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Abstract

A two-dimensional axisymmetric arc model has been developed to describe heat and mass
transfers. It is applied to a tungsten cathode, an argon plasma, and a copper anode. In order to
efficiently calculate the magnetic flux density vector, and hence the electromagnetic
contributions involved, the Least Square Finite Element Method is used (LSFEM). It gives
many benefits : the magnetic flux density vector is directly computed and this method can be
easily extended to three-dimensional geometries. Besides, it permits not to make a commonly
used oversimplification by imposing a hypothesis on the current density when the magnetostatic
problem is solved. Results show that making this assumption slightly modifies the temperature,
magnetic field and velocity distributions in the whole domain.

1. Introduction

In many industrial joining problems the assembly quality is related to the weld quality. In
order to minimize undesirable mechanical effects (residual stresses, assembly distortions),
numerical modelling can be used. But the pertinence of the results is strongly dependent on the
boundary conditions description such as, for example, the heat source transferred to the
workpiece. A promising way to define the source properly is to make a good description of the
physical phenomena involved in the mass, momentum, and energy balances in the arc and weld
pool.

In tungsten inert gas (TIG) welding, an electric arc is generated between the electrode and
the workpiece, where electromagnetic interactions (Lorentz force, Joule heating) and several
heat transfer modes (diffusion, advection, radiation...) are involved (figure 1).
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Figure 1: Physical phenomena in TIG arc

metal vapours [2] or, taking account of
departures from equilibrium in the electrode welding
sheath regions [3].

Also, understanding weld pool phenomena is necessary to predict the weld quality. In this
way, many weld pools models [4] have been published.

More recently, numerical models have been made to describe a unified arc and weld pool
model [5]. Lately, Hirata and al. [6] established an improved numerical model which takes in
account the metal transfer to describe gas shielded metal arc welding processes. However, in
these models, Lorentz forces are generally not well estimated because of hypotheses or chosen
methods.

The purpose of this paper is to present the Least Square Finite Element method to efficiently
compute the magnetic flux density vector, and hence the several electromagnetic contributions
in a welding arc. The benefit of this method will be explained. A numerical model of TIG arc
welding with cooled copper anode and tungsten cathode has been developed in order to describe
heat transfer, mass, and fluid flow in the arc plasma.

2. Mathematical model

2.1 Assumptions

The arc model contains the following assumptions:

& The arc plasma is described as a fluid at atmospheric pressure in two-dimensional
axisymmetric coordinate.

¢ The flow is laminar and quasi-incompressible since the Mach number is small in the arc
column (the sound velocity of pure argon is close to 2500 m.s™ at 10000 K). And hence,
we assume that compressibility effects are negligible. Therefore, physical and
thermodynamic properties are supposed to be only dependent on the local temperature.

¢ The arc plasma is in pure argon in Local Themodynamic Equilibrium (LTE).

¢ Cathode and anode surfaces are considered to be spatially and temporally not
deformable.



& A steady state solution is assumed to exist.

2.2 Governing equations

2.2.1.Plasma modelling

The governing conservation equations are:
¢ the mass conservation equation:

V(pu)=0 )

¢ the momentum conservation equation:

puVu+VP-V-7=JxB 2)

with the rate-of-strain tensor 7 definedby : 7=,V u|(V u)T _é vV ull

where 1 is the identity matrix.
¢ the energy conservation equation:

2
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where P is the dynamic pressure, u the velocity, T the temperature, J the current density, and B
the magnetic flux density vector. The transport and thermodynamic coefficients, considered to
be only a function of the local temperature, are the density p, the viscosity 1, the thermal
conductivity A, the specific heat Cp, and the net emission coefficient €x. These physical
properties values are taken from [7] and [2]. Besides, k, is the Boltzmann constant and e the
electron charge.

The term on the right side of the momentum conservation equation represents the Lorentz
force. The first term on the right side of the energy conservation equation corresponds to the
ohmic heating, and the second term, to the electronic enthalpic flux. The last term describes the
radiation losses .

In order to define the electromagnetic source terms we have to solve an electromagnetic
model (equations (4), (5), (6), (7)), which is based on the Maxwell equations in quasi-steady
state and in pure diffusion, due to small magnetic Reynolds (Ren = 1oLoToUp ~ 0,01 [8]).

V-J=0 “4)
J=-0V¢ &)
VXxB=y,J (6)

V-B=0 (7

where Hy is the magnetic permeability of vacuum and ¢ the electric potential.



This model can be separated in two (models (8) and (9)). First, we solve ¢ to calculate the
current density J. Next, the magnetostatic problem is solved to find the magnetic flux density
vector B.

V(-0V¢)=0 on Q, p=¢,,, on 00,
~oV¢-n=J,.-n on 00, ®

VxB=uyJimp 0N 2, V-B=0 0nQ,
n-B=0 on 0Q;, nxB=0 on 0Q, ©)

where  is the domain volume, and 0£2; are the boundary interfaces i.
Because (9) is a first order system, it leads to difficulties when solving by classical Galerkin
method [9]. To obtain the azimuthal B field, most authors use only Ampere's law (6), assuming

that most of the current can be represented by the axial component of J :

u R
89:7°£er dr (10)

where r and z are respectively the radial and axial coordinates, and R the domain radius.
Unfortunately, this method is not adapted to three-dimensional problems because of this
hypothesis and, because Gauss' law (7) is not included in the calculation.
Some authors [2] recast (9) into a second order system (12) introducing a vector potential A
(equation (11)) in equation (6). To ensure the uniqueness of the solution, a condition on its
divergence (V-A=0) | called the gauge condition, has to be imposed.

B=VxA (11)
VZA=—pu,J (12)

Nevertheless, the introduction of this magnetostatic vector potential A does not bring much
benefit at all because in one hand, B field is computed after two steps, and in another hand it is
not so easy to find suitable boundary conditions for A.

In order to avoid these disadvantages, in this paper, the magnetostatic part is worked out
with the Least Square Finite Element Method (LSFEM) [10] that leads to solve the following
equation:

J(VxB)(VxB)|dQ+[|(V-B)(V-B) d Q=] |tgJimpy(VxB)|d Q2 (13)
Q Q Q
where B', the weighting function, has the same differential operator as that of trial function B.

This formulation gives many advantages:

& The divergence of B is easily included.

¢ It can be applied in several geometries even for three-dimensional problems.

& It gives a symmetric, positive definite system that can be solved easily with iterative

solver.



2.2.2.Anode and cathode modelling

Because the melting temperature is not reached in the cooled anode and cathode parts, we
solve only the energy conservation equation (14) and the electromagnetic model (equations (8)
and (9)) in these domains.

2
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The physical properties of pure tungsten for the cathode, and, pure copper for the anode, are
temperature dependent andare taken from tables [11].

2.2.3.Auxiliary equations

In order to maintain energy conservation at electrode interfaces, we use the following
relations ([2], [8]):

oT oT 4
A== —|=Al == =|JIV +Pg|—0geT 15
0z anode 0z plasma H H( S) ? ( )
oT oT 4
el Y =|JIV.—ozeT 16
on plasma on cathode ” ” B ( )

where V, and V. are respectively the anode and cathode fall voltages (3.5 and 3 V), @5 (4.65 V)
the anode work function [2], O the Stefan-Boltzmann constant, £ the emissivity. Due to the
anode and cathode fall voltages at the electrode, condensation of electrons at the anode surface
and radiation, source terms are added at the interface balance equations (15) and (16).
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Figure 2: Free-burning arc geometry Figure 3: Computational procedure
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Table 1: Boundary conditions

2.2.1.Calculation domain and boundary conditions
In order to study the energy, mass and fluid flow transfers in the whole domain, we choose a

free-burning arc geometry commonly used in [5]. Dimensions are given in figure 2.
The numerical domain includes a tungsten cathode with a 60° angle tip, a copper anode and
a plasma column in pure argon at atmospheric pressure. The current intensity varies between
100 and 150 A and the inter-electrode distance is kept constant at 5 mm.
The boundary conditions are indicated in table 1. At the top of the cathode, we impose a
constant current density Jc which depends on the cathode radius R. and on the total current I.
We consider the outer boundaries to be at ambient temperature and the arc domain to be

opened.
2.2.2 Discretization and numerical procedure
The calculation domain is represented by a grid of 5228 finite elements composed of linear

elements Q1 for the pressure and quadratic elements Q2 for all the other variables. The mesh is
refined near the axial discharge axis and on the electrode interfaces.
Classical Galerkin formulation [9] is used for all the computed equations, except for the B
calculation, where the LSFEM formulation is employed (13). The discrete non linear problem is
worked out by a Newton-Raphson algorithm and by the calculation procedure presented in

figure 3.
The space discretization and the computation of the equations is performed with the

Cast3M code [12].

3. Results and discussion
We use two methods to compute the magnetic flux density vector : one by using Ampere's



law (10), and the other by using a complete magnetostatic problem (9).

First, temperature and azimuthal B field profiles in the whole domain are presented in
figures 4 and 5 for three current intensity values: 100, 125, and 150 A, and the two
magnetostatic computational formulations. Second, the figure 6 shows the velocity evolution
along the axial axis from the cathode tip with these two magnetostatic models and these three
current intensities. As we can foresee, higher current intensities lead to higher values for all
variables. Moreover, when we use the Ampere's law by neglecting the radial current density, the
values of the variables are under-evaluated.

For instance, for 150 A, the maximal temperature, magnetic induction, and velocity are
respectively 17303 K, 4.39 . 107 T, 194 m/s when solving a complete magnetostatic problem. On
the other hand, when using Ampere's law (10), these values are smaller with 16934 K for the
maximal temperature, 3.16 . 10 T for the maximal magnetic flux density vector, and 178 m/s for
the maximal velocity.

Therefore, as we can see on the figures 4 and 35, results are slightly changed when choosing
a different formulation, but sufficiently important to change the heat and mass transfers in the
whole domain. This conclusion is ensured if we calculate the error in the whole domain
between the two formulations (LSFEM : full magnetostatic problem, Ampere : Ampere's law
according to the equation (10)). These errors are calculated for a X variable according to the

“XLSFEM—X . Thus, for 150 A, the differences in the
1 X sreml]

following equation : amperell

temperature, B field, and velocity distributions are respectively 3.5 %, 9.2 %, and 7.7 %. It
should be noticed that these error values keep almost unchanged when using 100 or 125 A. The
major impact is on the azimuthal B field profiles, and hence due to Lorentz forces, on the
velocity values. So, as we can remark on figure 6, the formulation choice is significant on the
velocity profiles.

4. Conclusion

A two-dimensional axisymmetric unified arc model (cathode, arc, and anode) has been
developed. It can predict temperature, current density vector, magnetic field, and fluid flow
distributions in the cathode, arc and workpiece domains. The use of the LSFEM method to
efficiently compute the magnetic flux density vector has been the innovative part of our work (1
min. per iteration for a 2x1.83GHz CPU with 2Gb). It allowed us not to make a commonly used
oversimplification by authors when solving the Ampere's law by assuming the current is almost
represented by the axial current density component.

Indeed, numerical simulations showed that using this hypothesis decreases the maximal
values of temperature, magnetic field, velocity and mainly changes the magnetic flux density
vector and velocity distributions in the whole domain.

Moreover, this LSFEM method gives many benefits because we directly work with B, and

all the magnetostatic equations are easily solved with a symmetric, positive definite system.



Therefore, the inclusion of the divergence of B permits us to extend this model for three-

dimensional geometries.

This model is a first step before introducing more physical phenomena by modelling metal

vapors, weld pool phenomena, or a three-dimensional arc.
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Figure 4 : Isotherms (K) in the cathode, anode, and arc plasma for : (a) 150 A, (b) 125 A,
(c) 100 A

Left: full magnetostatic problem; Right: use of Ampere's law with Jr=0
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Figure 5 : Azimuthal magnetic field (T) profiles in the cathode, anode, and arc plasma for :
(a) IS0 A, (b) 125 A, (c) 100 A

Left: full magnetostatic problem; Right: use of Ampere's law with Jr=0
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