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Abstract.  The reinforcement efficiency on a composite depends on the effective transfer of the stress 12 

between matrix and fiber. This work presents an experimental and comparative study of fiber-matrix 13 

bond strength for fiber-matrix interface between glass fibers and carbon fibers added to the slag-based 14 

geopolymer matrix. This analysis was performed by pull-out test. A total of 18 tests have been 15 

conducted, three for each type of fiber at each embedded length of 10 mm, 20 mm and 30 mm. The 16 

critical embedded length and the maximum interfacial shear (bond) strength were analyzed, and SEM 17 

observations were carried out for the cross-section of each fiber to measure diameter and observe the 18 

interface. It was found that the greatest efficiency was obtained by reinforcing with the glass fibers, 19 

incorporated at 20 mm in the slag-based matrix.  20 
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1. Introduction 21 

The geopolymer began to be engendered in the 1970s by Davidovits, emerging as a new class of 22 

material derived from rocks and not from oil, as organic polymers [1]. It consists of inorganic 23 

polymers obtained by the alkaline activation of materials rich in silica (SiO2) and alumina (Al2O3) [2] 24 

and have similar physical and mechanical characteristics as Cement Portland (CP) [3]. CP is the most 25 

used binder to produce cement and mortar, and the second most used material in the world, behind 26 

only water [4]. But the production process classifies it as the third-largest source of anthropogenic 27 

emissions of carbon dioxide (CO2) [5]. In 2018, global process emissions reached 1.50 ± 0.12 Gt 28 

CO2, which corresponds to about 4% of emissions from fossil fuels and cumulative emissions from 29 

1928 to 2018 result in 38.3 ± 2.4 Gt CO2, from which 71% occurred after 1990 [5]. Thus, the need to 30 

find an alternative material for construction processes arises.  31 

Compared to CP, geopolymer emissions of CO2 are approximately 43% less. Previous studies on 32 

these materials show that values for compressive strength are comparable [6 - 9], with values 33 

depending on the precursor material and activator solution. Correia et al. [10] found that geopolymers 34 

maintain considerable mechanical properties at temperatures up to 1000° C, whereas the application 35 

of most polymer resins is often limited to temperatures below 400° C. The material also presents high 36 

durability due to low apparent porosity, that results in low water permeability [11]. The main 37 

precursor materials are clays such as metakaolin [12 - 14] which is an artificially calcined kaolinite 38 

clay, and industrial waste such as blast furnace slag [14, 15] and fly ash [16 - 20]. 39 

Geopolymers have low tensile strength and low deformation capacity, which require the use of 40 

reinforcements [21]. Geopolymer matrix composites reinforced with particulates and fibers can be 41 

considered a solution to improve flexural strength and compressive strength [22 - 28]. The fibers 42 

increase the ductility of the material, preventing abrupt rupture [29]. Natural fibers, such as jute, and 43 

synthetic fibers, including glass and carbon fibers, can be used to reinforcement the geopolymer. 44 

There is a direct proportional relationship between the fiber-matrix interaction force, the strength, and 45 

the adhesion between the surface of the geopolymer matrix and the surface of the fiber [30 - 32].  46 
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The mechanical properties of fiber-reinforced composite materials highly depend by how efficient 47 

the load transfer through the interface between the fiber and the matrix [31, 33 - 36]. When a 48 

composite has a high adhesive force at the fiber-matrix interface, it exhibits high strength. This is due 49 

to a greater efficiency of the tension undergone by the matrix to the fibers. On the other hand, a high 50 

value of  causes the system to have a low tenacity, since the energy spent during 51 

the crack propagation is low, thus the failure of the matrix will propagate through the fiber-matrix 52 

53 

transfer of the tension to the fibers, and a high tenacity, since a high energy value would be expended 54 

not only by the cracks, but by the decoupling of the fiber [37]. 55 

A factor that influences the bond strength between the composite and the fiber is the critical 56 

embedded length (Lc) [4]. Fibers with shorter lengths results in deficiencies of the transmission of the 57 

external loads, besides causing debonding or decoupling. It can also be led to failures in regions that 58 

present lower values of resistance, either in the matrix or in the interface [38]. The critical length can 59 

be analyzed through the pull-out test and represents the optimum length capable of promoting the 60 

greater adhesion and better mechanical performance of the composite. 61 

The analysis of the fiber-matrix adhesion can be performed through the study of the materials 62 

involved, their geometries, the loads, and the relative displacements, which provide the adhesion 63 

stress values [39], fundamental for the knowledge of the shear stress transfer between the fiber and 64 

the matrix. Different types of tests to study this interface have been developed, namely pull-out tests 65 

[40, 41], push-out tests [42, 43], micro-bond tests [44, 45] and fiber fragmentation tests [43, 46, 47]. 66 

The main difference between these tests is the test geometry [48]. However, the results analyzed by 67 

Pitkethly et. al [49] from different tests or from the same test applied by different researchers showed 68 

that the scatter was high.  69 

To evaluate the bond quality at the fiber-matrix interface and the ability of stress transfer between 70 

the fiber and the matrix, the fiber pull-out test is one of the most important test methods developed 71 

[34]. The pull-out test is done by embedding the fiber up to a certain length into a specimen of the 72 
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matrix material. Then, the two ends are attached, the test body and the tip of the fiber, and a tensile 73 

force (F) is applied on the fiber. If the length of the fiber is greater than Lc, the fiber will break. 74 

Otherwise, the fiber slips from within the matrix without breaking. By pull-out test it is also possible 75 

to study the influence of fiber-76 

by the pressure on the fiber (P0) on the mechanical properties of the composite [34, 37].  77 

Therefore, research work on fiber pull-out from a matrix is essential to understand the stress 78 

transfer on different types of composites. [34]. This work seeks to verify the interaction between a 79 

geopolymer slag-based matrix and synthetic glass and carbon fibers, comparing the fiber-matrix bond 80 

strength between the fiber and the matrix obtained by pull-out test. It aims to examine the cracking 81 

pattern of the fibers embedded in the specimens to discover the critical embedded length (Lc) and 82 

analyze relative displacements occurring at the fiber-matrix interface. 83 

2. Materials and methods 84 

This research used 100% ground blast furnace slag (GBFS), provided by ECOCEM from France, 85 

as the basic precursor material for the fabrication of the geopolymer paste specimens. The chemical 86 

composition for GBFS can be found in Table 1. Blast furnace slag is produced by drying and grinding 87 

granulated blast furnace slag. The degree of depolymerisation (DP) for the GBFS was found 1.44, 88 

which is an indicator of slag activity, that is considered good within a range from 1.3 to 1.5 [50]. D50 89 

represents the average particle size in the production and application of powder materials, which can 90 

affect the durability of the geopolymer, since a large surface area leads to a higher polymerization 91 

rate and a difference in the number of voids [51]. For the GBFS used, D50 .  92 

Table 1 - Chemical composition (%) of precursors 93 

          
          

 94 

The alkaline activator solution employed in the mixtures, in its proper proportions, were prepared 95 

by mixing the sodium hydroxide (NaOH) solution with the sodium silicate (Na2SiO3) solution. 96 
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Sodium silicate (Na-Si) activator was prepared by mixing 10M sodium hydroxide (NaOH) with97

sodium silicate (Na2SiO3), maintaining a Na2SiO3/NaOH mass ratio of 2.0. The produced Na-silicate 98

activator contained 66.7% water with 0.7 Na2O/SiO2 molar ratio. NaOH was purchased from ALFA-99

AESAR in the form of pellets, white colored with 98% purity. Sodium silicate (Na2SiO3) was 100

purchased from VWR in soluble form, of pH between 11-11.5 and density 1.35 g/cm at 20ºC. 101

The precursor material (1,458.3 kg/m3) was mixed for three minutes to have a more homogeneous 102

mixture. Following, the activating solution (335.3 kg/m3) mixed with the water (208.3 kg/m3) was 103

added to the dry mixture and blended for three minutes more. The percentage of water in the mixture 104

was 12.4% and solid-to-liquid ratio 2.0. 105

The glass fiber used was commercial S2-glass which have high tensile strength of 3700 to 4300106

MPa [52], without alkaline oxides, containing 65% SiO2, 10% MgO and 25% Al2O3. The diameter 107

for a single fiber was measured, by Scanning Electronic Microscopy (SEM), 108

electron microscope equipped with a secondary electron sensor and a backscattered electrons sensor. 109

After the pull-out test, prisms samples cores were sliced and polished into square shapes of 2cm×2cm 110

by 0.5 cm thickness. Single glass fibers used measured around 17-20 µm and single carbon fibers had 111

a diameter of 5-8 µm, as show in Figure 1. The fibers were not preconditioned as the aim was to study 112

the interaction of the raw materials.113

Figure 1 - Diameter of glass fiber (a) and carbon fiber (b) measured by SEM observations114

115
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A total of 18 rectangular specimens were tested to find the critical embedded length and the 116

maximum interfacial shear (bond) strength. Three essays were carried out for each type of fiber,117

carbon (CF) and glass (GF) at each embedded length of 10 mm, 20 mm and 30 mm [53]. The 118

specimens were named according to the type of fiber used and the embedded length, e.g., for carbon 119

fiber embedded 10 mm, specimen was named CF_10mm. The geopolymer paste specimens all had 120

five cm in height and cross section of approximately one cm2 [54]. Each fiber strand, composed of 121

multiple fibers, had approximately one millimeter in diameter, measured by SEM observations [55]. 122

The specimens were prepared at 20 and 50% humidity, demolded after 24 hours and kept in a 123

plastic film until testing date. All the specimens were tested at seven days [54]. As observed in Alves 124

[6], for this mixture, the GBFS had already been activated at this curing time.125

A displacement of 0.5 mm/min [56, 57] was applied to the fiber on a Swift/Roell Z050 machine126

(Figure 2a), adapted with a Restrained Top Constraint (RTC) grapple, with a load cell of 50kN, 127

following the schematics presented on Figure 2b (adapted from Yue [37]). While the force was 128

applied, the behavior at the fiber-matrix interface was verified through the graph generated. The test 129

was finished once the fiber is totally pulled-out of the matrix. The data obtained from the fiber pull-130

out test determines the applied loads from the shear stress and the relative displacements occurring at 131

the fiber-matrix interface. With these results, it is possible to compute the relative adhesion stress and 132

the strength effectiveness conferred by the fibrous reinforcement [58].133

Figure 2 Experimental setup of pull-out test (a) and pull-out test schematics (b) 134

135
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3. Results and discussion136

Through the data analysis of the applied loads (F) and relative displacements that occur 137

between the fiber and the matrix, it is possible to define the values of adhesion stress 39].138

Compiled results, according to the embedded length of the reinforcing fiber, are shown in Table 2139

(standard deviation values are in parentheses) and Figure 3.140

Table 2 Results for the different specimens of the pull-out test141

142

Figure 3 - Compiled values from the pull-out test143

144

For specimens CF_10mm and CF_20mm the fiber was pulled out. Results show that the adhesion 145

stress was higher for specimens with 10 and 20 mm of embedded length of carbon fiber, with values 146

equal to 0.7248 and 0.6664 MPa, respectively. On specimen CF_30mm, the fiber fractured after 147

reaching 45.32 N. For 30 mm length the lowest value for the adhesion stress was obtained reaching148

0.4809 MPa. The values obtained show higher values of adhesion stress for composite CF_10mm, 149
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but higher force for CF_30mm. Specimen CF_20mm presented the best adherence due to the higher 150

value of applied load, without fiber fracture. Figure 4 shows SEM observations of the cross section 151

and interface for one of the carbon fiber specimens with embedded length of 20 mm.152

Figure 4 - SEM observations for cross section of carbon fiber (a) and interface after pull-out (b)153

154

Glass fiber results showed same trend as that of carbon fiber. For specimens GF_10mm and 155

GF_20mm the fiber was pulled out, with adhesion stress values of 0.7242 MPa and 1.2163 MPa, 156

respectively. For 30 mm embedded length, a fracture on the fiber can be observed, at due to 157

the low value of 0.2811 MPa for adhesion stress. Thus, it is possible to affirm that the embedded 158

length of 20 mm has the greatest capacity for transferring stresses between glass fiber and the matrix. 159

Figure 5 shows SEM observations of the cross section and interface for one of the glass fiber 160

specimens with embedded length of 20 mm.161

Figure 5 - SEM observations for cross section of glass fiber (a) and interface after pull-out (b)162

163
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The critical length (Lc) is a possible explanation for the fact that the embedded lengths of 20 mm 164 

had higher stress transfer capacity between the fiber and the matrix [59]. Lengths below Lc present a 165 

deficiency in transfer of loads and the fiber slides through the matrix. For lengths above Lc, a greater 166 

interaction between the fibers can be noted, causing failure, entanglement and decrease of the 167 

effective length. According to Feih et. al [35], sizing controls the interface for glass fiber composites, 168 

because it is responsible for the physical-chemical link between the fiber surface and the matrix 169 

system.  170 

The fiber material influences the efficiency of the reinforcement and of the displacement related 171 

to the applied load, due to chemical interactions [35] between the type of fiber and the matrix material. 172 

From the results, the fiber-173 

fiber system. This implies the glass fiber system has a matrix-to-fiber stress transfer more effective, 174 

which suggests higher tensile strength for the composite. Applied loads (F) and relative displacements 175 

176 

The applied load (F) vs displaceme for the specimen 177 

CF_20mm, which presented bond strength and interaction in the fiber-matrix interface superior to the 178 

other specimens analyzed, is plotted in Figure 6. 179 

Figure 6  Pull-out test results for specimen GF_20mm 180 
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When studying the results for the specimen that presented the best adherence (Figure 6), it is 182 

important to notice that the pull-out test can be divided into three phases [37, 58]. The initial 183 

debonding and sliding phase, found in region I of the graph, is characterized by being an elastic-linear 184 

section, where the load is constantly increased until reaching a nonlinear stretch. Region II is qualified 185 

as maximum fiber stress, where the extraction force reaches the maximum value (Fmax), and 186 

decohesion becomes partial. After this phase, there is a constant drop in the load, corresponding to 187 

region III. This region is controlled by the friction resistance of the interface and consists of sliding 188 

and pull-out until the fiber is extracted and completely withdrawn [37]. 189 

4. Conclusions 190 

Understanding the interface properties helps in enhancing the structural properties of composite 191 

materials by improving the interfacial bonding. This work described a procedure to measure apparent 192 

interfacial shear strength from pull-out tests on fibrous reinforcements. The pull-out test provides 193 

results of fiber-matrix adhesion and interfacial properties that can characterize and assess fiber-194 

reinforced composites. The interfacial parameters of applied loads (F), and 195 

 can be determined from pull-out data.  196 

Two types of fiber were studied, glass fiber and carbon fiber, in three different embedded lengths 197 

of 10 mm, 20 mm and 30 mm. This study is fundamental to determine which material can be 198 

considered more efficient and makes the matrix more resistant to tensile and deformation strength. In 199 

addition to the different behaviors noticed due to the type fibers used, the influence of the embedded 200 

length of the fiber was another factor analyzed. The embedded length affects the load transfers and, 201 

therefore, the reinforcement efficiency. It is possible, through these data, to infer which composite 202 

has a more effective matrix-to-fiber stress transfer and determine the fiber critical embedded length.  203 

It was concluded that the fiber that presented the best adherence for GBFS-based matrix is glass 204 

fibers, with 20 mm embedded length. The value obtained for adhesion stress of glass fiber at 20 mm 205 

embedded length is 68% higher than for glass fiber at 10 mm embedded length. When comparing 206 

with the carbon fiber system that has the higher value of applied load without fiber fracture, the glass 207 
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fiber system value corresponding to fiber-matrix interface is 83% higher. Critical length was 208 

considered 20 mm. With embedded lengths superior to the critical length, the fiber failure can occur 209 

before interface debonding. Lengths bellow critical length also causes deficiency in transfer of loads 210 

because there is a minimum critical length of the fiber required for a valid shear pull-out. 211 
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