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Study domain and objectives

TIG process

Study domain

arc + anode (with weld pool) + cathode

Objectives

Predict fluid flow and heat transfer in the
arc plasma and in the weld pool

Predict the weld pool shape in accordance
with the workpiece proprerties

Quantify the influence of each force acting
in the weld pool on the weld pool shape, the
arc drag force and the heat flux transferred
to the workpiece
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Physical phenomena involved

anode (+)

plasma

cathode (-)

Marangoni effect

solid part

arc pressure

radiation

weld pool

absorption

shielding gas
conduction

neutralization of ion

thermionic emission of electrons

radiation

conduction, convection

radiation

radiation,
convection,
conduction

electron

Joule effect

drag forcefluid flow

buoyancy force

electromagnetic force

conduction

Joule effect

conduction

electromagnetic force

Physical phenomena involved in the process

Main contributions

Joule heat (97% of total
heat produced) [6]

Lorentz force

↓
Need to implement an efficient

electromagnetic model
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Assumptions -1-

Plasma is a fluid in Local Thermodynamic Equilibrium

Magnetic convection is negligeable (small magnetic Reynolds
number Rem << 1)

Laminar (small Reynolds number Re < 2000)

Quasi-incompressibility (low Mach number : Ma < 0.3)
⇒ Physical properties depend on the local temperature

Rem = V ∗l∗σ∗µ0
∗ ≈ 0.01 Re = ρ∗V ∗l∗

µ∗ ≈ 250

Ma =
√

ρ∗V ∗2

γ∗P∗ ≈ 0.09

with : V ∗ = 250 m.s−1, γ∗ = 1.4, T ∗ = 15000 K , ρ∗ = 2.10−2 kg .m−3,

P∗ = 101325 Pa, µ∗ = 1.10−4 kg .m−1.s−1, l∗ = 0.005 m, σ∗ = 8.103 S .m−1,

µ0
∗ = 4π10−7 H.m−1
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Assumptions -2-

Gas and materials used

Pure tungsten cathode

Pure argon plasma at atmospheric pressure

Anode in 304L steel

Geometry and system

Two-dimensional axi-symmetric coordinates

Material surfaces undeformable

Steady state is assumed to exist
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For the plasma

Conservation equations

Mass : ∇ · (ρu) = 0
Momentum : ρu∇u +∇P −∇ · ¯̄τ = F
Energy : ρCpu · ∇T −∇ · (λ∇T ) = S

with : ¯̄τ = µ

»
(∇u) + (∇u)T − 2

3
(∇ · u) ¯̄I

–
Physical properties are taken from tables [1]

Source terms (with electromagnetic variables)

F = FLorentz + Fbuoyancy + Fresistance = J× B− ρref β (T − Tref ) g + Ku

S = SJoule − Sradiation + Selec =
||J||2

σ
− 4πεn

The net emission coefficient εn depends on the temperature [6]
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For the weld pool (Boussinesq approximation)

Conservation equations

Mass : ∇ · (ρu) = 0
Momentum : ρu∇u +∇P −∇ · ¯̄τ = F
Energy : ρCpu · ∇T −∇ · (λ∇T ) = S

with : ¯̄τ = µ

»
(∇u) + (∇u)T − 2

3
(∇ · u) ¯̄I

–
Physical properties are taken from tables [3]

Source terms (with electromagnetic variables)

F = FLorentz + Fbuoyancy + Fresistance = J× B− ρref β (T − Tref ) g + Ku

S = SJoule − Sradiation + Selec =
||J||2

σ
− 4πεn

The net emission coefficient εn depends on the temperature [6]
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For the solid parts of electrodes

Conservation equations

Mass : ∇ · (ρu) = 0
Momentum : ρu∇u +∇P −∇ · ¯̄τ = F
Energy : ρCpu · ∇T −∇ · (λ∇T ) = S

with : ¯̄τ = µ

»
(∇u) + (∇u)T − 2

3
(∇ · u) ¯̄I

–
Physical properties are taken from Metals Handbook

Source terms (with electromagnetic variables)

F = FLorentz + Fbuoyancy + Fresistance = J× B− ρref β (T − Tref ) g + Ku

S = SJoule − Sradiation + Selec =
||J||2

σ
− 4πεn

The net emission coefficient εn depends on the temperature [6]
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Electromagnetic equations

Current density J calculation

Faraday’s law : ∇× E = 0 ⇒ E = −∇φ
Ohm’s law J = σE ⇒ J = −σ∇φ
Charge conservation equation : ∇ · J = 0 ⇒ ∇ · (σ∇φ) = 0

Magnetic field B calculation

Ampere’s law : ∇× B = µ0J
Gauss’s law : ∇ · B = 0

ff
first order system

→ Lead to difficulties when solving by classical Galerkin method
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The Least Square Finite
Element Method (LSFEM) [2]

Equation to solveZ
Ω

(∇× B) · (∇× B∗) dΩ +

Z
Ω

(∇ · B) · (∇ · B∗) dΩ =

Z
Ω
µ0Jimp · (∇× B∗) dΩ

with B∗ the weighting function of the trial function B

Advantages

Divergence of B is easily included

Can be applied for 3D problems

Give a symmetric, positive definite system that can be solved
easily with iterative method
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Additional energy terms [6]

On the cathode surface
Qa = qradiation + qemission + qion = −σBεT

4 − Jeφc + JiVa

where σB is the Stefan-Boltzmann constant, ε the cathode surface emissivity, T the
temperature, φc the cathode work function, Va the ionization potential of argon, Ji

the ion current density, and Je the electron current density.
Ji = ||J|| − Jr if ||J|| − Jr > 0 , else Ji = 0
and ||J|| = Je + Ji

Jr = AT 2.exp

„
−eφe

kbT

«
where e is the elementary charge, kb the Boltzmann’s constant, A the thermionic

emission constant , φe the effective cathode work function

On the anode surface
Qa = qradiation + qabsorption = −σBεT

4 + ||J||φa

where φa is the anode work function
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Additional force term
on the anode surface

Surface tension gradients :

Fmarangoni =
∂γ(T , ai )

∂T

∂T

∂τ
τ

with ai the activity of sulfur and τ the tangential vector of the weld pool surface.

The surface tension γ from [5] :

γ(T , ai ) = γf − A (T − Tf )− RTΓs ln
[
1 + k1ai exp

(
−∆H0

RT

)]
where γf is the surface tension of the pure metal at melting point, Tf is the melting

point of the material, A is the negative of ∂γ/∂T for pure metal, Γs is the surface

excess of saturation, k1 is the entropy factor, and ∆H0 is the standard enthalpy of

adsorption. (Values are taken from [5])
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Main boundary conditions and discretization

Discretization

linear elements Q1 for the
pressure and quadratic
elements Q2 for the other
variables

Finite element code
Cast3M

LSFEM formulation used
to compute B

1
0

 m
m

T = 300 K
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I5,9 mm
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Geometry and boundary conditions
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The arc part validation
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→ Results in accordance with litterature model and experiments
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Validation of the weld pool shapes
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Results in accordance with litterature model and experiment

The weld pool width is slightly underestimated : can be due to
differences in the thermophysical propertie of the workpiece
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Which forces are predominants ?
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x

Drag and surface tension gradient forces are predominants

The combinaison of buoyancy and electromagnetic forces tend to increase the
weld depth

Conclusions in accordance with litterature results
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What is the influence of the weld pool shapes
on the weld pool boundary conditions ?
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For this configuration, no influence of the weld pool shapes on the arc drag
forces and the heat flux transferred to the workpiece
→ after solving the whole problem, arc drag force and heat flux can be applied
as boundary conditions of a weld pool model
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Conclusions

A model including arc and weld pool physics with dependance
on the sulfur activity has been developped.

Results give a good accordance with experimantal results.

The predominant forces are the arc drag force and the force
due to surface tension gradient that depends on the sulfur
concentration.

Heat flux and arc drag force obtained from a complete model
can be used for solving a reduced weld pool model.
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