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Abstract

This paper is devoted to the construction of approximations of the propagator associated with
a semi-classical matrix-valued Schrodinger operator with symbol presenting smooth eigenvalues
crossings. Inspired by the approach of the theoretical chemists Herman and Kluk who propagated
continuous superpositions of Gaussian wave-packets for scalar equations, we consider frozen and
thawed Gaussian initial value representations that incorporate classical transport and branching
processes along a hopping hypersurface. Based on the Gaussian wave-packet frame work, our result
relies on an accurate analysis of the solutions of the associated Schrédinger equation for data that
are vector-valued wave-packets. We prove that these solutions are asymptotic to wavepackets at
any order in terms of the semi-classical parameter.

Key words and phrases. Matrix-valued Hamiltonian, smooth crossings, codimension 1 crossings, wave-packet,
Bargmann transform, Herman-Kluk propagators, thawed and frozen Gaussian approximations.
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CHAPTER 1

Introduction

Since the early days of semi-classical analysis, operators that approximate the dynamics of a
semi-classical propagator have been the object of major attention. The theory of Fourier integral
operators answers to this question by proposing methods for constructing approximative propaga-
tors of a scalar semi-classical Schrédinger equation (see [64], Chapter 12] or [14]). Pioneering work
about a semi-classical theory of FIOs is [7], extended in [31] and [52].

Few results exist for systems except for those that are called adiabatic, because the eigenvalues
of the underlying Hamiltonian matrix are of constant multiplicity. The analysis of such systems
can be reduced to those of scalar equations through a diagonalization process using the so-called
super-adiabatic projectors. The super-adiabatic approach has been carried out by Martinez and
Sordoni [46] as well as Spohn and Teufel [55], see also [17), 48, 49, [5] for earlier results or [4]
51] for more recent results in a similar direction. The present study gives the first complete

construction of an integral representation of the propagator associated to a Hamiltonian generating
non-adiabatic dynamics in a very general situation. It focuses on those Hamiltonian matrices that
have smooth eigenprojectors, with smooth eigenvalues, though of non constant multiplicity. The
framework applies to generic situations where two eigenvalues cross along a hypersurface on points
where the Hamiltonian vector fields associated with these eigenvalues are transverse to the crossing
hypersurface. This set-up has already been the one of the work of Hagedorn [26], Section 5] and
Jecko [35]. The Fourier integral operators approximating the propagator associated with these
non-adiabatic Hamiltonians are based on Gaussian wave-packets and the Bargmann transform, in
the spirit of the Herman—Kluk propagator.

The Herman—Kluk propagator has been introduced in theoretical chemistry (see [32), [38], [33),
39]) for the analysis of molecular dynamics for scalar equations. The mathematical analysis has
been performed later by Rousse and Swart [56] and Robert [53], independently. The action of the
Herman—Kluk propagator consists in the continuous decomposition of the initial data into semi-
classical Gaussian wave-packets and the implementation of the propagation of the wave-packets as
studied in the 70s and 80s by Heller [32], Combescure and Robert [13], and Hagedorn [24]. It
involves time-dependent quantities that are called classical quantities because they can be inter-
preted in terms of Newtonian mechanics. Such an approximative description of the propagator in
terms of several Gaussian wave packets motivates numerical methods that naturally combine with
probabilistic sampling techniques, see [40] or more recently [42], [47].

We prove the convergence of two types of approximations, respectively called thawed and frozen
Gaussian approximations, both built of continuous superpositions of Gaussian wave-packets, the
frozen one in the spirit the original Herman—Kluk propagator. Their difference mainly consists in
the way the width matrices resulting from the propagation of the individual semi-classical Gaussian
wave packets are treated. The presence of crossings requires to add to the semi-classical Gaussian
wave packet propagation some transitions between the crossing hypersurfaces. Therefore, these
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2 1. INTRODUCTION

Fourier integral operators incorporate classical transport along the Hamiltonian trajectories asso-
ciated with the eigenvalues of the Hamiltonian and a branching process along the crossing hyper-
surface. Some of these ideas have been introduced in [20}, 23], in particular in [20] where the
propagation of wave-packets through smooth crossings has been studied. Here, we revisit and ex-
tend these results, by proving that a wave-packet propagated through a smooth generic crossing
remains asymptotically a wave-packet to any order in the semi-classical parameter. We then prove
uniform estimates for the associated semi-classical approximations of propagators when acting on
families of initial data that are frequency localized in the sense that their L2-mass does not escape in
phase space to co when the semi-classical parameter goes to 0, neither in position, nor in momen-
tum. This class of initial data is typically met for the numerical simulation of molecular quantum
systems.

Previous results. The analysis of the propagation through smooth eigenvalue crossings has
been pioneered by Hagedorn in [26], Chapter 5]. He considered Schrodinger operators with matrix-
valued potentials and propagated initial data that are known as semi-classical wave packets or
generalized coherent states [13, Chapter 4]. The core of the wave-packet had to be chosen such
that it classically propagates to the crossing. In the same framework adjusted to the context of
solid states physics, Watson and Weinstein [62] analyze the propagation of wave-packets through a
smooth crossing of Bloch bands. The results developed here extend [26, Chapter 5] and [62] in two
ways. The single wave-packet is turned into an initial value representation with uniform control
for frequency localized initial data. The Schrodinger and Bloch operators are generalized to Weyl
quantized operators with smooth time-dependent symbol.

1.1. First overview

The remainder of the introduction specifies the mathematical setting (assumptions on the
Hamiltonian operator and the initial data), discusses the classical quantities involved in the ap-
proximation, reviews the known results on the thawed and frozen initial value representations in
the adiabatic setting, and then presents the main results of this paper: Theorem on the
thawed approximation with hopping trajectories, Theorem and Theorem [I.20] on the frozen
approximation with hopping trajectories, that are pointwise and averaged in time, respectively, and
Theorem [1.21 on wave-packet propagation through smooth crossings to arbitrary order.

We prove Theorems|[I.18] [I.19/and [1.20]in Chapters[2and[3] These proofs rely on Theorem[I.21]
that is proved in Chapters [d] and

Chapter [2] recalls elementary facts about the Bargmann transform. Then, it introduces the new
notion of frequency localization, which will be crucial for controlling the remainder estimates for
both the frozen and the thawed initial value representations in Chapter

The refined wave-packet analysis of Chapters [4] and [f] does not depend on the theory of initial
value representations and can be read independently from Chapters [2] and [3] It propagates wave-
packets through smooth crossings in two steps: using a rough diagonalisation of the Hamiltonian
operator in the crossing region and super-adiabatic projectors for the outside. Both constructions
rely on pseudo-differential calculus for matrix-valued symbols that is developed in Chapter [4] and
complemented by additional technical points in the appendices.
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Notations and conventions. All the functional sets that we shall consider in this article can
have values in C (scalar-valued), C™ (vector-valued) or in C"™™ (matrix-valued). We denote by

n=[ s

the inner product of L?(R% C). If 7 is a projector, then 7+ denotes the projector 7+ = 1 — 7.
We set D, = %az. In the context of Assumption we shall say that a matrix A is diagonal if
A = m Am + moAme and off-diagonal if A = 71 Amg + moAmry.

1

1.2. The setting

1.2.1. The Schrédinger equation. We consider the Schrodinger equation
(1.1) €0 (t) = H()Y(t), ¥himy, = ¥5-
in L2(R%,C™), m > 2, where H#(t) is the semi-classical quantization of an Hermitian matrix symbol
He(t,z) e C™m™,

Here, t € R, z = (z,£) € R? x R? and ¢ is the semi-classical parameter, ¢ < 1. Moreover, for

a € C®(R?*?) being a smooth scalar-, vector- or matrix-valued function with adequate control on
the growth of derivatives, the Weyl operator @ = op¥ (a) is defined by

op? (a)f () = af (x) = (2me) ™ /R y a(i%) '€ =TI f(y) dy dg

for all f € S(RY).

In full generality, we could assume that the map (¢, z) — H¢(t, z) is a semi-classical observable
in the sense that the function He (¢, z) is an asymptotic sum of the form Zj>0 eI Hj(t, z). However,
in this asymptotic sum, the important terms are the principal symbol Ho(¢, zj and the sub-principal
one Hi(t, z); the terms H,(t,z) for j > 2 only affect the solution at order ¢, which is the order of
the approximation we are looking for. Therefore, we assume that the self-adjoint matrix H¢ writes

He(t,z) :== Hy(t,z) + eHi(t, 2).
1.2.2. Assumptions on the Hamiltonian. We work on a time interval of the form
I:=[to,to+T], to R and T >0
and consider subquadratic matrix-valued Hamiltonians.
DEFINITION 1.1 (Subquadratic ). The e-dependent Hamiltonian
H® = Hy +eH, € C*°(I x R?*?,Cc™™)
is subquadratic on the time interval I if and only if one has the property:

(1.2) Vje{0,1}, Vye N, a¢;., >0, sup |07H,(t,2)| < C'm<z>(2_j_"”)+
| (t,2)el xR2d ' '

Assuming that H€ is subquadratic on the time interval I ensures that the system (1.1) is
well-posed in L2(R?, C™) for t € I, and, more generally (see [47]), in the functional spaces
SERY = {f € L’(RY), Vo, B €N, |o|+ |8 <k, 2%(c0,)’f € L’ (R))}, keN

endowed with the norm
[fllse = sup [lz®(e02)" f|L>-

lol+[BI<E



4 1. INTRODUCTION

We denote by U5 (t,to) the unitary propagator defined by
Ged UG (t,to) = HE (U (L, to), US(to,to) = Igm.
It is a bounded operator of the $¥(R?) spaces, uniformly in ¢ (see [47]): there exists Cr > 0 such
that
SUII)||U13(tat0)||z:(2§) < Cr.
te
We assume that the principal symbol Hy(t, z) of H=(t,z) has two distinct eigenvalues that

present a smooth crossing in the sense of the definitions of [20]. Namely, we consider different
properties of the crossings.

DEFINITION 1.2. (1) (Smooth crossing). The matrix Hy € C®(I x R? C™™) has a
smooth crossing on the set T C I x R24 if there exists hy,ho € C®(I x R??) and two
orthogonal projectors 1, ms € C>(I x R24,C™™) such that Hy = hym + homy and

hl(t,z) = hg(t,z) < (t,Z) eT.

1 1
(2) Set f(t,z) = 3 (h1(t,2) — ha(t,z)) and v(t,z) = 3 (h1(t,z) + ha(t, 2)).
(a) (Non-degenerate crossing). The crossing is non-degenerate at (t°,¢?) € T if
di,z (Ho = vlem) (°,°) # 0

where d; , is the one differential form in the variables (¢, z).
(b) (Generic crossing points). The crossing is generic at (#*,¢”) € T if one has

(13) 8tf+{vuf}(tb7<b) 7& 0.
Note that there then exists an open set Q C I x R?? containing (¢°, (") such that the
set T N is a manifold.

Above, we denote by {f, g} the poisson bracket of the functions f and g defined on Ri‘fgl
{fag} = V§f Veg—=Vaf- Vﬁg'

With these definitions in hands, we introduce one of the main assumptions on the crossing
points of the Hamiltonian HE®.

AsSsUMPTION 1.3 (Crossing set). The Hamiltonian H¢ = Hy+ecH; has a smooth crossing set T
and all the points of T are non degenerate and generic crossing points.

In order to consider the unitary propagators L{fl’fo and Z/{,tl’gto and be endowed with convenient
bounds on the growth of the projectors, we shall make additional assumptions on the growth of the
eigenvalues and of their gap function. Our setting will be the following:

AsSUMPTION 1.4 (Growth conditions for smooth crossings). Let H® = Hy+cH; € C=(R x R?%)
be subquadratic on the time interval I and have a smooth crossing on the set T. We consider the
two following assumptions :

(i) The growth of Hy(t,x), hi(t,z) and hg(t,2) is driven by the function wv(t,z), i.e. for
je{1,2}
(14) VyeN |y =1, 3C, >0, V(t,2) € I x R*? |9 (Hy — vlem)(t, 2)| +|f(t,2)| < C.
(ii) The eigenvalues hy and hy are subquadratic, i.e.

(1.5) Vy e N* |y >2, 3C, >0, V(t,2) €I xR |07h;(t,2)| < C,.
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(iii) The gap is controlled at infinity, i.e. there exist R > 0 and ng € N such that

(1.6) Vtel, Viz| >R, |f(t,z)|>C(z)~",
and in the case ng # 0, the functions z — 71, T are assumed to have bounded derivatives
at infinity.
REMARK 1.5. (1) The fact that the eigenvalues hi(t, z) and hs(t, z) are of subquadratic

growth guarantees the existence of the unitary propagators L{Zj (t,to) for j € {1,2} and of
the classical quantities associated with the Hamiltonians h; and hs that we will introduce
below.

(2) The growth conditions of Assumption imply that the eigenprojectors m;(t), j = 1,2,
and their derivatives have at most polynomial growth. However, when ng # 0, they may
actually grow. This is proved in Lemmal[A4] It is for this reason that we assume that the
projectors have bounded derivatives when ng # 0 in Point (iii).

(3) If one has and with ng = 0, then holds. However, the examples below
contain interesting physical situations for which ng # 0.

EXAMPLE 1.6. (1) Examples of matrix-valued Hamiltonian are given in molecular dy-
namics (see [Chapter 5] in [26]) by Schrodinger operators with matrix-valued potential,

2
g = —%Am ez + V(z), V €C®(R%C2%2).

When V presents a codimension 1 crossing (as defined in [26], then the crossing points
(z,€) are non degenerate and generic when £ # 0.

(2) Another class of examples appear in solid state physics in the context of Bloch band
decompositions (see [62], 12] for example) with Hamiltonians of the form

Hp = A(—ieVy) + W(z)lez, Ae€C®REC2*?), W eC®(R?C).
(3) Finally, in [21], the authors have considered the operator

R e d 0 ei@z
Hk)g = 27‘%}1@2 =+ kx <ei0m O ) 3
withd=1, N =2,0 € R, k € R*.

1.2.3. Assumptions on the data. We consider vector-valued initial data 1§ € L?(R?, C™)
of the form

v = Vg
where z — V/(z) is a smooth function, bounded together with its derivatives and ¢f € L2(R%,C)
is frequency localized in the sense of the next definition. For stating it, we denote the Gaussian of
expectation ¢, variance /¢ that oscillates along p according to

Tr—qg 2 i
(1.7) g (@) = (me)~ W= S +ir@e—0) | vy e RY

DEFINITION 1.7 (Frequency localized functions). Let (¢°).s0 be a family of functions of L%(R9).
The family (¢°).>0 is frequency localized if the family is bounded in L?(R%) and if there exist
Ry, Cy,e9 > 0and Ny > d + % such that for all € € (0,¢¢],

(2me) "2 (g2, ¢°)| < Co ()N for all z € R? with |2| > Ry.

One then says that (¢°).s0 is frequency localized.
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We will introduce a more precise definition in Chapter For families that are frequency
localized, the set of z € R?? in the identity (2.2) can be restricted to a compact set (see Lemma [2.6]).
The analysis of the examples given below is performed in Lemma [2.9]

EXAMPLE 1.8. (1) The Gaussian wave packets (g3 )e>o0 are frequency localized families.
(2) Define (WPS (u))c>0 by

(1.8) WPE, (u)(z) = e~ H4etPo @)y (“”_\/;"> , TR

for u € S(R?) and zo = (o, po) € R**. They are frequency localized families.
(3) Lagrangian (or WKB) states ¢°(z) = a(z)e<%®) with a € C§°(R%,C) and S € C*(R%,R),
also are frequency localized families.

Our vector-valued initial data will have a scalar part consisting in a frequency localized family.

ASSUMPTION 1.9. The initial data § in (1.1} satisfies

(1.9) v5(2) = Vgi(x), = eR?
where
(i) The family (¢§)e>0 is frequency localized with constants Ry, Ny, Co, €¢ in Definition

(ii) The function z — V(z) is a function of C*°(R2¢ C™), bounded together with its deriva-
tives, and valued in the set of normalized vectors.

We point out that any vector-valued bounded family in L?(R?) writes as a sum of data of the

form V¢ (z) for (¢5)->0 bounded. As a consequence, assuming the initial data ¥g Satisﬁesis not

really restrictive. Of course, the vector valued function V can be turned into —V by changing ¢§
into —¢g.

1.3. Classical quantities

In this section, we introduce classical quantities associated with the Hamiltonian H¢. These
quantities will be used to construct the approximations of the propagator U (t,t9) that are the
subject of this text. They are called classical because they do not depend on the semi-classical
parameter € and are obtained by solving e-independent equations that mainly are ODEs instead
of PDEs. Thus, the numerical realization of the resulting propagator’s approximations avoids the
difficulties induced by the é—oscillations and is applicable in a high-dimensional setting, see [43] for
a recent review on this topic. Besides their definition, we shall also recall well-known results about
their role in the description of Schrédinger propagators.

In this section, we assume that H® = Hy + ¢H; is subquadratic on the time interval I (as
defined in Definition [1.1)), with smooth eigenprojectors 7; and 7o, and eigenvalues hy and ho, the
latter being subquadratic (as in (ii) of Assumption |1.4]).

1.3.1. The flow map. Let ¢ € {1,2}, we associate with hy : [ x R? — R, (t,2) > hy(t, 2)
the functions

2e(t) = (qe(t), pe(t))

which denote the classical Hamiltonian trajectory issued from a phase space point zy at time ¢y,
that is defined by the ordinary differential equation

Zg(t) = Jazhg(t,z:g(t)), Zg(to) =20
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with

(0 Tpa
(1.10) J_<_HRd 0>.

We note that J is the matrix associated with the symplectic form
o(z,2)=(Jz2)=p-d =9 -q,  z=(gp), 7 =(d,p) eR™.

The trajectory z¢(t) = z¢(t, to, 20) depends on the initial datum and defines the associated flow map
@ZZ“ of the Hamiltonian function hy via

Z = (bz’:() (Z) = Zl(tvt()a ZO), A R2d.
We will also use the trajectory’s action integral

(1.11) Sg(t,to,zo):/ (pe(s) - d4o(s) — hals, ze(s))) ds,

to

and the Jacobian matriz of the flow map, also called stability matriz

(1.12) Fy(t, to, 20) = 0:®},"° (20).

Note that Fy(t,to, z0) is a symplectic 2d x 2d matrix, that satisfies the linearized flow equation
(1.13) O Fy(t,t0, z0) = JHess hy(t, zo(t)) Folt, to, 20), Fe(to,to,20) = Igaa.

We denote its blocks by

(1.14) Fu(t, to, 20) = (Ae(t,to,zo) Bz(t,to,z@) .

Cu(t,to,20) Dy(t, to, 20)

1.3.2. The metaplectic transform and Gaussian states. It is standard to associate with
the time-dependent symplectic map Fy(t,to,) a unitary evolution operator, the metaplectic trans-
formation that acts on square integrable functions in L?(R?) as a unitary transformation.

M[Fg(t, to,Zo)] L Ug u(t)
and associates with an initial datum ug the solution at time ¢ of the Cauchy problem
10yu(t) = op}’ (Hesszhg (t, @2;0 (zo)) z- z) u, u(ty) = ug.

This map is called the metaplectic transformation associated with the matrix Fy(t, to, z9) (see [47]).
It satisfies for all € > 0 and for all symbol a compactly supported or polynomial

(1.15) M(Fy(t,to, z0)] ™ op= (@) M[Fe(t, to, 20)] = op (Fe(t, to, 20)2).

All these classical quantities are involved in the description of the propagation of Gaussian
states by U, (t,t0), that are a generalization of the Gaussian families (g7)c>0 that we have already
seen. Gaussian states are wave packets WPS(g!) with complex-valued Gaussian profiles g'', whose
covariance matrix ' is taken in the Siegel half-space &7 (d) of d x d complex-valued symmetric
matrices with positive imaginary part,

&T(d)={TeC™, I'=I", Iml' > 0}.
More precisely, g'' depends on I' € &*(d) according to
(1.16) g"(x) :=cr estoe 4 e RY,
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where ¢p = 7~ 4det? *(ImI") is a normalization constant in L*(R?). It is a non-zero complex
number whose argument is determined by continuity according to the working environment. The
propagation of Gaussian states by a metaplectic transform is well-known: for I’y € & (d), we have

(117) M[Fg(t,to, ZO)]gFO — gFe(t,to,zo)’

where the width T's(t, to, 20) € 61 (d) and the corresponding normalization cr, . 1,,,) are determined

by the initial width I’y and the Jacobian Fy(t, to, 20) according to

(118)  Tu(t,to,20) = (Celt,to, 20) + Delt, to, 20)T0)(Ae(t, o, 20) + Be(t, to, 20)To) ™"
CPy(t,t0,20) = CIg detil/Q(Ag(t, to, Zo) + Bg(t, to, Zo)Fo).

The branch of the square root in det™'/? is determined by continuity in time. Besides, the action

of U (t,to) on Gaussian wave packets WPZ(g") obey to

U, (1, 1)) WP, (g°) = e Stttz wpe

hy

(") + O(2)

(20
in any space YF(R%) (see [13]).

1.3.3. Parallel transport. For systems, the wave function is valued in L?(R? C™) and thus
vector-valued. The propagation then involves transformation of the vector part of the eigenfunctions
that is called parallel transport.

Denoting by ﬂj the projector ﬂj =1 — 7y, we define self-adjoint matrices H, Z‘}ia by
adic adi 1
(1.19) Wj‘ HZ‘%‘aﬂj‘ =0, WHZTa’]T =y <H1 + 2Z,{H0,7Te}> T,

a HZ‘%MW = 77 (i0yme + i{he, m}) e
One then introduces the map R(t,to, z) defined for £ € {1,2} by
(1.20) (0 R (t, to, 2) = H}9™ (£, 217 (2)) Re(t,to, 2), Relto,to,2) = Im.

The map t — HZ‘}ia (t, @Z’:O (z)) is a locally Lipschitz map valued in the set of self adjoint matrices.
Therefore, the existence of Ry(t,to,2) comes from solving a linear time dependent ODE by the
Cauchy Lipschitz Theorem.

LEMMA 1.10. For all (t,2) € I x R*! and ¢ € {1,2}, the matrices Ry(t,to,2) are unitary
matrices. Besides, they satisfy

(1.21) Ri(t, to, 2)e(to, 2) = e (£, 8, (2)) Relt, to, 2).

This Lemma is proved in Appendix The relation implies that whenever a vector Vj is
in the eigenspace of Hy(to, z9) for the eigenvalue hy(to, 29), then the vector Ry (¢, to, Z)VO is in the
range of (¢, (I’E’to (2)). In other words, we have constructed a map that preserves the eigenspaces
along the flow:

Ry(t, to, z) : Ran (m(to, 2)) — Ran (m(t, Pyt (2))).
The matrices Ry (¢, to, 2) are sometimes referred to as Larmor precession (see [13]).

The map Vy — Ry (t,to, z)me(to, z)‘_/b is a parallel transport in the Hermitian vector fiber bundle
(t,2) = Ran(m,(t, z)) over the phase space I x R?? C R'*24_ associated with the curve s — (s) =
(s, <I)Z’Z° (zo))S€I and the matrix HZ‘}ia. Indeed, the covariant derivative along the curve (v(s))ser
is given by

V,-),(S) =0y + Jdhy -V,
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and the relation X (s, @Z;to(zo)) = Ry(t, to, 2)me(to, 2)Vo defines a smooth section along the path ~
that satisfies V,y(s))?(t,m) = —iHZ‘%ia(t,x)X(t@).
The map Ry, ¢ € {1,2} plays a role on the quantum side in the adiabatic setting for the

propagation of wave packets. The proof of the next statement can be found in [I3] Chapter 14]
and [20], and Chapter [5| of this memoir.

PROPOSITION 1.11 (Vector-valued wave packets). Let k € N and assume that H¢ = Hy + ¢H;
satisfies Assumptions and Let £ € {1,2} and (to, 20) € I x R%. Then, for any ¢y € S(R%, C)

and Vj € Ran me(to, 20), there exists a constant C' > 0 such that

< Cy/e,

ok

sup

Uy (t, to) Vo WPS, pp — e 5(bt0:20) Vi (¢ 1) WPS ..,
teJ

hy (20

7 (1)

where the profile function ¢°(t) is given by
©F(t) = M[Fy(t,to, z0)lo, and Vy(t,to,z) = Ry (t,to, @} (20)) Vo.

1.4. Thawed and frozen Gaussian approximations

Thawed and frozen Gaussian approximations have been introduced in the 80’s in theoretical
chemistry [33), [38], [39]. The frozen one has become popular as the so-called Herman—Kluk approx-
imation. They rely on the fact that the family of wave packets (¢2),cr2« forms a continuous frame
and provides for all square integrable functions f € L?(R%) the reconstruction formula

f(x) = (2me) / (65, )5 (@) dz.

zER24
The leading idea is then to write the unitary propagation of general, square integrable initial data
s € LA(RY) as

it to)ss = o) [ (g2 5) U (0.0

FAS
and to take advantage of the specific properties of the propagation of Gaussian states to obtain
an integral representation that allows in particular for an efficient numerical realization of the
propagator.

Such a program has been completely accomplished in the scalar case. However, the mathe-
matical proof of the convergence of this approximation is more recent [56), (53] and can be easily
extended to the adiabatic setting (see [20]). We recall in the first subsection these adiabatic results
and then we explain how we extend this approach to systems presenting smooth crossings via a
hopping process. Surface hopping has been popularized in theoretical chemistry by the algorithm
of the fewest switches (see [60]) and been combined with frozen Gaussian propagation in various
instances, see for example [63), [44]. Here, it is the first time that the combination is achieved in a
fully rigorous manner.

1.4.1. The adiabatic situation. Whenever the eigenvalues are of constant multiplicity, the
classical quantities that we have introduced above are enough to construct an approximation of the
propagator. For ¢ € {1,2}, we define the first order thawed Gaussian approximation for the ¢-th

mode as the operator jgf’ttﬁ defined on functions of the form ¢ = 174 f, f € L3RY),

(1.22) Tem (V) = (2me)~ / 25010 (g )Vilt, to, 2) gty ) dz,

t,t
R2d q>1{ O(tvz)



10 1. INTRODUCTION

with
(1.23) Vi(t, to, 2) = Ra(t, to, 2)me(to, 2)V (2).
This family of operators is bounded in £ (L?(R?), ¥ (R%)) (see Corollary [2.17).

Notice that the operator f +— jet’tt}‘l’ (‘7 f) has a Schwartz distribution kernel and defines a Fourier
integral operator with an explicit complex phase.

THEOREM 1.12 (Thawed Gaussian approximation [38), 53|, [56], 20]). Assume h; is an eigen-
value of constant multiplicity of a matric H® = Hy + eHy of subquadratic growth on the time
interval I. Let to, T € R with [to, T] C I. Then, there exists Cr > 0 such that for all ¢5 € L*(R),
V € C>®(R2,C™) bounded with bounded derivatives, for all t € [to,to + T

l@@@(ﬂ%W%)—ﬂﬁW%)

< Crelldgllze-
L2

REMARK 1.13. (1) Of course, there is no unicity of the writing ¢» = V f. However, chang-
ing (V, f) into (kV, 1f) for some constant k € C does not affect the result. One can
also think to modifying 1% by multiplying it by a non-vanishing function a € C>(R?%)
such that a and é have bounded derivatives. Then, it is enough to turn f into a=1f (see
Remark [2.23).

(2) The approach of thawed and frozen approximations that we develop in this text allows

to extend the convergence to the spaces X5, provided the initial data (¢§)c>0 is frequency
localized and k satisfies No > k+d + % (Ny being associated to (¢§)., by Definition .

As first proposed in [33], it is also possible to get rid of the time-dependent variance matrices I'y
by introducing the Herman-Kluk prefactors for the £-th modes, ay, defined by

(1.24) ap(t,to, z) = 2-Y2det /2 (Ay(t, to, 2) + Dy(t, to, z) + i(Co(t, to, z) — By(t, to, 2)) -

One then defines the first order frozen Gaussian approximation for the ¢-th mode as the operator
Jgfro defined by

(125) jét’ftro (Vf) = (27T6)7d/ e%SK(t’tO}Z) <g§af>af(t7t0,Z)%(t,t07z)g;tvt0(z)dz'

' R2d 1
Here again, this family of operators is bounded in £ (L?(R%), £%(R?)) (see Corollary [2.17). The
next result then is a consequence of Theorem [1.12)

THEOREM 1.14 (Frozen Gaussians approximation [38, 53}, 56}, [20]). Assume hy is an eigenvalue
of constant multiplicity of a matrix H = Hy 4+ eHy of subquadratic growth on the time interval I.
Let tg, T € R with [tg,T] C I. Then, there exists Cr > 0 such that for all ¢§5 € L*(RY), Ve
C>®(R??,C™) bounded with bounded derivatives, and for all t € [to,to + T,

W@wm(m%wﬁ)—ﬁﬁwﬁ> < Cre |16l

L2

The terminology thawed/frozen for these Gaussian approximations was introduced by Heller [32]
to put emphasis on the fact that, on the first case, the covariance of the matrix was evolving
“naturally” by following the classical motion wile, on the other one, the covariance is “frozen”
(constant). The possibility of freezing the covariance matrix was realized by Herman and Kluk
(see [33]) by computing the kernel of the time dependent propagator.
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As for Theorem one can extend the result to an approximation in ¥* provided the data
(¢§)<, is frequency localized family and k € N is chosen so that No > k+d+ 3 (No being associated
to (¢§)z, by Definition [1.7).

In the next sections, we present our results and an extension of these statements to systems
with crossings. The method we develop also allow to prove the approximations of Theorems [1.14
and in the spaces ¥F(R?), with additional assumptions on the initial data.

1.4.2. Initial value representations for codimension 1 crossing at order /. Our first
result consists in an extension of the range of validity of Theorems and to Hamiltoni-
ans presenting smooth crossing and satisfying at the prize of a loss in the accuracy of the
approximation.

THEOREM 1.15 (Leading order thawed/frozen Gaussian approximation). Let k € N. Assume
H¢ = Hy + eH; satisfies Assumptions and [1]] on the interval I. Then, there exist constants
Crr > 0, such that for all initial data 5 = quf] that satisfies Assumptions with frequency
localization index Nog > k+d+ %, there exists eg > 0 such that for allt € I and e € (0, 0], we have

}uz, (t.t0) (muo)v*'ass) T %

< Crve (ll¢gll2 + Co) -
ok

The remarks below also holds for Theorems [T.18] [T.19] and [T.20]

REMARK 1.16. (1) Of course the result also holds for initial data

¥5(@) = Vi) +rj(z), =R
when the family (r§).>o satisfies [|r§|2e) = O(e) in EF for the index k considered in
the statement.

(2) The fact of being frequency localized with Ny > k+d+ % implies that (47)->0 is bounded
in XF (see Section [2.2.6). Thus, (U3 (t,t0)15)e>0 also is bounded in X¥ and this space is
the natural space where studying the approximation.

(3) The control of the approximation in terms of the initial data by ||¢§||z2 + Co instead of
|¢5]ls: is due to the method of the proof, which has to account for the presence of the
crossing. The constant C (and the L?-norm) control the ¥5-norm.

The loss of accuracy of the approximation, in /¢ instead of ¢, is also due to the presence of the
crossing set Y. It induces transitions between the modes that are exactly of order 1/ and cannot be
neglected. If the initial data is frequency localized in a domain such that all the classical trajectories
issued from its microlocal support at time ¢ty do not reach the crossing set before the time tg + T,
then an estimate in € will hold. However, if these trajectories pass through the crossing, some
additional terms of order /¢ have to be added to obtain an approximation at order e. Let us now
introduce the hopping trajectories that we will consider and the branching of classical quantities
that we will use above the crossing set.

1.4.3. Hopping trajectories and branching process. Assume H® = Hj + ¢H; satisfies
Assumptions nd on the interval I. For considering initial data 1§ = 17¢6 that are frequency
localized in a compact set K C B(0, Ry), we are going to make assumptions on the set K.

We consider sets K that are connected compact subsets of R?? and that do not intersect
the crossing set Y. If one additionally assumes that the trajectories @Z’t"(z) issued from points
z € K intersect T on generic crossing points, then, because of their transversality to T, a given
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trajectory <I>27t°(z) issued from z € K meets T only a finite number of times. We then denote by
(t5(to, 2), Ce(to, 2)) the first crossing point in Y:

b z
(1.26) o (tg, z) = DL (2),
For the /-th mode and the compact K, we define
tZ’maX(to, K) = max{t)(to, 2), z € K} and tz’min(to, K) = min{t)(ty, 2), z € K}.

We shall assume that K is well-prepared in the sense that all trajectories issued from K for one of
the mode have passed through Y (if they do) before the ones for the other mode start to reach Y.

AsSSUMPTION 1.17 (Well-prepared frequency domain). The set K is a connected compact subset
of R?? that does not intersect the crossing set Y. The trajectories <I>2’t° (z) issued from points z € K
intersect Y on generic crossing points and one has

tb

1,max

(to, K) < 13 pin(to, K).
A space-time crossing point (¢)(to, 2), (}(to, z)) is characterized by three parameters

weR, (/)R

given by
(127 #0,2) = 2 @uf + (v, 71 (B10,2). 1o, 2)).
(1.28) (ab(to,z), 3 (to, z)) — JV.f (t;(to, 2), C(to, z)) .

The hopping process is affected with a transition coefficient T 2(t, %o, z) that restrict the space
time variables (t, z) to trajectories that have met the crossing set T

2im

1.29 tto,2) =1 =
( ) T1,2( 0 Z) t>1% (to,2) ﬂb(t072>

Note that when K satisfies Assumption then if ¢ < ] ;. (K) and z € K, one has
T1,2(t,to, 2) = 0. Moreover, if ¢ € (t‘i,max(K),tZ’min(K)), z + 11 2(t, to, 2) is smooth.

One then introduces hopping trajectories by setting

b

(1.30) LYy (2) = @510 (C?(tmz)) , t> 1 (to, 2).

This trajectory (@tl”go (Z))t>tb(t0,z) is the branch of a generalized trajectory that has hopped from

the mode ¢ = 1 to the mode ¢ = 2 at the crossing point (£} (o, 2), (2 (to, 2)). One could define
similarly trajectories hopping from the mode £ = 2 to £ = 1 by exchanging the role of the indices 1
and 2.

Along these trajectories, one defines classical quantites as follows:
(a) The function Si2(¢, 10, 2) is the action accumulated along the hopping trajectories, i.e.

between times ¢y and t} (¢, z) on the mode ¢ = 1 and then on the mode ¢ = 2

(131) 51,2(t7 to, Z) = Sl (t? (th Z)a to, Z) + S2(t7 t? (t07 Z)a Ct{(th Z))a
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(b) The matrix I'y 5(t, to, z) is generated according to (1.18) for the mode ¢ = 2 along the

trajectory (®1,2(t,%0,2)),52 (s, ) Starting at time 3 =t (to, z) from the matrix

(ﬁb — Fl(tli7 to, Z)ab) ® (ﬁb - Fl(tbl,tm Z))
20> —ab - B+ ab Ty (8),tg, 2)a

(1.32) I(tg, z) = T1(t), Lo, 2) —

)

(¢) The vector ‘Z,Q(t,to, z) is obtained by propagating the vector Vi (t?,to, z) for the mode

¢ = 2 along the trajectory (@172(t7t07z))t>tb(to,z) starting at time ¢} from the vector

772@?7 C?)fjl (t?>t07 Z) with CE = C?(t()a Z) One has

(1.33) Via(t,to, 2) = Ra(t,t], () (t?»ﬁ) Vi (tzvtowz) .

(d) The matrices Fy 2(t,to,2) are associated with the flow maps

Aq2(t,to,2) DBia(t,to, 2)
_ t,to _ 1,2\, L0y 1,2\, L0,
(1.34) Fia(t,to,2) = 0,975 (2) = (Cl,g(t,to,z) Dis(tito.2))”
(e) The transitional Herman—Kluk prefactors depend on I' 2(¢, to, 2) and 71 2(t, to, z) accord-
ing to
(1 35) 419 detl/Q(C’Lg — iDl,Q — Z.(ALQ — ’L'Bl,g))

2=T12 ; <
det'/?(Cy 2 —iDy 5 — Ty 2(A12 — iB12))
- det'/?(A1» + Dy o +i(Ci 2 — By o))
' det1/2(D1,2 + iCl,g — iF1,2(A1,2 - iBl,2))

where we have omitted to mark the dependence on (¢, g, z) for readability.

With these quantities in hands, we can define the correction terms of order /e of the thawed
& frozen approximations and state our main results.

1.4.4. Thawed Gaussian approximation at order ¢. With the notations of the preceding
section, one defines the thawed Gaussian correction term for the mode £ = 1 as

(1.36) jlt:;?th(vf) _ (27T€)_d/ 7_172(25’ to, Z)eéSLz(t,to,z) <g§7 f>‘7172(t, to, Z)giifo(l(f,t;,z)ﬁdz
z€K 1,2 (#
The formula (T.36]) defines a family of operators that is bounded in £(L?(R%), ¥*(R%)) (see
Corollary [2.17). The restriction ¢ > t5(to, z) introduces a localization of the domain of integration
on one side of the hypersurface {t =t} (to, 2)}.

The thawed Gaussian correction term for the mode £ = 2, denoted by 2’5 ’foth would be defined

by exchanging the roles of the indices 1 and 2. These correction terms allow to ameliorate the
accuracy of the thawed gaussian approximation and to obtain an approximation at order €.

THEOREM 1.18 (Thawed Gaussian approximation with hopping trajectories). Let k € N. As-
sume H® = Hy + eHy satisfies Assumptions and on the interval I. Then, there exists
constants Crj, > 0, such that for all initial data g5 = Vo5 that satisfies Assumptions mn a
compact K satisfying Assumption there exists €9 > 0 such that for all t € I we have for
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e € (0,e0],

o — ———

Jeiteto1vs - 13 (maCe) 65) = 725 (matea)V o5 )
Ve (mV65 ) |, < Crae ot I05l2).

This result emphasizes that for systems with smooth crossings, a term of order /¢ is generated
by the crossing.

1.4.5. Frozen Gaussian approximation at order ¢. In order to freeze the covariance of the
Gaussians I'1 5(t, to, z) that appear in the formula of the thawed Gaussian correction term ,
we use the correction prefactors a; 2 and as; introduceded in and define the frozen Gaussian
correction term for the mode ¢ =1 as

(131 I = e [

a1 2(t, to, z)es S1:2(t:t0:2) (gi,f>‘71,2(t,t07z)g;t,to(z dz.
ze K 1,2

)

Notice that the map f +— jlt ’5(’&(\7 f) defines a Fourier-integral operator with a complex phase

associated with the canonical transformations CID’itQO that define the hopping flow. We first state a
point-wise approximation.

THEOREM 1.19 (Point-wise time frozen Gaussian approximation with hopping trajectories).
Let k € N. Assume H® = Hy+eH, is of subquadratic growth and satisfies Assumptions[I.3 andﬂ
on the interval I. Then, there exists constants Cry > 0, such that for all initial data 5 = V@j
that satisfies Assumptions[1.9 in a compact K satisfying Assumption[I.17, there exists g > 0 such
that for all t € I satisfying

t< t?,min(th) or t?,max(t()?K) <t< t;,min(th)a

we have for e € (0,&0],
Huz (£, to) G — T (mto)v“' ¢3) — i (vrz (to)V ¢8)
— e (mw)V65) |, < Cruce I65lie +Co.

The proof of Theorem [[.19] is based on integration by parts and requires differentiability.
When ¢ < t‘i’min(K), then the transfer coefficient 7 o(t,t9,2) = 0 for all z € K. When t €

[t?’maX(K),tZ’miH(K))7 then z +— 7 9(t,to,2) is smooth. It is for that reason, that we have to
restrict the time validity of the approximation.

Averaging in time allows to overcome this difficulty and to obtain an approximation result that
holds almost everywhere on intervals of time such that the classical trajectories issued from K and
associated with the level £ = 2 have not yet reached Y.

THEOREM 1.20 (Time averaged frozen Gaussians approximation with hopping trajectories).
Let k € N. Assume H® = Hy+¢cH is of subquadratic growth and satisfies Assumptions[I.3 and
on the interval I. Then, there exists constants Cr . > 0, such that for all initial data V§ = V&§
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that satisfies Assumptions[1.9 in a compact K satisfying Assumption[I.17, there exists g > 0 such
that for all x € C§° ((t07tg,min(to, K))),

/ X <”’i’ (1 t0)¥5 — Ty <m (to)V ¢6> — g <7r2 (t0)V ¢8)
R
T, <7r1(t0)17¢g> ) al_,

< Creellxlize (165]22 + Co) .-

To go beyond the time tgjmin(to,K ), one has to consider new transitions that would now go

from the level £ = 2 to the level £ = 1, each time a trajectory for the level £ = 2 hits T. The process
can be understood as a random walk: each time a trajectory passes through T a new trajectory
arises on the other mode with a transition rate of order \/e.

The averaging in time can be understood as the result of a non-pointwise observation, that
takes place over some time interval, that might even be a short one.

For proving Theorem we use an accurate analysis for the propagation of individual
wave-packets. We prove that a Gaussian wave-packet stays a generalized Gaussian wave packet
modulo an error term of order e, for any u € N, and in any space ¥¥, k € N, as well before, or
after, hitting the crossing hypersurface Y.

The proof consists first in proving the thawed approximations and in then deriving the frozen
approximation from the thawed one. The arguments developed in Section [3.3] will show that one
can “freeze” the Gaussian on any state gL °. The choice of some Ty instead of il will imply a slight
modification of the definition of the Herman-Kluk prefactors a,, and the transitional ones ag g,

0,0 € {1,2).

1.5. Wave packets propagation at any order through generic smooth crossings

Our results crucially rely on the analysis of the propagation of wave-packets (including the ones
with Gaussian amplitude functions) through smooth crossings. We consider a Hamiltonian H® =
Hy + ¢H; that satisfies Assumptions on the time interval I and presents a smooth crossing on
a set Y. We fix a point zg = (go,po) ¢ T and times tg, T such that

(1.38) to < )(to, 20) < to + T < th(to, 20).

b
We assume that the point @le(to’z())’to (z0) is a non degenerate generic crossing point (see Defini-

b
tion ) that we denote by CDZ“tO (20) for simplicity. We use the notations introduced in Section|1.4.4
(namely equations (1.26)), (1.27)), (1.28)), (1.30) and (1.31)). For £ € {1,2}, we set

zo(t) = B, (20).

THEOREM 1.21. Let (to, z9) satisfy (1.38), let 1§ be a polarized wave packet
(1.39) W5 = VoWPE (fo) with fo € S(RY) and V, € C™.

Let 1% (t) be the solution of (L.1) with initial data 5. There exist kg € N and three families of
differential operators (§g7j(t)> . ¢ e {1,2} and (B’1_>27j(t)) N such that setting for § > 0 and
je je
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t € Is = [to, ) (to, 20) — 0] U [t} (to, 20) + 6, to + T

YN (t) = e (tto20) WP ) (fi(1),
SN () = e (M0 2WPE ) (f5 (1)) + TspetStablom0WPg (o (fF5(1)

with
FE(t) = Ralt,to) M[Fu(t,t0)] Y /2 By;(t)fo, €€ {1,2},
0<j<N
fia(t) = Ra(t, 17) M[Fa(t,£7)] Z 12 By s (t) fo,
1<j<N

one has the following property: for all k, N, M € N, there exists Cps n i > 0 such for allt € Is
\E N+1
} ¥e(t) — (dji’N(t) + ¢§’N(t)) sz < CMNk (5) §7ro 4 6M ).

Moreover, the operators gg’j(t) are differential operators of degree < 3j with time dependent smooth
vector-valued coefficients and satisfy for € € {1,2},

(1.40) Bro(t) = me(to, 20)Vo and By j(to) =0 V5 > 1,
(1.41) Bua(t (Z / 02 s, 26(5)) 0p¥ [(Fe(s. oy 20)2)°] ds
la|=3
1 adia 7y
+ 7 VzHld ’Z(s,zs) - op; (Fe(to, s)z)ds> me(to, 20) Vo,
to
(1.42) Bia(t) = Wi(1],G)" TP o MIFL (1], t0)]m1 (to, 20) Vo
where the scalar transfer operator 71_,2 is defined by
too . 2 .
(1.43) T ap(y) = / Qi = B 2 G oy — s0)ds, Vi € S(RY)

and the transfer matriz Wy (t*, (") is given by
1
(144) W1:7T1H17T2+i7Tl (8t7r1+2{h1+h2,7r1}>7r

In other words, Theorem says that if ¢§ a polarized wave packet, then, for t € I, t #
t% (to, 20), the solution v (t) of is asymptotic at any order to an asymptotic sum of wave
packets. Indeed, if n € N is fixed, choosing § = ¢® and M, N large enough will give an approximation
in O(em).

The polarization of the wave packets wE’N (t) is first described by the vectors B% ;(to) that evolves

through Ry(t, to) M[Fu(t, to)]. Such evolution preserves the eigenmode. Secondly, in 5™ (t), one
sees a /e contribution that comes from a transfer from the mode 1 to the mode 2. The change of
polarization is performed by the matrix W7 which maps Ran(m) to Ran(mz). Indeed, one has

1
Wl* = moHym — imo <8t7r1 + §{h1 + h2,7T1}> T

1
= moHym + imo (8,5’71’2 + i{hl + hg,’l‘rz}) M.
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The latter equation shows that the result is symmetric with respect to the modes and one can
exchange their roles.

Theorem was proved in [20] up to order o(e). The notations are compatible. However,
in [20], a coefficient 4" appears in the definition of the transfer operator. It corresponds to a
normalization process that we avoid here by using the projector wg(tg, C{) instead of taking the
scalar product with a normalized eigenvector.

For proving the initial value representations of U$, of Theorems to we shall use two
consequences of Theorem [1.21

(i) the wave packet structure up to any oider in € of L{%VOWP; (g™,
(ii) the exact value of the action of Bj g, Ba g, and of Bj_,2(t) when fo is the Gaussian g*.

We recall that the action of the operators R(t, s) M[F;(t, s)] on focalized Gaussians preserves the
Gaussian structure and the focalization: in view of (1.17)) and (1.23]),

Ret, ) M[Eu(t, 5, 2)|me(s, 2)Vog™ = Vi(t, s, 2)g" )

where V; € Ran(m(t, ®}°(2))) and the matrix Ty(t, s, 2) is given by (I.I8) with I'; = il. Besides,
regarding the transfer term, with the notations of Corollary 3.9 of [20] and those of ([1.27)), (1.28),
(L.32) and (1.33)

24w

— b
(e o) V172(tb7t07 Zo)gr (tlvto,zo).
Mb(t())ZO) 1

B'l—>2(tg)gi]1 =

These elements may enlighten the construction of the operator jf fr/th and ‘72;,07& Jth for indices
00 e{1,2}, 0 £

1.6. Detailed overview

The main results of this paper are Theorems [T.18] [[.19] [I.20] and [T.21]

We prove Theorems[1.18] [1.19)and [I.20]in Chapters[2]and[3] These proofs rely on Theorem [I.21]
that is proved later. Chapter [2] starts with Section that recalls elementary facts about the
Bargmann transform. Then, in Section we analyze the notion of frequency localization that
we have first introduced in this text and that is crucial in the setting of frozen and thawed initial
value representations. Indeed, these approximations rely on a class of operators that is studied in
Section [2.3] Endowed with these results, we are able to prove the approximations of Theorems
[[.20] in Chapter [3] We describe the general proof strategy in Section [3.1] and develop
the proof of Theorem in Section We explain in Section [3.3 how to pass from a thawed to
a frozen approximation, and thus obtain Theorems and

Chapters[d]and [5]are devoted to the proof of Theorem[I.21] These two chapters are independent
of the preceding ones, and one can start reading them, skipping Chapters [2 and [3] In Chapter [4]
we construct the different diagonalisations of the Hamiltonian H¢ that we are going to use. In the
crossing region, we use a rough diagonalisation (see Section , and outside this region we use
super-adiabatic projectors as proposed in [5], [46), 58] (see Section 4.3]). These constructions rely on
a symbolic calculus that we present in Section|4.1l The analysis of the propagation of wave-packets
is then performed in Chapter

The Appendices are devoted to the proof of some technical points used in the proofs of Chap-
ters [ and
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CHAPTER 2

Frequency localized families

In this chapter, we study frequency localized families as introduced in the Introduction. We
shall use the more precise following definition.

DEFINITION 2.1 (Frequency localized functions of order 3). Let § > 0. Let (¢°).>0 be a family
of functions of L?(R?). The family (¢).~0 is frequency localized of order §3 if the family is bounded
in L2(R?) and if there exist Rg, C,e5 > 0 and Ng > d + 1 such that for all £ € (0,54],

(2me) Y2 (g%, ¢°)| < CpeP (2)™N#  for all z € RY with |z| > Rp.
One then says that (¢°)c>0 is frequency localized of order 8 on the ball B(0, Rg).

Above, (g, f) = Jga f(2)g(z)dz denotes the inner product of L*(R?). In this chapter, we first
recall some facts about the Bargmann transform, then we study frequency localized families and,
finally, the class of operators built by use of Bargmann transform and to which the thawed/frozen
Gaussian approximations belong.

2.1. The Bargmann transform

The thawed/frozen approximations that we aim at studying are constructed thanks to the
Bargmann transform. They belong to a class of operators obtained by integrating the Bargmann
transform against adapted families.

Recall that the Bargman transform is the map B
B: L*RY) > f— B[f] € L*(R*?),
defined by
(2.1) Blfl(z) = (2me) % (g5, f), = € R*.

The Bargmann transform is an isometry and one has

/ IBf)(2) 2z = || f]2.
R2d

Indeed, the Gaussian frame identity writes

(2.2) f(x) = (2me) / (65 F)g5(@)dz = (2me)

R2d R2d

4
2

Blflg:(x)dz,
where the function ¢¢ is introduced in (1.7)), g5 = WP<(g*") with the notation (T.16]). Equation (2.2)
is equivalent to

d
2

f@) = m)t | Bz, VS € L(RY)

More generally, the Bargmann transform characterizes the X spaces according to the next result
that we prove in Section [2:2.6] below.

21
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LEMMA 2.2. Let k € N, there exists a constant cj, such that for all f € S(RY),

1Fllse < cull(=)* B2 (ea)-

The condition of spectral localization introduced in Definition [2.1] expresses in terms of the
Bargmann transform: The family (¢°).~¢ is frequency localized at the scale 8 > 0 if there exists
constants Rg,Cg,,e3 > 0, Ng € N, Ng > 2d such that for [2| > Rz and € € (0,¢4],

|Bl¢*](2)| < Cpe? ()2,
In other words, the Bargmann transform of (¢°).~¢ has polynomial decay at infinity and is controlled
by &” outside a ball B(0, Rg).
The operators in which we are interested are built on the Bargmann transform. Consider a
smooth family of the form
(z = 65) € C=(R2, L*(RY)).
We then denote by J[0%] the operator acting on ¢ € L?(R?) according to

(2.3) T0Z)(9)(x) = (2me) "% | Be](2)65(x)dz = (27T6)’d/ (9, 9)0:(2)dz, = € R™.

R2d R2d

The thawed/frozen operators of equations (1.22)), (1.25)), (1.36) and (1.37) are of that form. The
Gaussian frame identity (2.2)) also writes with these notations

Tz = Lr2(wa).-
Note that the formal adjoint of J[6%] is
(2.4 T s s 2mey [ 5, 0)gi
R2d

In the first Section we study the properties of frequency localized families, which is the
type of data we consider in our main results. Then, in Section we analyze some properties

of the operators of the form (2.3)). Finally, we prove Theorems and in Section and
Theorems [[.19 and [.20] in Section

Along the next sections of this chapter, we shall use properties of wave packets that we sum-up
here.

LEMMA 2.3. if f,g € S(R?) and z,2" € R?*?, then

(2.5) (WPS (). WPS,(g)) = 27 =W [f, g] (})

where the function W[f,g] is the Schwartz function on R*? defined by
Wi = [ Tt - aer?ds, <= (@.p).
Moreover, for all n € N, there exists a constant Cy, > 0 such that

(2.6) VCERX, ()" W al(QI<Cu D IS

0<n’'<n

»n’ g| sn—n’.



2.2. FREQUENCY LOCALIZED FAMILIES 23

PRrROOF. The formula for (WPS(f), WP, (¢g)) comes from a simple computation. Then, for
a,7 € N? and z = (¢, p) € R?¢, we observe

[P WIS, 91(2)] =

q /Rd Dg(f(x)g(z — q))e'*Pdx
< <q>|7| /Rd |D§(?(x)g(m — Q))’ dz

1]

2% / @)z — ) [ DE(F(@)g(z — 0))] de
Rd

where we have used Peetre inequality

IN

¢
(2.7) VtcR, VY €Z, ) <23 (t — )l

The conclusion then follows. (|

2.2. Frequency localized families

We investigate here the properties of families that are frequency localized in the sense of Defi-
nition [2.1] and we use the notation (2.1)).

We point out that Definition 23] is enough to treat vector-valued families by saying that a
vector-valued family is frequency localized at the scale 8 > 0 if and only if all its coordinates
are frequency localized at the scale 8. For this reason, we focus below on scalar-valued frequency
localized families.

2.2.1. First properties of frequency localized functions. It is interesting to investigate
the properties of this notion. The first properties are straightforward.

PROPOSITION 2.4. The set of frequency localized function is a subspace of L2(R). Moreover,
we have the following properties:

(1) If (¢5)e>0 and (¢5)e>0 are two frequency localized families at the scales §; and Ba respec-
tively, then for all a,b € C, the family (a@5 + bg5)e~0 is frequency localized at the scale

min(ﬁla ﬂ?)

(2) If (¢°)e>0 is frequency localized at the scale 8 > 0, then it is also frequency localized at
the scale 3’ for all 8" € [0, 3.

This notion is microlocal. Indeed, defining the e-Fourier transform by

Fp = ere) [ e = enetF(4), fesim,

PROPOSITION 2.5. Let (¢°).~0 be a bounded family in L?(R%). Then, (¢¢).>0 is frequency
localized family at the scale § > 0 if and only if (F*¢°)c>0 is frequency localized at the scale 5§ > 0.
PRrOOF. This comes from the observation that for all z € R??,
(92, )] = {952, F=¢°)

where J is the matrix defined in (1.10). Thus it is equivalent to state the fact of being frequency
localized for a family or for the family of its e-Fourier transform. ]
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2.2.2. Frequency localized families and Bargmann transform. The Gaussian frame
identity allows to decompose a function of L?(R?) into a (continuous) sum of Gaussians.
After discretization of the integral, this sum may be turned into a finite one, which opens the may
to approximation’s strategies (see [42] where this observation is used for numerical purposes). It
is thus important to identify assumptions that allow to compactify the set of integration in z. The
notion of frequency localized families plays this role according to the next result.

LEMMA 2.6. Let (¢%)e>0 be a frequency localized family at the scale > 0. Let Rg,C and Ng
be the constants associated to (¢°)e=o according to Definition . Let k € N with Ng > d + k.
Then, for all x € L*(R) supported in [0,2] and equal to 1 on [0,1], there exists C > 0 such that

for R > Rg,
1/2
o -7lex(B)| @) sce ( / (z>_2(Nﬁ_k)dz> |
Sk (RY) |z|>R

In the following, we will use the notation

£ 15 < £ - £
(2.9 b= [ix (') ] 09 =7 (lenBloI2).
REMARK 2.7. Lemma [2.6] can be used in different manners.

(1) If B > 0, then J[g5x(|2|/R)](¢°) approximates ¢¢ in L*(R?) as € goes to 0 in any space
SF(RY) with k € N such that Ng > k + d + 3, and uniformly with respect to R > Rg.

(2) If 8 > 0 (which includes 8 = 0), then the same approximation holds by letting R go to
400, and it is uniform with respect to €. In particular, when g = 0 we have

o ()] 9

() = (2me) 4 / (65, ¢°) g5 (@) dz

21> R
and consider k € N. For R > R, a,y € N with |a| + |y| = k, we have

lim sup < CR~WNe—k—d=3)

e—0

E(RY)

PRrROOF. We set

2% (e D) 7% (|72

< (2me)~2 / / / (05, 9°) 05 0000 (2) 50 () da dz d2'
Rd J|z|>R J|2'|>R

where

(2.9) 927 = a%(eDy) g5 = WPZ ((q + Vey)*(p + veD,)'g™) . 2 = (,p).
We will use that for all n € N, there exists ¢, > 0 such that for all z € R2d

(2.10) 922l < enl2)”.

By (2.5)), we obtain
(e D) 7% (|72 )

/

< C%e?P (2me) ¢ / / ()Mo ()N W g2, g2 )] (Z = > dzdz'.
|z|>R J|z'|>R \E
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Besides, by (2.6)), there exists a constant O’:L,k such that

[WIg22,g221(Q)] < Chp () ™) ("

We deduce the existence of ¢ > 0 such that

A R Y I R R e B
|z|>R J|2'|>R \/E

<cCje / / (2)TNe R (2 4 VEQ) TNEHR(() T dzd.
|z|>R

Since —Ng + k < 0, Peetre inequality gives

Ng—k Ng—k
2

(z+VeQ)y Noth <275 (\e()No R (z) T Neth < 2

by restricting ourselves to e < 1. Therefore, there exists a constant ¢ > 0 such that

x 2 ~ - BT
& (D) 7 IIz2 gty < € e*” ( / () kdc) / (2) "2 Na=B g,
R2d 2> R
and we conclude the proof by choosing n = Ng + k +2d 4 1. 0

(YN TR(z) TR,

2.2.3. Examples. A first fundamental example consists in bounded families in L?(R?) that
are compactly supported.

LEMMA 2.8. Let (¢§)e>0 be a bounded family in L*(RY) such that ¢f = |, <m®§ for some
M > 0. Then, (¢§)e>0 is frequency localised at any scale 8 > 0.

PROOF. There exists a constant C' > 0 such that for all z = (¢, p) € R??
1B[¢6](2)] < Cllghw<a |l 2

Besides, one can find a smooth real-valued function y compactly supported in {|z| < 2} such that
_d x Y _
loTuranlls = (72) ¢ [ MG )oE @aE ) dady,
We set
L= (lpl*+lg—2*)" (~ip+q—2) Va
and we observe that eLgS(x) = g5(z) for all z € R

Besides, if |z| > 8M, either |q| > 4M and if |z| < 2M < %, then |z —¢| > % > 4M, or

lg| <4M and |p| > 2M. In any case, (|p|? + |¢ — z|*)™! > 2|2|7! and for all N € N, there exists a
constant ¢y pr such that

(L) x57)| < exarlel 7,

Using the vector field L, we perform NN integration by parts, and we obtain the existence of a
constant C' > 0 such that

_4d _
o5 a3 < CN AN [ 1y icardady,
R

whence the boundedness of e#(2)"? (| g<T|, < ar| 2 for all 3> 0 and N € N. O
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An important consequence of this result is related with the notiont notion of compacity and
of e-oscillation that are often considered in semi-classical analysis. We recall that the uniformly
bounded family (¢%)c~0 is said to be compact if

e—0

limsup/ |¢°(2)|*dz — 0.
|z|>R R—+00

It is said e-oscillating when

e—0

e N
‘£|>§ R—+oc0

or, equivalently, when its e-Fourier transform (F°¢°).~¢ is compact. Therefore, a compact family
or an e-oscillatory family can be approached by frequency-localized families. Note however that
The notion of compacity or e-oscillation is weaker than being frequency localized. For example, the
family

(2.11) u(z) = |Ine|®a(z|Ine]), = €RY,

is a compact and e-oscillating family which has no scale of frequency localization.

Let us now analyze the examples given in the Introduction.

LEMMA 2.9. (1) Let u € S(RY) and zo = (qo,po) € R**. Then, the family (WPZ (u))e>0
1s frequency localized at the scale B for any 8 > 0. ‘
(2) Let a € C°(RY) and S € C°(RY). Then, the family (e2°®a).~ is frequency localized at
the scale B for any 6 > 0.

PrOOF. 1- By (2.5), we have for z € R??

BIWPZ, (u)](2) = (2n¢) % (WP(g™), WP, (u) = (2m)~F 2P0 0-00) gt ] (}) |

Let N € N, the estimate (2.6) implies the existence of a constant C'; such that

IBIWPS, (w)](z)| < Cy 4 <zo\/_gz>—N

Choosing |z| > max(2|zg], 1), we have 2|zo — z| > 2(|z| — |20|) > |2| and we deduce

20 —2\"" € 5 4e > ~
= |——3) <|——=5) <@z "
< Ve > (5+|z—zo2> = <4€+z|2) < (4e) = |27,

whence the existence of a constant ¢y > 0 such that for all z € R?*? and N € N,

IBIWPZ, (w)](z)| < ene & (z) N,

2- One has

Ble5@®a](z) = (2m) W2/ 4g=d/4e25(a) /
R

, a(q + Vey)

i i _lw?
x Exp (—ﬁp Y+ ES(q +y\@)> e T dy.



2.2. FREQUENCY LOCALIZED FAMILIES 27

This term has a very specific structure involving the symbol y — a(y), a rapidly decaying function

2
Y — e~ and an oscillating phase

v K ) 1= —pey+ S+ o).

We are going to show that the terms defined for j € {1,--- ,d} by
‘2

wl? pe ly A e
Aj =gy /d alg+ey)e 2 e Wdy and Bj :==p; /d alqg+ Vey)e 2 M Wy,
R Rd

have the same structure. Then, it will be enough to consider only one of these terms and to prove
that they are controlled by a power of ¢, this will implies the adequate control on |Ble<®®)a](z)|.
Let us first transform A5 and Bj. Indeed, we have

VI _12 Y\ ac
A5 = /d(qy' +Vey;)alg + vey)e = e Wdy — ﬁ/d a(q+ Vey) (yje : )e MWy,
R R

The first integral of the right hand side has the same structure with the symbol y — a(y) and the
2
second one with the rapidly decaying function y — yje_‘yTl. Besides, observing

pjemg(y) = —iy/Ed,, (e W)y — 8,,5(q + VEy)eit @),

we obtain with an integration by parts

2 e
Bj = _/Rd 9y,5(q + Vey)alg + Vey)e > M Wy

Y 2 SAE
+ z\/E/ y, (a(q + \@y)eflg ) MWy,
Rd

Here again the right hand side has the same structure with different symbols and rapidly decaying
term.

We now focus in proving that one typical term

Y 2 €
(2.12) Lf = / a(q+ \ﬁy)e_%eZA Wy
R

2
is of order ¢V for all N € N. The decay of y > e~ allows to reduce the set of integration.

Indeed, we have

Y 2 S AE
/ Calg+ Vey)e E N Way
ly|>e~ 4

Ve ly|®
<o Flales [ o ay.
Rd
Therefore, there exists a constant ¢ > 0 such that
wl® . ae 1
ILf| < c / Calg+ Vey)eT TN Way| 4 emwvE |
ly|<e™ 1
We now use the oscillations of the phase for treating the integral in |y| < £~1. We observe that

4
there exists Ry > 0 such that if |z| > Ry, then
z ¢ {lp—VS(g)| < 1, dist(q, supp(a)) < 1}.

We choose |z| > Ry and we have the following alternative:

either dist(q,supp(a)) > 1, or (dist(¢,supp(a)) <1 and |p—VS(g)| >1).
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If dist(q,supp(a)) > 1, there exists g > 0 such that if ¢ € (0,¢0] and |y| < /4, then ¢ + ey ¢
supp(a). The integral thus is zero and we are reduced to the case where dist(g,supp(a)) < 1 and

lp— VS(q)| > 1. One can find £, > 0 such that for & € (0,&;] and |y| < e7,

1
[VS(a+yve) —p| > 3.
We then consider the differential operator

e .~ VSg+yve)—p
L = VoSt yve = v

and we write

/|y<6

Ll e A
= alg+VEy)e 5 (L)Y (¢4 W) dy

Y 2. €
a(g + Vey)e T N Wy

Bl

ly|<e™ 4

4

* 2 e
= / , (LY (a<q +VEYIVS(g+yvE) —pl2Ne ) oA gy,
ly|<e™ 2
There exists a constant C' > 0 independent of z such that for all € € (0,e1] and |y| < ci1

(LE)N* <a(q + \/Ey)WS(q + y\/g) _ p|72Ne* \7/2|2 >

ly)2

N
<(Ceze 2.

We deduce

NER
‘/I Lalg+Vey)e e Wy
y|<e™

4

N
2

<Ce

and (2.12)) writes

1
€

|Lf| < ¢ (5% +e_4f)

for some constant ¢ > 0. This terminates the proof.

O

2.2.4. Characterization of frequency localized families. The characterization of fre-
quency localized families can be done by using other families of wave packets than Gaussian ones

and the cores z can be distributed in different manners.

PROPOSITION 2.10. The family (¢).s¢ is frequency localized at the scale 8 > 0 if and only if

for all C!-diffeomorphism ® satisfying
Ja,b >0, Yz e R a|z| < ®(2) < blz|,

for all 0 € S(R?), there exists Cg, N3, Rg and €5 such that for all € € (0,£5] and for |z| > Rg

N,
_d c _ 1\
(2me) ™ 2 |<WP%(Z) (0),9%) < Cg &P (z) Ns max (1, a> ||9H22d+1+1\75 .

Moreover, for all family (A¥).~¢ bounded in L>°(R??), ¢ € (0,e4] and R > Rg,

|7 [ OWPs @015 5] (59, < € Cse? ( /|Z|>R<z>Nﬂdz> :
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PROOF. We only have to prove that if (¢°).~0 is frequency localized at the scale 8 > 0, then
the property holds for some given profile § and diffeomorhism ®. Then, the equivalence will follow.
We consider the constants Cjg, Ng, Rg and g given by Definition and we take € € (0,e5]. We
observe

d
2

(2me) ™2 (WP, (0), %) = (27“5)*%/ (WPG(2)(0), 92 )95, ¢F)dz" = [ + I

Rd
with

__3d € £ =) 3
I = (2me) / (WP5 ) (0),05) (g5, 6°) .
|z'|>Rga

Let us study I;. Using (2.5), (2.6) and that (¢°).~¢ is frequency localized at the scale 5 > 0,
we deduce the existence of cg, Ng > 0 such that we have

[Ih] < cp b (27r5)_d/ W[G,gﬂ] (

|z'|>Rg

<Z/>—Nﬁdzl

oo @(z))
NG
< calllsn @ (ome)* [ (Z2EY oy g

<cgllf)sn e’ / ()T (®(2) + ¢ NedC,

R4

where the constant cg may have changed between two successive lines. We observe that Peetre’s
inequality (2.7 yields

N N
(D (=) +vE0) N <277 (B(2)) NV (VEON < 277 (B(=) N (O,
whence by choosing n > 2d 4+ 1 + N,
112 p follgasrsim, = @) [ (O ag
Rd
for some new constant cg > 0. We conclude by observing that

1\
(®(2)) ¢ < max (17 ) (z)~Ne
a
whence, by modifying cs,
1\ Ve
|| < (] ||0||E2d+1+NB £? max (1, ) <Z>7NB.
a
We now study I». Using (2.5)), (2.6), we write for n € N

3d I _ P -n ,
Ile<¢f||Lz<zm>—z/lll<R <zﬁ(z>> ”
=i

We observe that if [z] > 2aRg, then for |2'| < Rg < 3-|z|, we have

1
-} > |d — |2 > =z
|z (2)] > |@(2)] Izlfza\zl

Therefore
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Using that (¢)c>¢ is a bounded family in L?, we obtain that there exists a constant ¢’ such that
for |z| > 2aRs and any n € N,
I < ™7 |2,
The proof of the last property follows the line of the proof of Lemma [2.6|combined with adapted

change of variables. This terminates the proof. |

2.2.5. Frequency localized families and semi-classical pseudodifferential calculus.
With these elements in hands, we can prove some properties that frequency localized families enjoy
with respect to pseudodifferential calculus.

PROPOSITION 2.11. Let (¢°).>0 be a frequency localized family at the scale 5 > 0.

(1) For all semi-classical symbol a € C2°(R??), the family (a ¢E)E>O is frequency localized at
the scale 8 > 0.

(2) For all subquadratic Hamiltonian h € C®(R x R24), for all ¢,t5 € R, the vector-valued
family (Z/{,f (t, t0)¢5)5>0 is frequency localized at the scale 5 > 0.

PROOF. (1) We can assume without loss of generality that a is real-valued. We write
Blag?] = (2me)~Y?(ags, ¢°).

Since g% is a wave packet, we have

—

ags =aWPS(g") = WP(g3), @5 =a(z+Ve)g"

The function g¢ is of Schwartz class on R? and its Schwartz semi-norms are uniformly bounded in &
because a is compactly supported. We deduce from Proposition [2.10]

|B[a¢%]| < Cpe” (2) 105 l|2a+ 14N,
which concludes the proof.
(2) We write
B (U5 (t,t0) 6] = (2me) =2 (Uj (¢, to)gZ, 6°).
Since ¢ is a wave packet, we have

(2.13) Ui (¢, to)gs = e SIWPE o, (67 4 VErL(8)

with the notations of the introduction. Besides, for all n € N, there exists a constant C' = C(n,t)
such that ||r<(t)||s» < C(n,t). We deduce from Proposition [2.10]

B U (t,t0)¢7]| < Cael (2) N2 g" ") + Vers (¢)l|2as 14N,

which concludes the proof. O

REMARK 2.12. (1) The proof of Proposition (1) extends to smooth functions a with
polynomial growth

Ny e N, VyeN?, Vze R |97a(z)| < (z)No~ D!l

provided the integer Ng associated with the frequency localisation at the scale 5 > 0 of
the family (¢§)e>0 verifies Ng > 2d + 1+ No.
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(2) The proof of Proposition [2.11] (2) also extends to adiabatic smooth matrix-valued Hamil-
tonian H that are subquadratic according to Definition [1.1l However, it is not clear
whether the same result holds for Hamiltonians with crossings, either they are smooth as
in this article or conical as in the Appendix of [18]. Indeed, even though one knows that
Us (t, t())(QZV) is asymptotic to a wave packet, it is not clear that the remainder of the
approximation has a wave-packet structure as in .

2.2.6. Frequencies localized families and E’;-regularity. The size of Ng in Deﬁnition
gives an information about the regularity of the family.

LEMMA 2.13. Let (¢°)e>0 a frequency localized family at the scale 8 > 0, let Cg, Ng,ep are the
constants associated by Definition , Assume such that k € N is such that Ng > d+ k + %, then
(¢°)o<e<es is uniformly bounded in Yk and there exists ¢ > 0 independent of &

[6°lIsx < e(Cp + 16511 22)-
This Lemma is a simple consequence of Lemma that we are going to prove now.

ProoOF OF LEMMA 22l Let k € N and o,7 € N? such that |a| + |y| = k. we consider the
operator

Tay =Bo(2%(eD;)") 0 B~ o (2)7".
The kernel of this operator is the function
R 5 (X,Y) = k(X,Y) = (2me) "4 {g5%, 2¥(eDy) g5 ) (V) 7",
Therefore, by 7 there exists a constant c; such that

/ sup |k°(X,Y)|dY = (27r5)_d/ sup
Y eR2d X cR2d Y eR2d X cR2d

Wlgit, 92 y'] (X\;;/N (Y)~*dy.

We deduce from ([2.6)) and (2.5)) the existence of a constant ¢ > 0 such that

/ sup |k°(X,Y)|dY < ¢k.
Y €R2d X cR2d

Similarly, we have

/ sup [k°(X,Y)|dX = (2me) " / sup
X X

€R2d Y eR2d €R2d Y cR2d

X-Y _
Wlgi, 925 <\/g )‘<Y> FdX < ¢p.
Therefore, the Schur test yields the boundedness of T, . One then deduces that for f € S(R?),
one has

[2%(eDz)” fllL2rey = 1B[z* (eD2)” fll L2 (r20)
= 7% () BUN | oy < cull(e)* BUl 2oy,
which concludes the proof. O
Let us now prove Lemma [2.13]
PROOF OF LEMMA [2.13] Since Ng > d + k, we have for |z| > Rg,
(2)*IB[6°)(2)] < 7Cp(2) ™Mo € L2(R™).
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Moreover, z — (z)2¥|B[¢¢](2)|? is locally integrable and we can write

[ BN B < (R [ BloI(P e+ 25C3 [ () 200 s

|z|<Rg R2d

< (R IBH Yo +2°C3 [ (57209 M

< <Rﬁ>2k”¢6”2L2(Rd) +€2ﬁC§/ <Z>*2(N[sfk)dz7
]R2d
whence the conclusion since the right hand side is bounded for 2(V, 8 — k) —2d > 1. 0

2.3. Operators built on Bargmann transform

We investigate here the properties of the operators defined in ([2.3). We shall investigate two
cases :

(a) The case where the family (6).-¢ is only uniformly bounded in L?(R?), which is a light
assumption, but with uniform bounds in z on adequate semi-norms or norms.

(b) The case where the family (0%).~¢ is a wave packet (up to a phase), which is a stronger
assumption on the family.

The thawed/frozen approximation operators belong to the type (b). We will consider operators of
type (a) in the proofs of Theorems and when taking for the family (0%).s0 a term of
rest appearing in the expansion of the action of the propagator on a Gaussian wave packet. The
Theorems [I.19] and are consequences of Theorem [[.1§

In the Subsection we analyze the action of these operators on X¥ spaces. In Subsec-
tion we prove special properties of the operators corresponding to families of the type (b)
involving classical quantities linked with the propagation of Gaussian wave packets by Schrédinger
evolution.

2.3.1. Action in ¥¥ of operators built on Bargmann transform. This section is devoted
to the proof of the following result.

THEOREM 2.14. Let g > 0.

(1) Let R > 0. There exists co > 0 such that for all measurable z-dependent family (05)c>0,
for all k €N, € € (0,¢¢], for all ¢ € L*>(R?)

710021 <R (@)l < (2me) = collll 2 B> ‘S‘tipRH@illzg.

(2) Assume 05 = A°(2)WPg,(0) with 6 € S(RY), (A¥)es0 a bounded family in L>°(R??,C)
and ® a smooth diffeomorphism of R%? such that
Je>0, HeEN, VzeR¥™, |Jp(2)| + |Jo(2) 71 < ez)’.
Then, there exists cj > 0 such that for all $ € L*(R?), k € N, € € (0, 9],
1)) s < ch IAcllzoe 6112 B e sesnicn.
The properties of the operators J[f%] extend to its adjoint (see (2.4)).

COROLLARY 2.15. Under the assumptions of Theorem the family of operators J[05]*
(see (2.4) satisfies the same kind of estimates than the family J[6%].

A straightforward consequence of Theorem[2.14]and of Lemme[2.6]is given in the next statement.
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COROLLARY 2.16. Assume (6%).s0 satisfies the assumptions of Theorem (2). Let (9°)c>0
be a frequency localized family at the scale 8 > 0 and Cg > 0, N3 € N be the constants associated
with Definition 2.1} Then, for all k£ > 0 such that Ng > k + d, there exists a constant c such that
for all R > 0,

|T[05](¢° — dR.)lls: < crCp BR-(Ns—k—d—3)
where the family (¢% _)->o is introduced in (2.8).

PRrROOF OF THEOREM 2.4l (1) The proof is similar to the first part of the proof of (1). By Cauchy-
Schwartz inequality, for z € R?, we have

|10 <) (692 < (2me)~2416% 2 /

/ 05 ()05, (z)dx| dzd2’
z€R4

|z],]2'|<R
< (2me) 2672 / 162 21165, | 2 dz
|z],]2'|<R
< e R¥(2me) 7| sup 652
|2]<2R

where ¢; > 0 is a universal constant.

(2) Let us first prove the L?-estimate (k = 0). Let (z,y) — k°(x,y) be the integral kernel of
the operator J[0%]. Since the Bargmann transform is an isometry, it is equivalent to consider the
operator Bo J[05] o B~!, the kernel of which is the function (R?¢)? 5 (X,Y) — kg(X,Y) defined
by

K(XY) = (2m0) 0 [

R2d
Therefore, by (2.5), k3(X,Y) satisfies

k5(X,Y)| < (2me) 2 /

z€ER24

T ()95 (9)k (2, y)dardy = (2me) = / (45 95 ) 05) d=.

z€ER2d

dz.

Ve Ve

Wl (Y2 ) et (T 28

We deduce
[ )X < ax ( / |W[gﬂ7gﬂ1<z>|dz) ( / |W[gﬂ,91<x>|dx),
R2d R2d R2d

[ pacevar < sl ([ wlataoniay ) ([ it ).

with M = sup.¢(g 1] [[A°| 2, and, by equations (2.6) and (2.10), we deduce the existence of C' > 0
such that

/ k5 (X, Y)|dX+/ k5 (X, Y)|dY < CM]||0]|seasess.
R2d R2d

We then conclude by Schur Lemma and obtain
1B o J105] 0 B~ || g(r2meayy < CM [|A%|| o (0] oasesr,
and so it is for J[0%].
For concluding the proof when k # 0, we again use that for o,y € N% and ¢ € S(R?),
z%(0,)"T07] = T2 (£0:)707],
and the additional observation
2%(e0,;)YWPL(0) = WP? ((¢ + Vez)*(p + veD,)"0) .
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We then conclude by observing that, as in the estimate (2.10]), we have for all n € N,
(g + Vex)* (p + VD) 0|sn < (2)*(|0]| s
This finishes the proof. O

Theorem has consequences for the thawed/frozen approximation operators introduced in
Chapter
COROLLARY 2.17. Assume the Hamiltonian H® = Hy + ¢ H; satisfies Assumptions [T.9] and
Let ke Nand ¢t € I.
(1) The families of operators (j;tt}? /fr)€>0 defined in (1.22)) and (|1.25]) are bounded families
in £(12(RY,C™), SH(RY, C™).
(2) Assume moreover that the compact K satisfies Assumptions m Then, the family of
operators (jlt ’éoth /ﬁ) defined in (1.36]) and (1.37) are bounded families in the space
= e>0
L(I2(RE, Cm), SHRY, C™).
REMARK 2.18. If one assumes that (¢,z) — Ocf + {v, f} is bounded from below and 9, f is

bounded, then one can replace the compact K by R?? in the definition of ._71t ’;C’th and one obtains a

bounded family in £(L%(R4,C™), oF(R4,C™)).
PROOF. Let ¢ € {1,2}. Let us first discuss J ;0. We write J, ¢ = J[05] with
02 = X (2)WPGeu (91 (0, 2)) and A°(2) = e SeBt0AV(4 10 7).
We observe that for all ¢ € I and z € R?¢,
[Vt to, 2)llcm = [|Va(to, to, 2)llcm = Ime(to)Vlem < [[V[lemm

which is independent of z. Therefore, the family (A®).s is bounded in L>°(R2%).

Besides, by Proposition the flow map (¢,z2) — <I>z’t0 (z) satisfies the assumptions of (2) of
Theorem Similarly, the map (¢,z) + I'¢(t,tg,2) is bounded on I x R??. Therefore, for any
N € N, there exists ¢y 4,7 > 0 such that

Vtel, Hxaafgg(t,to, ')”EN < CN,to,T-
We then conclude by (2) of Theorem The proof for jlt’ftr" follows exactly the same lines.

The proof for Jf ’;Oth Jfe requires additional observations. We need to consider the transition co-

efficient map (¢, z) — 71 2(¢, to, z) (see (1.29)) and the matrix-valued maps z — I (to, 2) (see (1.32)),
which requires the analysis of the function parametrizing the crossing (see (1.27)) and ([1.28)),

(2.14) z (oz"(to,z),ﬂ"(to,zwb(to,@) :

By the condition of Assumption with ng = 0, the derivatives of (t,2z) — f(t,2) are
uniformly bounded in z. Moreover, if one takes z in a compact K that satisfies Assumptions[1.17]
one has the additional properties that d;f and u” are bounded below. As a consequence z —
o (to,2), z = B’(tg,2) and z — p’(to,z) are bounded functions on R?¢ for all t € I, the map
defined in is smooth. One then argues as before by including the coefficient 7 (¢, o, z) in
the definition of A* and the result follows from Theorem [2.14] (2). O
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2.3.2. Some properties of operators built on Bargmann transform via families with
wave packet structure. In this section we analyze the properties of the operators J[0%] when
(0%)e>0 is of the form

(2.15) 0z = e=5Eu(2) WP, (0(2, ),

where § € C®(R? S(RY)), S € C®(R% R), u € C°(R?,C) and ® a smooth diffeomorphism
sarisfying the assumptions of Theorem We are interested in the case where S and ¢ are
linked in the same manner as when they are the flow map and the action associated with classical
trajectories. Therefore, we consider the following set of Assumptions.

AssUMPTION 2.19. Let S € C*(R2¢ R), u € C>°*(R2¢,C) and ® a smooth diffeomorphism. We
assume the following properties:

(i) There exists ¢ > 0 and ¢ € N such that
Wz e R, |Jp(2)] + o (=) 7)) < c(2).
(ii) Setting ®(2) = (®4(2), Pp(2)) and

o (A(z) g(@) |

we have
VS(z) = —p+ A(2)®,(2) and V,S5(2) = B(2)®,(2), z=(¢,p).

(iif) For all k € N, the z-dependent seminorms [u(z)[/sr and sup|, <y, 025~ are uniformly
bounded in z.

The next technical lemma will be useful for proving our main results. It contains all the
information needed to pass from the thawed approximation to the frozen one.

LEMMA 2.20. Let d = 9, —i0,. Let § € C*°(R?*!,S(R?)), S € C*(R?*%, R), u € C*(R?*4,C) and
® be a smooth diffeomorphism satisfying Assumptions[2.19. Then, the following equality between
operators in L(L?(R%),%*) holds for k € N:

J [ueés WPS, (00,2 — aq>qu)9)} = —iVET [aueés WP;(G)} —iET [ueés WPg(ae)} :
Note that with the notation of Lemma [2.20] we have
(2.16) 0D, (2) = C(2) —iD(z) and 0®,(z) = A(z) — iB(2).

Besides, if condition (ii) of Assumption is satisfied, then the equality of Remark holds
formally. The condition (i) ensures the boundedness of the operators involved in the estimates.

PROOF. The integral kernel of the operator J {u e:S WP‘&,(G)} is the function

(z,y) — k(z,x,y)dz
z€R2d

defined by
k(271‘7y) = u(z7x)eéS(Z)g§(y)WP%(z) (0(23 ))(‘T)7 (xvy) € Rd7 KAS RQd'
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We aim at calculating 0k. We observe for z = (¢,p) € R??, y € R? and
05(2) = —p + (A(z) — 1B(2))0®,(2),

0 (35)) = L1(op +2)(y — @) + palgZ(0) = “po(v)

0 (WP5)(0(2,)) ) = WP (00(2,)) + TWP‘W ) (00,(2)a =20, () D)6z, )

~ LWL ((A(2) — BBy (0(z, )
We obtain

ok(z, 2, y) = e %) (OU(Z z) g5(y) WP () (0(2, ) () + u(z, x) g2 (y) WP (00(z, ) ()

a2, ) G200 WPy (09,(2)z — 004 (2) Do)(=, ) ()

Ve
The result then follows from the integration in z € R2?, |
The case of Gaussian functions 6 is of particular interest. Indeed, if 0(z,-) = ¢®*) with
O € C>*(R%? &1 (d)), we have for z € R? and z € R??
(2.17) (0P, (2)z — 004(2) Da)g®? (2) = (00, (2) — 0Py(2)O(2))z g ().
We set

Mo (z) :=0D,(2) —0D,(2)O(%).
By (2:16), we have the equality between matrix-valued functions
(2.18) Mg = (C —iD) — (A—iB)® = (A—iB) [(A—iB)"'(C —iD)—©].

Note that this matrix Mg is invertible because (A + iB)~1(C +iD) — © € &1 (d) (as the sum of
two elements of @1 (d)). These observations are in the core of the proof of the next result which is
a corollary of Lemma when applied to Gaussian profiles.

COROLLARY 2.21. Let k € N. Let © € C>®(R??,&%(d)) such that Mg is bounded together
with its inverse, let S € C°(R2%,R), u € C*(R??,C) and ® a smooth diffeomorphism satisfying
Assumptions Then, in £(L?(R%), ©¥(R%)), we have

(2.19) J [u efS WP, (zg@)] = O(V5).
Besides, for all L € C*°(R2?,C%?), in £(L?(R?), =¥ (RY)), we have
(2.20) J [ueés WP, (La - xgg)} - % J [u Tr (L Mg  2d,) o5 WP, (g@)} +0(e).

with
LMg5"9®, = L[(A—iB)"}(C —iD)—©] .

REMARK 2.22. (1) This result has an interesting consequence concerning the pseudodif-
ferential calculus. Indeed, for a real-valued and with bounded derivatives, in view of (2.4)

= 7(agf) = Tha(z)gE) + BT (WeE (Va5 ) o) ) + 0
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where we have used the properties of wave packets. Using Vg*' = 2¢'! allows to conclude

by Corollary
a=Jla(z)g:] + O(e)
in any space ¥¥. This was already proved in [56].
(2) More can be said about the y/z-order term on the right-hand side of (2.19). By revisiting
the proof below, one sees that there exists a real-valued smooth function z — ¢(z) such
that

J [uegs\NPz> (xg@)} =—ieJ [ueéSWP% (c(z)ge)} + O(e).
REMARK 2.23. The latter remark allows to prove Remark (1). We observe that in L?
b= V(@ 1) +0(e) and U(t.ta)s =Ui(t.t0) (V@ 1)) +0C)

Turning the pair (‘7, f) into (aﬁ,ﬁf) consists in replacing ‘75(15, to, z) by
Via(t,to, 2) := Ra(t, to, 2)me(to, 2)(a(2)V(2)) = a(2)Vi(t, to, 2).

The two thawed Gaussian approximation constructed in that two different manner then differs one
from the other by O(g): the analysis developed in Section (in particular, the arguments of
Remark [2.22) shows that in XF(R?),

T (Vf) = (2me) ™ /]R e (g () [)Vya(t to, 2)g,1 000 7 “dz + O(e).

PROOF OF COROLLARY 22Tl One uses (2.17) and the first relation of Lemma that we
apply to 8 = ¢g©. Tt gives that in £(L%(R?), 2¥(R?)),

T |uetSWP5 (29°)| = 7 [uetS WP5 (Mg (00,2 — 90,D,)g%)| = O(vE),
whence .

Secondly, if 1 L € C*°(R?¢,C%%), we consider the matrix L’ such that L = ‘L'Mg. We observe
that

0@,z — 09,D,) - (L'zg®) = (("L' (0, — 29,0))z - = — Tr("'L'dd,)) ¢°.
It remains to prove that in £(L?(R?), ¥ (R9)), we have
(2.21) J [ueés WP5 (0,2 — 9®,D,) - (L’xgg))} =0().
We first apply Lemma to the function § = L'2¢® and we write
J [u et S WP5 (00,2 — 9B, D) - (L’xg@))}
= —iVET [ouetS WG (L'wg®) +uetS WPS (L'z0(g9))]
We use the relation and obtain in £(L?(R%), £F(R?)),
(2.22) J [ueﬁs WP5, (0®,7 — 99,D,) (L’xge))} = —iVET [ueés WP;, (L'xa(ge))} +0(e).

We calculate >
co
2(g®) = gg@ + (002 - 2)g°,
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with
(007 - z) 2 ¢° = (00 - x) Mg (0®,z — 29,D,)g®
= Mg' (3®,2 — 9,D,) ((00z - 2)g°) — 2M5" 29,00 x ¢°.
Therefore, there exists matrices L; and Ly such that, setting 6= (00z - 2)g®, we have
L'z0(g®) = Lizg® + Ly (0@, — 99,D,,.)6.
We deduce
J {ueés WP5 (0@, — 90,D,) - (L':rg@))] = —iVETL12¢°] — iVET[La(0® 2 — 00, D, )]

and we obtain (2.21]) by Lemma applied to the function 6, and by the relation (2.19), which

concludes the proof O

2.3.3. Operators built on Bargmann transform via classical quantities. We now apply
the results of the preceding section to the diffeomorphism @ given by a flow map associated to a
Hamiltonian h. We are going to derive the results induced by Lemma and Corollary
for time dependent quantities after integration in time. We will use the resulting formula for the
Hamiltonians h; and hs associated with the matrix-valued Hamiltonian H€.

LEMMA 2.24. Let k € N. Let h be a subquadratic Hamiltonian on I x R?®, [ = [to, to +T]. We
consider
(1) the classical quantities associated to h as in Section on the interval I:
2= S(t, 2), 40 (2), F(t, to, 2),
(2) a smooth function defined on I x R2?, bounded and with bounded derivatives, (t,z)
u(t, ),
(3) a smooth map from I x R?® into S(R?), (t,z) +— 0(t, 2),
(4) a smooth function from R?® into I, z — t°(2).
Then, for all x € C3°(I), we have the following equality between operators in L(L?(R%), LF(R?)),

/ (T [Ht>tb(z)u(t) cESO WP, ., (004 — aq>gvfopw)e(t))] dt
R
= ’L\/g/ j [Ht>tb(z)0u(t) eés(t) WP%t,tO (0(t)):| dt
R
+ivE / T [l out) 50 We3. 0610 i
R
. i qryb
—iVET [X(@) o u(t) eF SO WP, (0(#))]

Note that the result of this lemma is an equality. Thus, we have not emphasized assumptions
that make these operators bounded. One could for example assume global boundedness of all the
quantities involve and of their derivatives, or, what would be enough, that 6 is compactly supported
in z.

We also emphasize that the functions denoted by (y o t*) u(t”) eES®) WP (0(*)) is the map

Z— X (t"(z)) U (t"(z),z) oi5(t(2),2) WprthMo@) (0 (tb(t)7 z)) .

Note also that, by construction, the flow map ®%% and the action S satisfy Assumptions m
(see [13,, 53], [43]).
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PROOF. The proof follows the lines of the one of Lemma [2.20] using the relation

(2.23) 0 (Tispp(y) = 0 (2)6(t — t°(2))
that produces an additional term. O

As a Corollary, for Gaussian profiles, we have the following Corollary.

COROLLARY 2.25. With the same assumptions as in Lemma [2.24] we additionally assume
0(t) = g, with © € C°°(I x R??,S*(d)). Then, for all L € C>®(R??,C%?), we have the following
equality in £(L?(R9), ¢ (R?)),

/X(t)j [Ht>tb(z)uegs(t’t0) WPG.1o (L:z: ' xg@(t’m))} dt
1 . L 8(tto) WPE o(t,to)
=3 XO)T (L ytlt, to) €= WPyt (9 dt +O(e)
with @(t, to) = Tr (L [(A(t, to) = iB(t,t0)) " (C (L, to) — iD(t, ) = O(t, )] )

ProoF. The proof follows the lines of the one of Corollary using the relation (2.23). O






CHAPTER 3

Convergence of the thawed and the frozen Gaussian
approximations

3.1. Strategy of the proofs

Our aim in this section is to prove the initial value representations of Theorems We also
explain the overall strategy that is also used for proving Theorems [T.18}, [T.19] and [T.20]

Let £k € N. Let 9§ = I7¢6 be as in Assumption with ¢f € L? frequency localized at the
scale 8 > 0 with Ng > d + k + % (which implies ¢§ € Y. Without loss of generality, we assume
V = my(to)V for some £ € {1,2} that is now fixed.

We start with the Gaussian frame equality ([2.2)

vi=(re) [ (g Vot

z€R2d

Writing (g2, V ¢g) = <§g§, #5) and using Remark [2.22) we have in 3¥,

o~

U§ = TV ()6 (65) + 0(e) = TV (2)g2)(95) + (el b5 .2).
Corollary yields that, in ¥, we have
U6 = TMa<nV (2)g2)(65) + Ol d5lz2) + O CaR ™)
= V()9 (65)r,<) + Ol d5l12) + O CaR ™)
with the notations of Corollary and setting ng = Ng —k —d — 2 > 0.

Now that the data has been written in a convenient form, we apply the propagator U5 (¢, o)
and we take advantage of its boundedness in £(XF) to write

U, (1, o) = (2me) /

|z|I<R
= T [Ty<n s (t,10)V(2)65] (65) + O(el| 65 12) + O(=® C B779).

We then use the description of the propagation of wave packets by U5 (t,10), as stated in Theo-
rem for N > d+ 1, in ©¥(R%), we have

Usi (t,0) V()95 = 057 (1) + O(™).
Therefore, by (1) of Theorem [2.14) in £(L?(R%), £F(R%, C™)),
(1) Unltto)vh =T [li<r v5 N (0] + O R |¢512) + O €y R™)

(95, 08) (Uit (8, 80)V ()95 ) d2 + O(ell 6 2) + O(P C R77)

41
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Besides, using that w’N(t) is a linear combination of wave packets and considering the explicit
formula of Theorem (2) of Theorem implies that in £(XF(R4,C™)),

Uiy (t,t0)v5 = Ty <§(¢8)R7<> +O(Vel5llz2) + O™ R [|g5|2) + O(e” O R7)

o (%a) L O(VE612) + O R |65 =) + O(P Cs R—9)

where we have used again Corollary If g < %, we perform an appropriate choice of R and N:

we choose R = ¢~ 7 with v > %(% —B)and N > 1 +d(1+~).

At this stage of the description, the thawed Gaussian approximation of Theorem (L.15]) is
proved. For obtaining the frozen one, we shall argue as in the scalar case considered in [53]
(Lemma 3.2 and Lemma 3.4). We will detail this argument later in Section below.

The proofs of the order ¢ approximations of Theorems [1.18] [1.19( and |1.20| start with the same
lines. However, one includes in the approximation the two first terms of the asymptotic expansion
of wj’N(t): the one of order £° and the one of order £2. The terms of order \/z are twofold:

(i) The one along the same mode as the initial data, here denoted by ¢. This term will be
proved to be of lower order because its structure allows to use the first part of Corol-

lary

(ii) The one generated by the crossing along the other mode. This one is not negligible.

At that stage of the proofs, one will be left with the thawed approximation. The derivation of the
frozen approximation from the thawed one involves the second part of Corollary However,
complications are induced in the treatment of term described in (ii) above because of the singularity
in time that it contains. This difficulty is overcome by averaging in time and using Corollary
We implement this strategy in the next sections.

3.2. Thawed Gaussian approximations with transfers terms

We prove here the higher order approximation of Theorem - for initial data 1§ = ‘7% with
(95)e>0 frequency localized at the scale 8 > 0 in a compact set K. As in the preceding section, we
assume V = W[(to)v and, without loss of generality, we suppose ¢ = 1.

We start as in the preceding section and transform equation (3.1]) by taking the terms of order
€0 and £3 in the expansion of 15" . We obtain

Uiy (b 10)05(2) = T [Ty<n(@i(0) + 65" ()] (65) + O (# Ca B7) + O TR | 12).

The rest in O(eVN~2R%||¢§||12) comes from the remainder of the approximation of U% (¢, to)gS while
the term O(e||¢§||2) comes from the terms of order €7 for j > 1 of the approximation, these terms
having a wave packet structure while the rest is just known as bounded in E’g.

We write for £ € {1,2}

() Zaw

Because the assumptions on K induce that there is only one passage through the crossing, Theo-
rem implies that w;:é (t) =0 and wgi(t) only depends on the transfer profile f5_,, (indeed, we
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have assumed V = 7 (t9)V). Moreover, for the mode 1, we have for £ € {1,2} and j € {0,1}
v (t) = esSiltbo ) Wpe (Re(ta to) M[Fy(t, to)] ée,j(t)gﬂ) :
We recall that B@J is given by . We use the structure of the term
Ru(t, to) M[Fu(t,to)] Be (t)g"
(see [54] section 3 or the book [13]): it writes
Re(t, to) MIFy(t, t0)] Bea ()g™ () = d@(t)wg" 10> ()
for some smooth and bounded vector-valued map (¢, z) — @(t, z). Therefore, Corollary yields
T [l1<r051(0)] (65) = O(VEIG5122)
and we are left with
U (1105 () = T [ (W70 +VEUST )] (65) +0 (7 €5 B™) + 0N R |45 | 12)
= 7[5 + VEUEI0] ((65)m<) + O (2 Cy B9 + OB | 12)
= 7 [v500) + VEVSI )] (65) + O (7 Cs B) + O™~ R[5 .2)
by Corollary Identifying the terms, we deduce
s (1, 10)05(0) = 7148 (V65 ) + VETEo (V65) + 0 (22 C ™) + O
If 8 <1, we choose R=¢"7, N=1+4d(y+ 1) with v > é(l — (). This gives Theoremm
More precisely, for a general V = (to)V + m2(to)V, we obtain
B2 Uiltto)i(o) = 718 (maa)7 65) + 758 (mal)7 65) +E T (mlto)Vo5 )
+ 0 (e(Cp + [1¥6122)) -
3.3. Frozen Gaussian approximations with transfers terms

It remains to pass from the thawed to the frozen approximation. As we have already mentioned,
we use the argument developed in Lemma 3.2 and 3.4 of [53]. It is based on an evolution argument
which crucially uses Corollary 2:2I] We now explain that step.

END OF THE PROOF OF THEOREM [[.15]l We start from the approximation given by the first
part of Theorem in ¥¥(R?), we have

L5 (1, to)ui () = T (w@v ¢8> L O(VE(Cs + ¢5]12))

and our aim is to prove that in X¥(R?)

o — o —

it (m(to)V’ ¢>s) = gt (m(zeoW ¢g> o).

Of course, a remainder of size O(y/€) would be enough for proving Theorem [1.15; however, it will
be usefull to have it in order to prove Theorems [I.19] and [T.20}
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The strategy dates back to [63]. We follow the presentation of [2I]. We set for s € [0, 1]
O(s,2) = (1 — s)Ty(t, to, 2) + sl
where T’y is given by . We consider the partially normalised Gaussian function
G(t,s) = (ﬂ,)fd/éle%@(s,z)xm’ z c RY
and we set
Gty (7) = WP ) (3(1,9))

The aim is to construct a map s + a(s, z) such that for all s € [0,1] in £(L?(R%), ©F),

d - ~O@s)e |
%j |:a(572)W(t7t07Z)g(bzyto(z):| _O(E)

Choosing a(0,z) = 1, we have

‘7;,;}(1) = j a(oaz)%(tat()»'z)g@tg?g’a )
’ q>g (2)

and we will obtain that for any f € L?(R%), we have in X¥(R9)

THe (V) = T [au, Vit o, 2)5 00 } () +0)

510 (2)
=T (V) +0()
provided a(1, z) = ay(t, to, z) as defined in (1.24)).

For constructing the map s — a(s, z), we compute

d , 5905, Vs ~0O(s),

+ %J {a(s,z)%(t,to,z)WP;Z,to(z) (3s@(s)x . zg@(S),s)} '

We use equation (2.20]) of Corollary to transform the second term of the right-hand side and
obtain

J {Q(S,Z)‘_/’g(t,tQ,Z)WPEt‘tO
(I’( (z)
1

— ;j [a(s’ Z)‘_/'e(t’ to, Z)WP;Z,tO(z)(TI'(@l(S))g @(s)):| +O(e)

(9:6(s)z - 2g°)]

in £L(L?(R9),%F) and with
@1(8) = 839(8) [(Ag — iBg)_l(Cg — iDg) — @]
where M, (s, z) is associated to O(s, z) according to (2.18). In particular, we have
83M(s) = —(Ag — iBg)ag@(S).

-1

We deduce
@1(8) = —(Ag — iB[)ilﬁsM(S)M(S)il(Ag — iBg)
and
Tr(01(s)) = —Tr(9s M (s)M(s)™ ) = —detM ()~ 9, (detM(s)).



3.3. FROZEN GAUSSIAN APPROXIMATIONS WITH TRANSFERS TERMS 45

Therefore, the condition
1
0sa(s, z) — §Tr(5‘s]\/[(s, 2)M(s) Va(s,2) =0

that we have to fulfilled, is realized by
det M
a(s, z) = dthE(s);a(O,Z) = ae(t, to, 2).

]

Proor oF THEOREM [[.T9l We now start from the result of Theorem [I.I8 that is equa-
tion (3.2). In view of what has been done in the end proof of the proof of Theorem we
only have to prove

gie. (m<t0>v¢s) = gii, (mto)mg) 1O (VE(Cs + 165]122) -

As noticed in the introduction, when ¢ < t1 yin (K), then 71 2(¢,to, 2) = 0 for all 2 € K and when
t € [t1,max(K), tomin(K)), 2 — 71,2(t,t0, 2) is smooth. Therefore, one can use the perturbative
argument allowing to froze the covariances of the Gaussian terms as in the proof of Theorem [1.15
and one obtains the formula (L.35). O

PRrROOF OF THEOREM [[.20l One now has to cope with the discontinuity of the transfer coeffi-
clent 7 2(t,to, 2). We use Lemma O






Part 2

Wave-packet propagation through smooth
crossings






CHAPTER 4

Symbolic calculus and diagonalization of Hamiltonians with
smooth crossings

In this section, we revisit the diagonalization of Hamiltonians in the case of the smooth crossings
in which we are interested. We settle the algebraic setting that we will use in Section [5| for the
propagation of wave packets.

We will use the Moyal product about which we recall some facts: if A%, B¢ are semi-classical
series, their Moyal product is the formal series

C*® := A* ® B®* where C¢ = Zajcj
>0

—1)l8l
(4.1) cj(z,g):% > %(Df@?A).(D;‘@?B)(x,g), jeN,

loa+B8|=j
We also introduce the Moyal bracket
{A°,B°}g :=A*® B — B°® A°.

Let us now consider a smooth matrix-valued symbol H* = Hy+<H;, where the principal symbol
Hy = hym + homs has two smooth eigenvalues hy and ho with smooth eigenprojectors m; and 7.
We allow for a non-empty crossing set T as in Definition By standard symbolic calculus with
smooth symbols, we have for £ € {1,2} the relations

(4.2) e ® (1e0y — H®) = (i€0y — hy) ® mp = O(e).

We are going to see two manners to replace the projector mp, and the Hamiltonian hy; by asymptotic
series so that the relation above holds at a better order.

We call “rough” the first diagonalization process that we propose. It will hold everywhere,
including T and is comparable the reduction performed in [4] for avoided crossings. It is the
subject of Section

The second one, more sophisticated, will require to work in a domain that does not meet Y.
Based on the use of superadiabatic projectors, as developed in [5l, [46, 55|, [58]. This strategy
is implemented in Section The new element comparatively to the references that we have
mentioned, is that we keep a careful memory of the dependence of the constructed elements with
respect to the distance of their support from Y. For this reason, we will use a pseudodifferential
setting that we precise in the next Section [{.1]

49
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4.1. Formal asymptotic series

We consider formal semi-classical series
AT =>4
7>0
where all the functions A; are smooth (matrix-valued) in an open set D C R x R?4, that is,
A; e C=(D,C™™).
Notation. If A° = Zj>0 el A; is a formal series and N € N, we denote by A=" the function

(4.3) AN = N eA

0<j<N

The formal series that we will consider in Section [I.3] will present two small parameters: the
semi-classical parameter ¢ > 0 and another parameter § > 0 that controls the growth of the symbol
and of its derivatives. For our intended application, J is related to the size of the gap between the
eigenvalues of the Hamiltonian’s symbol.

DEFINITION 4.1 (Symbol spaces). Let 4 € R and 6 € (0,1].
(i) We denote by S§(D) the set of smooth (matrix-valued) functions in D such

OVA(t, 2)| < C, 6" v(t,z) eD.
z Y

Notice that the set S5(D) := SY(D) has the algebraic structure of a ring.
(ii) We shall say that a formal series A° = ZsjAj is in SL'5(D) if A; € SE7%(D) for all
Jj=0
j €N. We set S, 5(D) := S 5(D).

REMARK 4.2. (1) If A€ S, B €Sk then AB € 8! while {4, B} € S ~2. Besides,
if A€ S*(D), then 974 € §*~ (D).

(2) When ¢ = 1, as in the next Section then for all u € R, S}' = S coincides with the
standard class of Calderén-Vaillancourt symbols, those smooth functions that are bounded
together with their derivatives. Similarly, Sé" 1 = S¥ coincides with asymptotic series of
symbols.

(3) The parameter ¢ can be understood as a loss that appears at each differentiation. However,
in the asymptotic series, one loose §% when passing from some j-th term of to the (j+1)-th.
one. In Section [£.3] ¢ will monitor the size of the gap function f in the domain D.

The Moyal bracket satisfies the property stated in the next lemma.

LEMMA 4.3. Let é4, 0p €]0,1]. If A and B® are formal series of S s,(D) and S. s, (D),
respectively. then A ® B® is a formal series of S min(s4,65)(D). Besides, for N € N,

AN @ BN = Y 200+ eNTRGT
0<j<N
where for all v € N?4, there exists Ci ~ independent on 54,5 and € such that
07 R5 "5 (t, 2)| < Cny [min(da,05)] 7V 7", Ve €]0,1], V(t,z) € D,

where kg s a universal constant depending only on the dimension d.
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PROOF. The estimate is a direct consequence of [6], Theorem A1]. In Appendix Theorem |B.1
we give a detailed proof. O

When 64 =1 and 65 = ¢ € (0,1], min(d4,d5) = §. This shows that

SEJ(D) ® SE7§(D) C 8575(1)).

Let us conclude this Section by comments on the quantization of symbols of the classes S§.
The Calderén-Vaillancourt estimate for pseudodifferential operators (see [14} [64]) states that there
exists a constant C' > 0 such that for all @ € C>°(R?),

Ial
lopc(a)llc(z2mayy <€ sup €= sup |9]a(2)].
0<|y|<d+1  zeRd

Actually, the article [9] treats the case € = 1 and the estimate in the semi-classical case comes from
the observation that

op.(a) = AZop, (a(vz"))A.
where A, is the L2-unitary scaling operator defined on function f € S(R?) by
Af(x) = eTif (\2) , © R
One can derive an estimate in the sets 2’; by observing
(%00 oop(a) = DT e F ey 00() 0p(92a) 0 (72 (20,))

[yil+lvel+lys|<k

for some coefficients ¢, 4, ~,(€), uniformly bounded with respect to e € [0,1]. This implies the
boundedness of op,(a) in weighted Sobolev spaces: for all k € N, there exists a constant Cj, > 0
such that for all a € S(R??),

Il
(4.4) llop (@)l £(sx) < Ck Z ez sup |[07a(z)].
0< |y|<d+k+1 z€R?

PROPOSITION 4.4. Let A € S47 for y € R, j € N. Then, for k € N

Wl i
lope(A)ll sy < Cr sup e 2 P72k
0<]v|<d+1

Therefore, if § > /¢
(4.5) lop. (A)|| g(six) < C 645720

We will use such estimates. Questions related with symbolic calculus in the classes S§_ are
discussed in Appendix [B:2]
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4.2. ‘Rough’ reduction

The next result gives a reduction of the Hamiltonian in a block diagonalized form. We will use
this reduction on small interval of times.

THEOREM 4.5. Assume H¢ = Ho+eH; with Hy having smooth eigenprojectors and eigenvalues.
There exist matriz-valued asymptotic series

mi=m4 Y &my, hf=hel+> hyy, W= W, Le{1,2}
j=1 Jj=1 j=1

such that for all N € N, 5™ and 75 =1 — 27N are approzimate projectors

(4.6) N @t =20 L o@ENtY), re{1,2)

and H® = Hy + €Hy reduces according to

(4.7) 5N @ (ied, — H®) = (iedy — BN ) @ a5 + WoN @ a5 + 0N,
(4.8) 5N @ (ied, — H®) = (ied; — b5 ) @ 1™ + (WoN)* @ 7PN + O(eN ).

Moreover, for all ¢ € {1,2} and j > 1, the symbols mp ; and hy ; are self-adjoint, the matrices W;
are the off-diagonal (see equation (1.44) for the value of W1 ) and

)
(4.9) hg,l =7T(H17Tz+(—1)z§(h1 —hg)ﬂ'@{ﬂ'l,ﬂ'l}ﬂ'g.

If H® also satisfies Assumption on the time interval I, then the 4 X 4 matriz-valued Hamiltonian

h§ we
H® = i * €
T ((W ) h2>

is subquadratic according to Definition |1.1]

Note that in H®, the off-diagonal blocks are of lower order than the diagonal ones since the
asymptotic series W*¢ has no term of order O.

Theorem allows to put the equation (I.1]) in a reduced form by setting
ys — t(%i)y;) with ﬁ: %dje
Indeed, we then have
(4.10) iedy® = H'yf +0(e™), w_o ="' (7 06,5 05) -
We deduce the corollary.
COROLLARY 4.6. Formally, we have for t € I,
where 9% solves (4.10).

PROOF. The proof relies on a recursive argument.

The case N = 0 is equivalent to (4.2))
The case N = 1 has been proved in Lemma B.2 in [20]. However, we revisit the proof in order
to compute W;. We first compute 7, by requiring 7O @ 70 = 70 4 O(g?), which admits

the solution
1 1
M1 = —T21 = _ﬂﬂ'l{ﬂ'laﬂ'l}ﬂ'l + ﬂ@{ﬂ'lﬂﬁ}@-
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We recall that {m, 7} is diagonal and skew-symmetric (see Lemma B.1 in [20]). Then, we observe
7y ® (iedy — H) = (ic0y — hy) ® mp + €0y + O(e?)
with
O, = —%{W,HO} — moHy — i0ymp + %{hz,ﬂ'g}

or, equivalently

1 1 1
0, = %(hz — hi){m,m} —i0m —mH + E{hlaﬂ'l}ﬂ'l + %{/h + hg, T},
1 ) 1 1
Oy = Z(hl — ho){ma, o} — 10w — Mo Hy + 2{h2a772}772 + Z{hl + ho, mo}my

1 . 1 1
—Z(hz — hi){m, m} +i0ymy — moHy — g{h2,ﬂ'1}ﬂ'2 - Z{hl + ho, o}
We observe
. 1 . 1 1
@2 = —?i(hg — hl){’ﬁl,ﬂ'l} — z@tm — H17T2 + g’i’rz{hg,’frl} + ?iﬂl{hl + hz,’f(g}
and
(411) 71'16;7'(2 == 7T1@17T2.
Thus, we have to solve
—mi1Ho = —hi1m1 — b1 + 10y + O1 + Wi,
771'271H0 = 7h271’/T2 - h271'271 + iatﬁg + @2 + Wl*ﬂ'l.

Multiplying on the right the first equation by m; and the second by 72, we obtain that hi; and hg 1
have to solve

hi1m =i0ymim + O and hg 17y = 10y moms + Oy
which is solved by taking the self-adjoint matrices
hi1 = i0ymim + ©1m — im Oymim + O T,
ho1 = i0ymomy + Oy — imaOymam + T2 O3y .

Multiplying on the right the first equation by w2 and the second by m;, we obtain that Wj has to
solve

W17T2 = —(h2 — hl)ﬂ'l‘l’ﬂ'g — @17’(’2 and Wl*’ﬂ'l = (h2 - hl)’ﬂ'g,l’lﬁ — @27T1.
Using the relations 77 ; = 711 = —m2,1, m10; .71 = 0,172 and (4.11)), we obtain

1
Wimg =mW) =m <H1 + 901 + §{h1 + h2,ﬂ'1}) o,

whence ((1.44)).

One can now perform the recursive argument. Assume that we have obtained (4.6), (4.7)
and (4.8) for some N > 1 and let us look for m ny1, b1 n+1, he nv+1 and Wiy such that the
relations for NV + 1 too.

We start with m y11. We write

N N N
it @ Pt = apt 4 eNTIRE
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where R® is an asymptotic series with first term Rpy. We first observe that Ry is diagonal. Indeed,
we have
(1— ﬁ’N) ® ﬂf’N ® WT’N = Wi’N ® Wi’N ®(1-— ﬁ’N)
and
(1— wf’N) ® ﬂf’N ® ﬂf’N = Nt RE® ﬂf’N, ﬁ’N ® Wi’N ® (1 - ﬂf’N) = fsNHﬁ’N ® RE.
This yields 7ri’N ® R =R ® Wf’N and imply m Ry = Rym. We now look to 71 ny1 that must
satisfy
TI,N+1 = BN + Ty, Np1T1 + T N1
This relation fixes the diagonal part of m1 n41 according to

TT,N+171 = —MRym and mom nyy1m2 = TRy,

We will see later that we do not need to prescribe off-diagonal components to m1 n1.

Let us now focus on hi n41, ho,n+1 and Wiy, We write

5N @ (iedy — H) = (ied, — BN ) @ 70N + WoN @ 75V 4+ N H1es
where ©f is an asymptotic series of first term ©; n. For obtaining information about ©; y, we
compute
7N @ (iedy — HS) ® 75"
for different choices of ¢,¢' € {1,2}.
e Taking ¢ # ¢’ gives two relations

5N @ (iedy — H®) @ 75N

=N eweN @y + NP N @ 05 @ 5 + 0(eNH?)
5N @ (iedy — HY) @ 75N

=atN e (WoN ) @il 4+ NS N @ 05 @ 7N + 0(eNV?),

from which we deduce m9O2 ym1 = (1101 NT2)".
e Taking ¢ = ¢’ gives the relations

N @ (ied, — HS) @ w5
=mpN @ (ied, — by M) @ mp N + NP @ 0 @ 1Y + 0(eN ),
whence the self-adjointness of the diagonal part of ©7.

We now enter into the construction of h1 n41, ho n41 and Wiy, We write the asymptotic series
7'('?1\[—’_1 ® (ie@t — HE) = ﬂi’N ® (i&at — Hs) — EN+17T17N+1H0 + O(EN+2),
(i&?@t _ hi’NJrl) ® ﬂ_?N+1 + WE,N+1 ) 7r;,NﬁLl _ (isat o h‘i’N) @ Wi,N + W€7N ® W;’N
N+1 ¢, N+2
+e (i0¢m1,n — hi, N1 — P N4 + W) + O(e7 7).
Therefore, we look for hy y11 and W1 such that
—mi,N+1Ho = i0mi N — hi vy — TN + Wvpame + O N
or equivalently

0 =i0ymi N — b1 nvy1m1 + (he — hi)m N2 + Wy + O1 N
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By multiplying on the right by 72 and 75, we are left with the two equations
(4.12) hl,N+17T1 = @1’]\771'1 + i(’)tm’Nﬂl and WN+17T2 = @1}]\]7‘[’2 + (h2 — h1)7T1)N+17T2 +i8t7r17N772.

Considering similarly the conditions for the mode hy, we obtain that hg ni1 and Wy, have to
satisfy

ho N1 = O N2 + i0ymo yT2 and Wi 71 = Oz ym1 — (hg — hy)mo Ny17T1 + 102 NTT1.
Since my y = —my, v for N > 1, we are left with the relation
(4.13) ho n41m2 = O o —i0ymy T2 and Wi m1 = O vy + (he — hi) T N1 — 10Ty N7
We set

. . .
hl,N+1 = @1,N7T1 + ’Latﬂ'LNﬂ'l + 7T1@1,N7T2 — ’L7T1(9t7T17N7T2,

ho N+1 = O NT2 + 102 NT2 + T2O3 N1 — iT20; ™o NT1-
Then, hi yy1 and hg 41 are self-adjoint and satisfy the first part of and respectively.
The construction of W1 requires to be more careful because there is a compatibility condition

between and . We look for Wy 41 of the form

W1 =01 nm2 + (he — h1)m ny1m2 + 90w N2 + Unpi7,
which guarantees (4.12)). Then, one has

Wi 1 = m07 x + (he — hi)mam n1 — ime0imi N + mUN
and

* * . *
Wi 1™ = meO] ym1 — im20imy N1+ MUy T

. *
=m0 N1 — im0y N1 + T UNn 11

where we have used the first property of the matrices ©; y and O y that we have exhibited,
together with the fact that m; ;1 is diagonal. It is then enough to choose

Unt1 =1 (03 5 + (ha — h1)m1 Ny + i0ymi N) T
since it implies

* .
WN+17T1 = 7T2@2’N7T1 - Z’]TQaﬂTLNTfl
+ m(O2,n +i0m1 N + (B2 — h1)7T1 N11)T1
= Oy N7y + (ho — hi)Ty N1 — im0y N T,
where we have used m1 yy17m1 = T, N4+171. As a consequence, the second part of (4.13]) is satisfied.

This concludes the recursive argument and the proof of the Theorem [£.5]since the growth properties
of the matrices that we have constructed come with the recursive equations. |
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4.3. Superadiabatic projectors and diagonalization

One now wants to get rid of the off-diagonal elements /V[75, which is possible outside T. We are
going to take into account how far from the crossing set we are by introducing a gap assumption.

AssuMPTION 4.7 (Gap assumption). Let tgp < ¢1, I an open interval of R containing [to, t1]
and Q an open subset of R2?. We say that the eigenvalue h has a gap larger than § € (0,1] in
D =1 x Q if one has

(NCJ) d(h(t,z),Sp(Ho(t,z))) >4, V(tv'z) eD.
The construction of superadiabatic projectors dates to [5] which was inspired by the paper [17].
It has then been carefully developed in [46] and [55] (see also the book [58]). We revisit here

the construction of superadiabatic projectors, in order to control their norms with respect to the
parameter 0.

We follow the construction of the Section 14.4 of the latest edition of [13] (2021), that we adapt
to our context. One proceeds in two steps: first by defining the formal series for the projectors and
then for the Hamiltonians. In order to simplify the notations in the construction, we just consider
an eigenvalue h and we will then apply the result to the eigenvalues h; and hs.

4.3.1. Formal superadiabatic projectors.

THEOREM 4.8 (semiclassical projector evolution). Assume the eigenvalue h of the Hamilton-
ian Hy satisfies Assumption in D. Then, there exists a unique formal series ijl eI =L, in
S;;(D) such that setting y(t, z) = 7(t, z), the formal series

(¢, 2) = Y /TI(t, 2)

7>0
is a formal projection and
(4.14) ieOII° (t) = [HE(t),1I°(t)] @

Moreover the sub-principal term 114 (t) is an Hermitian matriz given by the following formulas:

(4.15) R (1) (t) = — o w(0) (), 7)),

() (O ()t = %W(t)l{ﬂ(t)»W(t)}W(t)L»
n(t) My () (t) = m(t)" (Ho(t) — h(t)) ' n(t)" Ru(t)m (D),

where )
Ry(t) = i0m(t) — 5 ({Ho(t), m(t)} — {7 (t), Ho(t)}) — [H1(t), 7(t)].
Proor. With Notations .3
(4.16) N @IsN — 115N = NSy + 0(eN*2),
(4.17) o, 15N — [Ho + EHl,HE’N]® =N Ry 1 + O(ENT2).

Step N = 1. We start with N = 0. We have II(®) = 7 € §9(D). Since 7% = 7 and [Hy, 7] = 0, we
obtain
S1 = 5:{m 7} and Ry = i0yw — 5;({Ho, 7} — {m, Ho}) — [H1, 7],

and we have Ry, S; € S3(D). Two structural observations are in order:
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(1) The matrix S7 is symmetric and satisfies wSint =7tSim =0.
(2) The matrix R; is skew-symmetric. It satisfies

aRim=0 and nltRywt = [Hy, w817t
If Hy has only two eigenvalues, Hy expresses only in terms of m and the expression of R; given
above shows that R; is off-diagonal. The situation is more complicated if Hy has strictly more
than two distinct eigenvalues. For verifying (2) in that case, one uses the Poisson bracket rule
{A,BC} — {AB,C} = {A, B}C — A{B,C} two times. We obtain
{H077r} - {7T7H0} = {HO’ 772} - {772>H0}
={hn,n} + {Ho,n}w — Ho{m,w} — {m,hn} + {m, 7} Hy — n{m, Ho }
=n{h,w} —{m h}w + [{m, 7}, Ho| + {Ho, 7 }m — w{m, Hy},
which implies
mt({Hy, 7} — {m, Ho})nt = 7t [{m, x}, Hylnt.
For determining the m-diagonal component, we choose A = m, B = Hyn', and C = 7 to obtain
0 = {m, Hyrt Y — w{Hyr*, 7}
={m,Ho}mw — {m, hn}m — w{Hp,n} + n{hm, 7}
= {71—7 H()}’IT - {71—7 h‘}ﬂ - 7T{H0, 77} + W{hv 7}'
This relation implies
7({Ho, 7} — {m, Ho})m = 0.
For constructing the matrix II; that defines o =7+ elly, we need to satisfy

7TH1 +H17T - H1 = —Sl and — [H(),Hﬂ = —Rl.

The first of these two equations uniquely determines the diagonal blocks of II;, while the second
equation uniquely determines the off-diagonal blocks. We obtain

allimr = —7S7 and 7 It = 7S 7,
7t = —nRynt (Hy — h)~' and 717 = (Ho — h) " 'n* Ry
For concluding this first step, we deduce from Ry, Sy € S3(D) that IT; € S5 (D).

Step N > 1. Next we proceed by induction and assume that we have constructed the matrices
IL;(t) € §3 (D) for 1 < j < N such that (EI6) and (I17) hold. Note that by Lemma [4.3] this
implies

Ry (t) € 852N (D) and Snyi(t) € S5V (D).
Indeed, i, 11" — [Hy + eHy, Hst]@) is a formal series of € S;g(’D) while TV & TI5N — 15 is a

formal series of ES;;('D). In order to go one step further, we see that IIy41 has to satisfy
iy + Oy pm —yy1 = —=Sni2 and — [Ho, IIn11] = —Ryo.

For solving these equations, and achieving the recursive process, we need to verify that at each step

(1) The matrix Sy is symmetric and satisfies TSy7+ = 7+ Sy7 = 0.
(2) The matrix Ry is skew-symmetric and off-diagonal. It satisfies

7Rym=0 and wRy7t = [HO,WJ‘SNWJ‘].
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Then, we will be able to construct Iy41(t) € SEZNA)(D) and we will have as a by product

Ry42(t) € S5V 7(D), Sn42(t) € S5V (D) because of equations (£.16), (£.17) and Lemmal|4.3]
For proving (1), we take advantage of the fact that

7 =1 @ ((HE,N)2® _ Hs,N) ® (1— V) = NSyt + 0(eN+2),
while one also has by construction
7 — ((HE,N)2® _ He,N) ® (HE,N _ (HE,N)2®) = O(2N+2),
This implies that 7Sy 17+ = 0 and, using that Sy is hermitian, we deduce that it is diagonal.
For proving (2), we argue similarly with

7' =" ® (ie@tHE’N — [Ho +¢Hy, HE’N]®) @MY = N HaRy 1 + O(eNT2),

which also satisfies

Z' = ((=N)*® — 1Y) @ (Ho + eHy)IN — 19N (Ho + eHy) (I197V)?® —T197) = O£V *2).
This implies 7Ry, 17 = 0 and one can argue similarly with 1 —TII5"V for obtaining the other relation

LR 1 0 O
™ N+1T .

4.3.2. Formal adiabatic decoupling. The second (and decisive) part of the analysis is a

formal adiabatic decoupling using the superadiabatic projectors introduced before.

THEOREM 4.9 (formal adiabatic decoupling). Assume the eigenvalue h of the Hamiltonian Hy
satisfies Assumption[[.7 in D. There exists a formal time dependent Hermitian Hamiltonian in D,

padias _ Z EjH?dia
Jj=0
such that
(4.18) II° ® (icd; — HF) = (ied; — H*1*) @ T1°
with the following properties:
(1) The principal symbol is H34? = hlcm.

(2) The subprincipal term H?® is a Hermitian matriz satisfying

. . 1
7t Hider — 7 (i0yr + i{h,7}) m and © H*7r = nHyw + ?W{Ho, i
i

(see (L.19)) and we can choose 7+ H ¥ *xl — 0.
(3) We have _ _
e (H*®¢ — hlly, py — eH}M®) € SZ3(D).
(4) Finally, 7(t) satisfies a transport equation along the classical flow for h(t).
1 oy
(4.19) o+ {h,w} = g[15{;“’18”,7@.
REMARK 4.10. Note that equations (1.19) implies that H242(¢, 2) is smooth everywhere, in-

cluding on the crossing set, if any.

The above construction applied to the Hamiltonian H¢ with two smooth eigenvalues (hy, ho)
and two smooth eigenprojectors (71, m2) imply the construction of two pairs of formal series
(4.20) I =Y &lll,; and Hp™ = & Hp,

Jj=0 Jj=0
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COROLLARY 4.11. At the level of the evolution operator, the result implies
Uy (tto) = TS (™ (¢, to) I (to) + TS (65 ™ (¢, t0) 15 (to)

where for ¢ € {1,2}, U;‘dia’e(t,to) are the evolution operators associated with the Hamilton-
ian H' dia,e

PROOF. This result is Theorem 80 of Chapter 14 in [13] combined with Lemma We first
observe that equation (4.18)) reduces to proving

(4.21) II° ® (ied; — H®) = (ied; — H™™¢) @ TI°.
For proving the latter relation, one first observes that if H§4® = h, then we have
. ; 1
(e _ Hy —cH) @TI° = ¢ ((h — Ho)I; + (H® — H))7 + Z{h — Hy, w}) + 0y + O(?).

Therefore, H; has to be chosen so that

. 1

(H _ H))w = (Hy — h)IT; + 27,{HO — h,} + 0.
In view of (4.15)), this requires
; 1
m(HM® _ )7 = ?W{Hoﬂr}w,
)
which is given by the second relation of (|1.19), and, using again (4.15]
. 1 1 1
at(HM® — g =7t (R + Z{HO — h,} +i0ym)T = nH(idym + %{W, Hy} — %{h, m}— Hy)7w
which is also given by the first relation of (1.19) in view of the observation that
at{n, Hy,m}w = —n{h,m}n.

For proving this relation, one uses the Poisson bracket rule

{A,BC} —{AB,C} ={A,B}C — A{B,C}
several times. First, one gets

m{m, a}rt =0 =nt{m, w}x.
Then, taking A = 7+, B =7, C = Hy, one gets
{zt ha} —0 = {xt, 7} Hy — nt{n, Hy},

whence —71{m, h}m = —71{m, Ho}r. Finally, for concluding the construction of H3d? It remains

to check that
1
<(H0 = W)L + o= {Ho = h, 7} + i@ﬂr) =0

which comes from the latter observation about {Hg,7}.

Now that H341* and H2d2 are constructed, one uses a recursive argument: assume that one has
constructed H24# for 0 < j < N with H3¥® e Sg% for j € {2,---, N} and such that has (4.21])
holds up to O(eN¥+1). Let us construct Hj’{,dﬁ Setting as in Notation

N
adia,e, N __ J gradia
H = E e’ H;
i=1
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we write _
(Hadla,e,N _ HO _ ng) ® He,N _ €N+1TN + O(€N+2)

with Ty € S;2¥ ™% and we look for H adia such that mH3N% = Ty. This is doable as long as
7+Tx = 0, which comes form the observation that

(HO +€H1 _ Hadia,E,N) @ HE,N ® (1 _ Hs,N) — €N+17TLTN + O(5N+1) — O(€N+l)
by the properties of superadiabatic projectors. Besides, H j“vdfl € SgQN*g, which fits with (ii) of
Definition E.1]
(3) comes from Lemma

(4) comes from (1.19). O



CHAPTER 5

Propagation of wave packets through smooth crossings

In this section, we prove Theorem[1.21] We consider a subquadratic Hamiltonian H* = Hy+eH;
satisfying Assumptions in I xQ, Q C R??, and we are interested in the description of the solution
to equation for initial data that is a wave packet as in .

The proof consists in three steps: one first propagates the wave packet from time ¢y to some
time t* —§, & > 0 in a zone that is at a distance of T of size larger than ¢ for some constant ¢ > 0.
In this zone, we use the superadiabatic projectors. Then, we propagate the wave packet from time
" — & to t” + 8, using the rough diagonalization in the crossing region. Finally, between times t* 4 &
and t1, we are again at distance larger than ¢d to T and the analysis with superadiabatic projectors
apply. The parameter § will be taken afterwards as § ~ “; the analysis of Section will ask for
o < 1 (see Theorem [5.9).

In order to explain carefully each step of the proof, we start by proving the propagation faraway
from the crossing area in Section [5.1] That allows us to settle the arguments, before doing it
precisely close to T in Section Then, Section [5.3]is devoted to the calculus of the transitions
in the crossing region.

All along Section [f] we will use Assumption [£.7] and the following dynamical Assumption [5.1}
AssuMPTION 5.1 (Dynamical assumption). We say that 1 and ¢; satisfy the dynamical as-
sumption (DA) for the mode hy if we have
(DA) @y (Q;) C Q for all t € [to, t1].

5.1. Propagation faraway from the crossing area

In this section, we analyze the propagation of wave packets in a region where the gap is bounded
from below. It gives the opportunity to introduce the method that we shall use in the next section
for a small gap region. So, we fix § = dg, dp > 0 small but independent on ¢ and we work in the
open set

Q= {Z S R2d, ‘hg(t,z) — h1(t,z)\ > 0y, VtE [to,tl]}, D=1x0Q

where I is an open interval of R containing [to, ¢1] and where the gap condition is also satisfied. We
associate with H¢ the formal series of Theorems [£.9] and [£.8] for each of the modes:

€ § j adia,e 2 : j rradia
Hé = EJHZJ' and He = &\JH&]'
j=0 j=0

and we will use the notation introduced in (4.3).
With zy € €2, we associate the open sets g, 21, {25 and Q3 such that

20690@92@91@93@9
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where £ and 5 are constructed so that for any initial data z € €y the flows are staying in Q:
@2’;0(2) S QQ, Vt € [to,tl], Vz € Qo, A\AS {1,2}

We associate cut-offs to these subsets. We take xo € C§°(€o) with xo = 1 near zg. Then, we
choose Ky a compact neighborhood of zg in g, which implies that €5 is a neighborhood of

Ko = {0} (Ko), to <t <t1}, £€{1,2}.

So we can choose x2 € C§°(€2) with x2 =1 on Ko = I~(170 U I~(270. Finally, we take x1, x3 € C§°(Q2)
with x1 = 1 on supp(x2) and x3 = 1 on supp(x1).
For ¢ € {1,2}, we set

ﬁ;dia,e,N(t) =3 H;dia’g’N(t),

which is a smooth subquadratic Hamitonian, and we consider U’ dia’E’N(t, s) the propagator associ-
ated with the Hamiltonian x; Hz"™ =N (¢).

The next result is the usual adiabatic decoupling that results from the preceding analysis.

PROPOSITION 5.2 (adiabatic decoupling - I). Let k € N.
(i) For any £ € {1,2}, we have in £(XF),

(5.1) (700 — F°(1) ) op. (xaT1} (1)) op. (x2) =
op. (all} (1)) (ie: — op. (xaH; "™ N*(1))) op.(x2) + O("*).
(ii) Let ¢5 € XF such that Xou§ = 1§ + O(e>). Set
N (1) = op. (AT () U™ N4t to) ob. (x0T (to) ) 6, € € {1,2}.
Then we have in XF,
(5.2) Usp (t,to)w5 = 97 (8) + 957 (8) + O(ENT), Vit € [to, ).

REMARK 5.3. (1) The assumption satisfied by (1§)s>0 in (ii) of Proposition [5.2|is some-
times referred in the literature as having a compact semi-classical wave front set.
(2) In the proof below, the reader will notice that we do not need to assume that He(t) is

sub-quadratic, we only need to know that He¢ (t) defines a unitary Schréodinger propagator
in L2(R%,C™). However, we use the boundedness of the derivatives of the projectors.

PRrROOF. (i) We fix £ € {1,2}. Using Theorem we obtain
(icdy — HE(t)) ® (xln;zv(t)) — \alicd, — HE () ® (Xlnz,N (t)) MR
=X1 (H;’N(t)) ® (ie@t — H;diavst(t)) 4 eNTIRS
= (XlH?N(t)) ® (ieat — f[;dia75=N(t)) 4 eNHIRS

where the R%s are rest terms that may change from one line to the other one and all satisfy
x2R% = 0 and where we have used that xsx1 = xi. The relation on operators follows from

Theorem and Corollary (with § = 1).
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(ii) Let Ko = supp(xo). We apply (b.1) and we use that x» is identically equal to 1 on the
compact set Ky. Hence, using Egorov Theorem of Appendix we have for £ € {1,2}

X1 Ugadia’N’E(t, to) Xo = X1 deia’N’E(t, to0) Xo U;dia’N’s(t7 to)~! Ueadia’N’s(t to)
= Ut 10) Ko + O,
Hence we deduce (5.2)) from (5.1]) using again the Egorov Theorem and that
0P, (Xlﬂiv’e + X1H§’€> Xo = Xo + O™ ).
]

The adiabatic decoupling of Proposition and Egorov Theorem (see Proposition [C.1]) allows
to give an explicit description at any order of the solution of equation (|1.1)) for initial data that are
focalized wave packets.

Indeed, by the technics of Appendix [C|that are classic when § = 1 (see for example the recent
edition of [I3]), one constructs two maps R (¢, tg, z) and Ra(t, to, z) introduced in ((1.20])) and one
has the following result (see Proposition [C.5]).

THEOREM 5.4. Assume that 1§ o polarized wave packet:
V5 = VoWPS, (fo), with fo € S(RY) and V, € C™.

Let N > 1 and k > 0. Then, there exists a constant Cn i, > 0 such that the solution ¥°(t) of (1.1)
satisfies for all t € [to,t1],

Jes = (w0 + v o)
with for £ € {1,2} and for all M >0,

& < CN,k 5N7
€

N (t) = e Sl ) WPE o | Ro(t to, 20) M[Fu(tt0)] Y €72By;(t)fo | + O(EM/?),
0<j<M

where B@)j (t) are differential operators of degree < 3j with vector-valued time-dependent coefficients

satisfying (L40) and (TAT).

5.2. Propagation close to the crossing area

Our goal in this section is to extend the result of Theorem up a the time ¢ — ¢§ for some
c¢>0and § < 1. We follow the same strategy as in the preceding section and checks carefully the
dependence in § of the estimates.

More precisely, the situation is the following: we consider a wave packet at initial time #g
that is focalized along the mode h; at some point zy. We let it evolve along that mode according
to Theorem up to (t1,21) conveniently chosen and we consider ¥°(¢;) as a new initial data,
knowing that it is a wave-packet, modulo @(¢>). The point (1, z1) is chosen close enough to (¢”,¢”)
such that [t; — | + |21 — ¢°| < 1o where 79 is defined in the next Lemma.

LEMMA 5.5. Assume (t°,¢?) is a generic smooth crossing point as in Deﬁm'tion and consider
§ € (0,1].
(1) There exist ng > 0 and ¢y > 0 such that we have

[t ()] = colt = | if [t =8| + ]z = ] < mo.
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(2) There exists ¢, M > 0 such that for all (t,z) satisfying |z — @2:1(31)’ < ¢d, we have

|f(t,2)] > cod — Med > %05,

PRrROOF. The result comes readily from the transversality of the curve ¢ — @Z’fl (2) to the set
T = {f = 0}. Recall that this transversality is due to Point (b) of Assumption O

Our goal is to prove accurate estimates for the evolution of the solution ¢°(¢) of the Schrédinger
equation with the initial data 1°(t1), for t € [t;,#* — ¢6]. We thus have to improve in this precise
setting the accuracy of the estimates obtained before for fixed § = .

We use the control in the small parameter § of the Moyal product rule for e-Weyl quantization
as stated in Lemma and the estimates in the Egorov Theorem for symbols in the classes S, s.
Finally, the construction of the cut-off functions relies on the fact that due to Point (b) of Assump-
tion [I:2] we can apply a straightening theorem for vector fields.

In several place we need to replace § by ¢d, for a finite number of 0 < ¢ = ¢, ¢1,- -+, ¢, (L € N).
We will not mention that point each time.

5.2.1. Localization up to the crossing region. We construct the cut-off functions by using
thin tubes along the classical trajectories. We use a straightening theorem for non singular vector
fields. We set D(z1,p1) = {|z — 21| < p1} and consider a branch of trajectory

To={@," (20), t € [t ¢}, ¢ > 0.

LEMMA 5.6. [2] Let be Py a transverse hyperplane to the curve Ty in zy. There exist p1 > 0
and t7 < t; <t* <t such that the map

(t,2) = @ (2)
is a diffeomorphism from |t [x D(z1, p1) onto a neighborhood Wi of Ty in P;.
Hence for any z in the tube W;, we have
2= 0, (v(2)

where 7 and Y are smooth functions of z, 7(2) € [t1,t]], Y(2) € D(z1, p1).
We then define the cut-off functions as follows: consider
e (€ (C§°(] —2,2]) equal to 1 in [-1,1],
e 0 C®(R) with0(t) =0ift < —1land 0(t) =11ift > 1,
we set for § > 0,

() =0 (Tu)n tl-) a-9 (T% tb) C <|z - @(;;) <z1>|2> |

where ¢ > 0,C' > 0 and n > 0 is a small enough constant.

By adapting the constants ¢ and C' conveniently, we construct some functions
Xy € G (R, [0,1)), j € {1,2,3},
such that

(1) X? =1on U B (<I>§lo’t(zo),cj5) and X‘; is supported in U B (¢Zo7t(20)720j5>7
to<t<ty to<t<t;
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(2) for all v € N??, there exists C., such that for all z € R*
07x3(2)] < G, 671,
(3) X3 =1 on suppx and x§ = 1 on suppx3.
Finally, with xo € C5°(R?4,[0,1]) satisfying xo = 1 on B(0,1) and xo(z) = 0 for |z| > 2, we

associate
Z1 — %
6 = (57).

And we consider y4 a smooth fixed cut-off (6-independent).

5.2.2. Adiabatic decoupling close to the gap. Omitting the mode index, we set

(5.3) Hd2NE (1) = oy (B(E) + eHM2 (1)) + X3 Z el H2 (1)
2<j<N

Notice that, because the crossing is smooth, the eigenavalues hy, 7, and the first adiabatic correctors
HZ’%P“ are smooth, even in a neighborhood of (¢*, ().

Let U*d12N2(¢ 5) be the quantum propagator associated with the Hamiltonian ﬁadia’Nve(t)
(omitting once again the index £ = 1). The following result is a consequence of the sharp estimates
given in [6] concerning propagation of quantum observables (see (ii) of the Egorov Theorem [C.1J).

PROPOSITION 5.7. Consider the cut-off functions Y9 and x4 defined above and set for ¢ €
[t1,1” — cd]
op (xp(t t1)) = UM (2, 11) op. (xg) U™ (¢4, 1).
Then, for any M > 1, z € R*¢ and t € [t1,t* — ¢d], we have:

(1—x3) ® X3 (t, to, 2) = (%)M Car(t) with Car(t, 2) € S (D).

Revisiting the proof of Proposition using Lemma [4.3|for the formal series IT; € S% (D) and
using (3) of Theorem |.9[ about Hf’adla, we obtain the following result.

PROPOSITION 5.8 (adiabatic decoupling - IT). With the previous notations, we have the follow-
ing properties.
(ii) For t; <t < t* — §, we have

(5.4) (=0~ H*®)) op. (TIV(1)) 0p.(x3)

—op. (1IY(0) (120, - op. (B 54(0) on.0) + 0 () 57

where xg € N is N-independent.
(ii) Set for £ =1,

PN (1) = op. (WIS (1)) U N (8 ) op. (VOIS (1)) wE (1)

where 9 (t1) = U (t1,t0)1° (to). Then we have, for N > 2 and for all ¢ € [t1,t — 4],

3

N+1
ity =i 0 + 00+ 0 () o).

where U2 ¢ is the propagator associated with the Hamiltonian HadiaNe(¢),
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The Remark is valid also for this Proposition, furthermore here the coefficients of the
expansion of wj-’N(t) in /¢ are d-dependent for the order */2 for k > 2.
Note that the integer o stems from the symbolic calculus estimates of Theorem

5.2.3. Application to wave packets. As in Theorem the previous results have con-
sequences for wave packets propagation and give an asymptotic expansion mod O(¢*°) for any
a < 1/2if § = . In other words the super-adiabatic approximation is valid for times ¢ such that
|t — | > /27" for any n > 0. The results of Appendix [C| give the following result.

THEOREM 5.9. Consider
Y5 =% (t1) = WPZ, (¢5), 5 € S(RY) modulo O(e™).
There exist Ng € N and two families of differential operators (ém(t)) . ¢ € {1,2} such that
je
setting for t € [t,1° — ]

(5.5) ;vN(t):egse(t,to,zo)WPzg(t) Ro(t, to) M[Fy(t, to)] Z 2B, (1 ’
0<j<2N

one has the following property: for all k € N, N € N, there exists Cn > 0 such that the solution
) of (T.1) satisfies for all t € [t1,t" — d].
e >N+1

ORI CRIOER O] 5

Moreover the operators By ;(t) are differential operators of degree < 3j with time dependent smooth

vector-valued coefficients and satisfy (1.40) and (L.41)).
5.3. Propagation through the crossing set

—Ko

SCNk<
Tk ’

We now use the rough reduction of section [£:2] to treat the zone around the crossing. We fix
the point (t*,¢”) € T and consider trajectories z;(t) and zo(t) arriving simultaneously at time ¢ in
the point ¢”. We consider N € N and we set

5V (0) = m Y (U0, £ {1,2)
By Theorem [4.5] if k& € N, the solution W: (t) of the Schrédinger equation satisfies in ¥F,
(5.6) WE(0) = 45N (8) + 95N (1) + O(NH),
Our a(ir;a in this section is to determine we (tb +6) in terms of ¢°(t* —§) by using the description
of 1% (¢).

The family =" = t(yi’N,y;’N) satisfies

(5.7) i0° N = HoN (t)geN
with N( ) N()
N (hTT (2 0 0 weN (¢
= (T et )+ v 00

According to Theorem the Hamiltonian H¢ is subquadratic (see Deﬁnition, thus for k, N €
N there exists Cj n > 0 such that for alle >0 and ¢t € I,

(5.8) IWEN (@[] st sy < Crwe.
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We have used here the fact that the asymptotic series W¢ starts with the term of order £ and we
recall that the value of Wy is given in (1.44).

Let us summarize the information about the data that comes from the preceding section. Let
§ >0, forall s € (" —4§,t — 3)7

(59) N (5) = (WPE, () (65 (5)), WPS, () (5™ ()
with for £ =1, 2,

N .

i d
= 2050, @0 € SRY).

§=0
Our aim is to prove that the description of gE’N(s) given in Equation (5.9 extends to s = )
and to derive precise formula for ¢; ¢(t* + &) when j = {0,1} and ¢ € {1,2}.

We consider the Hamiltonians

hSN(t, 2) 0
HEN — 1 )
e = (0" e )

and
e,N 0 WE’N(t)
Hadlag(t Z) (W&,N(t)* 0 .
so that H=N = H 3{;\/ eH ;djl\,; We fix N large enough and, for simplifying the notations, we drop

the mentions of N in the followmg. We use the notations
Ug(t,s) and Ug,, (L, s)
for the propagators associated to the truncated Hamiltonians H%N (t) and Hsi’;vg(t) respectively,

omitting the mention of § in U (¢, s). The action of U5, (¢, s) on wave packets is described by the next

Theorem on which we focus now. It gives a precise description of the action of U (t" 46,1 — d) on a
wave packet and describes the propagation of a wave packet through the crossing set, in particular
the exchange of modes at the crossing points.

THEOREM 5.10. Let k,N,M € N with M < N. Let § > 0 such that §> > \/e. Then, there
exists C > 0 and an operator @j“\’f such that for all € € (0,1),

(5.10) Ui (8 + 8,8 = 8) = Usiag (t + 6,8") O3] Usiag (. 8” — 8) + R}
wz’th HR?\}I5||E(E§+M+1 Z"’) S 06M+1 and
6 §
66 =1+ Z @fn M
1<m<M

Moreover, there exists g > 0, and a family of operators (T, (3\/1)m>1 such that for all g € S(R?, C?),
m>1,e€(0,&),

(5.11) 05,7 WP () = WPE (T52:0,8) + O(VE[plssana)
with

(5.12) 1T Pl < cimonr €% [Tog ™0™ ]| sim i
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for some constants cxm > 0. Besides, with the notation (|1.43)

. 0 Wi, )T
5.13 T < . 221
( ) 1,M — W (tb, Cb) Ile%Q 0
We point out that some additional action effects will appear when applying L{gﬂ(tb +6,t" =) to
a wave packet via the operators Z/ljiag(tb +6,t°) and Z/{dfiag(t", t” — ). When applied to a Gaussian

wave packets, i.e. when @1 = g{ in (5.9)), the leading order correction term at time t* + 6 due to
the crossing is

i b
ﬁ oS+, tb7C )+£85(t* t0,20) WPZ (1) (1)
LS (8P +6,t",¢")+ 181 (, 750720)\7\7132 (tb+5)(80 )

with
o1 = M[F (" + 6,8, )W (8, )Ty MFa (2, o, 20)] 95 »
P2 = M[FQ(tb + 57 tbv Cb)]Wl(tb C ) 7-1~>2M[F1(tb7t07 ZO)]Q{

Recall that W is the off-diagonal matrix described in (|1.44]).

The remainder of this section is devoted to the proof of Theorem The use of Dyson series
allows to obtain the decomposition (see Section . Then, the analysis of each terms
of the series is made in Sections and Finally, we recall how to compute explicitly the
quantities T;L’jv[ and S‘{ym in Section which was already done in [20].

Before starting the proof, we introduce a cut-off xs5(t) = x (%), Xo € Cg°l — L1, xo(t) =1
if [t| < 1/2. We set
ﬂe,é,N() HEN()—I—EX(s(ﬁ—tb)HEN ()

diag adiag

and we consider the propagator U7 i, (t,s) associated with H® %N We claim that if Theorem
holds for Uf; (i, s), then it also holds for Ug (2, s).

Indeed, we have for ¢t € [tb + 0,8 + 5]7

L[&(t,tbfé):ugﬂé(tb+5,tb 8)y* ( )+z/t U&é(t,s)(lfxg)(s t")HEN ()Z/lé(s,tbf&ds.

g adiag

This formula allows to obtain (5.10) for Uz (¢, t”—§). It remains to consider the action of Ug (t, t"—6)

on asymptotic sum of wave packets We observe that in the support of the integral, |tb —s| > g
and —6 < s—t’ < g. Therefore, s € [t — 6,° — g] on the support of the integral. where we know
that Up (s, t — ) propagates wave packets, whence the expansion in wave packets To conclude, we

observe that since |tb — s> g on the support of the integral term, we have
U (1" + 6,8 = 8) = Uz, (I’ + 6,8 = 8) + O(6%) = U (" + 6," — 8) + o( V%)

so the formula for the first two terms of the asymptotic assumptions are the same.

In view of these considerations, we focus in the next sections in proving Theorem [5.10] for the
Hamiltonian H=%N (¢).
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5.3.1. Dyson expansion. We perform a Dyson expansion via the Duhamel formula. A first
use of Duhamel formula gives for t1,ts € R,

2 .
(5.14) Ugy (o, t1) = Ugr,,, (o t1) +i7 " [ Up(ta, 51) Higog (51) Uiy, (s1,11)ds1.

a
t1

With one iteration of the Duhamel formula, we obtain
to -
Uaﬂ(t% tl) = u;{diag (tQ, tl) + i_l / Z/[;_Idiag (tQ, Sl)Hsdiag(Sﬁuifdiag (817 tl)dsl
ty

to to P P
_ / / Usy (t2, 53) Ao (52) Usy,,_ (52, 51) Hogon (51) Uy, (s1,41)ds1dss.
t1 S1

With two iterations, we have

to o
u;l(tg, tl) = Z/{]E,Idiag (1527 tl) + Z‘il / L{fidiag (tz, Sl)Hsdiag(Sl)uIE‘Idiag (817 tl)dsl

A .

e pla . -
- / Ugiag (b2, 52) Higing (2) Upy, . (52, 51) H 100 (51) Up (51, 11)ds1ds2

t1

s1
1 to ta to - /\
- ;/f / / ufldiag(t%33)H§diag(53>ugiag<53a32)H§diag(52)
L1 S92 S1
—_—

X Uy, (820 81) Higiag (51) Uy, (51, t1)ds1ds2

After M iterations, M € N, we have the Dyson formula
Z/@(t2, tl) = uﬁdiag (tg, tl) (H +

Z (i)_m/ Fs(Sl,”' ,Sm,tl)dsm'~'d81> +R§V[(t2,t1)
1<m<M P(ta,t1)

with
(5.15) Fe(s1, s Sm,t1) = E(sm,t1)E(sm—1,t1) - - - E(S2,t1)E(s1,t1),
where the operators E(s,t;) are given by
(5.16) E(s,t1) = U, (t,s)Hgo (U3, (s,11),
and the set of integration P(ta,t1) C RM satisfies
Plta,t1) ={t1 < sy <--- < s9 <1 <ta}
Besides, by there exists a constant C' > 0 such that

||R§w(t2,t1)||£(215c+1v1+1’25) < C|t2 — t1|M+1.
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We apply this formula to t; = t°, to = t* + 4,
Ut +06,8" = 0) = Uz, (" +6,1) <11 +

SM S2
Z (i)im/ / / FE(Sla"' aSMvtb)dsM"'dsl)ulsfdia (tb?fbi(s)
smMER J —o0 —00 €

1<m<M
+ Ry (8 + 0,8z, (£, = 6)
which gives equation (|5.10) with

Q0  — (;)™™ M % e b
mov = (1) Fe(s1,-+ ysm,t)dsn - dsy
smER J —oc0 — 00

and R3) = RS, (1" + 6,1° — U0 (t°,1° — §) satisfies
||R§\f||[:(2’;+M+1,z:k) < CoML

The operators @Z;‘SM contain all the information about the interactions between the modes hy
and he modulo O(6*°) when M goes to +oo.

In the next sections, we focus in understanding the action of @fr’fM on wave packets of the form

- ()

and in proving equations (5.11)), (5.12]) and (5.13)).

5.3.2. Analysis of the matrices F(s,t’). We have
by _ 0 I(s,t") b s b
E(s,t’) = (I*(s,tb) 0 , SE —6,t"+0]
with
(5.17) T(s,t°) = U (1, 8)xs (s — YWV () U w (s, 17).
1

e, N
h2

This operator combines conjugation of the pseudodifferential operator xs(s — tYweN (s) by the
propagator L{Z&N(s,tb) and composition by two different propagators I/{}ELE,N(tb, s) and Z/{;&N(tb, s).

2 1 2
Indeed, we can write

b , b b b

(s ) = (Useon (0, )WN () Useon (5,1) ) © (U (0, 50U v (5, 17) ).
The conjugation of a pseudo by a propagator is perfectly understood and is described in our setting
by the Egorov Theorem of Appendix(with 0 =1). The operator L{ZE,N(t", sS)WEN()UE. x (5,17)

2

hE,N
2
has an asymptotic expansion.

u;;,N(t", YW (s) ;;,N(s,tb) = eTW, ().
jz1

Similarly, for Z*(s, ), one writes

(5 8) = (Uppos ()W N () U (5.2)) © (Uyon (5l (5.2))
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Note that the actions of these two operators are perfectly adapted to the geometric con-
text: Z(s,t”) picks the contribution of the second component (the lower one), which lives on the
mode 2, transforms it into something related with the mode 1 (the upper one), via the opera-
tor Z/{Z&N(tb, s) ;E,N(&tb), and then, an operator related to the first mode acts on what is now a

1 2
component living on this precise mode. And conversely for Z*(s, tb).

The action on wave packets of two different propagators acting one backwards and the other
one forwards has been studied in [20] (see Section 5.2). Using Egorov theorem, the action of scalar
propagators on wave packets, and the precise computation of the operator U n (t,s) ZE,N(S, %)

1 2

performed therein (which involves the canonical transformation of the phase space z +— @ib’s o
@;’tb (z)), one obtains the analogue of Lemma 5.3 of [20], which writes in our context as follows.
LEMMA 5.11. Let k € N. There exist
- A smooth real-valued map s — A(s) with A(0) =0, A(0) =0, A(0) = 24" + o’ - B,
- A smooth vector-valued map s — z(s) = (q(s),p(s)) with 2(0) = 0, 2(0) = (a”, B),
- A smooth map o — Q°(s) of pseudodifferential operators, that maps Schwartz functions
to Schwartz functions, with Q%(s) = Zj]\/io £1Q;(s) + Qi1
Qo(0) = Wi (", (")
such that for all p € S(RY),
I(5,) WP () () = WP* (A=) Q5 (s — )oir-o= 100Dy (s — 1)) + 7))
with, for some cp; > 0
HQJ(S)QO”E)C S CMHQOHZI"‘*'“ v.] c {17 e 7M}7
1Qn1+1(8)ellse < enrllllsrriene,
Rl < e [lollgrtrenros

where we have used the scaling notation z.(s) = z(s)/\/€ and where kg is the universal constant of
Theorem [B.

A similar result holds for I(s,t") by replacing W1 (¢*, ¢")* by Wi (", (") and exchanging the roles
of the modes h; and ho.

5.3.3. Uniform estimates for the elements of the Dyson series. We now focus on the
operators @;‘?M. For s € [t* — 6,1 46], we define recursively the quantities J,,, (s) for m € {1,--- M}
by '

Ji(s) = —i / Els1,")ds:
and for m > 2,

Im(8) = —i /_S E($m,t") Tn—1(Sm)dsm.

We recall that F(s,t") is supported on [t” — s| < § due to the cut-off function x;s(s — t) that
appears in (5.17)). With these notations,

05y = Jm(t’ +0).
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We are reduced to proving the existence of operators s + 7,59 (s) such that for all s € [t* —§,° + 6]
and ¢ € S(RY,C?),
(5.18) Tn(s)WPG (3) = WPE, (T (5) ),

with for all £ € N, the estimate Note that we are omitting the index M of the notations of
Theorem [5.101

If the functions 7,5 exist, they satisfy for s’ € [t — §,¢” + ] the recursive equations

WPE (T3l (s )6)2——1‘/: I(s, )" WP, (T5°(5)8), ds

and

s/
WP, (T3, ()8) = i / I(5,)WPZ, (T50(5)@), ds.
—o0
Therefore, by Lemma.|5.11} if the functions 7,5 exist, they satisfy for s’ € [t” — 4, " 4] the recursive
equations

(Tt (0)9), = [ #1035 = £)em o= Ta8 )31y~ (s ¢))ds
2 — 00
and some analogue equation for the other components.

At the stage of the proof, the operators 7,5° are defined by a recursive process that we are
going to study for proving (5.12)). Therefore, we focus on the analysis for scalar valued functions ¢
of

I = / @M QF (s — )i Wma o (T30 (5) ) (y — g (s — 1)) ds.
In the following sections, we prove ({5.18]) recursively:
(1) In Section [5.3.4] we prove that if m > 1 and if (5.18) holds for m’ =1,2,--- ,m — 1, then
it also holds for m’ = m.

(2) In Section we prove (5.18)) when m = 1.

5.3.4. Proof of Lemma the recursive argument. We use Lemma to perform
a recursive argument on the structure of J,(s).

LEMMA 5.12. Assume there existsm € {1,2,--- , M —1} such that for all k € N, we have (5.18))
with the inequality (5.12)) for m and for the integers between 1 and m. Then, for all k € N, there
exists a constant C 11 such that for all ¢ € S(R?), we have

m+l
IZollsk < Crymae™ 2 [og e O™l ghraeminir.

This lemma, together with the precise computation of J;(#* 4 §) (see [20] and Section m
below) concludes the proof of Theorem

Note that at each step of the recursion one loose 2 degrees of regularity. One degree is lost
because the operator Q° that may has linear growth, and another loss is due to an integration by
parts that will involve the term ¥ - p. in the phase and the argument ¢. inside the function ¢. The
initial loss of regularity when m = 1 comes from similar reasons: one step is due to the presence of
the operator Q¢ and the two other ones by integration by parts.
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Let us start by exhibiting basic properties of I,. After the change of variables s = "+ oy/E
and letting appear a cut-off ¥ such that yx = x, we write

(') IVE
I, =E / o EAOVR (5 3) OF (0y/E)eP= (VO (=1:(0 /)

X (T2 (1 + 0v/E)p)(y — (/7)) do
with
0

A= 7
One sees that the change of variable has exhibited a power /e, which is exactly what one wants
to earn for the recursive process. However, even though the integrand is bounded, the size of the
support of the integral is large: it is of size A = %, which spoils that gain of /. This integral will
turn out to be smaller than what gives this rough estimate because of the oscillations of the phase.
The proof then consists in integration by parts. For this reason, we are interested in derivatives
and we observe that the recursive assumption yields

(5.19) 105T5° ()@l < Chume ™7 [log ™72 || gvan 11

and similarly for the integers between 2 and m.

Analysis of the phase. We know analyze the phase of the integral I,. We set

¢°(0) = A(a/e) - %pe(mﬁ) (y—g-(0vE) and L=p"-y—a’-D,.

We will use that e*** maps £ into itself continuously for all s € R and k € N. Besides, for § < dg,
do9 > 0 small enough, we have

d
£¢5(s) > cols|, V|s| < A

and )

95 = 23 (5)0,0'° ) with b (s) 1=

e . (s)0se wi (s) B0 ()
The function b°(s) is uniformly bounded, as well as its derivatives, for |s| > 1/2. Then, follow-
ing [20], we have

(s' =)/
m o__ i (o iLore,d (4b
g e Q% (o /E)x (0 /N LT (1 + 0 /E)pdo

—0o0
and there exists a smooth function f such that
¢ (0) = p’o? + e o flov/e).
At the stage of the proof, all the elements have been collected to perform the recursive argument.

Because of the considerations we have made on the support of the integral and because the
phase ¢°(s) is oscillating for s far away from 0, we use the cut-off function x to write

m __ ym,l m,2
I =17+ 1
with
(s'=t")/vE , b
I = Ve / POy (@)x(0/N)Q (o VE) T TR + o VE)pdo
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The compactly supported term. The term Ig"l is the easiest to deal with since it has compact
support, independently of € and §. Therefore,

1 e <C Ve sup [ T%(s)pllsen
SE[t? —5,t>+4]
< Ce™ |log e[ Om=1) |||l syeramro.
Note that the presence of Q° induces a loss of regularity of 1.

The oscillating term. For dealing with the term I, gL’Q, we take advantage of the oscillating phase
for compensating the fact that the support is large and we perform integration by parts. We write

(s'—t*) /e .
2 = 2 / 0, (¢°©) 15 (0)(1 ~ V()0 /N) 2 (9V7)

—00

x L7 (TE0 (1 4+ o\/2)p)do

(s'=t")/vE | 1 ,
= —\/E/ e (@), (bi (0)e Lo T (1" + aﬁ)gp) do
o

— 00

e 1 .
++e (e"z’ (U)Ubi(a)elL">

with
bi(o) = (1 = x)(0)x(a/N)Q(aV/e).

Note that the operator-valued functions o — b(c) and o — 1b5(c) are bounded form XF! to $F
(with a loss due to the presence of the operator QF), and similarly for its derivatives. We write

(s'=t")/VE 1 )
= e / e’ (79, <0b§(a)> T + av/E)p)do

— 00

'—)VE ,
e / S b (o) LTS (P + 0/E)p + VETE (1 + ov/E)g)do

— 00

VO | .
+ve <e’¢ <U>ab§(a)e@0)

T
t

’
s
o=

and we check

1222l 5e < C Ve

d
X sup <||T£’5(5)<P|zk+1 +(ILT ()¢l gers + \/EllasTni"s(SMIzm)/ U)

SE[tP —8,t"+4] %S\SIS% o
< C (Ve [loge ™™D |[p]lsyranss + ¢l logele T log ™D s
S C&mT_H ‘ log€|max(0,m) ||30||2k+2(m+1)+1.

We point out that it is at that very last stage that we loose some loge coefficient. Note also that
the loss of regularity in the recursive process is covered by the m — m+ 1 process. It will appear in
the initialization process (m = 1) in which we will get rid of the logarithmic loss | loge| by trading
it as a loss of regularity.
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5.3.5. Proof of Lemma the initialization of the recursion. For initializing the
recursive process, we have to study Ji(s), i.e. the integral I o replacing the transfer operator of the
integrand by I, the identity operator. We obtain

(—)VE |
== e &) Q% (5 20/ Ve o o

Besides the estimate of the norm of Igbzl, we also want to calculate the leading order term when

s =" + 6. The main difference with the preceding analysis is that we can push the integration by
parts at any order because the integrand is simpler.

LEMMA 5.13. Let k € N. Then, there exists a constant Cy 1 such that for all p € S(R?)
15 s < Cravellellirs-

Moreover, there exists an operator %0 = @i’é + ﬁ@g’g and a constant ci a such that for all
M e N,

M+1
_ 3
1Ty = VAW, T~ 20l < CuardE (55) el

with for £ = 1,2, |87°¢lls, < crarll@llsers.

We recall that 77 ,, is the transfer operator defined in (T.43)). In [20], this Lemma has already
be proved with M = 1. We ameliorate here this result. This terminates the proof of Theorem [5.10
with (7732 = Wa(#, ) T,

PROOF. Following the same lines of proofs than above, we write I7'=" = I1" 4 I* with

(' ~)/VE ,
= ve [ ¢ O\ ()x(/N) @ (o) oo

oo

We point out that we use here the same notation than in the preceding section for a simpler
integrand. Like before, this term satisfies the estimate

Ipllze < CVellgllsre
We proceed to integration by parts in [ i. We obtain

(s'—t")/VE 1 ‘
1% = —ﬁ/ e (@9, <b"i(o)> el pdo
o

— 00

1 .
iy iLo
p i(0)e >

sl —tb

7z

(Sl*th)/\/E e ]_ . e
— z\/E/ e () Zp%(0)e' 7 L pdo + /2 <e“¢’ (@)
o

—0o0

We write
2, <ib§(0)> = B3(0) + T5(0) with B3(0) = 9,b5 (0) + V(L ~ )(0)x(0/N)D.Q" (Vo)

where the maps o 5 b3(0), o — b5(c) and o +— 1b5(0) are bounded from S5+ to $¥ (with a loss
of regularity because of the presence of Q¢(s)) with the additional property

/R||bg(a)u£(25+l7 o < o < +o0
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for some constant ¢y independent of ¢ and 6. Therefore, in %,

(s'—1")//E 1 .
0= _\@/ &) (45(0) + 5 (0) L) o + O(VEplesn).
—oo

Another integration by parts gives

1,2 W=)vE “(0) 1 i oL
= 0, ()00 + (o)D) ) o

— 00

—VE <ei¢5<a>o_12b€(a)(bg(a) + z'bi(a)L)eiLfnp)

L+ O(Eplsin)

NG

o=

= O(Vellgllss+o),

since the integrand has gained integrability. Note that it is at that very place that we have a loss
of 3 momenta and derivatives in the estimate. We have obtained the first inequality that allows to
initiate the recursive process of the preceding section. It remains to focus on the case s’ = t* + ¢.

We now consider the operator

71 m=1
7\@90

Note first that by the construction of the function ¥,

veors = VE [ @O/ (VB o

T, Wi(t", )Ty

s'=tr 45

m=1
LP

Following [20] Section 5.3, we first transform the expression I gl:l by performing the change

of variable

s'=tt+4

2= o1+ VEaf(av/e)/u) 2

and observe that o = z(1 + /2z91(2+/€)) and 0,z = 1 + \/ezg2(z/€) for some smooth bounded
functions g; and go with bounded derivatives. Note that we have used that o+/¢ is of order §,
thus small, in the domain of the integral. Besides, there exists a family of operator o* (z) such
that Q(0y/2) = Q°(2v/2) with Q%(0) = Q°(0) and Qy(0) = W1 (#",¢") and a compactly supported
function x, such that

: 5 : d
s'=t 45 ﬁ/ (2 N) @ (s/E)e (I VERN VA L c
R

T+ Vezga(2/E)

m=1
ISD

A Taylor expansion allows to write

1
1+ V2292(2v5)

for some smooth operator-valued maps z — @j (24/€) mapping S(R?) into itself, such that for all

QO (zyR)e Vv & = Qu(0) + VE=(Qf (2v2) + 205 (:v2))

¢ € S(R?) the family ||é§ (zv/e)pllsr < ¢jll@llsr+e (because of the loss of regularity involved by L
and QF) We obtain

_~1 ~2
Jp =3, +72
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with
b ~ ~ .
3, = \@/ 2™ (2/N)(Q5 (2vE) + 205 (2v/E) e F pdz,
R
3= Qu(0) [ 1= D)/
Let us study 730. Arguing by integration by parts as previously, we obtain

1”22 d ~ e e 1z
= ;/;b [ (RENQEVE) + 2Q5(vR)e " ) de

— = | @2/ N0, 05 (Ve dz
2ip Jr
— 2—\/5'7 X(Z/A)(ei“bzzaz (@3(2\/5) + \@zazég(z\/g)ei“‘) dz
W JRr
- 2\2,/5 A ei”bzz)zl(z/)\) (A_lQi(z\/g) + %ég(z\@)) el dz.

One then performs M + 2 integration by parts in the last term of the right-hand side that is
supported in |z| > % and we obtain

3 i’ 22 ~ Ne e iz
Te = gip [T /N5 (2VE) +20:Q5(=E))e d
- b _2 o X in L e M+1
- ooy [ A evEet i+ 0 (VE (5)T ol
2ip’ Jr )
_ e,8 e\ M € ip® 22 . 2 e izL
VAH ¢+0((5) ||¢||Ek+M+3> +W/Re# a. (X(Z/A)azQQ(z\/g)e )dz
£ £ £ M
—VE05 4205540 ((5)" ol )
with

0
107°[lex < cdllpllsrs.

It remains to observe that the term 3920 satisfies after M + 1 integration by parts

M+1
9
”jiHEk <C ({) ||(,0||Ek+M+3.

5.4. Propagation of wave packets - Proof of Theorem [1.21
Let k € N and let be 9§ a polarized wave packet as in (1.39):
V5 = VoWPS, (fo) with fo € S(R?) and Vj € C™.

Let § > 0. By Theorem for t € [to,t” — &], and in ¥¥, ¢°(t) is an asymptotic sum of wave
packets and writes

N
V() = SN (1) + 05N (1) + O ((;) 5~o> .
with 45" (t) given by (5-5).
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‘We now take the vector

BN = 8) = (N ), N - 0)) s N - 8) = upN (@ - 0), €= 1,2,

as initial data in the system (5.7)). It is a sum of N wave packets. By construction, in particular
because of the linearity of the equation, we have for all t € [t* — §,* + 4],

(1) = 0N () + 0N () + O ((Q)N 5“)

in ©¥. When ¢ = * 4 §, we deduce from Theorem that in %,

Q&N(tb + 5) = MSiag (tb + 57 tb) I+ Z @irfM usiag(tb7 tb - 5)967]\[(75b - 5) + O((sM)
1<m<M

By Proposition of the Appendix, QZ’N(tb +0) is a sum of wave packets
N o) = Y eFytm MNP 4 g)

0<m< M

where each term QZ’"“M N(#> + §) involves a term of action. When m = 0 and m = 1, these terms

have been computed precisely:
e Ifm=0,for{=1,2,

%E,O,M,N(tb + 5) — eﬁsz(tb+6,tb_6,0)wpe (M [Fg(tb +6, tO,ZO)]ﬂ'Z(tO, ZO)VOfO)

¢ 17 +6,t0 (29)
where we have used the property of the scalar propagation of wave packets.
e If m =1, only the term with ¢ = 2 contributes and

i b b b i b
gyl,M,N(tb +6) = et S2(F'+0,t7,¢7)+ 251 (t ,to,zO)WP;bHJb(Cb)(m)
2

with
P2 = M[FQ(tb + 9, tbv gb)}Wl (tb7 Cb)*’rleQM[Fl (tb7 to, 20)]7‘—1 (t07 20)‘70]80,
where W is the off-diagonal matrix computed in .
At that stage of the proof, we have obtained that ° (t" +d) is a sum of wave packet in ¥¥ up to
@] ((6%)1\] dro 4 6M+1) and we know precisely the terms of order e° and e2.
For concluding, we take the vector
fop(t 4 0) =TV (4 6) + SN (P + 6)

app
as initial data at time ¢ = ¢” 4§ in the equation (I.1]). The function w,jpp(tb +9) is an approximation
of 1°(t* + §) at order O ((5%)N §ro + 5M+1) in ¥*. By construction and because of the linearity

of the equation, for all times ¢ € [t* + 6, to + T,
e\N _.
VE(t) = Up (1,8 + )5, (£ +6) + O ((52) 5o 5M+1> .

We then applies Theorem between times t* + & and t. Indeed, the classical trajectories involved
in the construction do not meet Y again and we are in an adiabatic regime, as in theorem [5.9] This
concludes the proof of Theorem [1.21



APPENDIX A

Matrix-valued Hamiltonians

We explain here the set-up and the technical assumptions that we make on the Hamiltonian H*¢.
It is the occasion of motivating the set of Assumptions [I.4] and deriving their consequences. The
objectives of these assumptions are first to ensure the existence of the propagators associated with
the full matrix-valued Hamiltonian and with its eigenvalues, and secondly to guarantee adequate
properties of growth at infinity which are used in our analysis.

In this section, we work with m x m (m € N) matrix-valued Hamiltonians H that are sub-
quadratic:

(A1) VB e N4, 3C5 >0, Y(t,z) € I xRY, |0PH(t, 2)|cmm < Cpz) 218D+,
LEMMA A.1. Assume that the matriz-valued function H € C®(I x RY C™™) satisfies (A.T]).
Assume that for all (t,z) € I xR?? H(t,z) has a smooth eigenvalue h with a smooth eigenprojector

w(t,z) of constant rank for |z| > m, > 0. Then, there exists a constant C > 0 such that for all
(t,2) € I x R% with |z| > m,

|h(t,2)] < C(2)%, |Vh(t,2)] < C(z).
PROOF. The relation Hm = hr implies |h(t, 2)| < C(z)2. Moreover, writing
H=hr+HQl—-7)=hn+(1-7m)H
and differentiating these two relations, we obtain for all j € {1,---2d}, denoting 0., by 9;
(A.2) 0;H = 0jhm+ hOjm+ 0;H(1 —m) — HOjm = Ojhm+ hO;m+ (1 — 7)0; H — 0;mH.
Multiplying from the left and the right with 7 and using that Or is off-diagonal, we obtain the
relation 70; Hm = 0;hm, whence with ¢ = Rank(n) = cte,
O0jh = c¢Tr(m0;H).
This implies |9;h(t, z)| < C(z). O
This proof shows that the study of higher derivatives of the eigenvalues requires a control on the
derivatives of the eigenprojectors. The following example shows that the situation may become very

intricate and one can have smooth subquadratic eigenvalues while the derivatives of the projectors
are unbounded.

EXAMPLE A.2. Assume d = 1. Let p,0 € C*=°(R) such that p has with bounded derivatives and
with )
plx) = s and 6(z) = zIn(z) —z for |z| > 1.

cos(f(x))  sin(f(z))
H(x) = p(z) (sin(&(:v)) — cos(f x))) '

Define
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The eigenvalues of H are +p and the eigenprojector associated with the eigenvalue p is

)= (14 (Gioto)) o))

N Y —sin(6(z)) cos(f(x))
@) =50 cos((x))  sin(0(x))
is not bounded. On the other side, p and H are sub-quadratic. Indeed, for |x| > 1, the derivatives

of the coefficient of H are of the form

1 1 1 .
s <p1 <x,lnx> cos 0(x) + po <x,lnx> sm@(x))

for p; and py two polynomial functions of two variables and thus bounded.

Its derivative

A manner of controlling the growth of the potential consists in requiring a lower bound on the
gap function f at infinity.

LEMMA A.3. Let £ € {1,2}. Assume that the matriz-valued function H € C=(I x R4, C™™)
satisfies ([Ad]). Assume that for all (t,z) € I x R*!, H(t, 2) has a smooth eigenvalue h with smooth
associated eigenprojectors w(t, z) of constant rank for |z| > m. Assume there exists C,ng > 0 such
that for (t,z) € I x R® with |z| > m,

dist (h(t, 2),Sp(H(t,2)) \ {h(t,z)}) = C(z)~"°.
Then, for all v € N2¢ with |y| > 2, there exists a constant Cy > 0 such that
Y(t,z) € I x R |9)7(t, 2)| < C(2)mot =1 and |07 h(t, 2)| < O, (z)(VI=Hno+2(E=D),
PrOOF. We work for |z| > m and fix j € {1,2}. The relation also implies
0;m(H —h) = (H — h)0jm = 0;(H — h)
where we keep the notation d; := 0., for j € {1,---,2d}. Using that ;7 is off diagonal and (H —h)
invertible on Range(1 — 7), we deduce
Oim=(1—-mojmr+mdim(l—m)
with
(1-mdmm=(H—h)""(1—m)0;(H — h)
and
mom(l—m) =m0;(H—h)(1 —7)(H —h)~' =70;(H — h)(H —h)"'(1 — 7).
On the range of 7, the resolvent (H — )~ is invertible, more precisely, there exists ¢ > 0 such that
I(H = h) (1 = 7)l| cRan—my) < edist (b, Sp(H) \ {h}) ™" < cC(z)"0t 1,
whence |0;7(t, z)| < C(z)".
For analyzing the derivatives of 7, one observes that the relation = = 72 implies
O'nm=n0"m+0"mmw+ Z Ca,p0°m T
1<]al,|BI<|v]
for some coefficients c, 3. A recursive argument then gives the estimate on the growth of the
eigenprojectors.
Let us now consider the eigenvalue h. The relation Hr = 7H = hr gives
Ohm = 0Hn — On(H — h) =n0H — (H — h)on.
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Multiplying on both side by , using (H — h)m = 0 and taking the matricial trace, we obtain
oh ’I‘I'(C'mwm (7T) = TI'Cm.,m (TFaH) .

This implies |0h| < C(z)¢~L.
To get the relation on higher derivatives, we differentiate this relation, which gives for i, j € N2¢,

837h Tr(Cm,m (’/T) = 31 (TI‘(Cm,m (FajH)) - aj h,TrCm,m (827()
Since Trem.m (0;7) = 0, we are left with
8th Trem,m (7T) = Trem,m (&wajH) + Trem,m (Wa”H)

We obtain a control of the form (z)"0+2(¢=1) " Besides, it allows to perform a recursive argument
by writing for v € N2¢,
8783]h Trcm,m (7T) =97 (TI‘(Cm,m (817T8JH) + Tr(Cm,m (ﬂ'awH))
- Y cad 0, h Tremm (0%T)

2<|a,a<y

= Z Coq (Trcm,m (0 aaajH) 4 Tremom (67—0{71_8048in))

a<y

- Z cam*aa,?jh Trem.m (09)

2<|al,a<y
for some coefficients c,. One can then conclude recursively to [9792h| < ¢ (z)(MFHmo+2(=1) O

These two Lemmata allow to derive the consequences of Assumptions [I.4] for a Hamiltonian
H® = Hy+ecH;. We now fix m = 2.

PROPOSITION A.4. Assume that H® = Hy + €H; satisfies the Assumptions [1.4l Then, for
j € {1,2} we have the following properties:

(1) For all v € N?¢ with || > 2, there exists a constant C-, > 0 such that
V(t,z) € I x R* |97m;(t, )| < Cy(2)1™0 and |07 h;(t, 2)| < C, ()71 Dno,

2) If moreover ng = 0 in (|1.6)), then the maps z — 377, (¢, z) and z — 92 h;(t, z) for >2
( ) p AN 2 1\l Y
are bounded. As a consequence, the Hamiltonian trajectories @Zo’t(z) are globally defined
for all z € R. Besides, there exists C’ > 0 such that

|<I>201t(z)| < C’|Z|eC|t7tU|
and the Jacobian matrices Fj(t, z) = BZCI)Z’:O (2) (see (1.12)) satisfy
HFj(taz)HCZd,zd < CeC\t—to‘.

REMARK A.5. Note that under the assumptions of Proposition forall j € {1,---,2d}, the
matrices

[0, m =~ [0, m2 = 5 (32, (H — v) ~ 02, f(ms — 1))

are bounded. This comes from the differentiation of the relation H = vl + f (72 — 7).
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PROOF. Note first that Point 2 is a consequence of Point 1. We thus focus on Point 1. We use
that o is the projector of the matrix Hy — vl for the eigenvalue f. And the matrix Hy — vl satisfies
the assumptions of Lemma with ¢ = 1. Therefore, we have for (¢,2) € I x R? with |2| > 1 and
for v € N4,

|007;(t, 2)| < Cy ()10 and |07 £ (8, 2)| < C, (z) 177D,
One concludes by observing that the function v = 2Tr(H) is subquadratic, whence the property of
ho = v+ f. One argues similarly for h;. O

We close this Section with the proof of Lemma [[.10]

Proor oF LEMMA [LTQl The map ¢ — Re(t, to, z) is valued in the set of unitary maps because
the matrix H Zdlla is self adjoint. Besides, the map

(t,2) = Zu(t, 2) = m(PY™ (2)Ro(t, to, 2)7i (2)
satisfies the ODE
i0yZy = —i (m(Oyme + {hyme})) 0 @y Zs,  Zy(to, ) =0,
and thus coincides with the solution Z;(t) = 0. O



APPENDIX B

Elements of symbolic calculus : the Moyal product

In this section, we revisit results about the remainder estimate for the Moyal product, aiming
at their extension to the setting of the sets S% (D) that we have introduced in Definition

B.1. Formal expansion

We first recall the formal product rule for quantum observables with Weyl quantization. Let
A, B € S(R?*?,C™™). The Moyal product C := A® B is the semi-classical observable C such that

Ao B = C. Some computations with the Fourier transform give the following well known formula
[34], Theorems 18.1.8]

1€
(Bl) C(Z‘, g) = exp <2U(DQa Dpa Dq/7 Dp')) A(Qvp)B(ql7pl)|(q,p):(q’,p'):(z,§)7
where o is the symplectic bilinear form o((q, p), (¢,p')) =p-¢'—p'-q and D = i~'V. By expanding
the exponential term, we obtain
el (i J .,
(BQ) C(:ﬂ,f) = Z ? §U(Dq;Dp;Dq/,Dpl) A(qap)B(q P )|(q,p):(q/7p/)=(x7§).
j=0

So that C =" >0 €9C; is a formal power series in £ with coefficients given by ({.1)).

B.2. Symbols with derivative bounds

For p1 > 0 denote by P(u) the linear space of matrix-valued C*> symbols A : R2¢ — C™™ such
that for any v € N2? with |y| > y, there exists C., > 0 such that

107 A(2)| < C,, Vz € R*,

Assuming that A € P(ua), B € P(up) it is known that, for € fixed, A ® B = C where C € P(u¢)
with pe > max{pua, up} (see e.g. the proof [34, Theorem 18.1.8])

We aim at having better estimates for small € > 0 and a control of the derivatives of C' in terms
of those of A and B. The following estimate and its proof are a particular case of [6, Theorem A.1].

THEOREM B.1. For every N € N and v € N2, there exists a constant Ky such that for any
A €P(ua), BeP(up) the Moyal remainder

(B.3) RN(A,B;ze) .= (A® B)(2) — Z £10;(2)
0<j<N
satisfies for every z € R* and ¢ € (0,1],
(B.4) 02 RN (A, By zie)| < MKy, > 102 Al o= 10 Bl| .=,
N+1< ol |BISN+ro+]v]

83
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with kg = 4d + 2.
The estimate [£:4] allows to evaluate the norms of the operators involved in Theorem

COROLLARY B.2. If A€ S!'; and B € Ss s, then A® B € S“Jr“ (see Remark and for all
N,k € N, there exists a constant Cy j > 0 such that

lope (R (A, B; z;6))|[se < Ciyp eV 1 ght# —2NF1tktno)

PRrROOF. By Fourier transform computations and application of the Taylor formula, we get the
following formula for the remainder,

.\ N+1
(B.5) Ru(A, B; zic) = ;, (’;) /0 (1= )N Ry (2 0)dt,

where

Ry (7€)

(2met)~2d // exp ( o(u, )) oNTY(D,, D,)A(u + 2)B(v + z)dudv.
R2d x R2d 2te

Notice that the integral is an oscillating integral as we shall see below. We now use Lemma [B.3] for
A, B € S(R??) with the integrand
Fn(zu,v) =724 07 (6N T(Dy, Dy)A(u + 2)B(v + 2))
and the parameter A = 1/(2te). We then have
07Rn(z;6)| <Cq  sup 0205 Fi ~(2;u,0)].

u,vER
lal+l8I<4d+1
Moreover, there holds the elementary estimate
oM Dy, D) AW)B)| < )V sup (9007 A(x, )0, 5 Bly, ).
lo|+|Bl=N+1

Together with the Leibniz formula, we then get the claimed results with universal constants. For
symbols A € P(ua) and B € P(up) we argue by localisation. We use A, (u) = e*’7u2A(u) and
B,(v) = e’"”gB(v) for n > 0 and pass to the limit n — 0. O

LEMMA B.3. There exists a constant Cy > 0 such that for any F € S(R?? x R? C™™) the
integral

(B.6) I(\) = /\2d/ exp[—iAo (u, v)|F (u,v)dudv.
R2d x R2d
satisfies
(B.7) IO <Ca s [050PF(u,0)).
u,veR2d

lal+] Bl <4d+1

Proor oF LEMMA [B.3l The lemma is proved in a standard way, using integration by parts
and stationary phase argument. For the sake of completeness, we give here a proof. We introduce
a cut-off xo € C§°(R) such that

Xxo(z) =1 for |z|] <1/2 and xo(zx) =0 for |z|>1.
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We split I(\) into too pieces and write I(A) = Ip(A\) + I1(\) with

Io(\) = 2% //]R - exp[—iXo(u, v)]xo(u? + v?)F(u,v)dudv,
2d  R2

Li(\) =\ //R?d " exp[—iXo(u,v)](1 — x0)(u? + v*)) F (u, v)dudv.

We notice that (u,v) > o(u,u) is a quadratic non-degenerate real form on R*.
Let us estimate I;(\). We can integrate by parts with the differential operator

i 0 0
L=———(Ju - ——Jv- —
[ul? + ToP? ( o 6u> ’
using that Le~ A (wv) = [Le=iMuwv — Ne=iAo(uv)  For I;(X), the integrand is supported outside the
ball of radius 1/ V2 in R*. Performing 4d + 1 integrations by parts for gaining enough decay to
ensure integrability in (u,v) € R* we get a constant c4 such that

[I;(A)] < cq sup |02 0Y F (u,v)].
u,v d
a4 o < ad s

To estimate Ip(\) we apply the stationary phase. The symmetric matrix of the quadratic form

o(u,v) is
0 —J
=5 ).

So the stationary phase Theorem ([34], Vol.I, section 7.7), we obtain the existence of two constants
c1,co > 0 such that
(B.8) [To(\) = A" 2ey| < o sup 0% (xo(u? + v?)F(u,v)|.

u,veRZd
|al<2






APPENDIX C

Elements of semi-classical calculus: perturbation of scalar
systems

In this Appendix, we revisit several well-known results concerning a Hamiltonian K (¢) valued
in the set C™™ of m x m matrices (m € N), and which is a perturbation of a scalar function k(t).
We consider an interval Is C R that may depend on ¢ > 0 and assume that K(¢) is defined on Is
and of the form

(C.1) K(t) = k), +eKi(t) + - eV Kn(t)

with & scalar-valued and k(t)I,, + €K;(t) is subquadratic on the time interval I; according to
Definition [[.1]

The difference with the classical setting is that we assume
1 _
vt e Iy, = (K(t) = k(t)L,, — K1 (t)) € S_5(D).

Therefore, we have to revisit the results to take care of the loss in 4 and control all the classical
estimates with respect to this parameter. We denote by U5, (to,t) the unitary propagator associated
with K (¢).

These assumptions are those satisfied by the Hamiltonian that we consider in the adiabatic
region (see Section: by (3) of Theorem the Hamiltonians H:"*™5(¢), defined for £ € {1,2}
in (5.3), satisfy the assumptions made on the Hamiltonian K (t) on the interval [ty, " — §] and on
the interval [t” + J,to 4+ T, for adequate domains D given by the cut-offs. Therefore, the analysis
below allows to deduce Theorem from Proposition 5.8 In the gap region, we also use these
results in the simpler case § = 1 (see Sections and .

C.1. Egorov Theorem

The Egorov Theorem describes the evolution of an observable when it is conjugated by the
propagator U5 (t, s) associated with the operator K (¢). It is important to notice that this propagator
maps XF in itself for all £ € N. Indeed, for 1 < j < d,

iy (w;0° (1)) = K (8)(29°(1) = [ () and 0y (00, 4% (1)) — K(£)(e0z,4° (1)) = g5 (0),

with f5(t) = [xj,f?(t)]ws(t) and g5(t) = [EDIj,R(t)]’t/JE(t) uniformly bounded in L% Therefore,
one deduces the L?-boundedness of the families (x;4°(t)) and (D, ¢*(t)) for all 1 < j < d, whence
the boundedness of ¥°(¢) in X! for all ¢ € R. The reader will have understood that a recursive
process will give the boundedness of ¥°(t) in any ¥¥ for t € R and k € N. In this setting, our
aim is to revisit the evolution of UF, (tin, t)g U5 (t, tin) for matrix-valued observables A € S5 and in
spaces XF, with a precise estimate of the remainders.
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ProrosiTiON C.1. With the above notations, for any matrix-valued symbol A € Sj, there
exists a formal series (¢, t;,) — ijosj A;(t,tin) defined on I5 x Is and such that for any J > 1, we

have for all ¢, ¢, € 15,

U (tin AU (8, 1n) = > &I Aj(t ) + e RS (L 1),
0<G<J

with A;(t, tin) € Sng uniformly in ¢ €]0, 1]. Besides, for all k& € N, there exists a constant Cf_ s
such that

RS (£, tin) |5 < cpo—20F1FR0),
and the matrix Ag(t, tin) is given by
(C.2) Ap(t,tin, 2) = (R*(t, tin) AR(, tin)) © (®L1)(2),
where the unitary matrices R(¢, tin, 2) solve the transport equation
(C.3) IO R(t, tin, 2) = K1 (t, 2,57 (2)) R(t, tin, 2), Rltin tin, 2) = L.
REMARK C.2. In particular we have the propagation law of the supports:
supp(A; (t, tin)) = @™ (supp(A)) for any j > 0.

In the scalar time independent case case (k = k(z) and K; = 0 for j > 1), the Egorov theorem

Use (tin, 1) AU (t, t) = Ao DL 4 O(e)

is well-known (see [13), 14}, [64] for example). In the time-dependent matrix-valued case considered
here, the dynamics on the observable is driven by the classical flow twisted by the precession R
(see also Section where such terms appear). The proof also requires a careful treatment of the
time.

PROOF. We perform a recursive argument. The starting point comes from the analysis of the
auxiliary map defined for 7,¢t € I5 and valued in Ss by

* t,T
A A(t,7) = (R(1,t) AR(7,1)%) 0 D7
Because we are going to differentiate in 7, we use the relation
0,00 = —JVk(T,®L7),
(where J is the matrix defined in (T.10)), which implies for all z € R??, using also that the flow
map is symplectic and preserves the Poisson bracket,

0, A(t7.2) + {k(r), A7)} (=) = £[Ka (), Alt,7,2)], A(t,8) = A.

Let us know starts with the proof of the result for J = 0. We choose s,7,t € I5 and consider
the quantity

~

Qi& (t’ S, T) = ule((sv T)A(t’ T)ulg( (7—7 S)'

The times s, 7, t can be understood as s < 7 < t with s an initial time (that will be taken as s = ¢y )
and ¢ the time at which we want to prove the property. We then have the boundary properties

Q5 (t,5,t) = Us (s, ) AU (t,5) and Q5 (L,s,5) = A(t,s).



C.1. EGOROV THEOREM 89

Differentiating in 7, we have
d 14 ~ -
EQ;(L $,7) =UFk(s,7) ({,K(T), Alt, 7'):| + 0; A(t, T)> Uz (1, 8)

— (o) (|- 2R ) At )| - 7AG) + 110 (AT ()

= gulg((sa T) Bi(ta’r) Z’{IE((Tv 5)

where the matrix B} € S;g stems from the Moyal product (see Corollary . We deduce by
integration between the times s and ¢

t
U (5, ) AU (1, 5) = Alt, ) + / Ui (5, 7) B (1, 7) Ui (7, 5)dr,

which gives the first step of the recursive argument.

We now assume that we have obtained for J > 0
J t —
Ui (5, 1) AUz (t,5) = Y &T Ay(t, ) + 5”1/ Ui (s,7) By (t,7) Use (T, 8)dT
=0 s
with B5,, € S; 2. We write
By = By + By,
with Bjiq € ng(‘”l) and B, € S;?UH). Then, the preceding equation writes

J
(CA) Us (s, ) AUz (t,5) =D T A;(t, s)
j=0

—

t t
+ 5J+1/ QEBJJrl(t’ s,7)dT + 5J+2/ U5 (s,7) B},’jz(t, T)UF (T, 8)dT.
S S
We focus on the term involving Q‘EBJ+1 (t,s,7) that we treat as in the preceding step. We obtain
< t,8,7) = R(s,7)Bys1(t, )R(T,8)* +e | U (s, 7B, (v, 7 U (7', s)dr’
By + K J+2 K
S
with B%%, € S_3". We set
t
Ajpa(s,t) = / R(s,7) By (t. T)R(r,5)" € 852+
and

Bialtsr) = Bi5a(tr) + [ B350 ' € 8,307,

S

The equation (C.4) then becomes

J+1 t
U (5, ) AU (t,5) = 3 & Ayt ) + 277 / Use(5,7) B5 g (b, 7) Use (7, 8)dr
j=0 s

and this concludes the proof. O
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C.2. Asymptotic behavior of the propagator

In this section, we analyze the propagator U5 (¢, tin) and compare it with U5 ¢ (¢, tin) the prop-
agator for

KS(t) = k(t)L, +eK1(t).
LEmMA C.3. For all J € N, there exists
Wt tin) = Y & Wjlt,tin) + £/ T RS (t tin)
0<i<J
with W(t, tim) € S5 such that for all t € R,
Us (t,tin) = WE(t, tin) Ui s (2 tin).-
Besides, Wy(t, tin) = L, and for all v € N?¢, there exists Cjy~ >0 such that

sup |07 R5(t, tin, 2)| < Cjq 52+ 1+]v[+r0)
z€R4

where kg is the universal constant of Theorem [B_]

REMARK C.4. Using the estimate (4.4)), we deduce that for all k € N, there exists Cj > 0 such
that

(vl

g\ 2 _
lope (RSt tu))leqss) < Cr (55) 97207k,

As a consequence, for § = ¢® with a € (0, 3], we have

(C.5) [op (RS (¢, tin)) || c(sy < Cp 620 F1HRER0),
Similarly, by (4.5)), for such 4,
(C.6) llope (W (£, i)l c(zsy < Cr6™#7%, jeN.

PROOF. If such a We(¢, i) exists, it must satisfy the following equation
0 W (i)W, i Ui (tins 1) (R (8) = KS(1)) Uses(ttin)*s W (tinstin) = L
Applying Egorov Theorem of Propostion we know that
Uses (tinst) (K (0) = KS(1)) Uscs(tin, )" = 2Lt in)

where
LE(t, tim) = Z e/ L;(t, tin) € SZ; with estimates on L;(t,ty,) and on the remainder term in the
j=0
asymptotic expansion. Using the estimates proved in Appendices A and B, it is enough to solve as
formal series in € the equation

(C.7) 0 | D> Wit tw) | =e (D eWilttw) | ® [ DLt tin)

Jj=0 Jj=0 k=0
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C.3. Propagation of wave packets

When 9§ is a wave packet, the action of U5 ¢ (¢, t1)1§ on 1§ can be described precisely. Following
Section 14.2 of [13], Theorem 77, we have the following result.

ProrosiTiON C.5. Assume we have ¢° = WPiO(fE)V with V e C™,
=0 &Pf, f € SRY).
0<j<J
There exists a family (U;(t));50 defined on the interval I5 such that

(i) For all j € Nand t € I5, U;(t) € S(RY),
(ii) For all k,j € N, there exists a constant Cj ; such that

sup  sup ||xa8f;Uj(t)||Loc < C’kyjé_j.
tels |al+16]=k

(iii) For all k € N and N € N, there exists Cj n and Ny such that for all ¢t € R, we have

€ LS (¢,tin,20 € iz e\ N —N-—N,
Us (t, tin)U° — of (t:tin.20) WP 24 (20) Zg U;(t) < Ck N (§> ) ko
j=0 E};
Besides
(C.8) Up(t) = R(t, tin) M[F(t, )] foV and Uy (t) = R(t, tin) M[F(t, tin)]b1 (¢, tin) foV
where
IESEEDS a,/ 02 h(s, z)op? ((F (tin, 5)2))ds

" lal=3

1 t
(Cg) + = azHl(szs)Opl(F(tin;S)Z)dsv

tin

F(t, ty) is the stablhty matrix for the flow z, := ®}""(2) (see ([.12)) and R(t,t) satisfies the

equation (C
ProoF. Let k € N. Using Lemma and the estimate (C.5)), we obtain
Usc (b tin) 7 = T2 (8, i) Ui (1 in) 47

= Z Ej /Wj (t? tin) Uf(s(ta tin)ws + 5J+1§6J(t7 tin)u;{S <t7 tin)wg
0<5<J

= D0 & Wt tin) Uses (bt + O (7415720041000
0<j<J

in ¥¥(R%). We then use the standard result of propagation of wave packets for K S(t) (see [13])

Uses(t, tin)t® = e25EmaWpe [N e2Bi(1) | + 0(e7H)
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with B;(t) = (jj(t) asin (C.8) for j = 0,1, and éj (t) is determined by a recursive equation in terms
of By(t),-- 7135’]-,1(t). This description relies on the observation that setting

g5 (1) = et S wpe (B (1))
we have the two relations
i£0,5 (1) = e SWPS, (—at(s & 2)B; +Vei 2B, + igatéj)
KS(0)g5(t) = e SWPE, (KS(t, 2+ VE2) B (1))
= egSWP; (op1 (k(t, 2t) + VeVk(t, z) -z + gHess k(t,z)z -z +eKq(t,z¢) + O(s%) §j>

where we have set z; = (24,&). These relations also prove (C.8) with the additional remark that
Wo(t, tin) =T and, for j € N|

—

Wit 1) WP, (B5(1)) = WP, (oby (W; (1 tin, 20+ v/E2)) B (1))
and using the estimate (C.6) with e = 1. O
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