that p i ≥ p i , i ∈ {1, . . . , r}. Recall the conditions r j=1 p k,j = p k -p k , k = r + 1, . . . , q, q k=r+1 p k,j = p j -p j , j = 1, . . . , r.

(5.20)

We start by reordering the rows and columns so that p j -p j is in increasing order for j = 1, . . . , r, and p k -p k is in decreasing order for k = r + 1, . . . , q. We then proceed by induction on q, eliminating the q-th row and column. We want to determine p q,j for 1 ≤ j ≤ r such that r j=1 p q,j = p q -p q and p q,j + q-1 k=r+1 p k,j = p j -p j .

Now since p 1 + • • • + p q = p 1 + • • • + p q , r j=1 (p j -p j ) = q k=r+1 (p k -p k ) ≥ p q -p q ,
so that in principle this is possible. In fact, if r = q -1, then we can simply put p q,j = p j -p j and no induction is needed. Otherwise, let j 0 be the maximal value such that r j=j0 (p j -p j ) ≥ p q -p q . Put p q,j = 0 for 1 ≤ j < j 0 , p q,j = p j -p j for j 0 < j ≤ r and p q,j0 = p q -p q -r j=j0+1 (p j -p j ) ≥ 0. To prove the claim by induction, we then need to show that we can continue this procedure for k = q -1. From (5.20), the reduced set of equations reads j0 j=1 p k,j = p k -p k , k = r + 1, . . . , q -1; p k,j = 0, j = j 0 + 1, . . . , r; k = r + 1, . . . , q -1; q-1 k=r+1 p k,j = p j -p j , j = 1, . . . , j 0 -1;

q-1 k=r+1 p k,j0 + p q -p q = p j0 -p j0 + r j=j0+1 (p j -p j ).
We therefore need that

p j0 -p j0 + r j=j0+1 (p j -p j ) ≥ p q -p q .
This holds by definition of j 0 . Therefore, the procedure can be continued.

Ising model in dimension d ≥ 2. The single-spin space is X = {-1, 1} and the pair-interaction potential is V l-j (s j , s l ) = -J(|j -l|)s j s l , s j , s l ∈ {-1, 1}, l = j, where J is a sufficiently fast decreasing positive function satisfying

k∈Z d k =0 J(|k|) < ∞.
For X = {-1, 1}, the discrete metric is given by ρ(s, s ) := 1 -δ s,s .

By virtue of (5.18) with q = 2, given two probability measures µ, µ ∈ P(X ), we have, J(|j|)s j , by using (5.21), we have,

ρ W (µ, µ ) = 1 2 s∈{-,+}
ρ W µ β 0 (• |s), µ β 0 (• |s ) =
e βS0(s) e βS0(s) + e -βS0(s) -e βS J (s ) e βS0(s ) + e -βS0(s ) This implies that

ρ W (µ β 0 (• |s), µ β 0 (• |s )) ≤ 1 2 β|S 0 (s) -S 0 (s )| ≤ 1 2 β j∈Z d j =0 J(|j|)|s j -s j | ≤ β j∈Z d j =0
J(|j|)ρ(s j , s j ).

By (4.3), we conclude that there is no phase transition if β( j∈Z d j =0

J(|j|)) < 1.

Remark 5.3

In the 1-dimensional Ising model with nearest-neighbour interactions, it can be inferred from (5.22) that there is no phase transition for all β > 0. Indeed, (5.22) is non-zero when: i) s -1 = s 1 and s j = -s j ; ii) s -1 = s 1 and s -1 = s 1 ; iii) s -1 = s 1 and s -1 = s 1 . However, only the situations ii) and iii) can occur for which (5.22) equals to 1 2 tanh(2βJ) < 1 2 (here J > 0 is the coupling constant). It remains to use the condition in (3.14) (with d = 1) to conclude.

6 Applications -Part II: Convex perturbation of the Gaussian free field model.

In this section, we focus on some models of Euclidean lattice field theories, see, e.g., [START_REF] Guerra | The P (ϕ)2 quantum field theory as classical statistical mechanics[END_REF][START_REF] Simon | The P (ϕ)2 Euclidean field theory[END_REF]. Notations. The state space is R n with its standard topology and Lebesgue measure. The standard inner product and Euclidean norm are denoted by • , • and • respectively. Below, the norm • on the space M n (C) of n × n matrices denotes the operator norm.

6.1

The Gaussian free field model with n-dimensional spins. Proposition 6.1 For any integer n > 1, let L ∈ M n (R) be a non-negative symmetric matrix. Consider the following formal Hamiltonians with nearest-neighbour interactions defined on

(R n ) Z d as H cla n (x) := j∈Z d 1 2 α x j 2 - j∈Z d l∈N1(j)
x j , Lx l . (6.1)

Then, provided that α > 2d L , there exists, for all β > 0, a unique limit Gibbs distribution in P((R n ) Z d ) associated with H cla n . Remark 6.2 The interactions between particles are of ferromagnetic type since L is non-negative.

Proof. Fix j ∈ Z d and y, y ∈ (R n ) N1(j) distinct. Set y := l∈N1(j) y l ∈ R n , y := l∈N1(j) y l ∈ R n . In view of (6.1), the corresponding 1-point Gibbs distribution reads

µ β,(n) j (A|y) := 1 Z β,(n) j (y) A exp -β 1 2 α x 2 -x, Ly d n x, A ∈ B(R n ), with Z β,(n) j (y) := R n exp -β 1 2 α x 2 -x, Ly d n x.
We now construct a coupling in P(R n × R n ) such that the marginals coincide with the 1-point Gibbs distribution above with the different boundary conditions, see (6.2) and ( 6.3) below. Set θ

(n) y -y := 1 α L(y -y). Define σ β,(n) j;y,y ∈ P(R n × R n ) as σ β,(n) j;y,y (A × B) := 1 Z β,(n) j (y) A×B exp -β 1 2 α x 2 -x, Ly δ x -x -θ (n) y -y d n xd n x , (6. 
2) for any A, B ∈ B(R n ). Here, δ denotes the Dirac measure. It is easily seen that

σ β,(n) j;y,y (A × R n ) = µ β,(n) j (A|y) and σ β,(n) j;y,y (R n × B) = µ β,(n) j (B|y ). (6.3)
From (6.2), we have, by direct calculation,

R n ×R n x -x σ β,(n) j;y,y (d n x, d n x ) = 1 α L(y -y) .
The proposition now follows from the condition in (3.14) since the above identity yields

ρ W µ β,(n) j (• |y), µ β,(n) j (• |y ) ≤ 1 α L l∈N1(j)
y l -y l .

Remark 6.3 In the special case n = 1, the formal Hamiltonian on R Z d commonly considered is

H cla 1 (x) := j∈Z d 1 2 αx 2 j + j∈Z d l∈N1(j) 1 2 (x j -x l ) 2 . (6.4)
We can mimic the arguments used in the proof of Proposition 6.1 by gathering the quadratic terms together, giving the factor α d := α + 4d. The existence and uniqueness, for all β > 0, of a limit Gibbs distribution in P(R Z d ) is guaranteed whenever α > 0.

Remark 6.4 The method used in the proof given above allows us to extend the uniqueness result of Proposition 6.1 to long-range pair-interaction potentials, typically of the form

j∈Z d l∈Z d l =j J(|j -l|)(x j -x l ) 2 , (6.5)
where J is a sufficiently fast decreasing function satisfying j∈Z d j =0

J(|j|) < ∞.

Convex perturbation of the Gaussian free field model.

We extend the uniqueness result to the Gaussian free field model perturbed by a convex selfinteraction potential. Proposition 6.5 covers the case of 1-dimensional spins while Proposition 6.9 covers the case of n-dimensional spins for a particular class of convex potentials.

6.2.1

The case of 1-dimensional spins. Proposition 6.5 Consider the following formal Hamiltonian with nearest-neighbour interactions defined on R Z d , which is a perturbation of (6.4) in the sense

Hcla 1 (x) := j∈Z d 1 2 αx 2 j + g(x j ) + j∈Z d l∈N1(j) 1 2 (x j -x l ) 2 . (6.6)
Assume that g : R → R is a convex function. Then provided that α > 0, there exists, for all β > 0, a unique limit Gibbs distribution in P(R Z d ) associated with Hcla 1 .

Remark 6.6 In the lattice approximation of quantum field theory, the φ 4 model corresponds to g(x) = cx 4 , c > 0 in (6.6). Further models are covered by our assumptions, see, e.g., [START_REF] Guerra | The P (ϕ)2 quantum field theory as classical statistical mechanics[END_REF][START_REF] Simon | The P (ϕ)2 Euclidean field theory[END_REF]. Remark 6.7 The uniqueness result of Proposition 6.5 can be extended to long-range pair interaction potentials of the form (6.5), see Remark 6.4.

To prove Proposition 6.5, we need the following lemma.

Lemma 6.8 Let ν ∈ P(R) be a probability measure. Then, for any ν-integrable and non-decreasing function f on R, the function

z → w ν (z) := 1 ν((-∞, z]) z -∞ f (x)ν(dx)
is non-decreasing on R.

Proof. Suppose that z < z . We have

w ν (z ) -w ν (z) = 1 ν((-∞, z ]) z z f (x)ν(dx) - ν((z, z ]) ν((-∞, z]) z -∞ f (x)ν(dx) . Since f is non-decreasing by assumption, f (x) ≥ f (z) on (z, z ] and f (x) ≤ f (z) on (-∞, z]. As a result, ν((-∞, z ]) (w ν (z ) -w ν (z)) ≥ f (z) ν((z, z ]) - ν((z, z ])ν((-∞, z]) ν((-∞, z]) = 0.

We now turn to

Proof of Proposition 6.5. Fix j ∈ Z d and y, y ∈ R N1(j) distinct. Set y := l∈N1(j) y l ∈ R and y := l∈N1(j) y l ∈ R. From (6.6), the corresponding 1-point Gibbs distribution reads

µ β j (A|y) := 1 Z β j (y) A exp -β 1 2 α d x 2 + g(x) -xy dx, A ∈ B(R),
where α d := α + 4d, and with

Z β j (y) := R exp -β 1 2 α d x 2 + g(x) -xy dx.
We now construct a coupling in P(R × R) such that the marginals coincide with the 1-point Gibbs distribution above with the different boundary conditions, see (6.8) and (6.9) below. Let (z m ) m∈Z be the increasing sequence of points z m := mδ with 0 < δ < 1. Define the sequence (z m ) m∈Z such that

µ β j (-∞, z m ]|y = µ β j (-∞, z m ]|y . (6.7) This implies µ β j (z m-1 , z m ]|y = µ β j (z m-1 , z m ]|y .
From the foregoing, define the coupling σ β j;y,y ∈ P(R × R) as

σ β j;y,y (A × B) := m∈Z µ β j A ∩ (z m-1 , z m ]|y µ β j B ∩ (z m-1 , z m ]|y µ β j (z m-1 , z m ]|y , (6.8) 
for any A, B ∈ B(R). It is easily seen that σ β j;y,y (A × R) = µ β j (A|y) and σ β j;y,y (R × B) = µ β j (B|y ). (6.9) Furthermore,

R×R |x -x |σ β j;y,y (dx, dx ) = m∈Z (zm-1,zm]×(z m-1 ,z m ] |x -x | µ β j (dx|y)µ β j (dx |y ) µ β j (z m-1 , z m ]|y ≤ m∈Z sup (z,z )∈(zm-1,zm]×(z m-1 ,z m ] |z -z | µ β j (z m-1 , z m ]|y µ β j (z m-1 , z m ]|y µ β j (z m-1 , z m ]|y . (6.10)
Next, we claim that under our conditions (a proof is given below) sup

(z,z )∈(zm-1,zm]×(z m-1 ,z m ] |z -z | ≤ δ + 1 α d |y -y |. (6.11)
Inserting (6.11) into the right-hand side of (6.10) and letting δ → 0, we get,

ρ W µ β j (• |y), µ β j (• |y ) ≤ 1 α d |y -y | ≤ 1 α d l∈N1(j) |y l -y l |,
and the Proposition follows from the condition in (3.14). To complete the proof of the Proposition, we now prove (6.11). Suppose that y < y (the case y > y can be treated by similar arguments). First, we show that z m ≤ z m for all m ∈ Z. It suffices to remark that

µ β j (-∞, z]|y = z -∞ e βx(y -y) µ β j (dx|y) +∞ -∞ e βx(y -y) µ β j (dx|y) ≤ µ β j (-∞, z]|y ,
as a result of Lemma 6.8 since x → e βx(y -y) is increasing. Set z = z m and then use (6.7). Secondly, we show that z m ≤ z m + θ y -y with θ y -y := 1 α d (y -y) > 0 proving (6.11) when y < y . Due to (6.7), it suffices to prove that

µ β j (-∞, z + θ y -y ]|y ≥ µ β j (-∞, z]|y . (6.12)
By a change of variables, we have the rewriting

µ β j (-∞, z + θ y -y ]|y = z -∞ e -1 2 βα d (x-α -1 d y) 2 -βg(x+θ y -y ) dx +∞ -∞ e -1 2 βα d (x-α -1 d y) 2 -βg(x+θ y -y ) dx .
This yields the following identity

+∞ -∞ e -1 2 βα d (x-α -1 d y) 2 -βg(x+θ y -y ) dx z -∞ e -1 2 βα d (x-α -1 d y) 2 -βg(x) dx µ β j (-∞, z + θ y -y ]|y -µ β j (-∞, z]|y = 1 µ β j (-∞, z]|y z -∞ e -β(g(x+θ y -y )-g(x)) µ β j (dx|y) - ∞ -∞
e -β(g(x+θ y -y )-g(x)) µ β j (dx|y). (6.13)

Note that x → g(x + θ) -g(x), θ > 0 is non-decreasing since g is convex. By multiplying the right-hand side of (6.13) by (-1) then applying Lemma 6.8 with f (x) = -e -β[g(x+θ y -y )-g(x)] and ν = µ β j (• |y), we conclude that (6.13) is non-negative. Therefore, (6.12) follows.

6.2.2

The case of n-dimensional spins. Proposition 6.9 For any integer n > 1, let L ∈ M n (R) be a non-negative symmetric matrix. Consider the following formal Hamiltonians with nearest-neighbour interactions defined on (R n ) Z d , which are a perturbations of (6.1) given by

Hcla n (x) := j∈Z d 1 2 α x j 2 + n r=1 g r (x j,r ) - j∈Z d l∈N1(j)
x j , Lx l . (6.14)

Inserting (6.16) into the right-hand side of (6.15) and letting δ → 0, we get,

ρ W µ β,(n) j (• |y), µ β,(n) j (• |y ) ≤ 1 α L(y -y ) ≤ 1 α L l∈N1(j) y l -y l ,
and the Proposition follows from (3.14). To prove (6.16), it is enough to show that sup

(xr,x r )∈(zr,m r -1,zr,mr ]×(z r,mr -1 ,z r,mr ] |x r -x r | ≤ κ n δ 2 + 1 α |(L(y -y)) r |, r = 1, . . . , n.
Since this is now similar to the case of 1-dimensional spins, it suffices to repeat the arguments used to prove (6.11) in the proof of Proposition 6.5.

Remark 6.11 Some translation-invariant Hamiltonians with infinite-range pair-interactions are considered in [START_REF] Lebowitz | Statistical mechanics of systems of unbounded spins[END_REF][START_REF] Cassandro | Existence and uniqueness of DLR measures for unbounded spin systems[END_REF][START_REF] Bellissard | Compactness and the maximal Gibbs state for random Gibbs fields on a lattice[END_REF]. A typical pair-interaction potential is of the form (6.5). In [START_REF] Lebowitz | Statistical mechanics of systems of unbounded spins[END_REF][START_REF] Cassandro | Existence and uniqueness of DLR measures for unbounded spin systems[END_REF][START_REF] Bellissard | Compactness and the maximal Gibbs state for random Gibbs fields on a lattice[END_REF], the self-interaction potentials diverge at least quadratically and the conditions set on the pairinteraction potentials assure the superstability of the Hamiltonians. For a wide class of boundary conditions, existence of 'superstable' limit Gibbs distributions (see [START_REF] Ruelle | Probability estimates for continuous spin systems[END_REF]) is proven in [START_REF] Lebowitz | Statistical mechanics of systems of unbounded spins[END_REF] (the state space is R n ) and existence of tempered limit Gibbs distributions is proven in [START_REF] Cassandro | Existence and uniqueness of DLR measures for unbounded spin systems[END_REF][START_REF] Bellissard | Compactness and the maximal Gibbs state for random Gibbs fields on a lattice[END_REF] (the state space is R). Conditions for uniqueness are also discussed in [START_REF] Lebowitz | Statistical mechanics of systems of unbounded spins[END_REF][START_REF] Cassandro | Existence and uniqueness of DLR measures for unbounded spin systems[END_REF][START_REF] Bellissard | Compactness and the maximal Gibbs state for random Gibbs fields on a lattice[END_REF]. In [START_REF] Cassandro | Existence and uniqueness of DLR measures for unbounded spin systems[END_REF], sufficient conditions are derived from Dobrushin's uniqueness theorem using an explicit expression for the Wasserstein distance between probability measures on R, see [

.

7 Proof of Theorem 2.1.

Some technical results.

We start with two lemmas: Lemma 7.1 Let X be a completely regular Hausdorff space. Let K ⊂ X be a non-empty compact set and O ⊂ X an open set such that K ⊂ O. Let (µ n ) n∈N ⊂ P(X ) be a sequence of probability measures converging weakly to µ ∈ P(X ). Then, given > 0, there exists an open set V ⊂ O such that K ⊂ V , and for all n large enough, µ n (V ) < µ(K) + .

Proof. Given 0 < δ < 1, we may replace O by an open set U such that K ⊂ U and µ(U \ K) < δ. By Urysohn's lemma, there exists a continuous function f :

X → [0, 1] such that 1 K ≤ f ≤ 1 U .
Since (µ n ) n converges weakly to µ, then it follows that, for n sufficiently large,

X f (x)µ(dx) - X f (x)µ n (dx) < δ. Now define V := {x ∈ X : f (x) > 1 -δ}. Clearly, K ⊂ V ⊂ U .
From the above, we have, for n large enough,

µ n (V ) < 1 1 -δ X f (x)µ n (dx) < 1 1 -δ X f (x)µ(dx) + δ < 1 1 -δ (µ(K) + 2δ),
where we used that µ(U ) < µ(K) + δ. Set = 3δ/(1 -δ) and the lemma follows.

We recall the following well-known result Lemma 7.2 Let X be a completely regular Hausdorff space. Let (µ n ) n∈N ⊂ P(X ) be a sequence of probability measures converging weakly to µ ∈ P(X ). Then, for all open sets O ⊂ X ,

lim inf n→∞ µ n (O) ≥ µ(O).
view of the definition (2.1), there exists a sequence of probability measures σ n ∈ Ξ X (µ n , µ) on X × X such that for all n large enough,

X ×X ρ(x, y)σ n (dx, dy) < ρ W (µ n , µ) + δ 2 2 . (7.5) 
Let ∆ δ := {(x, y) ∈ X × X : ρ(x, y) < δ} be a δ-neighbourhood of the diagonal. Then (7.5) implies that, for all n large enough,

σ n (∆ c δ ) < 1 δ ∆ c δ ρ(x, y)σ n (dx, dy) < 1 δ ρ W (µ n , µ) + δ 2 2 . (7.6) 
Since by assumption ρ W (µ n , µ) → 0, (7.6) yields σ n (∆ c δ ) < δ for n large enough. This implies

X f (x)µ n (dx) - X f (x)µ(dx) ≤ ∆ δ ∪∆ c δ |f (x) -f (y)|σ n (dx, dy) < 2 + 2 f ∞ δ. (7.7) 
It remains to replace δ above by min(δ, 4 f ∞ ). As (7.7) holds for all bounded uniformly continuous functions f : X → R, the weak convergence follows, see, e.g., [START_REF] Billingsey | Convergence of Probability Measures[END_REF]Thm 2.1]. We now prove (ii). Fix x 0 ∈ X and 0 < < 1. By assumption, there exists a non-empty compact set K ⊂ X such that, for n sufficiently large,

K c ρ(x, x 0 )µ(dx) + K c ρ(x, x 0 )µ n (dx) < 6 .
We cover K with a number N of open balls B i ⊂ X of radius 0 < r < 1 to be chosen hereafter. Applying Lemma 7.4, given 0 < κ < 1, there exist N open sets V 1 , . . . , V N with V i ⊂ B i and also N compact sets K 1 , . . . , K N which are defined in (7.2) such that, setting

A 1 :=V 1 , A i :=V i \ i-1 j=1 V j , i = 2, . . . , N, (7.8) 
we have K i ⊂ A i ⊂ V i , i = 1, . . . , N and, for all n sufficiently large, either µ(K i ) = 0 and

µ n (A i ) ≤ µ n (V i ) < κ N , or µ(K i ) > 0 and µ n (A i ) ≤ µ n (V i ) < (1 + κ)µ(K i ), i = 1, . . . , N. (7.9) 
Next, set

I := {i ∈ {1, . . . , N } : µ(K i ) > 0} and define a measure ν ∈ M + (X ) by ν(E) := µ(E) -(1 -κ) i∈I µ(E ∩ A i ), E ∈ B(X ), (7.10) 
and, also, introduce the sequence of measures (ν n ) n∈N by

ν n (E) := µ n (E) -(1 -κ) i∈I µ(A i ) µ n (E ∩ A i ) µ n (A i ) , E ∈ B(X ). (7.11) 
Note that ν n ∈ M + (X ) for all n large enough since for i ∈ I,

µ n (A i ) = µ n (V i ) -µ n   V i ∩ i-1 j=1 V j   > µ(V i ) - 1 2 κµ(K i ) - 1 2 κµ(K i ) > (1 -κ)µ(A i ).
Here, we used Lemma 7.2 combined with the upper bound (7.3). In view of (7.10) and (7.11), define for all n large enough σ n ∈ P(X × X ) as follows

σ n (E × F ) := (1 -κ) i∈I µ(E ∩ A i ) µ n (F ∩ A i ) µ n (A i ) + ν(E)ν n (F ) ν(X ) , E, F ∈ B(X ).
It follows from the fact

ν(X ) = 1 -(1 -κ) i∈I µ(A i ) = ν n (X ),
that we have σ n ∈ Ξ X (µ, µ n ). Moreover, we have,

X ×X ρ(x, y)σ n (dx, dy) = (1 -κ) i∈I 1 µ n (A i ) Ai×Ai ρ(x, y)µ(dx)µ n (dy) + 1 ν(X ) X ×X ρ(x, y)ν(dx)ν n (dy).
To conclude the proof of the proposition, it suffices to show that, for all n large enough,

X ×X ρ(x, y)σ n (dx, dy) < . (7.12) 
On the one hand, since diam

(A i ) ≤ diam(B i ) = 2r, we have, (1 -κ) i∈I 1 µ n (A i ) Ai×Ai ρ(x, y)µ(dx)µ n (dy) ≤ 2r(1 -κ) i∈I µ(A i ) ≤ 2r.
On the other hand, by the triangle inequality, we have, for all n large enough,

1 ν(X ) X ×X ρ(x, y)ν(dx)ν n (dy) ≤ X ρ(x, x 0 )ν(dx) + X ρ(x 0 , y)ν n (dy). (7.13) 
In view of (7.10), the first term in the right-hand side of (7.13) can be rewritten as

X ρ(x, x 0 )ν(dx) = X \∪ i∈I Ai ρ(x, x 0 )µ(dx) + κ i∈I Ai ρ(x, x 0 )µ(dx),
and can be bounded as follows

X ρ(x, x 0 )ν(dx) ≤ X \∪ i∈I Ai ρ(x, x 0 )µ(dx) + κ (∪ i∈I Ai)\K ρ(x, x 0 )µ(dx) + i∈I Ai∩K ρ(x, x 0 )µ(dx) ≤ K c ρ(x, x 0 )µ(dx) + κ K ρ(x, x 0 )µ(dx).
For the second term in the right-hand side of (7.13), in view of the definition (7.11), we have,

X ρ(x, x 0 )ν n (dx) ≤ X ρ(x, x 0 )µ n (dx) - 1 -κ 1 + κ i∈I Ai ρ(x, x 0 )µ n (dx),
where we used the bound in (7.9). It then follows that,

X ρ(x, x 0 )ν n (dx) ≤ X \∪ i∈I Ai ρ(x, x 0 )µ n (dx) + 2κ (∪ i∈I Ai)\K ρ(x, x 0 )µ n (dx) + i∈I Ai∩K ρ(x, x 0 )µ n (dx) .
Gathering the above estimates together, we eventually get, for all n large enough,

X ×X ρ(x, y)σ n (dx, dy) < 2r + 2 K c ρ(x, x 0 )µ(dx) + K c ρ(x, x 0 )µ n (dx) + 3κ sup x∈K ρ(x, x 0 ).
(7.12) follows by taking r = 1 6 and κ =

1 9 max(1,sup x∈K ρ(x, x0 
)) .

Proof of Theorem 2.1 (i).

Non-degeneracy. Let us show that ρ W (µ, ν) = 0 =⇒ µ = ν (the converse is obvious). Pick > 0. From (2.1), there exists a probability measure σ ∈ Ξ X (µ, ν) such that, X ×X ρ(x, y)σ(dx, dy) < .

(

Denote ∆ √ := {(x, y) ∈ X × X : ρ(x, y) < √ }. From (7.14), we have,

σ(∆ c √ ) < 1 √ ∆ c √ ρ(x, y)σ(dx, dy) < √ . (7.15) 
Suppose now that µ = ν. Then there exists a non-empty compact set K ⊂ X such that µ(K) > ν(K) (without loss of generality). Setting

δ := 1 2 (µ(K) -ν(K)) > 0, there exists an open set O ⊂ X such that K ⊂ O and µ(K) > ν(O) + δ. We may assume that O is the δ-neighbourhood of K. Indeed, if K δ ⊂ O then µ(K) > ν(K δ ) + δ, and if ρ(K, O c ) < δ, then we can replace δ by ρ(K, O c ). For the set (K × O c ) ⊂ ∆ c δ , we have, σ(K × O c ) = σ(K × X ) -σ(K × O) > σ(K × X ) -σ(X × O) = µ(K) -ν(O) > δ.
It follows that σ(∆ c δ ) > δ which contradicts (7.15) if we set δ = √ . Triangle inequality. Let µ l ∈ P 1 (X ), l = 1, 2, 3. We need to show that

ρ W (µ 1 , µ 3 ) ≤ ρ W (µ 1 , µ 2 ) + ρ W (µ 2 , µ 3 ). ( 7.16) 
Given > 0, there exist σ 1,2 ∈ Ξ X (µ 1 , µ 2 ) and σ 2,3 ∈ Ξ X (µ 2 , µ 3 ) such that, X ×X ρ(x l , x l+1 )σ l,l+1 (dx l , dx l+1 ) < ρ W (µ l , µ l+1 ) + , l = 1, 2. (7.17)

Denote by µ 1,2 the conditional probability measure defined by (see Section 8.1)

σ 1,2 (A 1 × A 2 ) = A2 µ 1,2 (A 1 |x 2 )µ 2 (dx 2 ), A 1 , A 2 ∈ B(X ). (7.18) 
Subsequently, we put

σ 1,3 (A 1 × A 3 ) := X ×A3 µ 1,2 (A 1 |x 2 )σ 2,3 (dx 2 , dx 3 ), A 1 , A 3 ∈ B(X ). (7.19)
Using the triangle inequality and the definition in (7.19), we have,

X ×X ρ(x 1 , x 3 )σ 1,3 (dx 1 , dx 3 ) ≤ X ×X ×X ρ(x 1 , x 2 )µ 1,2 (dx 1 |x 2 )σ 2,3 (dx 2 , dx 3 ) + X ×X ρ(x 2 , x 3 )µ 1,2 (X |x 2 )σ 2,3 (dx 2 , dx 3 ) = X ×X ρ(x 1 , x 2 )µ 1,2 (dx 1 |x 2 )µ 2 (dx 2 ) + X ×X ρ(x 2 , x 3 )σ 2,3 (dx 2 , dx 3 )
Using (7.18) in the first term of the above right-hand side, this yields

X ×X ρ(x 1 , x 3 )σ 1,3 (dx 1 , dx 3 ) ≤ X ×X ρ(x 1 , x 2 )σ 1,2 (dx 1 , dx 2 ) + X ×X ρ(x 2 , x 3 )σ 2,3 (dx 2 , dx 3 ).
To obtain (7.16), it remains to use (7.17) and take the limit → 0.

that 1 2 i 0 -3 < η. We can cover K i0 by finitely many balls of radius η 2 denoted by B (l) η 2

, l = 1, . . . , M .

Since K j ⊂ O j-1 , dist(K j , K j-1 ) < 1 2 j-1 . It follows by induction that dist(K j , K i ) < 1 2 i-1 for all j > i. Now, if x ∈ K, there exists j ≥ i 0 such that dist(x , K j ) < η 4 and hence dist(x , K i0 ) <

η 4 + 1 2 i 0 -1 < η 2 .
Therefore, there exists x ∈ K i0 with ρ(x, x ) < η 2 , and there is a ball B (l0)

η 2 with x ∈ B (l0) η 2 so that x ∈ B (l0) 
η . We conclude that K is covered by the balls B (l)

η with double the radius. This means that K is totally bounded, and since X is complete, K is compact.

Consider now the sequence of probability measures (µ ni ) i∈N . From the foregoing, we have found a compact set K such that µ ni (K c ) < for all i ∈ N. By Prokhorov's theorem, see e.g. [10, Sec. IX.5.5], there exists a subsequence (µ m k ) k∈N , with µ m k = µ ni k converging weakly to a probability measure µ ∈ P(X ). Let us show that µ ∈ P 1 (X ). Note that µ m k ∈ P 1 (X ) for all k ∈ N by assumption. Further, since ρ W (µ m , µ m1 ) <

δ 2 1
2 for all m ≥ m 1 ≥ n 1 , by mimicking the arguments leading to (7.21), there exists, for each m, a coupling σ m,m1 ∈ Ξ X (µ m , µ m1 ) such that,

X ×X ρ(x, y)σ m,m1 (dx, dy) ≤ δ 2 1 < 1.
As a result, given x 0 ∈ X , there exists a constant c m1 > 0 such that, for

k ∈ N, k ≥ 2, X ρ(x, x 0 )µ m k (dx) ≤ X ×X ρ(x, y)σ m k ,m1 (dx, dy) + X ρ(y, x 0 )µ m1 (dy) < 1 + c m1 . (7.24) 
This means, in particular, that the left-hand side of (7.24) is uniformly bounded for all k ∈ N. By virtue of the monotone convergence theorem, we conclude that X ρ(x, x 0 )µ(dx) ≤ 1 + c m1 , and hence µ ∈ P 1 (X ). We can now apply Proposition 7.5 (ii) giving that ρ W (µ m k , µ) → 0 when k → ∞. Using the triangle inequality, we conclude that ρ W (µ m , µ) → 0 when m → ∞.

8 Appendix.

8.1 Disintegration theorem.

We recall the disintegration theorem for the existence of conditional probability measures, see, e.g., [START_REF] Bourbaki | Intégration Chapitre IX, Élément de mathématique[END_REF]Sec. IX.2.7]. Given a topological space (X , τ ), let B(X ) denote the Borel σ-algebra of subsets of X . Theorem 8.1 Let X be a completely regular Hausdorff space and assume that the compact subspaces of X are metrizable. Let Y be a Hausdorff space. Let µ ∈ P(X ) be a Radon probability measure and π : X → Y be a µ-measurable function. Let ν ∈ P(Y) be the image measure ν = π * (µ) = µ • π -1 . Then there exists a map µ y : Y → P(X ), y → µ y such that for all A ∈ B(Y) and all bounded Borel-measurable functions f : X → R,

A X f (x)µ y (dx)ν(dy) = π -1 (A) f (x)µ(dx). (8.1)
The above map is a.e. unique and µ y is concentrated on π -1 ({y}) for a.e. y. One usually writes µ y (• ) = µ(• |y). Further, if f ∈ L 1 (µ) then f ∈ L 1 (µ y ) for a.e. y, and the identity (8.1) still holds. The special case where X is a product space is particularly important. Considering X = X 1 ×X 2 and considering the projection map onto one of the factors, for instance π 2 : X → X 2 , all spaces π -1 2 ({y}) are equivalent to X 1 . Given µ ∈ P(X ) a Radon probability measure, we can thus define µ y (A) := µ y (A × {y}) for any A ∈ B(X 1 ). In the case of probability measures, we have in fact:

Corollary 8.3 Let X = X 1 × X 2 be a product of completely regular Hausdorff spaces. Assume in addition that the compact subspaces of X 1 are metrizable. Let µ ∈ P(X ) be a Radon probability measure and π 2 : X → X 2 be the projection map. Let ν ∈ P(X 2 ) be the image measure ν = µ•π -1 2 . Then there exists a map µ y : X 2 → P(X 1 ), y → µ y such that for all B ∈ B(X 2 ) and all Borelmeasurable functions f ∈ L 1 (µ), (8.

2)

The probability measure µ y is called the conditional measure on X 1 and is usually denoted µ(• |y), i.e. µ(A|y) is the probability of A ∈ B(X 1 ) given that π 2 (x) = y.

8.2

The quantum harmonic crystal model revisited.

In this section, we give an application of Dobrushin's uniqueness theorem to the quantum harmonic crystal model. In this lattice model, we associate with each site j ∈ Z d a one-particle Hilbert space L 2 (R) = L 2 (R, dx j ) where dx j is the Lebesgue measure on R.

Notations. Hereafter, we identify τ -periodic functions on R with functions on the 1-dimensional torus T τ := R/(τ Z) which we define by identifying points in R that differ by τ n for some n ∈ Z. The state space is the Banach space Ω β := C(T β ) of β-periodic continuous parametrised paths, endowed with the supremum norm • ∞ and equipped with the Borel σ-algebra B(Ω β ) of its subsets. We introduce the real Hilbert space L 2 (T β ). The standard inner product and norm are denoted by • , • β and • 2 respectively. By B(L 2 (T β )) we denote the Borel σ-algebra of subsets of L 2 (T β ). Note that Ω β ∈ B(L 2 (T β )) and B(Ω β ) = B(L 2 (T β )) ∩ Ω β . We refer to the beginning of Sec. 3.1 for notations related to the configuration spaces.

The quantum harmonic crystal is described by the formal translation-invariant Hamiltonian

H qua := - j∈Z d 1 2 d 2 dx 2 j + j∈Z d 1 2 αx 2 j + j∈Z d l∈N1(j) 1 2 (x j -x l ) 2 , (8.3) 
for some α > 0. (8.3) may be represented by the family {H Λ } Λ∈S of local Hamiltonians

H Λ := - j∈Λ 1 2 
d 2 dx 2 j + j∈Λ 1 2 αx 2 j + j∈Λ l∈N1(j)∩Λ 1 2 (x j -x l ) 2 . (8.4)
By standard arguments, (8.4) defines a family of bounded below essentially self-adjoint operators acting in L 2 (R |Λ| ) with discrete spectrum. The definition (8.4) corresponds to the free (or zero) boundary conditions. The system described by the family {H Λ } Λ∈S of local Schrödinger operators can be equivalently described by the family of local path measures {µ β Λ } Λ∈S defined as follows. The semi-group {exp(-τ H Λ ), τ > 0} associated with H Λ is positivity preserving and of trace class, i.e. Tr[exp(-τ H Λ )] < ∞ for all τ > 0. Thus, for every β > 0, the semi-group exp(-βH Λ ) generates a stationary β-periodic Markov process, see, e.g., [START_REF] Albeverio | Homogeneous random fields and statistical mechanics[END_REF]Sec. 3]. This stochastic process has a canonical realisation on (Ω Λ β , B(Ω Λ β )) described by the measure µ β Λ ∈ P(Ω Λ β ), the marginal distributions of which are given by the integral kernels of the operator exp(-τ H Λ ), τ ∈ [0, β]. By means of the Feynman-Kac formula, the measure µ β Λ on (Ω Λ β , B(Ω Λ β )) is then defined as

µ β Λ (dω Λ ) := 1 Z β Λ exp   - j∈Λ 1 2 α β 0 ω j (τ ) 2 dτ   × exp   - j∈Λ l∈N1(j)∩Λ 1 2 β 0 (ω j (τ ) -ω l (τ )) 2 dτ   j∈Λ µ β 0 (dω j ), (8.5) 
where Z β Λ is a normalisation constant, and µ β 0 denotes the Brownian bridge measure on (Ω β , B(Ω β )) defined by means of the conditional Wiener measures with the condition ω j (0) = ω j (β), see, e.g., [START_REF] Bratelli | Operator Algebras and Quantum Statistical Mechanics 2[END_REF]Sec. 6.3.2]. Thus defined, {µ β Λ } Λ∈S forms the family of local (Euclidean) Gibbs distributions with zero boundary conditions.

Next, define the embedding ι :

Ω β → L 2 (T β ), ι(f ) = f . Since ι(f ) 2 ≤ β f ∞ , then ι is a continuous injection. µ β 0 • ι -1 is the image measure of µ β 0 on L 2 (T β ) and µ β 0 • ι -1 (Ω β ) = 1.
The extension of the family of local Gibbs distributions to ((L 2 (T β )) Λ , B((L 2 (T β )) Λ )) is then defined similarly to (8.5) but with µ β 0 • ι -1 . Unless otherwise specified, we will not hereafter distinguish in our notation measures on (Ω Λ β , B(Ω Λ β )) from their extensions to ((L 2 (T β )) Λ , B((L 2 (T β )) Λ )). For the quantum harmonic crystal model we have the well-known result Proposition 8.4 Consider the following formal energy functional (Hamiltonian) with nearestneighbour interactions defined on (L 2 (T β )) Z d as

h qua (ω) := j∈Z d 1 2 α β 0 ω j (τ ) 2 dτ + j∈Z d l∈N1(j) 1 2 β 0 (ω j (τ ) -ω l (τ )) 2 dτ. (8.6) 
Then, provided that α > 0, there exists, for all β > 0, a unique limit (Euclidean) Gibbs distribution in P((L 2 (T β )) Z d ) associated with (8.6).

Proof of Proposition 8.4. Fix j ∈ Z and η, η ∈ (L 2 (T β )) N1(j) distinct. Set η := l∈N1(j) η l ∈ L 2 (T β ) and η := l∈N1(j) η l ∈ L 2 (T β ). In view of (8.6), the 1-point Gibbs distribution reads

µ β j (dω|η) := 1 Z β j (η) exp - 1 2 α d ω 2 2 + ω, η β µ β 0 (dω),
where we set α d := α + 2d, and with

Z β j (η) := L 2 (T β ) exp - 1 2 α d ω 2 2 + ω, η β µ β 0 (dω).
We now construct a coupling in P(L 2 (T β ) × L 2 (T β )) such that the marginals coincide with the 1-point Gibbs distribution above with the different boundary conditions, see (8.10) and (8.11) below. To do so, introduce the 1-point correlation function defined by

ρ β j (f |η) := L 2 (T β ) exp (i f, ω β ) µ β j (dω|η), f ∈ L 2 (T β ). (8.7)
Define the Fourier coefficients of f as follows

f := 1 β f, exp - 2iπ β • β , ∈ Z. (8.8) 
We claim that, under the above conditions, (8.7) can be rewritten as

ρ β j (f |η) = exp ∈Z 1 (2πβ -1 ) 2 + α d - 1 2 | f | 2 + i ( f ) (η ) + ( f ) (η ) . (8.9)
For reader's convenience, the proof of (8.9) is deferred to Sec. 8.3.2. Note that (8.9) is nothing but the characteristic function of a product of shifted Gaussian measures on R 2 when = 0 and R when = 0, centered at c (β)( (η ), (η )) and at c 0 (β)η 0 respectively, and with covariance

c (β) := 1 (2πβ -1 ) 2 + α d .
More precisely, µ β j (• |η) = ∈Z γ β , where, when = 0 and = 0 respectively,

γ β 0 (dx) := exp - 1 2c 0 (β) (x -c 0 (β)η 0 ) 2 dx 2πc 0 (β) ; γ β (dx, dy) := exp - 1 2c (β) (x -c (β) (η )) 2 dx 2πc (β) × exp - 1 2c (β) (y -c (β) (η )) 2 dy 2πc (β) .
Note that x and y above denote respectively the real and imaginary parts of ω . Subsequently, we define the coupling σ β j;η,η ∈ P(L 2 (T β ) × L 2 (T β )) as

σ β j;η,η (dω, dω ) := ∈Z γ β (dω )δ (ω -ω -c l (β)(η -η )) , (8.10) 
for any A, B ∈ B(L 2 (T β )). Here, δ denotes the Dirac measure. We can readily check that

σ β j;η,η (A × L 2 (T β )) = µ β j (A|η) and σ β j;η,η (L 2 (T β ) × B) = µ β j (B|η ). ( 8 

.11)

By Cauchy-Schwarz inequality, we have

L 2 (T β )×L 2 (T β ) ω -ω 2 dσ β j;η,η (dω, dω ) ≤ L 2 (T β )×L 2 (T β ) ω -ω 2 2 dσ β j;η,η (dω, dω ) = ∈Z c (β) 2 |η -η | 2 .
To derive the right-hand side, we used Parseval's identity followed by a direct computation from (8.10) and the definition of the γ β 's. Finally, Parseval's identity yields

ρ W µ β j (• |η), µ β j (• |η ) ≤ c 0 (β) η -η 2 ≤ 1 α d l∈N1(j) η l -η l 2 ,
and the Proposition follows from the condition in (3.14).

Remark 8.5 In lattice models of quantum anharmonic crystals, see, e.g., [START_REF] Albeverio | Euclidean Gibbs states of quantum lattice systems[END_REF][START_REF] Albeverio | Euclidean Gibbs measures on loop lattices: existence and a priori estimates[END_REF][START_REF] Kozitsky | Euclidean Gibbs measures of quantum anharmonic oscillators[END_REF] and references therein, the whole system is formally described by 

Hqua := - j∈Z d 1 2 d 2 dx 2 j + j∈Z d 1 2 αx 2 j + j∈Z d g(x j ) + j∈Z d l∈N1(j) 1 2 (x j -x l ) 2 . ( 8 
) := 1 Z β Λ exp[- j∈Λ ( 1 2 α β 0 ω j (τ ) 2 dτ + β 0 g(ω j (τ ))dτ )] × exp[- j∈Λ l∈N1(j)∩Λ 1 2 β 0 (ω j (τ ) -ω l (τ )) 2 dτ ] j∈Λ µ β 0 (dω j ),
where µ β 0 the Brownian bridge measure. Thus defined, {μ β Λ } Λ∈S on ((L 2 (T β )) Λ , B((L 2 (T β )) Λ )) forms the actual family of local (Euclidean) Gibbs distributions with zero boundary conditions. We refer to [START_REF] Albeverio | Uniqueness of Gibbs states for quantum lattice systems with non-local interaction[END_REF][START_REF] Albeverio | Dobrushin's uniqueness for quantum lattice systems with nonlocal interaction[END_REF] and reference therein for the uniqueness problem in some lattice models of quantum anharmonic crystals with translation-invariant Hamiltonians of type (8.12).

Gaussian correlations functions.

In this section, we give a direct proof of the exponential decay of correlation functions for the Gaussian free-field model with 1-dimensional spins and the quantum harmonic crystal model in the high temperature regime. We refer to [START_REF] Gross | Decay of correlations in classical lattice models at high temperature[END_REF][START_REF] Künsch | Decay of correlations under Dobrushin's uniqueness condition and its applications[END_REF] and references therein for further related results.

The classical case.

For the notations used in this subsection, we refer to Sec. 6. Let ∆, Λ ∈ S such that ∆ ⊂ Λ. Given β > 0 and t ∆ ∈ R ∆ , we define the correlation functions by

ρ β ∆,Λ (t ∆ ) := R Λ exp   iβ j∈∆ t j x j   µ β Λ (dx Λ ). ( 8 

.14)

The local Gibbs distribution in P(R Λ ) for the Gaussian free-field model with 1-dimensional spin generated by the Hamiltonian in (6.4) reads

µ β Λ (dx Λ ) := 1 Z β Λ exp   -β   j∈Λ 1 2 αx 2 j + j∈Λ l∈N1(j)∩Λ 1 2 (x j -x l ) 2     j∈Λ dx j ,
where α > 0 and Z β Λ is the corresponding normalisation constant. Proposition 8.6 For every β 0 > 0 there exist two positive constants c = c(β 0 , α, d) and C = C(β 0 , α, d) such that, for any ∆, Λ, Λ ∈ S such that ∆ ⊂ Λ ⊂ Λ and for any 0 < β ≤ β 0 ,

ρ β ∆,Λ -ρ β ∆,Λ := sup t ∆ ∈R ∆ : t ∆ =1 ρ β ∆,Λ (t ∆ ) -ρ β ∆,Λ (t ∆ ) ≤ Ce -cβ dist(∆,∂Λ) . ( 8 

.15)

Remark 8.7 The above result implies in particular that the measures µ β Λ converge to a measure µ β as Λ tends to Z d .

Proof. Introduce the matrix M Λ with elements (M j,l ) j,l∈Λ defined as

M j,l :=    |{j ∈ Λ : |j -j | = 1}|, if j = l; -1 if |j -l| = 1; 0 otherwise. (8.16) 
Then we can write

Z β Λ = R Λ exp -β 1 2 x Λ , (αI Λ + M Λ )x Λ j∈Λ dx j ,
and,

Z β Λ ρ β ∆,Λ (t ∆ ) = R Λ exp -β 1 2 x Λ , (αI Λ + M Λ )x Λ -i tΛ , x Λ j∈Λ dx j ,
where tj := t j if j ∈ ∆, tj := 0 if j ∈ Λ \ ∆. Now, the corresponding Gaussian integrals can be computed using the well-known formula:

R m exp - 1 2 x, M x + b, x m k=1 dx k = (2π) m 2 det(M ) exp 1 2 b, M -1 b , (8.17) 
where x ∈ R m , b ∈ R m and M ∈ M m (R) is an invertible matrix. It follows from (8.17) that (below the subscript ∆ indicates the restriction to ∆),

ρ β ∆,Λ (t ∆ ) = exp -β 1 2 t ∆ , (αI Λ + M Λ ) -1 ∆ t ∆ . (8.18) 
To prove (8.15), it thus suffices to prove that

(αI Λ + M Λ ) -1 ∆ -(αI Λ + M Λ ) -1 ∆ ≤ C e -c dist(∆,∂Λ) , (8.19) 
for some constant C > 0. Set α d := α + 2d and R Λ := 2dI Λ -M Λ . We then have,

(αI Λ + M Λ ) -1 = (α d I Λ -R Λ ) -1 = α -1 d ∞ k=0 α -k d (R Λ ) k ,
and the above series converges since R Λ ≤ 2d < α d . For (αI Λ + M Λ ) -1 , a similar expansion obviously holds true. We now claim that (R Λ ) k ∆ = (R Λ ) k ∆ if k ≤ dist(∆, ∂Λ). We proceed by induction to show, in fact, that (R Λ ) k j,l = (R Λ ) k j,l if j, l ∈ Λ and k ≤ dist({j, l}, ∂Λ). For k = 1, clearly (R Λ ) j,l = (R Λ ) j,l if {j, l} ⊂ Λ. For k ≥ 1 and j, l ∈ Λ with dist({j, l}, ∂Λ) ≥ k + 1, (R Λ ) k+1 j,l = j ∈Λ (R Λ ) k j,j (R Λ ) j ,l .

The only non-zero terms are those with |j -l| ≤ 1. Then j ∈ Λ and dist(j , ∂Λ) ≥ dist(l, ∂Λ) -|j -l| ≥ k, so (R Λ ) k j,j = (R Λ ) k j,j . Therefore, (R Λ ) k+1 j,l = j ∈Λ (R Λ ) k j,j (R Λ ) j ,l = j ∈Λ (R Λ ) k j,j (R Λ ) j ,l = (R Λ ) k+1 j,l .

The proposition eventually follows from the following identity

(αI Λ + M Λ ) -1 ∆ -(αI Λ + M Λ ) -1 ∆ = α -1 d ∞ k=dist(∆,∂Λ)+1 α -k d (R Λ ) k ∆ -(R Λ ) k ∆ .
Remark 8.8 By the same arguments, there exists a constant c > 0 such that, for any Λ ∈ S, |(αI Λ + M Λ ) -1 j,l | ≤ e -c|j-l| .

Remark 8.9 The result of Proposition 8.6 can be generalized to higher spin dimensions.

The quantum case.

To extend the above arguments to the quantum harmonic crystal model, an expression for the correlation functions analogous to (8.18) is derived. For the notations used in this section, we refer to Sec. 8.2. Let ∆, Λ ∈ S such that ∆ ⊂ Λ. Given β > 0 and a family of functions f ∆ := (f j ) j∈∆ with f j ∈ L2 (T β ), the correlation functions are defined by Here is the counterpart of (8.18) in the quantum case Lemma 8.10 Let M Λ be the matrix defined through (8.16). Then, under the above conditions,

ρ β Λ (f ∆ ) = exp - 1 2 β ∈Z ( f ∆ ) , (2πβ -1 ) 2 + α)I Λ + M Λ -1 ∆ ( f ∆ ) , (8.22) 
where the subscript ∆ for the inverse matrix stands for its restriction to ∆.

To prove Lemma 8.10, we need the following technical lemma It remains to use that lim n→∞ nϑ n = lim n→∞ n • arcosh(1 + γ 2 2n 2 ) = γ, together with the identity sinh( x2 ) = sign(x) cosh(x)-1

Proof of Lemma 8.10. Let g Λ := (g j ) j∈Λ with g j := f j if j ∈ ∆ and g j := 0 otherwise. Given n ∈ N, let g Λ,k := (g j,k ) j∈Λ with g j,k := g j ( β n k) ∀k ≤ n (hereafter, we use that f j (0) = f j (β)). Introduce the sequence of functions (W β, 

1 2 u 0 Λ , β n (αI Λ + M Λ ) u 0 Λ exp iζ β n (g Λ ) 0 , u 0 Λ   ×   R n-1 2 |Λ|   j∈Λ n-1 2 =1 du   n-1 2 =1 exp - 1 2 u Λ , β n n β λ (n) + α I Λ + M Λ u Λ × exp iζ 1 √ 2 β n (g Λ ) + (g Λ ) n-, u Λ ×   R n-1 2 |Λ|   j∈Λ n-1 2 =1 dv   n-1 2 =1 exp - 1 2 v Λ , β n n β λ (n) + α I Λ + M Λ v Λ × exp ζ 1 √ 2 β n (g Λ ) -(g Λ ) n-, v Λ ,
where u Λ := (u ) j∈Λ , v Λ := (v ) j∈Λ and (g Λ ) := (g j, ) j∈Λ with gj, as in (8.34). By using (8.17) for each one of the three integrals, and then rearranging the gj, 's, we are left with ;

Theorem 5 .

 5 1 does not apply to the Potts model or the Ising model.

  |µ({s}) -µ ({s})| = |µ({+}) -µ ({+})

  0 (s)) -tanh(βS 0 (s ))| .(5.22) 

Remark 8 . 2

 82 Taking the indicator function f = 1 E , E ⊆ X and choosing A = Y in (8.1) yields Y µ y (E)ν(dy) = µ(E).

f

  (x, y)dµ y (dx) = X1×B f (x, y)dµ(dx, dy).

  ρ β Λ (f ∆ ) := (L 2 (T β )) Λ   j∈∆ exp (i f j , ω j β )   µ β Λ (dω Λ ). (8.20)Remember that, for any β > 0, the local Gibbs distribution µ β Λ in P((L 2 (T β ) Λ )) readsµ β Λ (dω Λ ) j ),where α > 0, Z β Λ is the normalisation constant and µ β 0 is the standard Brownian bridge measure. The Fourier coefficients of the f j 's are defined as fj, := 1 β f j , exp -

Lemma 8 . 11 √ x 2 - 1 ), x ≥ 1 . 2 = 2 (

 81121122 For any γ > 0, ϑ n := arcosh(1 + γ 2 2n 2 ). Recall that arcosh(x) = ln(x + mx) -cos(my), m ∈ N.Letting y = 0 and m = n in the above formula, we then obtain, cosh(nϑ n ) -1).

25 )

 25 ζ n ) n∈N , with W β,ζ n (• ) = W β n (• , (g Λ,k ) n k=1 , ζ) : R n|Λ| → C defined as ,k -x j,k-1 ) 2 + (x j,n -x j,1 ) k , x Λ,k.Below, we only consider the values ζ ∈ {0, 1}. By definition of Wiener measure, see[START_REF] Bratelli | Operator Algebras and Quantum Statistical Mechanics 2[END_REF] Sec. 6,k) n k=1 = Z β Λ , if ζ = 0; Z β Λ ρ β Λ (f ∆ ), if ζ = 1. (8.24)To investigate the limit n → ∞, we need a suitable rewriting. Define A n ∈ M n (R) as followsANote that, for any j ∈ Λ, we have,exp -n 2β n k=2 (x j,k -x j,k-1 ) 2 + (x j,n -x j,1 ) A n + β n αI n x j . Denoting x Λ := (x Λ,k ) n k=1 and g Λ := (g Λ,k) n k=1 , we actually have the compact rewritingW A ∈ M n|Λ| (R)is defined by the Kronecker sumA := I |Λ| ⊗ A n + β n αI |Λ| + M Λ ⊗ I n . (8.27)Note that M Λ is a symmetric positive definite matrix, see(8.16). As for A n , it is a symmetric circulant matrix. The latter can be diagonalised by the use of discrete Fourier transform. DefineU ,k := 1 √ n exp 2iπ n k , k = 1, . . . , n; = 0, . . . , n -1.Putting U := (U ,k=1 , . . . , U ,k=n ) 0≤ ≤n-1 , we have,U A n U * = diag λ ỹ + ỹn-) -iv (ỹ -ỹn-)) . (8.35) From (8.26) and (8.27) combined with (8.30)-(8.31) and (8.33)-(8.35), we obtain,

√ α + ς p n 2 ,

 2 + α I Λ + M Λ . (8.36)Let {ς p } |Λ| p=1 be the eigenvalues of M Λ counting with multiplicities. Note that ς p ≥ 0, and moreover, where we used(8.29) in the above r.h.s. In view of (8.24) along with (8.36),Lemma 8.11 yields 
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  5) are finite; (ii). The conditional probability measure induced by µ β on (X Λ , B(X Λ )) under the boundary condition η Λ c ∈ X Λ c coincides µ β Λ c -a.e. with the local Gibbs distribution in (3.4). The conditional probability measure in (ii) above is relative to the projection map Π Λ c , see Sec. 8.1. Denoting it by µ β

	Remark 3.3

  Assuming that g is continuous a.e. and bounded from below, (8.13) defines a family of bounded below essentially self-adjoint operators acting in L 2 (R |Λ| ) with compact resolvent. By mimicking the arguments above (8.5), { HΛ } Λ∈S can be equivalently described by the family {μ β Λ } Λ∈S of measures μβ Λ (dω Λ

	j∈Λ	1 2	d 2 dx 2 j	+	j∈Λ (	1 2	αx 2 j + g(x j )) +	j∈Λ l∈N1(j)∩Λ	1 2	(x

.12) (8.12) may be represented by the corresponding family { HΛ } Λ∈S of local Hamiltonians

HΛ :=j -x l ) 2 .

(8.13)

and the lemma follows.

Assume that g r : R → R, r = 1 . . . , n are convex functions. Then, provided that α > 2d L , there exists, for all β > 0, a unique limit Gibbs distribution in P((R n ) Z d ) associated with Hcla n .

Remark 6.10 The uniqueness result of Proposition 6.9 can be extended to long-range pair interaction potentials of the form (6.5), see Remark 6.4.

Proof of Proposition 6.9. Fix j ∈ Z d and y, y ∈ (R n ) N1(j) distinct. Set y := l∈N1(j) y l ∈ R n , y := l∈N1(j) y l ∈ R n . In view of (6.14), the corresponding 1-point Gibbs distribution reads µ β,(n) j

(A|y) := 1

Pick 0 < δ < 1. Let (z 1,m1 ) m1∈Z be the sequence z 1,m1 := m 1 κ n δ 2 with

Define the sequence (z 1,m1 ) m1∈Z such that

({z ∈ R n : z 1 ∈ (-∞, z 1,m1 ]}|y ).

Set A

m1 := {z ∈ R n : z 1 ∈ (z 1,m1-1 , z 1,m1 ]} and A

(1) m1 := {z ∈ R n : z 1 ∈ (z 1,m1-1 , z 1,m1 ]}. Then, for r = 2, . . . , n, let (z r,mr ) mr∈Z be the same increasing sequences z r,mr := m r κ n δ 2 . Define recursively the sets A 

.,mn |y)

. (6.15) We now claim that, under our conditions, the following holds sup

We continue with the following two technical lemmas Lemma 7.3 Let X be a completely regular Hausdorff space. Let K ⊂ X be a non-empty compact set and

. Let (µ n ) n∈N ⊂ P(X ) be a sequence of probability measures converging weakly to µ ∈ P(X ). Then, given 0 < δ < 1 and 0 < < 1,

, such that, for all n large enough, all the following hold

Similarly, there exists an open set V 2 ⊂ O 2 such that K 2 ⊂ V 2 and µ n (V 2 ) < δ for n large enough. So we can now assume that µ(K) > 0. If µ(K 1 ) = 0, then as above, there exists an open set

. This proves (i).

We point out that, if µ(K \ V 1 ) > 0, we may assume that, for n large enough, we also have,

By the same arguments used to prove (i), we may choose an open set V 2 ⊂ U 2 such that K 2 ⊂ V 2 and for n sufficiently large,

for n sufficiently large. It remains to use (7.1) noting that K 1 ⊂ U 1 .

Lemma 7.4 Let X be a completely regular Hausdorff space. Let K ⊂ X be a non-empty compact set and and, setting

. . , N , and, for all n sufficiently large, either µ(K i ) = 0 and µ n (V i ) < N , or µ(K i ) > 0 and µ n (V i ) < (1 + )µ(K i ) for all i = 1, . . . , N , and moreover,

Proof. We start by applying Lemma 7.3 to K (2) 

, and such that, for n large enough, denoting

. We now proceed by induction on N , assuming that the statement holds for N -1 and modifying the previous sets V i , i = 1, . . . , N -2 in the process (the sets V i , i = 1, . . . , j constructed at the induction step j are different from the sets V i , i = 1, . . . , j constructed at the step j + 1). Assume thus that we have constructed

and such that, for n large enough, either µ(K (N -1) ) = 0 and µ n (U 1 ) < N or µ(K (N -1) ) > 0 and µ n (U 1 ) < (1 + )µ(K (N -1) ), and also, either µ(K \ U 1 ) = 0 and

and

By construction of the sets V i , we have

. This proves the lemma.

Equivalence of weak convergence and convergence in Wasserstein metric.

The following Proposition contains the key-results for the proof of Theorem 2.1 (ii).

Proposition 7.5 Let (X , ρ) be a metric space. Let µ ∈ P 1 (X ) and (µ n ) n∈N ⊂ P(X ) be a sequence of probability measures such that µ n ∈ P 1 (X ) for n large enough. (i). Suppose that ρ W (µ n , µ) → 0 when n → ∞. Then (µ n ) converges weakly to µ.

(ii). Suppose that (µ n ) converges weakly to µ. Further, assume that a Prokhorov-like condition holds, i.e. for every > 0, there exists a non-empty compact set K ⊂ X such that for all n large enough and for some x 0 ∈ X ,

Then ρ W (µ n , µ) → 0 when n → ∞.

Remark 7.6

The proof of Proposition 7.5 relies on Lemma 7.4 which holds for general completely regular Hausdorff spaces X . This enables the extension to uniform spaces, replacing the Wasserstein metric by a Wasserstein uniformity.

Proof. (i). Fix > 0. Let f : X → R be a bounded uniformly continuous function. By definition, there exists δ > 0 such that for every x, y ∈ X with ρ(x, y) < δ, |f (x) -f (y)| < 2 . Besides, in

Proof of Theorem 2.1 (ii).

Given a non-empty compact set Q and a real α > 0, in the following we denote

Let (µ n ) n∈N be a Cauchy sequence in P 1 (X ). This means that, given δ > 0, there exists N ∈ N such that ρ W (µ n , µ m ) < δ 2 2 for all n, m ≥ N . As a result, there exists a coupling σ n,m ∈ Ξ X (µ n , µ m ) for each n, m ≥ N such that,

By setting ∆ δ := {(x, y) ∈ X × X : ρ(x, y) < δ}, (7.21) implies that σ n,m (∆ c δ ) < δ, see (7.15). Further, for any uniformly continuous function f : X → R satisfying |f (x) -f (y)| < Cρ(x, y), (7.22) for some constant C > 0, we have, for all n, m ≥ N ,

Put O 0 := K 0, (see (7.20)) and introduce

where it is understood that f 0 = 1 on K 0 . Clearly, f 0 is uniformly continuous and satisfies (7.22) with C = 1 . It follows from (7.23) that, for all n ≥ n 0 ,

Since µ n0 (K 0 ) > 1 -2 , we find that µ n (O c 0 ) < 3 4 for all n ≥ n 0 . Next, we proceed by induction to construct a non-decreasing subsequence (n i ) i∈N and compact sets K i , i ∈ N such that, denoting O i := K i,2 -i (see (7.20)), we have, for all n ≥ n i ,

Suppose that we have found n i-1 ∈ N and we have constructed a compact set

) , and we put O i = K i,2 -i . Then, setting

it follows from (7.23) that, for all n ≥ n i ,

) to conclude this induction step. Define K := i∈N K i and let us show that K is compact. Fix 0 < η < 1 and let i 0 ∈ N such where the eigenvalues read and, in the case of = 0, we set

Note that, by writing ω n := 2π n , the matrix

, is orthogonal, and the inverse transformation is given by

For any x ∈ R n , set

Note that, in view of (8.30), we have the identities

From the above features, we get,

and by using (8.28) along with (8.32), and in view of (8.36) again along with (8.21), it remains to use the identity

to conclude the proof of the lemma.

We end this section with the proof of the identity in (8.9)

Proof of (8.9). We follow the strategy used in the above proof. By abuse of notation, we set

By definition of Wiener measures, see, e.g., [START_REF] Bratelli | Operator Algebras and Quantum Statistical Mechanics 2[END_REF]Sec. 6 

=1

exp -1 2

Next, we use (8.17). By noticing that (η ) = (η n-) and (η ) = -(η n-) (and similarly for the f s), we are eventually left with

In view of (8.38), (8.9) follows from (8.37) together with the identity

which is derived from Lemma 8.11 along with (8.21).