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Abstract

This paper is devoted to the construction of approximations of the propagator associated with
a semi-classical matrix-valued Schrödinger operator with symbol presenting smooth eigenvalues
crossings. Inspired by the approach of the theoretical chemists Herman and Kluk who propagated
continuous superpositions of Gaussian wave-packets for scalar equations, we consider frozen and
thawed Gaussian initial value representations that incorporate classical transport and branching
processes along a hopping hypersurface. Based on the Gaussian wave-packet frame work, our result
relies on an accurate analysis of the solutions of the associated Schrödinger equation for data that
are vector-valued wave-packets. We prove that these solutions are asymptotic to wavepackets at
any order in terms of the semi-classical parameter.

Key words and phrases. Matrix-valued Hamiltonian, smooth crossings, codimension 1 crossings, wave-packet,
Bargmann transform, Herman-Kluk propagators, thawed and frozen Gaussian approximations.
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CHAPTER 1

Introduction

Since the early days of semi-classical analysis, operators that approximate the dynamics of a
semi-classical propagator have been the object of major attention. The theory of Fourier integral
operators answers to this question by proposing methods for constructing approximative propaga-
tors of a scalar semi-classical Schrödinger equation (see [64, Chapter 12] or [14]). Pioneering work
about a semi-classical theory of FIOs is [7], extended in [31] and [52].

Few results exist for systems except for those that are called adiabatic, because the eigenvalues
of the underlying Hamiltonian matrix are of constant multiplicity. The analysis of such systems
can be reduced to those of scalar equations through a diagonalization process using the so-called
super-adiabatic projectors. The super-adiabatic approach has been carried out by Martinez and
Sordoni [46] as well as Spohn and Teufel [55], see also [17, 48, 49, 5] for earlier results or [4,
51] for more recent results in a similar direction. The present study gives the first complete

construction of an integral representation of the propagator associated to a Hamiltonian generating
non-adiabatic dynamics in a very general situation. It focuses on those Hamiltonian matrices that
have smooth eigenprojectors, with smooth eigenvalues, though of non constant multiplicity. The
framework applies to generic situations where two eigenvalues cross along a hypersurface on points
where the Hamiltonian vector fields associated with these eigenvalues are transverse to the crossing
hypersurface. This set-up has already been the one of the work of Hagedorn [26, Section 5] and
Jecko [35]. The Fourier integral operators approximating the propagator associated with these
non-adiabatic Hamiltonians are based on Gaussian wave-packets and the Bargmann transform, in
the spirit of the Herman–Kluk propagator.

The Herman–Kluk propagator has been introduced in theoretical chemistry (see [32, 38, 33,
39]) for the analysis of molecular dynamics for scalar equations. The mathematical analysis has
been performed later by Rousse and Swart [56] and Robert [53], independently. The action of the
Herman–Kluk propagator consists in the continuous decomposition of the initial data into semi-
classical Gaussian wave-packets and the implementation of the propagation of the wave-packets as
studied in the 70s and 80s by Heller [32], Combescure and Robert [13], and Hagedorn [24]. It
involves time-dependent quantities that are called classical quantities because they can be inter-
preted in terms of Newtonian mechanics. Such an approximative description of the propagator in
terms of several Gaussian wave packets motivates numerical methods that naturally combine with
probabilistic sampling techniques, see [40] or more recently [42, 41].

We prove the convergence of two types of approximations, respectively called thawed and frozen
Gaussian approximations, both built of continuous superpositions of Gaussian wave-packets, the
frozen one in the spirit the original Herman–Kluk propagator. Their difference mainly consists in
the way the width matrices resulting from the propagation of the individual semi-classical Gaussian
wave packets are treated. The presence of crossings requires to add to the semi-classical Gaussian
wave packet propagation some transitions between the crossing hypersurfaces. Therefore, these
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2 1. INTRODUCTION

Fourier integral operators incorporate classical transport along the Hamiltonian trajectories asso-
ciated with the eigenvalues of the Hamiltonian and a branching process along the crossing hyper-
surface. Some of these ideas have been introduced in [20, 21], in particular in [20] where the
propagation of wave-packets through smooth crossings has been studied. Here, we revisit and ex-
tend these results, by proving that a wave-packet propagated through a smooth generic crossing
remains asymptotically a wave-packet to any order in the semi-classical parameter. We then prove
uniform estimates for the associated semi-classical approximations of propagators when acting on
families of initial data that are frequency localized in the sense that their L2-mass does not escape in
phase space to ∞ when the semi-classical parameter goes to 0, neither in position, nor in momen-
tum. This class of initial data is typically met for the numerical simulation of molecular quantum
systems.

Previous results. The analysis of the propagation through smooth eigenvalue crossings has
been pioneered by Hagedorn in [26, Chapter 5]. He considered Schrödinger operators with matrix-
valued potentials and propagated initial data that are known as semi-classical wave packets or
generalized coherent states [13, Chapter 4]. The core of the wave-packet had to be chosen such
that it classically propagates to the crossing. In the same framework adjusted to the context of
solid states physics, Watson and Weinstein [62] analyze the propagation of wave-packets through a
smooth crossing of Bloch bands. The results developed here extend [26, Chapter 5] and [62] in two
ways. The single wave-packet is turned into an initial value representation with uniform control
for frequency localized initial data. The Schrödinger and Bloch operators are generalized to Weyl
quantized operators with smooth time-dependent symbol.

1.1. First overview

The remainder of the introduction specifies the mathematical setting (assumptions on the
Hamiltonian operator and the initial data), discusses the classical quantities involved in the ap-
proximation, reviews the known results on the thawed and frozen initial value representations in
the adiabatic setting, and then presents the main results of this paper: Theorem 1.18 on the
thawed approximation with hopping trajectories, Theorem 1.19 and Theorem 1.20 on the frozen
approximation with hopping trajectories, that are pointwise and averaged in time, respectively, and
Theorem 1.21 on wave-packet propagation through smooth crossings to arbitrary order.

We prove Theorems 1.18, 1.19 and 1.20 in Chapters 2 and 3. These proofs rely on Theorem 1.21,
that is proved in Chapters 4 and 5.

Chapter 2 recalls elementary facts about the Bargmann transform. Then, it introduces the new
notion of frequency localization, which will be crucial for controlling the remainder estimates for
both the frozen and the thawed initial value representations in Chapter 3.

The refined wave-packet analysis of Chapters 4 and 5 does not depend on the theory of initial
value representations and can be read independently from Chapters 2 and 3. It propagates wave-
packets through smooth crossings in two steps: using a rough diagonalisation of the Hamiltonian
operator in the crossing region and super-adiabatic projectors for the outside. Both constructions
rely on pseudo-differential calculus for matrix-valued symbols that is developed in Chapter 4 and
complemented by additional technical points in the appendices.
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Notations and conventions. All the functional sets that we shall consider in this article can
have values in C (scalar-valued), Cm (vector-valued) or in Cm,m (matrix-valued). We denote by

〈g, f〉 =

∫
Rd
f(x)g(x)dx

the inner product of L2(Rd,C). If π is a projector, then π⊥ denotes the projector π⊥ = I − π.
We set Dx = 1

i ∂x. In the context of Assumption 1.3, we shall say that a matrix A is diagonal if
A = π1Aπ1 + π2Aπ2 and off-diagonal if A = π1Aπ2 + π2Aπ1.

1.2. The setting

1.2.1. The Schrödinger equation. We consider the Schrödinger equation

(1.1) iε∂tψ
ε(t) = Ĥε(t)ψε(t), ψε|t=t0 = ψε0.

in L2(Rd,Cm), m ≥ 2, where Ĥε(t) is the semi-classical quantization of an Hermitian matrix symbol
Hε(t, z) ∈ Cm,m.

Here, t ∈ R, z = (x, ξ) ∈ Rd × Rd and ε is the semi-classical parameter, ε � 1. Moreover, for
a ∈ C∞(R2d) being a smooth scalar-, vector- or matrix-valued function with adequate control on
the growth of derivatives, the Weyl operator â = opwε (a) is defined by

opwε (a)f(x) := âf(x) := (2πε)−d
∫
R2d

a

(
x+ y

2
, ξ

)
eiξ·(x−y)/εf(y) dy dξ

for all f ∈ S(Rd).
In full generality, we could assume that the map (t, z) 7→ Hε(t, z) is a semi-classical observable

in the sense that the function Hε(t, z) is an asymptotic sum of the form
∑
j≥0 ε

jHj(t, z). However,

in this asymptotic sum, the important terms are the principal symbol H0(t, z) and the sub-principal
one H1(t, z); the terms Hj(t, z) for j ≥ 2 only affect the solution at order ε, which is the order of
the approximation we are looking for. Therefore, we assume that the self-adjoint matrix Hε writes

Hε(t, z) := H0(t, z) + εH1(t, z).

1.2.2. Assumptions on the Hamiltonian. We work on a time interval of the form

I := [t0, t0 + T ], t0 ∈ R and T > 0

and consider subquadratic matrix-valued Hamiltonians.

Definition 1.1 (Subquadratic ). The ε-dependent Hamiltonian

Hε = H0 + εH1 ∈ C∞(I × R2d,Cm,m)

is subquadratic on the time interval I if and only if one has the property:

(1.2) ∀j ∈ {0, 1}, ∀γ ∈ Nd, ∃Cj,γ > 0, sup
(t,z)∈I×R2d

|∂γzHj(t, z)| ≤ Cj,γ〈z〉(2−j−|γ|)+

Assuming that Hε is subquadratic on the time interval I ensures that the system (1.1) is
well-posed in L2(Rd,Cm) for t ∈ I, and, more generally (see [47]), in the functional spaces

Σkε(Rd) =
{
f ∈ L2(Rd), ∀α, β ∈ Nd, |α|+ |β| ≤ k, xα(ε∂x)βf ∈ L2(Rd)

}
, k ∈ N

endowed with the norm
‖f‖Σkε = sup

|α|+|β|≤k
‖xα(ε∂x)βf‖L2 .
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We denote by UεH(t, t0) the unitary propagator defined by

iε∂tUεH(t, t0) = Ĥε(t)Uε(t, t0), Uε(t0, t0) = ICm .
It is a bounded operator of the Σkε(Rd) spaces, uniformly in ε (see [47]): there exists CT > 0 such
that

sup
t∈I
‖UεH(t, t0)‖L(Σkε ) ≤ CT .

We assume that the principal symbol H0(t, z) of Hε(t, z) has two distinct eigenvalues that
present a smooth crossing in the sense of the definitions of [20]. Namely, we consider different
properties of the crossings.

Definition 1.2. (1) (Smooth crossing). The matrix H0 ∈ C∞(I × R2d,Cm,m) has a
smooth crossing on the set Υ ⊆ I × R2d if there exists h1, h2 ∈ C∞(I × R2d) and two
orthogonal projectors π1, π2 ∈ C∞(I × R2d,Cm,m) such that H0 = h1π1 + h2π2 and

h1(t, z) = h2(t, z) ⇐⇒ (t, z) ∈ Υ.

(2) Set f(t, z) =
1

2
(h1(t, z)− h2(t, z)) and v(t, z) =

1

2
(h1(t, z) + h2(t, z)).

(a) (Non-degenerate crossing). The crossing is non-degenerate at (t[, ζ[) ∈ Υ if

dt,z (H0 − v ICm) (t[, ζ[) 6= 0

where dt,z is the one differential form in the variables (t, z).

(b) (Generic crossing points). The crossing is generic at (t[, ζ[) ∈ Υ if one has

(1.3) ∂tf + {v, f}(t[, ζ[) 6= 0.

Note that there then exists an open set Ω ⊂ I ×R2d containing (t[, ζ[) such that the
set Υ ∩ Ω is a manifold.

Above, we denote by {f, g} the poisson bracket of the functions f and g defined on R2d
x,ξ:

{f, g} = ∇ξf · ∇xg −∇xf · ∇ξg.
With these definitions in hands, we introduce one of the main assumptions on the crossing

points of the Hamiltonian Hε.

Assumption 1.3 (Crossing set). The Hamiltonian Hε = H0 +εH1 has a smooth crossing set Υ
and all the points of Υ are non degenerate and generic crossing points.

In order to consider the unitary propagators U t,t0h1
and U t,t0h2

and be endowed with convenient
bounds on the growth of the projectors, we shall make additional assumptions on the growth of the
eigenvalues and of their gap function. Our setting will be the following:

Assumption 1.4 (Growth conditions for smooth crossings). Let Hε = H0+εH1 ∈ C∞(R×R2d)
be subquadratic on the time interval I and have a smooth crossing on the set Υ. We consider the
two following assumptions :

(i) The growth of H0(t, x), h1(t, z) and h2(t, z) is driven by the function v(t, z), i.e. for
j ∈ {1, 2}

(1.4) ∀γ ∈ N2d, |γ| = 1, ∃Cγ > 0, ∀(t, z) ∈ I × R2d, |∂γz (H0 − v ICm)(t, z)|+ |f(t, z)| ≤ Cγ .
(ii) The eigenvalues h1 and h2 are subquadratic, i.e.

(1.5) ∀γ ∈ N2d, |γ| ≥ 2, ∃Cγ > 0, ∀(t, z) ∈ I × R2d, |∂γz hj(t, z)| ≤ Cγ .
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(iii) The gap is controlled at infinity, i.e. there exist R > 0 and n0 ∈ N such that

(1.6) ∀t ∈ I, ∀|z| > R, |f(t, z)| ≥ C〈z〉−n0 ,

and in the case n0 6= 0, the functions z 7→ π1, π2 are assumed to have bounded derivatives
at infinity.

Remark 1.5. (1) The fact that the eigenvalues h1(t, z) and h2(t, z) are of subquadratic
growth guarantees the existence of the unitary propagators Uεhj (t, t0) for j ∈ {1, 2} and of

the classical quantities associated with the Hamiltonians h1 and h2 that we will introduce
below.

(2) The growth conditions of Assumption 1.4 imply that the eigenprojectors πj(t), j = 1, 2,
and their derivatives have at most polynomial growth. However, when n0 6= 0, they may
actually grow. This is proved in Lemma A.4. It is for this reason that we assume that the
projectors have bounded derivatives when n0 6= 0 in Point (iii).

(3) If one has (1.4) and (1.6) with n0 = 0, then (1.5) holds. However, the examples below
contain interesting physical situations for which n0 6= 0.

Example 1.6. (1) Examples of matrix-valued Hamiltonian are given in molecular dy-
namics (see [Chapter 5] in [26]) by Schrödinger operators with matrix-valued potential,

ĤS = −ε
2

2
∆x IC2 + V (x), V ∈ C∞(Rd,C2×2).

When V presents a codimension 1 crossing (as defined in [26], then the crossing points
(x, ξ) are non degenerate and generic when ξ 6= 0.

(2) Another class of examples appear in solid state physics in the context of Bloch band
decompositions (see [62, 12] for example) with Hamiltonians of the form

ĤA = A(−iε∇x) +W (x)IC2 , A ∈ C∞(Rd,C2×2), W ∈ C∞(Rd,C).

(3) Finally, in [21], the authors have considered the operator

Ĥk,θ =
ε

i

d

dx
IC2 + kx

(
0 eiθx

e−iθx 0

)
,

with d = 1, N = 2, θ ∈ R+, k ∈ R∗.

1.2.3. Assumptions on the data. We consider vector-valued initial data ψε0 ∈ L2(Rd,Cm)
of the form

ψε0 = ~̂V φε0

where z 7→ ~V (z) is a smooth function, bounded together with its derivatives and φε0 ∈ L2(Rd,C)
is frequency localized in the sense of the next definition. For stating it, we denote the Gaussian of
expectation q, variance

√
ε that oscillates along p according to

(1.7) gεz(x) = (πε)−d/4e−
(x−q)2

ε + i
εp·(x−q), ∀x ∈ Rd.

Definition 1.7 (Frequency localized functions). Let (φε)ε>0 be a family of functions of L2(Rd).
The family (φε)ε>0 is frequency localized if the family is bounded in L2(Rd) and if there exist
R0, C0, ε0 > 0 and N0 > d+ 1

2 such that for all ε ∈ (0, ε0],

(2πε)−d/2 |〈gεz, φε〉| ≤ C0 〈z〉−N0 for all z ∈ Rd with |z| > R0.

One then says that (φε)ε>0 is frequency localized.
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We will introduce a more precise definition in Chapter 2. For families that are frequency
localized, the set of z ∈ R2d in the identity (2.2) can be restricted to a compact set (see Lemma 2.6).
The analysis of the examples given below is performed in Lemma 2.9.

Example 1.8. (1) The Gaussian wave packets (gεz0)ε>0 are frequency localized families.
(2) Define (WPεz0(u))ε>0 by

(1.8) WPεz0(u)(x) = ε−d/4e
i
εp0·(x−q0)u

(
x− q0√

ε

)
, x ∈ Rd,

for u ∈ S(Rd) and z0 = (q0, p0) ∈ R2d. They are frequency localized families.

(3) Lagrangian (or WKB) states ϕε(x) = a(x)e
i
εS(x) with a ∈ C∞0 (Rd,C) and S ∈ C∞(Rd,R),

also are frequency localized families.

Our vector-valued initial data will have a scalar part consisting in a frequency localized family.

Assumption 1.9. The initial data ψε0 in (1.1) satisfies

(1.9) ψε0(x) = ~̂V φε0(x), x ∈ Rd

where

(i) The family (φε0)ε>0 is frequency localized with constants R0, N0, C0, ε0 in Definition 1.7.

(ii) The function z 7→ ~V (z) is a function of C∞(R2d,Cm), bounded together with its deriva-
tives, and valued in the set of normalized vectors.

We point out that any vector-valued bounded family in L2(Rd) writes as a sum of data of the

form ~̂V φε0(x) for (φε0)ε>0 bounded. As a consequence, assuming the initial data ψε0 satisfies 1.9 is not

really restrictive. Of course, the vector valued function ~V can be turned into −~V by changing φε0
into −φε0.

1.3. Classical quantities

In this section, we introduce classical quantities associated with the Hamiltonian Hε. These
quantities will be used to construct the approximations of the propagator UεH(t, t0) that are the
subject of this text. They are called classical because they do not depend on the semi-classical
parameter ε and are obtained by solving ε-independent equations that mainly are ODEs instead
of PDEs. Thus, the numerical realization of the resulting propagator’s approximations avoids the
difficulties induced by the 1

ε -oscillations and is applicable in a high-dimensional setting, see [43] for
a recent review on this topic. Besides their definition, we shall also recall well-known results about
their role in the description of Schrödinger propagators.

In this section, we assume that Hε = H0 + εH1 is subquadratic on the time interval I (as
defined in Definition 1.1), with smooth eigenprojectors π1 and π2, and eigenvalues h1 and h2, the
latter being subquadratic (as in (ii) of Assumption 1.4).

1.3.1. The flow map. Let ` ∈ {1, 2}, we associate with h` : I × R2d → R, (t, z) 7→ h`(t, z)
the functions

z`(t) = (q`(t), p`(t))

which denote the classical Hamiltonian trajectory issued from a phase space point z0 at time t0,
that is defined by the ordinary differential equation

ż`(t) = J∂zh`(t, z`(t)), z`(t0) = z0
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with

(1.10) J =

(
0 IRd
−IRd 0

)
.

We note that J is the matrix associated with the symplectic form

σ(z, z′) = 〈Jz, z′〉 = p · q′ − p′ · q, z = (q, p), z′ = (q′, p′) ∈ R2d.

The trajectory z`(t) = z`(t, t0, z0) depends on the initial datum and defines the associated flow map

Φt,t0h`
of the Hamiltonian function h` via

z 7→ Φt,t0h`
(z) := z`(t, t0, z0), z ∈ R2d.

We will also use the trajectory’s action integral

(1.11) S`(t, t0, z0) =

∫ t

t0

(p`(s) · q̇`(s)− h`(s, z`(s))) ds,

and the Jacobian matrix of the flow map, also called stability matrix

(1.12) F`(t, t0, z0) = ∂zΦ
t,t0
h`

(z0).

Note that F`(t, t0, z0) is a symplectic 2d× 2d matrix, that satisfies the linearized flow equation

(1.13) ∂tF`(t, t0, z0) = JHesszh`(t, z`(t))F`(t, t0, z0), F`(t0, t0, z0) = IR2d .

We denote its blocks by

(1.14) F`(t, t0, z0) =

(
A`(t, t0, z0) B`(t, t0, z0)
C`(t, t0, z0) D`(t, t0, z0)

)
.

1.3.2. The metaplectic transform and Gaussian states. It is standard to associate with
the time-dependent symplectic map F`(t, t0, ·) a unitary evolution operator, the metaplectic trans-
formation that acts on square integrable functions in L2(Rd) as a unitary transformation.

M[F`(t, t0, z0)] : u0 7→ u(t)

and associates with an initial datum u0 the solution at time t of the Cauchy problem

i∂tu(t) = opw1
(
Hesszh`

(
t,Φt,t0h`

(z0)
)
z · z

)
u, u(t0) = u0.

This map is called the metaplectic transformation associated with the matrix F`(t, t0, z0) (see [47]).
It satisfies for all ε > 0 and for all symbol a compactly supported or polynomial

(1.15) M[F`(t, t0, z0)]−1opε(a)M[F`(t, t0, z0)] = opε(F`(t, t0, z0)z).

All these classical quantities are involved in the description of the propagation of Gaussian
states by Uεh`(t, t0), that are a generalization of the Gaussian families (gεz)ε>0 that we have already

seen. Gaussian states are wave packets WPεz(g
Γ) with complex-valued Gaussian profiles gΓ, whose

covariance matrix Γ is taken in the Siegel half-space S+(d) of d × d complex-valued symmetric
matrices with positive imaginary part,

S+(d) =
{

Γ ∈ Cd×d, Γ = Γτ , ImΓ > 0
}
.

More precisely, gΓ depends on Γ ∈ S+(d) according to

(1.16) gΓ(x) := cΓ e
i
2 Γx·x, x ∈ Rd,
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where cΓ = π−d/4det1/4(ImΓ) is a normalization constant in L2(Rd). It is a non-zero complex
number whose argument is determined by continuity according to the working environment. The
propagation of Gaussian states by a metaplectic transform is well-known: for Γ0 ∈ S+(d), we have

(1.17) M[F`(t, t0, z0)]gΓ0 = gΓ`(t,t0,z0),

where the width Γ`(t, t0, z0) ∈ S+(d) and the corresponding normalization cΓ`(t,t0,z0) are determined
by the initial width Γ0 and the Jacobian F`(t, t0, z0) according to

Γ`(t, t0, z0) = (C`(t, t0, z0) +D`(t, t0, z0)Γ0)(A`(t, t0, z0) +B`(t, t0, z0)Γ0)−1(1.18)

cΓ`(t,t0,z0) = cΓ0 det−1/2(A`(t, t0, z0) +B`(t, t0, z0)Γ0).

The branch of the square root in det−1/2 is determined by continuity in time. Besides, the action
of Uεh`(t, t0) on Gaussian wave packets WPεz(g

Γ) obey to

Uεh`(t, t0)WPεz0(gΓ0) = e
i
εS`(t,t0,z0)WPε

Φ
t,t0
h`

(z0)
(gΓ`(t,t0,z)) +O(

√
ε)

in any space Σkε(Rd) (see [13]).

1.3.3. Parallel transport. For systems, the wave function is valued in L2(Rd,Cm) and thus
vector-valued. The propagation then involves transformation of the vector part of the eigenfunctions
that is called parallel transport.

Denoting by π⊥` the projector π⊥` = I− π`, we define self-adjoint matrices Hadia
`,1 by

π⊥` H
adia
`,1 π⊥` = 0, π Hadia

`,1 π = π`

(
H1 +

1

2i
{H0, π`}

)
π`,(1.19)

π⊥` H
adia
`,1 π` = π⊥` (i∂tπ` + i{h`, π`})π`.

One then introduces the map R`(t, t0, z) defined for ` ∈ {1, 2} by

(1.20) i∂tR`(t, t0, z) = Hadia
`,1

(
t,Φt,t0h`

(z)
)
R`(t, t0, z), R`(t0, t0, z) = Im.

The map t 7→ Hadia
`,1

(
t,Φt,t0h`

(z)
)

is a locally Lipschitz map valued in the set of self adjoint matrices.

Therefore, the existence of R`(t, t0, z) comes from solving a linear time dependent ODE by the
Cauchy Lipschitz Theorem.

Lemma 1.10. For all (t, z) ∈ I × R2d and ` ∈ {1, 2}, the matrices R`(t, t0, z) are unitary
matrices. Besides, they satisfy

(1.21) R`(t, t0, z)π`(t0, z) = π`
(
t,Φt,t0` (z)

)
R`(t, t0, z).

This Lemma is proved in Appendix A. The relation (1.21) implies that whenever a vector ~V0 is

in the eigenspace of H0(t0, z0) for the eigenvalue h`(t0, z0), then the vector R`(t, t0, z)~V0 is in the

range of π`(t,Φ
t,t0
` (z)). In other words, we have constructed a map that preserves the eigenspaces

along the flow:
R`(t, t0, z) : Ran (π`(t0, z)) 7→ Ran

(
π`(t,Φ

t,t0
` (z))

)
.

The matrices R`(t, t0, z) are sometimes referred to as Larmor precession (see [13]).

The map ~V0 7→ R`(t, t0, z)π`(t0, z)~V0 is a parallel transport in the Hermitian vector fiber bundle
(t, z) 7→ Ran(π`(t, z)) over the phase space I ×R2d ⊂ R1+2d, associated with the curve s 7→ γ(s) =(
s,Φs,t0h`

(z0)
)
s∈I and the matrix Hadia

`,1 . Indeed, the covariant derivative along the curve (γ(s))s∈I
is given by

∇γ̇(s) = ∂t + Jdh` · ∇z
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and the relation ~X
(
s,Φs,t0h`

(z0)
)

= R`(t, t0, z)π`(t0, z)~V0 defines a smooth section along the path γ

that satisfies ∇γ̇(s)
~X(t, x) = −iHadia

`,1 (t, x) ~X(t, x).

The map R`, ` ∈ {1, 2} plays a role on the quantum side in the adiabatic setting for the
propagation of wave packets. The proof of the next statement can be found in [13, Chapter 14]
and [20], and Chapter 5 of this memoir.

Proposition 1.11 (Vector-valued wave packets). Let k ∈ N and assume that Hε = H0 + εH1

satisfies Assumptions 1.3 and 1.4. Let ` ∈ {1, 2} and (t0, z0) ∈ I×Rd. Then, for any ϕ0 ∈ S(Rd,C)

and ~V0 ∈ Ranπ`(t0, z0), there exists a constant C > 0 such that

sup
t∈J

∥∥∥∥UεH(t, t0) ~V0 WPεz0ϕ0 − e
i
εS`(t,t0,z0) ~V`(t, t0) WPε

Φ
t,t0
h`

(z0)
ϕε(t)

∥∥∥∥
Σkε

≤ C
√
ε,

where the profile function ϕε(t) is given by

ϕε(t) =M[F`(t, t0, z0)]ϕ0, and ~V`(t, t0, z) = R`
(
t, t0,Φ

t,t0
h`

(z0)
)
~V0.

1.4. Thawed and frozen Gaussian approximations

Thawed and frozen Gaussian approximations have been introduced in the 80’s in theoretical
chemistry [33, 38, 39]. The frozen one has become popular as the so-called Herman–Kluk approx-
imation. They rely on the fact that the family of wave packets (gεz)z∈R2d forms a continuous frame
and provides for all square integrable functions f ∈ L2(Rd) the reconstruction formula

f(x) = (2πε)−d
∫
z∈R2d

〈gεz, f〉gεz(x)dz.

The leading idea is then to write the unitary propagation of general, square integrable initial data
ψε0 ∈ L2(Rd) as

UεH(t, t0)ψε0 = (2πε)−d
∫
z∈R2d

〈gεz, ψε0〉 UεH(t, t0)gεz dz,

and to take advantage of the specific properties of the propagation of Gaussian states to obtain
an integral representation that allows in particular for an efficient numerical realization of the
propagator.

Such a program has been completely accomplished in the scalar case. However, the mathe-
matical proof of the convergence of this approximation is more recent [56, 53] and can be easily
extended to the adiabatic setting (see [20]). We recall in the first subsection these adiabatic results
and then we explain how we extend this approach to systems presenting smooth crossings via a
hopping process. Surface hopping has been popularized in theoretical chemistry by the algorithm
of the fewest switches (see [60]) and been combined with frozen Gaussian propagation in various
instances, see for example [63, 44]. Here, it is the first time that the combination is achieved in a
fully rigorous manner.

1.4.1. The adiabatic situation. Whenever the eigenvalues are of constant multiplicity, the
classical quantities that we have introduced above are enough to construct an approximation of the
propagator. For ` ∈ {1, 2}, we define the first order thawed Gaussian approximation for the `-th

mode as the operator J t,t0`,th defined on functions of the form ψ = ~̂V f , f ∈ L2(Rd),

(1.22) J t,t0`,th ( ~̂V f) = (2πε)−d
∫
R2d

e
i
εS`(t,t0,z)〈gεz, f〉~V`(t, t0, z)g

Γ`(t,t0,z),ε

Φ
t,t0
` (t,z)

dz,
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with

(1.23) ~V`(t, t0, z) = R`(t, t0, z)π`(t0, z)~V (z).

This family of operators is bounded in L
(
L2(Rd),Σkε(Rd)

)
(see Corollary 2.17).

Notice that the operator f 7→ J t,t0`,th ( ~̂V f) has a Schwartz distribution kernel and defines a Fourier
integral operator with an explicit complex phase.

Theorem 1.12 (Thawed Gaussian approximation [38, 53, 56, 20]). Assume h` is an eigen-
value of constant multiplicity of a matrix Hε = H0 + εH1 of subquadratic growth on the time
interval I. Let t0, T ∈ R with [t0, T ] ⊂ I. Then, there exists CT > 0 such that for all φε0 ∈ L2(Rd),
~V ∈ C∞(R2d,Cm) bounded with bounded derivatives, for all t ∈ [t0, t0 + T ]∥∥∥∥UεH(t, t0)

(
π̂`(t0) ~̂V φε0

)
− J t,t0`,th ( ~̂V φε0)

∥∥∥∥
L2

≤ CT ε ‖φε0‖L2 .

Remark 1.13. (1) Of course, there is no unicity of the writing ψ = ~̂V f . However, chang-

ing (~V , f) into (k~V , 1
kf) for some constant k ∈ C does not affect the result. One can

also think to modifying ~V by multiplying it by a non-vanishing function a ∈ C∞(R2d)
such that a and 1

a have bounded derivatives. Then, it is enough to turn f into a−1f (see
Remark 2.23).

(2) The approach of thawed and frozen approximations that we develop in this text allows
to extend the convergence to the spaces Σεk provided the initial data (φε0)ε>0 is frequency
localized and k satisfies N0 > k+ d+ 1

2 (N0 being associated to (φε0)ε0 by Definition 1.7).

As first proposed in [33], it is also possible to get rid of the time-dependent variance matrices Γ`
by introducing the Herman-Kluk prefactors for the `-th modes, a`, defined by

(1.24) a`(t, t0, z) = 2−d/2det1/2 (A`(t, t0, z) +D`(t, t0, z) + i(C`(t, t0, z)−B`(t, t0, z)) .
One then defines the first order frozen Gaussian approximation for the `-th mode as the operator
J t,t0`,fr defined by

(1.25) J t,t0`,fr (~V f) = (2πε)−d
∫
R2d

e
i
εS`(t,t0,z)〈gεz, f〉a`(t, t0, z)~V`(t, t0, z)gεΦt,t01 (z)

dz.

Here again, this family of operators is bounded in L
(
L2(Rd),Σkε(Rd)

)
(see Corollary 2.17). The

next result then is a consequence of Theorem 1.12

Theorem 1.14 (Frozen Gaussians approximation [38, 53, 56, 20]). Assume h` is an eigenvalue
of constant multiplicity of a matrix H = H0 + εH1 of subquadratic growth on the time interval I.

Let t0, T ∈ R with [t0, T ] ⊂ I. Then, there exists CT > 0 such that for all φε0 ∈ L2(Rd), ~V ∈
C∞(R2d,Cm) bounded with bounded derivatives, and for all t ∈ [t0, t0 + T ],∥∥∥∥UεH(t, t0)

(
π̂`(t0) ~̂V φε0

)
− J t,t0`,fr ( ~̂V φε0)

∥∥∥∥
L2

≤ CT ε ‖φε0‖L2 .

The terminology thawed/frozen for these Gaussian approximations was introduced by Heller [32]
to put emphasis on the fact that, on the first case, the covariance of the matrix was evolving
“naturally” by following the classical motion wile, on the other one, the covariance is “frozen”
(constant). The possibility of freezing the covariance matrix was realized by Herman and Kluk
(see [33]) by computing the kernel of the time dependent propagator.
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As for Theorem 1.12, one can extend the result to an approximation in Σkε provided the data
(φε0)ε0 is frequency localized family and k ∈ N is chosen so that N0 > k+d+ 1

2 (N0 being associated
to (φε0)ε0 by Definition 1.7).

In the next sections, we present our results and an extension of these statements to systems
with crossings. The method we develop also allow to prove the approximations of Theorems 1.14
and 1.12 in the spaces Σkε(Rd), with additional assumptions on the initial data.

1.4.2. Initial value representations for codimension 1 crossing at order
√
ε. Our first

result consists in an extension of the range of validity of Theorems 1.12 and 1.14 to Hamiltoni-
ans presenting smooth crossing and satisfying (1.3) at the prize of a loss in the accuracy of the
approximation.

Theorem 1.15 (Leading order thawed/frozen Gaussian approximation). Let k ∈ N. Assume
Hε = H0 + εH1 satisfies Assumptions 1.3 and 1.4 on the interval I. Then, there exist constants

CT,k > 0, such that for all initial data ψε0 = ~V φε0 that satisfies Assumptions 1.9 with frequency
localization index N0 > k+ d+ 1

2 , there exists ε0 > 0 such that for all t ∈ I and ε ∈ (0, ε0], we have∥∥∥∥UεH(t, t0)

(
̂
π`(t0)~V φε0

)
− J t,t0`,th/frφ

ε
0

∥∥∥∥
Σkε

≤ CT
√
ε (‖φε0‖L2 + C0) .

The remarks below also holds for Theorems 1.18, 1.19 and 1.20.

Remark 1.16. (1) Of course the result also holds for initial data

ψε0(x) = ~̂V φε0(x) + rε0(x), x ∈ Rd

when the family (rε0)ε>0 satisfies ‖rε0‖L2(Rd) = O(ε) in Σkε for the index k considered in
the statement.

(2) The fact of being frequency localized with N0 > k+d+ 1
2 implies that (φε0)ε>0 is bounded

in Σkε (see Section 2.2.6). Thus, (UεH(t, t0)ψε0)ε>0 also is bounded in Σkε and this space is
the natural space where studying the approximation.

(3) The control of the approximation in terms of the initial data by ‖φε0‖L2 + C0 instead of
‖φε0‖Σεk is due to the method of the proof, which has to account for the presence of the

crossing. The constant C0 (and the L2-norm) control the Σεk-norm.

The loss of accuracy of the approximation, in
√
ε instead of ε, is also due to the presence of the

crossing set Υ. It induces transitions between the modes that are exactly of order
√
ε and cannot be

neglected. If the initial data is frequency localized in a domain such that all the classical trajectories
issued from its microlocal support at time t0 do not reach the crossing set before the time t0 + T ,
then an estimate in ε will hold. However, if these trajectories pass through the crossing, some
additional terms of order

√
ε have to be added to obtain an approximation at order ε. Let us now

introduce the hopping trajectories that we will consider and the branching of classical quantities
that we will use above the crossing set.

1.4.3. Hopping trajectories and branching process. Assume Hε = H0 + εH1 satisfies

Assumptions 1.3 and 1.4 on the interval I. For considering initial data ψε0 = ~V φε0 that are frequency
localized in a compact set K ⊂ B(0, R0), we are going to make assumptions on the set K.

We consider sets K that are connected compact subsets of R2d and that do not intersect
the crossing set Υ. If one additionally assumes that the trajectories Φt,t0` (z) issued from points
z ∈ K intersect Υ on generic crossing points, then, because of their transversality to Υ, a given
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trajectory Φt,t0` (z) issued from z ∈ K meets Υ only a finite number of times. We then denote by

(t[`(t0, z), ζ`(t0, z)) the first crossing point in Υ:

(1.26) ζ[`(t0, z) = Φ
t[`(t0,z),t0
` (z).

For the `-th mode and the compact K, we define

t[`,max(t0,K) = max{t[`(t0, z), z ∈ K} and t[`,min(t0,K) = min{t[`(t0, z), z ∈ K}.

We shall assume that K is well-prepared in the sense that all trajectories issued from K for one of
the mode have passed through Υ (if they do) before the ones for the other mode start to reach Υ.

Assumption 1.17 (Well-prepared frequency domain). The set K is a connected compact subset

of R2d that does not intersect the crossing set Υ. The trajectories Φt,t0` (z) issued from points z ∈ K
intersect Υ on generic crossing points and one has

t[1,max(t0,K) < t[2,min(t0,K).

A space-time crossing point (t[`(t0, z), ζ
[
`(t0, z)) is characterized by three parameters

µ[ ∈ R, (α[, β[) ∈ R2d

given by

µ[(t0, z) =
1

2
(∂tf + {v, f})

(
t[`(t0, z), ζ

[
`(t0, z)

)
,(1.27) (

α[(t0, z), β
[(t0, z)

)
= J∇zf

(
t[`(t0, z), ζ

[
`(t0, z)

)
.(1.28)

The hopping process is affected with a transition coefficient τ1,2(t, t0, z) that restrict the space
time variables (t, z) to trajectories that have met the crossing set Υ

(1.29) τ1,2(t, t0, z) = It≥t[1(t0,z)

√
2iπ

µ[(t0, z)
.

Note that when K satisfies Assumption 1.17, then if t < t[1,min(K) and z ∈ K, one has

τ1,2(t, t0, z) = 0. Moreover, if t ∈
(
t[1,max(K), t[2,min(K)

)
, z 7→ τ1,2(t, t0, z) is smooth.

One then introduces hopping trajectories by setting

(1.30) Φt,t01,2 (z) = Φ
t,t[1(t0,z)
2

(
ζ[1(t0, z)

)
, t > t[1(t0, z).

This trajectory
(
Φt,t01,2 (z)

)
t>t[(t0,z)

is the branch of a generalized trajectory that has hopped from

the mode ` = 1 to the mode ` = 2 at the crossing point (t[1(t0, z), ζ
[
1(t0, z)). One could define

similarly trajectories hopping from the mode ` = 2 to ` = 1 by exchanging the role of the indices 1
and 2.

Along these trajectories, one defines classical quantites as follows:

(a) The function S1,2(t, t0, z) is the action accumulated along the hopping trajectories, i.e.

between times t0 and t[1(t0, z) on the mode ` = 1 and then on the mode ` = 2

(1.31) S1,2(t, t0, z) = S1(t[1(t0, z), t0, z) + S2(t, t[1(t0, z), ζ
[
1(t0, z)),
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(b) The matrix Γ1,2(t, t0, z) is generated according to (1.18) for the mode ` = 2 along the

trajectory (Φ1,2(t, t0, z))t>t[1(t0,z)
starting at time t[1 = t[1(t0, z) from the matrix

(1.32) Γ[(t0, z) = Γ1(t[1, t0, z)−
(β[ − Γ1(t[1, t0, z)α

[)⊗ (β[ − Γ1(t[1, t0, z))

2µ[ − α[ · β[ + α[ · Γ1(t[1, t0, z)α
[

,

(c) The vector ~V1,2(t, t0, z) is obtained by propagating the vector ~V1

(
t[1, t0, z

)
for the mode

` = 2 along the trajectory (Φ1,2(t, t0, z))t>t[(t0,z) starting at time t[1 from the vector

π2(t[1, ζ
[
1)~V1

(
t[1, t0, z

)
with ζ[1 = ζ[1(t0, z). One has

(1.33) ~V1,2(t, t0, z) = R2(t, t[1, ζ
[
1)π2

(
t[1, ζ

[
1

)
~V1

(
t[1, t0, z

)
.

(d) The matrices F1,2(t, t0, z) are associated with the flow maps

(1.34) F1,2(t, t0, z) = ∂zΦ
t,t0
1,2 (z) =

(
A1,2(t, t0, z) B1,2(t, t0, z)
C1,2(t, t0, z) D1,2(t, t0, z)

)
.

(e) The transitional Herman–Kluk prefactors depend on Γ1,2(t, t0, z) and τ1,2(t, t0, z) accord-
ing to

a1,2 = τ1,2
det1/2(C1,2 − iD1,2 − i(A1,2 − iB1,2))

det1/2(C1,2 − iD1,2 − Γ1,2(A1,2 − iB1,2))
(1.35)

= τ1,2
det1/2(A1,2 +D1,2 + i(C1,2 −B1,2))

det1/2(D1,2 + iC1,2 − iΓ1,2(A1,2 − iB1,2))

where we have omitted to mark the dependence on (t, t0, z) for readability.

With these quantities in hands, we can define the correction terms of order
√
ε of the thawed

& frozen approximations and state our main results.

1.4.4. Thawed Gaussian approximation at order ε. With the notations of the preceding
section, one defines the thawed Gaussian correction term for the mode ` = 1 as

(1.36) J t,t01,2,th(~V f) = (2πε)−d
∫
z∈K

τ1,2(t, t0, z)e
i
εS1,2(t,t0,z)〈gεz, f〉~V1,2(t, t0, z)g

Γ1,2(t,t0,z),ε

Φ
t,t0
1,2 (z)

dz

The formula (1.36) defines a family of operators that is bounded in L(L2(Rd),Σkε(Rd)) (see
Corollary 2.17). The restriction t > t[1(t0, z) introduces a localization of the domain of integration
on one side of the hypersurface {t = t[1(t0, z)}.

The thawed Gaussian correction term for the mode ` = 2, denoted by J t,t02,1,th would be defined
by exchanging the roles of the indices 1 and 2. These correction terms allow to ameliorate the
accuracy of the thawed gaussian approximation and to obtain an approximation at order ε.

Theorem 1.18 (Thawed Gaussian approximation with hopping trajectories). Let k ∈ N. As-
sume Hε = H0 + εH1 satisfies Assumptions 1.3 and (1.4) on the interval I. Then, there exists

constants CT,k > 0, such that for all initial data ψε0 = ~V φε0 that satisfies Assumptions 1.9 in a
compact K satisfying Assumption 1.17, there exists ε0 > 0 such that for all t ∈ I we have for
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ε ∈ (0, ε0], ∥∥∥UεH(t, t0)ψε0 − J
t,t0
1,th

(
̂
π1(t0)~V φε0

)
− J t,t02,th

(
̂
π2(t0)~V φε0

)
−
√
εJ t,t01,2,th

(
̂
π1(t0)~V φε0

)∥∥∥
Σkε

≤ CT,k ε (C0 + ‖φε0‖L2) .

This result emphasizes that for systems with smooth crossings, a term of order
√
ε is generated

by the crossing.

1.4.5. Frozen Gaussian approximation at order ε. In order to freeze the covariance of the
Gaussians Γ1,2(t, t0, z) that appear in the formula of the thawed Gaussian correction term (1.36),
we use the correction prefactors a1,2 and a2,1 introduceded in (1.35) and define the frozen Gaussian
correction term for the mode ` = 1 as

(1.37) J t,t01,2,fr(
~V f) = (2πε)−d

∫
z∈ K

a1,2(t, t0, z)e
i
εS1,2(t,t0,z)〈gεz, f〉~V1,2(t, t0, z)g

ε
Φ
t,t0
1,2 (z)

dz.

Notice that the map f 7→ J t,t01,2,fr(
~V f) defines a Fourier-integral operator with a complex phase

associated with the canonical transformations Φt,t01,2 that define the hopping flow. We first state a
point-wise approximation.

Theorem 1.19 (Point-wise time frozen Gaussian approximation with hopping trajectories).
Let k ∈ N. Assume Hε = H0 +εH1 is of subquadratic growth and satisfies Assumptions 1.3 and 1.4

on the interval I. Then, there exists constants CT,k > 0, such that for all initial data ψε0 = ~V φε0
that satisfies Assumptions 1.9 in a compact K satisfying Assumption 1.17, there exists ε0 > 0 such
that for all t ∈ I satisfying

t < t[1,min(t0,K) or t[1,max(t0,K) ≤ t < t[2,min(t0,K),

we have for ε ∈ (0, ε0],∥∥∥∥UεH(t, t0)ψε0 − J
t,t0
1,fr

(
̂
π1(t0)~V φε0

)
− J t,t02,fr

(
̂
π2(t0)~V φε0

)
−
√
εJ t,t01,2,fr

(
̂
π1(t0)~V φε0

)∥∥∥
Σkε

≤ CT,K ε (‖φε0‖L2 + C0) .

The proof of Theorem 1.19 is based on integration by parts and requires differentiability.
When t < t[1,min(K), then the transfer coefficient τ1,2(t, t0, z) = 0 for all z ∈ K. When t ∈
[t[1,max(K), t[2,min(K)), then z 7→ τ1,2(t, t0, z) is smooth. It is for that reason, that we have to
restrict the time validity of the approximation.

Averaging in time allows to overcome this difficulty and to obtain an approximation result that
holds almost everywhere on intervals of time such that the classical trajectories issued from K and
associated with the level ` = 2 have not yet reached Υ.

Theorem 1.20 (Time averaged frozen Gaussians approximation with hopping trajectories).
Let k ∈ N. Assume Hε = H0 +εH1 is of subquadratic growth and satisfies Assumptions 1.3 and 1.4

on the interval I. Then, there exists constants CT,k > 0, such that for all initial data ψε0 = ~V φε0
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that satisfies Assumptions 1.9 in a compact K satisfying Assumption 1.17, there exists ε0 > 0 such
that for all χ ∈ C∞0

((
t0, t

[
2,min(t0,K)

))
,∥∥∥∥∫

R
χ(t)

(
UεH(t, t0)ψε0 − J

t,t0
1,fr

(
̂
π1(t0)~V φε0

)
− J t,t02,fr

(
̂
π2(t0)~V φε0

)
−
√
εJ t,t01,2,fr

(
̂
π1(t0)~V φε0

))
dt
∥∥∥

Σkε

≤ CT,k ε ‖χ‖L∞ (‖φε0‖L2 + C0) .

To go beyond the time t[2,min(t0,K), one has to consider new transitions that would now go
from the level ` = 2 to the level ` = 1, each time a trajectory for the level ` = 2 hits Υ. The process
can be understood as a random walk: each time a trajectory passes through Υ a new trajectory
arises on the other mode with a transition rate of order

√
ε.

The averaging in time can be understood as the result of a non-pointwise observation, that
takes place over some time interval, that might even be a short one.

For proving Theorem 1.19, 1.20 we use an accurate analysis for the propagation of individual
wave-packets. We prove that a Gaussian wave-packet stays a generalized Gaussian wave packet
modulo an error term of order εµ, for any µ ∈ N, and in any space Σkε , k ∈ N, as well before, or
after, hitting the crossing hypersurface Υ.

The proof consists first in proving the thawed approximations and in then deriving the frozen
approximation from the thawed one. The arguments developed in Section 3.3 will show that one
can “freeze” the Gaussian on any state gΓ0,ε

z . The choice of some Γ0 instead of iI will imply a slight
modification of the definition of the Herman–Kluk prefactors a`, and the transitional ones a`,`′ ,
`, `′ ∈ {1, 2}.

1.5. Wave packets propagation at any order through generic smooth crossings

Our results crucially rely on the analysis of the propagation of wave-packets (including the ones
with Gaussian amplitude functions) through smooth crossings. We consider a Hamiltonian Hε =
H0 + εH1 that satisfies Assumptions 1.4 on the time interval I and presents a smooth crossing on
a set Υ. We fix a point z0 = (q0, p0) /∈ Υ and times t0, T such that

(1.38) t0 < t[1(t0, z0) < t0 + T < t[2(t0, z0).

We assume that the point Φ
t[1(t0,z0),t0
h1

(z0) is a non degenerate generic crossing point (see Defini-

tion 1.2) that we denote by Φ
t[1,t0
h1

(z0) for simplicity. We use the notations introduced in Section 1.4.4

(namely equations (1.26), (1.27), (1.28), (1.30) and (1.31)). For ` ∈ {1, 2}, we set

z`(t) = Φt,t0` (z0).

Theorem 1.21. Let (t0, z0) satisfy (1.38), let ψε0 be a polarized wave packet

(1.39) ψε0 = ~V0WPεz0(f0) with f0 ∈ S(Rd) and ~V0 ∈ Cm.

Let ψε(t) be the solution of (1.1) with initial data ψε0. There exist κ0 ∈ N and three families of

differential operators
(
~B`,j(t)

)
j∈N

, ` ∈ {1, 2} and
(
~B1→2,j(t)

)
j∈N

such that setting for δ > 0 and
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t ∈ Iδ = [t0, t
[
1(t0, z0)− δ] ∪ [t[1(t0, z0) + δ, t0 + T ]

ψε,N1 (t) = e
i
εS1(t,t0,z0)WPεz1(t) (fε1 (t)) ,

ψε,N2 (t) = e
i
εS2(t,t0,z0)WPεz2(t) (fε2 (t)) + It>t[e

i
εS1,2(t,t0,z0)WPεΦ1,2(t,t0,z0) (fε1→2(t)) ,

with

fε` (t) = R`(t, t0)M[F`(t, t0)]
∑

0≤j≤N

εj/2 ~B`,j(t)f0, ` ∈ {1, 2},

fε1→2(t) = R2(t, t[1)M[F2(t, t[1)]
∑

1≤j≤N

εj/2 ~B1→2,j(t)f0,

one has the following property: for all k,N,M ∈ N, there exists CM,N,k > 0 such for all t ∈ Iδ∥∥∥ψε(t)− (ψε,N1 (t) + ψε,N2 (t)
)∥∥∥

Σkε

≤ CM,N,k

((√
ε

δ

)N+1

δ−κ0 + δM

)
.

Moreover, the operators ~B`,j(t) are differential operators of degree ≤ 3j with time dependent smooth
vector-valued coefficients and satisfy for ` ∈ {1, 2},

~B`,0(t) = π`(t0, z0)~V0 and ~B`,j(t0) = 0 ∀j ≥ 1,(1.40)

~B`,1(t) =

(∑
|α|=3

1

α!

1

i

∫ t

t0

∂αz h`(s, z`(s)) opw1 [(F`(s, t0, z0)z)α] ds(1.41)

+
1

i

∫ t

t0

∇zHadia,`
1 (s, zs) · op1(F`(t0, s)z)ds

)
π`(t0, z0)~V0,

~B1→2(t) = W1(t[1, ζ
[
1)∗ T [1→2M[F1(t[1, t0)]π1(t0, z0)~V0(1.42)

where the scalar transfer operator T [1→2 is defined by

(1.43) T [1→2ϕ(y) =

∫ +∞

−∞
ei(µ

[−α[·β[/2)s2eisβ
[·yϕ(y − sα[)ds, ∀ϕ ∈ S(Rd)

and the transfer matrix W1(t[, ζ[) is given by

(1.44) W1 = π1H1π2 + iπ1

(
∂tπ1 +

1

2
{h1 + h2, π1}

)
π2.

In other words, Theorem 1.21 says that if ψε0 a polarized wave packet, then, for t ∈ I, t 6=
t[1(t0, z0), the solution ψε(t) of (1.1) is asymptotic at any order to an asymptotic sum of wave
packets. Indeed, if n ∈ N is fixed, choosing δ = εα andM,N large enough will give an approximation
in O(εn).

The polarization of the wave packets ψε,N` (t) is first described by the vectors ~B`,j(t0) that evolves

through R`(t, t0)M[F`(t, t0)]. Such evolution preserves the eigenmode. Secondly, in ψε,N2 (t), one
sees a

√
ε contribution that comes from a transfer from the mode 1 to the mode 2. The change of

polarization is performed by the matrix W ∗1 which maps Ran(π1) to Ran(π2). Indeed, one has

W ∗1 = π2H1π1 − iπ2

(
∂tπ1 +

1

2
{h1 + h2, π1}

)
π1

= π2H1π1 + iπ2

(
∂tπ2 +

1

2
{h1 + h2, π2}

)
π1.
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The latter equation shows that the result is symmetric with respect to the modes and one can
exchange their roles.

Theorem 1.21 was proved in [20] up to order o(ε). The notations are compatible. However,
in [20], a coefficient γ[ appears in the definition of the transfer operator. It corresponds to a
normalization process that we avoid here by using the projector π2(t[1, ζ

[
1) instead of taking the

scalar product with a normalized eigenvector.

For proving the initial value representations of UεH of Theorems 1.15 to 1.20, we shall use two
consequences of Theorem 1.21:

(i) the wave packet structure up to any order in ε of UεH ~V0WPεz0(giI),

(ii) the exact value of the action of ~B1,0, ~B2,0, and of ~B1→2(t) when f0 is the Gaussian giI.

We recall that the action of the operators R`(t, s)M[F`(t, s)] on focalized Gaussians preserves the
Gaussian structure and the focalization: in view of (1.17) and (1.23),

R`(t, s)M[F`(t, s, z)]π`(s, z)~V0g
iI = ~V`(t, s, z)g

Γ`(t,s,z)

where ~V` ∈ Ran(π`(t,Φ
t,s
` (z))) and the matrix Γ`(t, s, z) is given by (1.18) with Γ0 = iI. Besides,

regarding the transfer term, with the notations of Corollary 3.9 of [20] and those of (1.27), (1.28),
(1.32) and (1.33)

~B1→2(t[1)giI =

√
2iπ

µ[(t0, z0)
~V1,2(t[1, t0, z0)gΓ[(t[1,t0,z0).

These elements may enlighten the construction of the operator J ``,fr/th and J t,t0`,`′,fr/th for indices

`, `′ ∈ {1, 2}, ` 6= `′.

1.6. Detailed overview

The main results of this paper are Theorems 1.18, 1.19, 1.20, and 1.21.

We prove Theorems 1.18, 1.19 and 1.20 in Chapters 2 and 3. These proofs rely on Theorem 1.21
that is proved later. Chapter 2 starts with Section 2.1 that recalls elementary facts about the
Bargmann transform. Then, in Section 2.2, we analyze the notion of frequency localization that
we have first introduced in this text and that is crucial in the setting of frozen and thawed initial
value representations. Indeed, these approximations rely on a class of operators that is studied in
Section 2.3. Endowed with these results, we are able to prove the approximations of Theorems
1.18, 1.19, 1.20 in Chapter 3. We describe the general proof strategy in Section 3.1 and develop
the proof of Theorem 1.18 in Section 3.2. We explain in Section 3.3 how to pass from a thawed to
a frozen approximation, and thus obtain Theorems 1.19 and 1.20.

Chapters 4 and 5 are devoted to the proof of Theorem 1.21. These two chapters are independent
of the preceding ones, and one can start reading them, skipping Chapters 2 and 3. In Chapter 4,
we construct the different diagonalisations of the Hamiltonian Hε that we are going to use. In the
crossing region, we use a rough diagonalisation (see Section 4.2), and outside this region we use
super-adiabatic projectors as proposed in [5, 46, 58] (see Section 4.3). These constructions rely on
a symbolic calculus that we present in Section 4.1. The analysis of the propagation of wave-packets
is then performed in Chapter 5.

The Appendices are devoted to the proof of some technical points used in the proofs of Chap-
ters 4 and 5.
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Initial value representations





CHAPTER 2

Frequency localized families

In this chapter, we study frequency localized families as introduced in the Introduction. We
shall use the more precise following definition.

Definition 2.1 (Frequency localized functions of order β). Let β ≥ 0. Let (φε)ε>0 be a family
of functions of L2(Rd). The family (φε)ε>0 is frequency localized of order β if the family is bounded
in L2(Rd) and if there exist Rβ , Cβ , εβ > 0 and Nβ > d+ 1

2 such that for all ε ∈ (0, εβ ],

(2πε)−d/2 |〈gεz, φε〉| ≤ Cβ εβ 〈z〉−Nβ for all z ∈ Rd with |z| > Rβ .

One then says that (φε)ε>0 is frequency localized of order β on the ball B(0, Rβ).

Above, 〈g, f〉 =
∫
Rd f(x)g(x)dx denotes the inner product of L2(Rd). In this chapter, we first

recall some facts about the Bargmann transform, then we study frequency localized families and,
finally, the class of operators built by use of Bargmann transform and to which the thawed/frozen
Gaussian approximations belong.

2.1. The Bargmann transform

The thawed/frozen approximations that we aim at studying are constructed thanks to the
Bargmann transform. They belong to a class of operators obtained by integrating the Bargmann
transform against adapted families.

Recall that the Bargman transform is the map B
B : L2(Rd) 3 f 7→ B[f ] ∈ L2(R2d),

defined by

(2.1) B[f ](z) = (2πε)−
d
2 〈gεz, f〉, z ∈ R2d.

The Bargmann transform is an isometry and one has∫
R2d

|B[f ](z)|2dz = ‖f‖2L2 .

Indeed, the Gaussian frame identity writes

(2.2) f(x) = (2πε)−d
∫
R2d

〈gεz, f〉gεz(x)dz = (2πε)−
d
2

∫
R2d

B[f ]gεz(x)dz,

where the function gεz is introduced in (1.7), gεz = WPεz(g
iI) with the notation (1.16). Equation (2.2)

is equivalent to

f(x) = (2πε)−
d
2

∫
R2d

B[f ](z)gεz(x)dz, ∀f ∈ L2(Rd).

More generally, the Bargmann transform characterizes the Σkε spaces according to the next result
that we prove in Section 2.2.6 below.

21
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Lemma 2.2. Let k ∈ N, there exists a constant ck such that for all f ∈ S(Rd),

‖f‖Σkε ≤ ck‖〈z〉
kB[f ]‖L2(R2d).

The condition of spectral localization introduced in Definition 2.1 expresses in terms of the
Bargmann transform: The family (φε)ε>0 is frequency localized at the scale β ≥ 0 if there exists
constants Rβ , Cβ , , εβ > 0, Nβ ∈ N, Nβ > 2d such that for |z| > Rβ and ε ∈ (0, εβ ],

|B[φε](z)| ≤ Cβ εβ 〈z〉−Nβ .

In other words, the Bargmann transform of (φε)ε>0 has polynomial decay at infinity and is controlled
by εβ outside a ball B(0, Rβ).

The operators in which we are interested are built on the Bargmann transform. Consider a
smooth family of the form

(z 7→ θεz) ∈ C∞(R2d
z , L

2(Rd)).

We then denote by J [θεz] the operator acting on φ ∈ L2(Rd) according to

(2.3) J [θεz](φ)(x) = (2πε)−
d
2

∫
R2d

B[φ](z)θεz(x)dz = (2πε)−d
∫
R2d

〈gεz, φ〉θεz(x)dz, x ∈ Rd.

The thawed/frozen operators of equations (1.22), (1.25), (1.36) and (1.37) are of that form. The
Gaussian frame identity (2.2) also writes with these notations

J [gεz] = IL2(Rd).

Note that the formal adjoint of J [θεz] is

(2.4) J [θεz]
∗ : φ 7→ (2πε)−d

∫
R2d

〈θεz, φ〉gεzdz.

In the first Section 2.2, we study the properties of frequency localized families, which is the
type of data we consider in our main results. Then, in Section 2.3, we analyze some properties
of the operators of the form (2.3). Finally, we prove Theorems 1.15 and 1.18 in Section 3.2, and
Theorems 1.19 and 1.20 in Section 3.3.

Along the next sections of this chapter, we shall use properties of wave packets that we sum-up
here.

Lemma 2.3. if f, g ∈ S(Rd) and z, z′ ∈ R2d, then

(2.5) 〈WPεz(f),WPεz′(g)〉 = e
i
εp
′·(q−q′)W [f, g]

(
z′ − z√

ε

)
where the function W [f, g] is the Schwartz function on R2d defined by

W [f, g](ζ) =

∫
Rd
f(x)g(x− q)eip·xdx, ζ = (q, p).

Moreover, for all n ∈ N, there exists a constant Cn > 0 such that

(2.6) ∀ζ ∈ R2d, 〈ζ〉n |W [f, g](ζ)| ≤ Cn
∑

0≤n′≤n

‖f‖Σn′‖g‖Σn−n′ .
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Proof. The formula for 〈WPεz(f),WPεz′(g)〉 comes from a simple computation. Then, for
α, γ ∈ Nd and z = (q, p) ∈ R2d, we observe

|qγpαW [f, g](z)| =
∣∣∣∣qγ ∫

Rd
Dα
x (f(x)g(x− q))eix·pdx

∣∣∣∣
≤ 〈q〉|γ|

∫
Rd

∣∣Dα
x (f(x)g(x− q))

∣∣ dx
≤ 2

|γ|
2

∫
Rd
〈x〉|γ|〈x− q〉|γ|

∣∣Dα
x (f(x)g(x− q))

∣∣ dx
where we have used Peetre inequality

(2.7) ∀t ∈ R, ∀` ∈ Z,
〈t〉`

〈t′〉`
≤ 2

`
2 〈t− t′〉|`|.

The conclusion then follows. �

2.2. Frequency localized families

We investigate here the properties of families that are frequency localized in the sense of Defi-
nition 2.1 and we use the notation (2.1).

We point out that Definition 2.1 is enough to treat vector-valued families by saying that a
vector-valued family is frequency localized at the scale β ≥ 0 if and only if all its coordinates
are frequency localized at the scale β. For this reason, we focus below on scalar-valued frequency
localized families.

2.2.1. First properties of frequency localized functions. It is interesting to investigate
the properties of this notion. The first properties are straightforward.

Proposition 2.4. The set of frequency localized function is a subspace of L2(Rd). Moreover,
we have the following properties:

(1) If (φε1)ε>0 and (φε2)ε>0 are two frequency localized families at the scales β1 and β2 respec-
tively, then for all a, b ∈ C, the family (aφε1 + bφε2)ε>0 is frequency localized at the scale
min(β1, β2).

(2) If (φε)ε>0 is frequency localized at the scale β ≥ 0, then it is also frequency localized at
the scale β′ for all β′ ∈ [0, β].

This notion is microlocal. Indeed, defining the ε-Fourier transform by

Fεf(ξ) = (2πε)−
d
2

∫
Rd

e
i
ε ξ·xφε(x)dx = (2πε)−

d
2 f̂

(
ξ

ε

)
, f ∈ S2(Rd).

Proposition 2.5. Let (φε)ε>0 be a bounded family in L2(Rd). Then, (φε)ε>0 is frequency
localized family at the scale β ≥ 0 if and only if (Fεφε)ε>0 is frequency localized at the scale β ≥ 0.

Proof. This comes from the observation that for all z ∈ R2d,

|〈gεz, φε〉| = |〈gεJz,Fεφε〉|

where J is the matrix defined in (1.10). Thus it is equivalent to state the fact of being frequency
localized for a family or for the family of its ε-Fourier transform. �
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2.2.2. Frequency localized families and Bargmann transform. The Gaussian frame
identity (2.2) allows to decompose a function of L2(Rd) into a (continuous) sum of Gaussians.
After discretization of the integral, this sum may be turned into a finite one, which opens the may
to approximation’s strategies (see [42] where this observation is used for numerical purposes). It
is thus important to identify assumptions that allow to compactify the set of integration in z. The
notion of frequency localized families plays this role according to the next result.

Lemma 2.6. Let (φε)ε>0 be a frequency localized family at the scale β ≥ 0. Let Rβ , Cβ and Nβ
be the constants associated to (φε)ε>0 according to Definition 2.1. Let k ∈ N with Nβ > d + k.
Then, for all χ ∈ L∞(R) supported in [0, 2] and equal to 1 on [0, 1], there exists C > 0 such that
for R > Rβ, ∥∥∥∥φε − J [gεzχ( |z|R

)]
(φε)

∥∥∥∥
Σkε (Rd)

≤ C Cβ εβ
(∫
|z|>R

〈z〉−2(Nβ−k)dz

)1/2

.

In the following, we will use the notation

(2.8) φεR,< := J
[
gεzχ

(
|z|
R

)]
(φε) = B−1

(
I|z|<RB[φε](z)

)
.

Remark 2.7. Lemma 2.6 can be used in different manners.

(1) If β > 0, then J [gεzχ(|z|/R)](φε) approximates φε in L2(Rd) as ε goes to 0 in any space
Σkε(Rd) with k ∈ N such that Nβ > k + d+ 1

2 , and uniformly with respect to R > Rβ .
(2) If β ≥ 0 (which includes β = 0), then the same approximation holds by letting R go to

+∞, and it is uniform with respect to ε. In particular, when β = 0 we have

lim sup
ε→0

∥∥∥∥φε − J [gεzχ( |z|R
)]

(φε)

∥∥∥∥
Σkε (Rd)

≤ CR−(Nβ−k−d− 1
2 ).

Proof. We set

rε(x) = (2πε)−d
∫
|z|≥R

〈gεz, ϕε〉gεz(x)dz

and consider k ∈ N. For R > Rβ , α, γ ∈ Nd with |α|+ |γ| = k, we have

‖xα(εDx)γrε‖2L2(Rd)

≤ (2πε)−2d

∫
Rd

∫
|z|>R

∫
|z′|>R

〈gεz, ϕε〉 〈gεz′ , ϕε〉g
α,γ
ε,z (x) gα,γε,z′(x) dx dz dz′.

where

(2.9) gα,γε,z = xα(εDx)γgεz = WPεz
(
(q +

√
εy)α(p+

√
εDy)γgiI)

)
, z = (q, p).

We will use that for all n ∈ N, there exists cn,k > 0 such that for all z ∈ R2d

(2.10) ‖gα,γε,z ‖Σn ≤ cn,k〈z〉k.

By (2.5), we obtain

‖xα(εDx)γrε‖2L2(Rd)

≤ C2
β ε

2β (2πε)−d
∫
|z|>R

∫
|z′|>R

〈z〉−Nβ 〈z′〉−Nβ W [gα,γε,z , g
α,γ
ε,z′ ]

(
z − z′√

ε

)
dz dz′.
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Besides, by (2.6), there exists a constant C ′n,k such that∣∣∣W [gα,γε,z , g
α,γ
ε,z′ ](ζ)

∣∣∣ ≤ C ′n,k 〈ζ〉−n〈z〉k〈z′〉k.
We deduce the existence of c > 0 such that

‖xα(εDx)γrε‖2L2(Rd) ≤ cC
2
β ε

2β ε−d
∫
|z|>R

∫
|z′|>R

〈z〉−Nβ+k〈z′〉−Nβ+k

〈
z − z′√

ε

〉−n
dzdz′

≤ cC2
β ε

2β

∫
|z|>R

∫
〈z〉−Nβ+k〈z +

√
εζ〉−Nβ+k〈ζ〉−ndzdζ.

Since −Nβ + k ≤ 0, Peetre inequality gives

〈z +
√
εζ〉−Nβ+k ≤ 2

Nβ−k
2 〈
√
εζ〉Nβ−k〈z〉−Nβ+k ≤ 2

Nβ−k
2 〈ζ〉Nβ−k〈z〉−Nβ+k,

by restricting ourselves to ε ≤ 1. Therefore, there exists a constant c > 0 such that

‖xα(εDx)γrε‖2L2(Rd) ≤ cC
2
β ε

2β

(∫
R2d

〈ζ〉−n+Nβ−kdζ

)(∫
|z|>R

〈z〉−2(Nβ−k)dz

)
and we conclude the proof by choosing n = Nβ + k + 2d+ 1. �

2.2.3. Examples. A first fundamental example consists in bounded families in L2(Rd) that
are compactly supported.

Lemma 2.8. Let (φε0)ε>0 be a bounded family in L2(Rd) such that φε0 = I|x|≤Mφε0 for some
M > 0. Then, (φε0)ε>0 is frequency localised at any scale β ≥ 0.

Proof. There exists a constant C > 0 such that for all z = (q, p) ∈ R2d

|B[φε0](z)| ≤ C‖gεzI|x|≤M‖L2 .

Besides, one can find a smooth real-valued function χ compactly supported in {|x| ≤ 2} such that

‖gεzI|x|≤M‖2L2 = (πε)−
d
2

∫
R2d

χ(
x

M
)χ(

y

M
)gεz(x)gεz(y)dxdy.

We set

L = (|p|2 + |q − x|2)−1(−ip+ q − x) · ∇x
and we observe that εLgεz(x) = gεz(x) for all x ∈ Rd.

Besides, if |z| > 8M , either |q| > 4M and if |x| ≤ 2M ≤ |q|
2 , then |x − q| > |q|

2 > 4M , or

|q| ≤ 4M and |p| > 2M . In any case, (|p|2 + |q − x|2)−1 > 2|z|−1 and for all N ∈ N, there exists a
constant cN,M such that ∣∣∣(L∗)N χ(

x

M
)
∣∣∣ ≤ cN,M |z|−N ,

Using the vector field L, we perform N integration by parts, and we obtain the existence of a
constant C > 0 such that

‖gεzI|x|≤M‖2L2 ≤ C εN−
d
2 |z|−N

∫
R2d

I|x|,|y|≤Mdxdy,

whence the boundedness of ε−β〈z〉Nβ‖gεzI|x|≤M‖L2 for all β ≥ 0 and Nβ ∈ N. �
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An important consequence of this result is related with the notiont notion of compacity and
of ε-oscillation that are often considered in semi-classical analysis. We recall that the uniformly
bounded family (φε)ε>0 is said to be compact if

lim sup
ε→0

∫
|x|>R

|φε(x)|2dx −→
R→+∞

0.

It is said ε-oscillating when

lim sup
ε→0

∫
|ξ|>R

ε

|φ̂ε(ξ)|2dξ −→
R→+∞

0,

or, equivalently, when its ε-Fourier transform (Fεφε)ε>0 is compact. Therefore, a compact family
or an ε-oscillatory family can be approached by frequency-localized families. Note however that
The notion of compacity or ε-oscillation is weaker than being frequency localized. For example, the
family

(2.11) uε(x) = | ln ε| d2 a(x| ln ε|), x ∈ Rd,

is a compact and ε-oscillating family which has no scale of frequency localization.

Let us now analyze the examples given in the Introduction.

Lemma 2.9. (1) Let u ∈ S(Rd) and z0 = (q0, p0) ∈ R2d. Then, the family (WPεz0(u))ε>0

is frequency localized at the scale β for any β ≥ 0.

(2) Let a ∈ C∞0 (Rd) and S ∈ C∞(Rd). Then, the family (e
i
εS(x)a)ε>0 is frequency localized at

the scale β for any β ≥ 0.

Proof. 1- By (2.5), we have for z ∈ R2d

B[WPεz0(u)](z) = (2πε)−
d
2 〈WPεz(g

iI),WPεz0(u)〉 = (2πε)−
d
2 e

i
εp0·(q−q0)W [giI, u]

(
z0 − z√

ε

)
.

Let N ∈ N, the estimate (2.6) implies the existence of a constant C ′N such that

|B[WPεz0(u)](z)| ≤ C ′N ε−
d
2

〈
z0 − z√

ε

〉−N
.

Choosing |z| > max(2|z0|, 1), we have 2|z0 − z| ≥ 2(|z| − |z0|) ≥ |z| and we deduce〈
z0 − z√

ε

〉−N
=

(
ε

ε+ |z − z0|2

)N
2

≤
(

4ε

4ε+ |z|2

)N
2

≤ (4ε)
N
2 |z|−N ,

whence the existence of a constant cN > 0 such that for all z ∈ R2d and N ∈ N,

|B[WPεz0(u)](z)| ≤ cN ε
N−d−1

2 〈z〉−N .

2- One has

B[e
i
εS(x)a](z) = (2π)−d/2π−d/4ε−d/4e

i
εS(q)

∫
Rd
a(q +

√
εy)

× Exp

(
− i√

ε
p · y +

i

ε
S(q + y

√
ε)

)
e−
|y|2
2 dy.
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This term has a very specific structure involving the symbol y 7→ a(y), a rapidly decaying function

y 7→ e−
|y|2
2 and an oscillating phase

y 7→ Λε(y) := − 1√
ε
p · y +

1

ε
S(q + y

√
ε).

We are going to show that the terms defined for j ∈ {1, · · · , d} by

Aεj := qj

∫
Rd
a(q +

√
εy)e−

|y|2
2 eiΛ

ε(y)dy and Bεj := pj

∫
Rd
a(q +

√
εy)e−

|y|2
2 eiΛ

ε(y)dy,

have the same structure. Then, it will be enough to consider only one of these terms and to prove

that they are controlled by a power of ε, this will implies the adequate control on |B[e
i
εS(x)a](z)|.

Let us first transform Aεj and Bεj . Indeed, we have

Aεj =

∫
Rd

(qj +
√
εyj)a(q +

√
εy)e−

|y|2
2 eiΛ

ε(y)dy −
√
ε

∫
Rd
a(q +

√
εy)

(
yje
− |y|

2

2

)
eiΛ

ε(y)dy.

The first integral of the right hand side has the same structure with the symbol y 7→ a(y) and the

second one with the rapidly decaying function y 7→ yje
− |y|

2

2 . Besides, observing

pje
iΛε(y) = −i

√
ε∂yj (e

iΛε(y))− ∂yjS(q +
√
εy)eiΛ

ε(y),

we obtain with an integration by parts

Bεj = −
∫
Rd
∂yjS(q +

√
εy)a(q +

√
εy)e−

|y|2
2 eiΛ

ε(y)dy

+ i
√
ε

∫
Rd
∂yj

(
a(q +

√
εy)e−

|y|2
2

)
eiΛ

ε(y)dy.

Here again the right hand side has the same structure with different symbols and rapidly decaying
term.

We now focus in proving that one typical term

(2.12) Lε :=

∫
Rd
a(q +

√
εy)e−

|y|2
2 eiΛ

ε(y)dy

is of order εN for all N ∈ N. The decay of y 7→ e−
|y|2
2 allows to reduce the set of integration.

Indeed, we have ∣∣∣∣∣
∫
|y|>ε−

1
4

a(q +
√
εy)e−

|y|2
2 eiΛ

ε(y)dy

∣∣∣∣∣ ≤ e−
√
ε

4 ‖a‖L∞
∫
Rd

e−
|y|2
4 dy.

Therefore, there exists a constant c > 0 such that

|Lε| ≤ c

(∣∣∣∣∣
∫
|y|≤ε−

1
4

a(q +
√
εy)e−

|y|2
2 eiΛ

ε(y)dy

∣∣∣∣∣+ e
− 1

4
√
ε

)
.

We now use the oscillations of the phase for treating the integral in |y| ≤ ε−
1
4 . We observe that

there exists R0 > 0 such that if |z| > R0, then

z /∈ {|p−∇S(q)| ≤ 1, dist(q, supp(a)) ≤ 1}.
We choose |z| > R0 and we have the following alternative:

either dist(q, supp(a)) > 1, or (dist(q, supp(a)) ≤ 1 and |p−∇S(q)| > 1) .
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If dist(q, supp(a)) > 1, there exists ε0 > 0 such that if ε ∈ (0, ε0] and |y| ≤ ε1/4, then q +
√
εy /∈

supp(a). The integral thus is zero and we are reduced to the case where dist(q, supp(a)) ≤ 1 and

|p−∇S(q)| > 1. One can find ε1 > 0 such that for ε ∈ (0, ε1] and |y| ≤ ε 1
4 ,∣∣∇S(q + y

√
ε)− p

∣∣ > 1

2
.

We then consider the differential operator

Lε =
√
ε
∇S(q + y

√
ε)− p

|∇S(q + y
√
ε)− p|2

· ∇y

and we write ∫
|y|≤ε−

1
4

a(q +
√
εy)e−

|y|2
2 eiΛ

ε(y)dy

=

∫
|y|≤ε−

1
4

a(q +
√
εy)e−

|y|2
2 (Lε)N

(
eiΛ

ε(y)
)
dy

=

∫
|y|≤ε−

1
4

(Lε)N
∗
(
a(q +

√
εy)|∇S(q + y

√
ε)− p|−2Ne−

|y|2
2

)
eiΛ

ε(y)dy.

There exists a constant C > 0 independent of z such that for all ε ∈ (0, ε1] and |y| ≤ ε 1
4 ,∣∣∣∣(Lε)N ∗(a(q +

√
εy)|∇S(q + y

√
ε)− p|−2Ne−

|y|2
2

)∣∣∣∣ ≤ CεN2 e−
|y|2
2 .

We deduce ∣∣∣∣∣
∫
|y|≤ε−

1
4

a(q +
√
εy)e−

|y|2
2 eiΛ

ε(y)dy

∣∣∣∣∣ ≤ CεN2
and (2.12) writes

|Lε| ≤ c
(
ε
N
2 + e

− 1
4
√
ε

)
for some constant c > 0. This terminates the proof. �

2.2.4. Characterization of frequency localized families. The characterization of fre-
quency localized families can be done by using other families of wave packets than Gaussian ones
and the cores z can be distributed in different manners.

Proposition 2.10. The family (φε)ε>0 is frequency localized at the scale β ≥ 0 if and only if
for all C1-diffeomorphism Φ satisfying

∃a, b > 0, ∀z ∈ R2d, a|z| ≤ Φ(z) ≤ b|z|,

for all θ ∈ S(Rd), there exists Cβ , Nβ , Rβ and εβ such that for all ε ∈ (0, εβ ] and for |z| > Rβ

(2πε)−
d
2 |〈WPεΦ(z)(θ), φ

ε〉| ≤ Cβ εβ 〈z〉−Nβ max

(
1,

1

a

)Nβ
‖θ‖

Σ2d+1+Nβ .

Moreover, for all family (λε)ε>0 bounded in L∞(R2d), ε ∈ (0, εβ ] and R > Rβ ,∥∥∥J [e iελε(z)WPεΦ(z)(θ)I|z|>R
]

(φε)
∥∥∥

Σkε

≤ C Cβ εβ
(∫
|z|>R

〈z〉−Nβdz

)
.
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Proof. We only have to prove that if (φε)ε>0 is frequency localized at the scale β ≥ 0, then
the property holds for some given profile θ and diffeomorhism Φ. Then, the equivalence will follow.
We consider the constants Cβ , Nβ , Rβ and εβ given by Definition 2.1 and we take ε ∈ (0, εβ ]. We
observe

(2πε)−
d
2 〈WPεΦ(z)(θ), φ

ε〉 = (2πε)−
3d
2

∫
Rd
〈WPεΦ(z)(θ), g

ε
z′〉〈gεz′ , φε〉dz′ = I1 + I2

with

I1 = (2πε)−
3d
2

∫
|z′|>Rβ

〈WPεΦ(z)(θ), g
ε
z′〉〈gεz′ , φε〉dz′.

Let us study I1. Using (2.5), (2.6) and that (φε)ε>0 is frequency localized at the scale β ≥ 0,
we deduce the existence of cβ , Nβ > 0 such that we have

|I1| ≤ cβ εβ (2πε)−d
∫
|z′|>Rβ

∣∣∣∣W [θ, giI]

(
z′ − Φ(z)√

ε

)∣∣∣∣ 〈z′〉−Nβdz′
≤ cβ ‖θ‖Σn εβ (2πε)−d

∫
Rd

〈
z′ − Φ(z)√

ε

〉−n
〈z′〉−Nβdz′

≤ cβ ‖θ‖Σn εβ
∫
Rd
〈ζ〉−n 〈Φ(z) +

√
εζ〉−Nβdζ,

where the constant cβ may have changed between two successive lines. We observe that Peetre’s
inequality (2.7) yields

〈Φ(z) +
√
εζ〉−Nβ ≤ 2

Nβ
2 〈Φ(z)〉−Nβ 〈

√
εζ〉Nβ ≤ 2

Nβ
2 〈Φ(z)〉−Nβ 〈ζ〉Nβ ,

whence by choosing n > 2d+ 1 +Nβ ,

|I1| ≤ cβ ‖θ‖Σ2d+1+Nβ ε
β 〈Φ(z)〉−Nβ

∫
Rd
〈ζ〉−(2d+1)

dζ,

for some new constant cβ > 0. We conclude by observing that

〈Φ(z)〉−Nβ ≤ max

(
1,

1

a

)Nβ
〈z〉−Nβ ,

whence, by modifying cβ ,

|I1| ≤ cβ ‖θ‖Σ2d+1+Nβ ε
β max

(
1,

1

a

)Nβ
〈z〉−Nβ .

We now study I2. Using (2.5), (2.6), we write for n ∈ N

|I2| ≤ ‖φε‖L2(2πε)−
3d
2

∫
|z′|≤Rβ

〈
z′ − Φ(z)√

ε

〉−n
dz′.

We observe that if |z| > 2aRβ , then for |z′| ≤ Rβ ≤ 1
2a |z|, we have

|z′ − Φ(z)| ≥ |Φ(z)| − |z′| ≥ 1

2a
|z|.

Therefore 〈
z′ − Φ(z)√

ε

〉−n
=

(
ε

ε+ |z′ − Φ(z)|2

)n
2

≤ (2a)nε
n
2 |z|−n.
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Using that (φε)ε>0 is a bounded family in L2, we obtain that there exists a constant c′ such that
for |z| > 2aRβ and any n ∈ N,

|I2| ≤ c′ε
n−3d

2 |z|−n.

The proof of the last property follows the line of the proof of Lemma 2.6 combined with adapted
change of variables. This terminates the proof. �

2.2.5. Frequency localized families and semi-classical pseudodifferential calculus.
With these elements in hands, we can prove some properties that frequency localized families enjoy
with respect to pseudodifferential calculus.

Proposition 2.11. Let (φε)ε>0 be a frequency localized family at the scale β ≥ 0.

(1) For all semi-classical symbol a ∈ C∞c (R2d), the family
(
â φε

)
ε>0

is frequency localized at
the scale β ≥ 0.

(2) For all subquadratic Hamiltonian h ∈ C∞(R × R2d), for all t, t0 ∈ R, the vector-valued
family

(
Uεh(t, t0)φε

)
ε>0

is frequency localized at the scale β ≥ 0.

Proof. (1) We can assume without loss of generality that a is real-valued. We write

B[âφε] = (2πε)−d/2〈âgεz, φε〉.

Since gεz is a wave packet, we have

âgεz = âWPεz(g
iI) = WPεz(g

ε
a), gεa = ̂a(z +

√
ε·)giI.

The function gεa is of Schwartz class on Rd and its Schwartz semi-norms are uniformly bounded in ε
because a is compactly supported. We deduce from Proposition 2.10,

|B[âφε]| ≤ Cβ εβ 〈z〉−Nβ‖gεa‖2d+1+Nβ ,

which concludes the proof.

(2) We write

B [Uεh(t, t0)φε] = (2πε)−d/2〈Uεh(t, t0)gεz, φ
ε〉.

Since gεz is a wave packet, we have

(2.13) Uεh(t, t0)gεz = e
i
εS(−t,z)WPε

Φ−t,0h (z)
(gΓ(−t,z) +

√
ε rεz(t))

with the notations of the introduction. Besides, for all n ∈ N, there exists a constant C = C(n, t)
such that ‖rεz(t)‖Σn ≤ C(n, t). We deduce from Proposition 2.10,

|B [Uεh(t, t0)φε]| ≤ Cβ εβ 〈z〉−Nβ‖gΓ(t,z) +
√
εrεz(t)‖2d+1+Nβ ,

which concludes the proof. �

Remark 2.12. (1) The proof of Proposition 2.11 (1) extends to smooth functions a with
polynomial growth

∃N0 ∈ N, ∀γ ∈ Nd, ∀z ∈ R2d, |∂γa(z)| ≤ 〈z〉N0−|γ|

provided the integer Nβ associated with the frequency localisation at the scale β ≥ 0 of
the family (φε0)ε>0 verifies Nβ > 2d+ 1 +N0.



2.2. FREQUENCY LOCALIZED FAMILIES 31

(2) The proof of Proposition 2.11 (2) also extends to adiabatic smooth matrix-valued Hamil-
tonian H that are subquadratic according to Definition 1.1. However, it is not clear
whether the same result holds for Hamiltonians with crossings, either they are smooth as
in this article or conical as in the Appendix of [18]. Indeed, even though one knows that

UεH(t, t0)(gεz ~V ) is asymptotic to a wave packet, it is not clear that the remainder of the
approximation has a wave-packet structure as in (2.13).

2.2.6. Frequencies localized families and Σkε-regularity. The size of Nβ in Definition 2.1
gives an information about the regularity of the family.

Lemma 2.13. Let (φε)ε>0 a frequency localized family at the scale β ≥ 0, let Cβ , Nβ , εβ are the
constants associated by Definition 2.1. Assume such that k ∈ N is such that Nβ > d+ k + 1

2 , then

(φε)0<ε<εβ is uniformly bounded in Σkε and there exists c > 0 independent of ε

‖φε‖Σkε ≤ c(Cβ + ‖φε0‖L2).

This Lemma is a simple consequence of Lemma 2.2 that we are going to prove now.

Proof of Lemma 2.2. Let k ∈ N and α, γ ∈ Nd such that |α| + |γ| = k. we consider the
operator

Tα,γ = B ◦ (xα(εDx)γ) ◦ B−1 ◦ 〈z〉−k.
The kernel of this operator is the function

R4d 3 (X,Y ) 7→ kε(X,Y ) = (2πε)−d〈gεX , xα(εDx)γgεY 〉〈Y 〉−k.

Therefore, by (2.5), there exists a constant ck such that∫
Y ∈R2d

sup
X∈R2d

|kε(X,Y )|dY = (2πε)−d
∫
Y ∈R2d

sup
X∈R2d

∣∣∣∣W [giI, g
α,γ
ε,Y ]

(
X − Y√

ε

)∣∣∣∣ 〈Y 〉−kdY.
We deduce from (2.6) and (2.5) the existence of a constant ck > 0 such that∫

Y ∈R2d

sup
X∈R2d

|kε(X,Y )|dY ≤ ck.

Similarly, we have∫
X∈R2d

sup
Y ∈R2d

|kε(X,Y )|dX = (2πε)−d
∫
X∈R2d

sup
Y ∈R2d

∣∣∣∣W [giI, g
α,γ
ε,Y ]

(
X − Y√

ε

)∣∣∣∣ 〈Y 〉−kdX ≤ ck.
Therefore, the Schur test yields the boundedness of Tα,γ . One then deduces that for f ∈ S(Rd),
one has

‖xα(εDx)γf‖L2(Rd) = ‖B[xα(εDx)γf‖L2(R2d)

=
∥∥Tα,γ (〈z〉kB[f ]

)∥∥
L2(R2d)

≤ ck‖〈z〉kB[f ]‖L2(R2d),

which concludes the proof. �

Let us now prove Lemma 2.13

Proof of Lemma 2.13. Since Nβ > d+ k, we have for |z| > Rβ ,

〈z〉k|B[φε](z)| ≤ εβCβ〈z〉−Nβ+k ∈ L2(R2d).
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Moreover, z 7→ 〈z〉2k|B[φε](z)|2 is locally integrable and we can write

‖〈z〉kB[φε](z)‖2L2(R2d) ≤ 〈Rβ〉
2k

∫
|z|≤Rβ

|B[φε](z)|2dz + ε2βC2
β

∫
R2d

〈z〉−2(Nβ−k)dz

≤ 〈Rβ〉2k‖B[φε](z)‖2L2(R2d + ε2βC2
β

∫
R2d

〈z〉−2(Nβ−k)dz

≤ 〈Rβ〉2k‖φε‖2L2(Rd) + ε2βC2
β

∫
R2d

〈z〉−2(Nβ−k)dz,

whence the conclusion since the right hand side is bounded for 2(Nβ − k)− 2d > 1. �

2.3. Operators built on Bargmann transform

We investigate here the properties of the operators defined in (2.3). We shall investigate two
cases :

(a) The case where the family (θεz)ε>0 is only uniformly bounded in L2(Rd), which is a light
assumption, but with uniform bounds in z on adequate semi-norms or norms.

(b) The case where the family (θεz)ε>0 is a wave packet (up to a phase), which is a stronger
assumption on the family.

The thawed/frozen approximation operators belong to the type (b). We will consider operators of
type (a) in the proofs of Theorems 1.15 and 1.18, when taking for the family (θεz)ε>0 a term of
rest appearing in the expansion of the action of the propagator on a Gaussian wave packet. The
Theorems 1.19 and 1.20 are consequences of Theorem 1.18.

In the Subsection 2.3.1, we analyze the action of these operators on Σkε spaces. In Subsec-
tion 2.3.2, we prove special properties of the operators corresponding to families of the type (b)
involving classical quantities linked with the propagation of Gaussian wave packets by Schrödinger
evolution.

2.3.1. Action in Σkε of operators built on Bargmann transform. This section is devoted
to the proof of the following result.

Theorem 2.14. Let ε0 > 0.

(1) Let R > 0. There exists c0 > 0 such that for all measurable z-dependent family (θεz)ε>0,
for all k ∈ N, ε ∈ (0, ε0], for all φ ∈ L2(Rd)

‖J [θεzI|z|<R](φ)‖Σkε ≤ (2πε)−d c0‖φ‖L2 R2d sup
|z|≤R

‖θεz‖Σkε .

(2) Assume θεz = λε(z)WPεΦ(z)(θ) with θ ∈ S(Rd), (λε)ε>0 a bounded family in L∞(R2d,C)

and Φ a smooth diffeomorphism of R2d such that

∃c > 0, ∃` ∈ N, ∀z ∈ R2d, |JΦ(z)|+ |JΦ(z)−1| ≤ c〈z〉`.
Then, there exists c′0 > 0 such that for all φ ∈ L2(Rd), k ∈ N, ε ∈ (0, ε0],

‖J [θεz](φ)‖Σkε ≤ c
′
0 ‖λε‖L∞‖φ‖L2‖θ‖Σk+`+2d+1 .

The properties of the operators J [θεz] extend to its adjoint (see (2.4)).

Corollary 2.15. Under the assumptions of Theorem 2.14, the family of operators J [θεz]
∗

(see (2.4)) satisfies the same kind of estimates than the family J [θεz].

A straightforward consequence of Theorem 2.14 and of Lemme 2.6 is given in the next statement.
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Corollary 2.16. Assume (θεz)ε>0 satisfies the assumptions of Theorem 2.14 (2). Let (Φε)ε>0

be a frequency localized family at the scale β ≥ 0 and Cβ > 0, Nβ ∈ N be the constants associated
with Definition 2.1. Then, for all k > 0 such that Nβ > k + d, there exists a constant ck such that
for all R > 0,

‖J [θεz](φ
ε − φεR,<)‖Σεk ≤ ck Cβ ε

βR−(Nβ−k−d− 1
2 ).

where the family (φεR,<)ε>0 is introduced in (2.8).

Proof of Theorem 2.14. (1) The proof is similar to the first part of the proof of (1). By Cauchy-
Schwartz inequality, for x ∈ Rd, we have

‖J [θεzI|z|≤R](φε)‖2L2 ≤ (2πε)−2d‖φε‖2L2

∫
|z|,|z′|≤R

∣∣∣∣∫
x∈Rd

θεz(x)θεz′(x)dx

∣∣∣∣ dz dz′
≤ (2πε)−2d‖φε‖2L2

∫
|z|,|z′|≤R

‖θεz‖L2‖θεz′‖L2 dz dz′

≤ c1R4d(2πε)−2d‖φε‖2L2 sup
|z|≤2R

‖θεz‖2L2

where c1 > 0 is a universal constant.

(2) Let us first prove the L2-estimate (k = 0). Let (x, y) 7→ kε(x, y) be the integral kernel of
the operator J [θεz]. Since the Bargmann transform is an isometry, it is equivalent to consider the
operator B ◦ J [θεz] ◦ B−1, the kernel of which is the function (R2d)2 3 (X,Y ) 7→ kεB(X,Y ) defined
by

kεB(X,Y ) = (2πε)−d
∫
R2d

gεX(x)gεY (y)kε(x, y)dxdy = (2πε)−2d

∫
z∈R2d

〈gεz, gεY 〉〈gεX , θεz〉dz.

Therefore, by (2.5), kεB(X,Y ) satisfies

|kεB(X,Y )| ≤ (2πε)−2d

∫
z∈R2d

∣∣∣∣λε(z)W [giI, giI]

(
Y − z√

ε

)
W [giI, θ]

(
Φ(z)−X√

ε

)∣∣∣∣ dz.
We deduce∫

R2d

|kεB(X,Y )|dX ≤M‖λε‖L∞
(∫

R2d

|W [giI, giI](z)|dz
)(∫

R2d

|W [giI, θ](X)|dX
)
,∫

R2d

|kεB(X,Y )|dY ≤M‖λε‖L∞
(∫

R2d

|W [giI, giI](Y )|dY
)(∫

R2d

|W [giI, θ](z)J−1
Φ (z)|dz

)
,

with M = supε∈(0,1] ‖λε‖L∞ , and, by equations (2.6) and (2.10), we deduce the existence of C > 0
such that ∫

R2d

|kεB(X,Y )|dX +

∫
R2d

|kεB(X,Y )|dY ≤ CM‖θ‖Σ2d+`+1 .

We then conclude by Schur Lemma and obtain

‖B ◦ J [θεz] ◦ B−1‖L(L2(R2d)) ≤ CM ‖λε‖L∞ ‖θ‖Σ2d+`+1 ,

and so it is for J [θεz].

For concluding the proof when k 6= 0, we again use that for α, γ ∈ Nd and φ ∈ S(Rd),
xα(ε∂x)γJ [θεz] = J [xα(ε∂x)γθεz],

and the additional observation

xα(ε∂x)γWPεz(θ) = WPε
(
(q +

√
εx)α(p+

√
εDx)γθ

)
.
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We then conclude by observing that, as in the estimate (2.10), we have for all n ∈ N,

‖(q +
√
εx)α(p+

√
εDx)γθ‖Σn ≤ 〈z〉k‖θ‖Σn+k .

This finishes the proof. �

Theorem 2.14 has consequences for the thawed/frozen approximation operators introduced in
Chapter 1.

Corollary 2.17. Assume the Hamiltonian Hε = H0 + εH1 satisfies Assumptions 1.3 and 1.4.
Let k ∈ N and t ∈ I.

(1) The families of operators
(
J t,t0`,th/fr

)
ε>0

defined in (1.22) and (1.25) are bounded families

in L(L2(Rd,Cm),Σkε(Rd,Cm)).
(2) Assume moreover that the compact K satisfies Assumptions 1.17. Then, the family of

operators
(
J t,t01,2,th/fr

)
ε>0

defined in (1.36) and (1.37) are bounded families in the space

L(L2(Rd,Cm),Σkε(Rd,Cm)).

Remark 2.18. If one assumes that (t, z) 7→ ∂tf + {v, f} is bounded from below and ∂tf is

bounded, then one can replace the compact K by R2d in the definition of J t,t01,2,th and one obtains a

bounded family in L(L2(Rd,Cm),Σkε(Rd,Cm)).

Proof. Let ` ∈ {1, 2}. Let us first discuss J t,t0`,th . We write J t,t0`,th = J [θεz] with

θεz = λε(z)WPε
Φ
t,t0
` (z)

(gΓ
` (t, t0, z)) and λε(z) = e

i
εS`(t,t0,z)~V`(t, t0, z).

We observe that for all t ∈ I and z ∈ R2d,

‖~V`(t, t0, z)‖Cm = ‖~V`(t0, t0, z)‖Cm = ‖π`(t0)~V ‖Cm ≤ ‖~V ‖Cm,m

which is independent of z. Therefore, the family (λε)ε>0 is bounded in L∞(R2d).

Besides, by Proposition A.4, the flow map (t, z) 7→ Φt,t0` (z) satisfies the assumptions of (2) of

Theorem 2.14. Similarly, the map (t, z) 7→ Γ`(t, t0, z) is bounded on I × R2d. Therefore, for any
N ∈ N, there exists cN,t0,T > 0 such that

∀t ∈ I, ‖xα∂βxgΓ
` (t, t0, ·)‖ΣN ≤ cN,t0,T .

We then conclude by (2) of Theorem 2.14. The proof for J t,t0`,fr follows exactly the same lines.

The proof for J t,t01,2,th/fr requires additional observations. We need to consider the transition co-

efficient map (t, z) 7→ τ1,2(t, t0, z) (see (1.29)) and the matrix-valued maps z 7→ Γ[(t0, z) (see (1.32)),
which requires the analysis of the function parametrizing the crossing (see (1.27) and (1.28)),

(2.14) z 7→
(
α[(t0, z), β

[(t0, z), µ
[(t0, z)

)
.

By the condition (1.4) of Assumption 1.3, with n0 = 0, the derivatives of (t, z) 7→ f(t, z) are
uniformly bounded in z. Moreover, if one takes z in a compact K that satisfies Assumptions 1.17,
one has the additional properties that ∂tf and µ[ are bounded below. As a consequence z 7→
α[(t0, z), z 7→ β[(t0, z) and z 7→ µ[(t0, z) are bounded functions on R2d for all t ∈ I, the map
defined in (2.14) is smooth. One then argues as before by including the coefficient τ1,2(t, t0, z) in
the definition of λε and the result follows from Theorem 2.14 (2). �
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2.3.2. Some properties of operators built on Bargmann transform via families with
wave packet structure. In this section we analyze the properties of the operators J [θεz] when
(θεz)ε>0 is of the form

(2.15) θεz = e
i
εS(z)u(z)WPεΦ(z)(θ(z, ·)),

where θ ∈ C∞(R2d,S(Rd)), S ∈ C∞(R2d,R), u ∈ C∞(R2d,C) and Φ a smooth diffeomorphism
sarisfying the assumptions of Theorem 2.14. We are interested in the case where S and Φ are
linked in the same manner as when they are the flow map and the action associated with classical
trajectories. Therefore, we consider the following set of Assumptions.

Assumption 2.19. Let S ∈ C∞(R2d
z ,R), u ∈ C∞(R2d

z ,C) and Φ a smooth diffeomorphism. We
assume the following properties:

(i) There exists c > 0 and ` ∈ N such that

∀z ∈ R2d, |JΦ(z)|+ |JΦ(z)−1| ≤ c〈z〉`.

(ii) Setting Φ(z) = (Φq(z),Φp(z)) and

∂zΦ =

(
A(z) B(z)
C(z) D(z)

)
,

we have

∇qS(z) = −p+A(z)Φp(z) and ∇pS(z) = B(z)Φp(z), z = (q, p).

(iii) For all k ∈ N, the z-dependent seminorms ‖u(z)‖Σk and sup|α|≤k ‖∂αz S‖L∞ are uniformly
bounded in z.

The next technical lemma will be useful for proving our main results. It contains all the
information needed to pass from the thawed approximation to the frozen one.

Lemma 2.20. Let d = ∂q − i∂p. Let θ ∈ C∞(R2d,S(Rd)), S ∈ C∞(R2d,R), u ∈ C∞(R2d,C) and
Φ be a smooth diffeomorphism satisfying Assumptions 2.19. Then, the following equality between
operators in L(L2(Rd),Σkε) holds for k ∈ N:

J
[
u e

i
εS WPεΦ ((dΦpx− dΦqDx)θ)

]
= −i

√
εJ

[
du e

i
εS WPεΦ(θ)

]
− i
√
εJ

[
u e

i
εS WPεΦ(dθ)

]
.

Note that with the notation of Lemma 2.20, we have

(2.16) dΦp(z) = C(z)− iD(z) and dΦq(z) = A(z)− iB(z).

Besides, if condition (ii) of Assumption 2.19 is satisfied, then the equality of Remark 2.20 holds
formally. The condition (i) ensures the boundedness of the operators involved in the estimates.

Proof. The integral kernel of the operator J
[
u e

i
εS WPεΦ(θ)

]
is the function

(x, y) 7→
∫
z∈R2d

k(z, x, y)dz

defined by

k(z, x, y) = u(z, x)e
i
εS(z)gεz(y)WPεΦ(z)(θ(z, ·))(x), (x, y) ∈ Rd, z ∈ R2d.
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We aim at calculating dk. We observe for z = (q, p) ∈ R2d, y ∈ Rd and

dS(z) = −p+ (A(z)− iB(z))dΦp(z),

d
(
gεz(y)

)
=
i

ε
[(dp+ idq)(y − q) + pdq]gεz(y) =

i

ε
p gεz(y),

d
(

WPεΦ(z)(θ(z, ·))
)

= WPεΦ(z)(dθ(z, ·)) +
i√
ε

WPεΦ(z) ((dΦp(z)x− dΦq(z)Dx)θ(z, ·))

− i

ε
WPεΦ(z) ((A(z)− iB(z))dΦp(z)θ(z, ·)) .

We obtain

dk(z, x, y) = e
i
εS(z)

(
du(z, x) gεz(y) WPεΦ(z)(θ(z, ·))(x) + u(z, x) gεz(y) WPεΦ(z)(dθ(z, ·))(x)

+
i√
ε
u(z, x) gεz(y) WPεΦ(z) ((dΦp(z)x− dΦq(z)Dx)θ(z, ·)) (x)

)
The result then follows from the integration in z ∈ R2d. �

The case of Gaussian functions θ is of particular interest. Indeed, if θ(z, ·) = gΘ(z) with
Θ ∈ C∞(R2d,S+(d)), we have for x ∈ Rd and z ∈ R2d,

(2.17) (dΦp(z)x− dΦq(z)Dx)gΘ(z)(x) = (dΦp(z)− dΦq(z)Θ(z))x gΘ(z)(x).

We set

MΘ(z) := dΦp(z)− dΦq(z)Θ(z).

By (2.16), we have the equality between matrix-valued functions

(2.18) MΘ = (C − iD)− (A− iB)Θ = (A− iB)
[
(A− iB)−1(C − iD)−Θ

]
.

Note that this matrix MΘ is invertible because (A + iB)−1(C + iD) − Θ ∈ S+(d) (as the sum of
two elements of S+(d)). These observations are in the core of the proof of the next result which is
a corollary of Lemma 2.20, when applied to Gaussian profiles.

Corollary 2.21. Let k ∈ N. Let Θ ∈ C∞(R2d,S+(d)) such that MΘ is bounded together
with its inverse, let S ∈ C∞(R2d,R), u ∈ C∞(R2d,C) and Φ a smooth diffeomorphism satisfying
Assumptions 2.19. Then, in L(L2(Rd),Σkε(Rd)), we have

(2.19) J
[
u e

i
εS WPεΦ

(
xgΘ

)]
= O(

√
ε).

Besides, for all L ∈ C∞(R2d,Cd,d), in L(L2(Rd),Σkε(Rd)), we have

(2.20) J
[
u e

i
εS WPεΦ

(
Lx · xgΘ

)]
=

1

i
J
[
uTr

(
LM−1

Θ dΦq
)

e
i
εS WPεΦ

(
gΘ
)]

+O(ε).

with

LM−1
Θ dΦq = L

[
(A− iB)−1(C − iD)−Θ

]−1
.

Remark 2.22. (1) This result has an interesting consequence concerning the pseudodif-
ferential calculus. Indeed, for a real-valued and with bounded derivatives, in view of (2.4)

â = J (âgεz) = J [a(z)gεz] +
√
εJ̃
(

WPεz

(
∇a(z) ·

(
x
Dx

)
giI
))

+O(ε),
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where we have used the properties of wave packets. Using ∇giI = xgiI allows to conclude
by Corollary 2.21

â = J [a(z)gεz] +O(ε)

in any space Σkε . This was already proved in [56].
(2) More can be said about the

√
ε-order term on the right-hand side of (2.19). By revisiting

the proof below, one sees that there exists a real-valued smooth function z 7→ c(z) such
that

J
[
u e

i
εS WPεΦ

(
xgΘ

)]
= −i

√
εJ
[
u e

i
εS WPεΦ

(
c(z)gΘ

)]
+O(ε).

Remark 2.23. The latter remark allows to prove Remark 1.13 (1). We observe that in L2,

ψ = â~V ((̂a−1)f) +O(ε) and UεH(t, t0)ψ = UεH(t, t0)

(
â~V ((̂a−1)f)

)
+O(ε)

Turning the pair (~V , f) into (â~V , (̂a−1)f) consists in replacing ~V`(t, t0, z) by

~V`,a(t, t0, z) := R`(t, t0, z)π`(t0, z)(a(z)~V (z)) = a(z)~V`(t, t0, z).

The two thawed Gaussian approximation constructed in that two different manner then differs one
from the other by O(ε): the analysis developed in Section 2.3 (in particular, the arguments of
Remark 2.22) shows that in Σkε(Rd),

J t,t0`,th ( ~̂V f) = (2πε)−d
∫
R2d

e
i
εS`(t,t0,z)〈gεz, (̂a−1)f〉~V`,a(t, t0, z)g

Γ`(t,t0,z),ε

Φ
t,t0
` (t,z)

dz +O(ε).

Proof of Corollary 2.21. One uses (2.17) and the first relation of Lemma 2.20 that we
apply to θ = gΘ. It gives that in L(L2(Rd),Σkε(Rd)),

J
[
u e

i
εS WPεΦ

(
xgΘ

)]
= J

[
u e

i
εS WPεΦ

(
M−1

Θ (dΦpx− dΦqDx)gΘ
)]

= O(
√
ε),

whence (2.19).

Secondly, if l L ∈ C∞(R2d,Cd,d), we consider the matrix L′ such that L = tL′MΘ. We observe
that

(dΦpx− dΦqDx) · (L′xgΘ) =
(
( tL′(dΦp − dΦqΘ))x · x− Tr( tL′dΦq)

)
gΘ.

It remains to prove that in L(L2(Rd),Σkε(Rd)), we have

(2.21) J
[
u e

i
εS WPεΦ

(
(dΦpx− dΦqDx) · (L′xgΘ)

)]
= O(ε).

We first apply Lemma 2.20 to the function θ = L′xgΘ and we write

J
[
u e

i
εS WPεΦ

(
(dΦpx− dΦqDx) · (L′xgΘ)

)]
= −i

√
εJ
[
du e

i
εS WPεΦ

(
L′xgΘ

)
+ ue

i
εS WPεΦ

(
L′x d(gΘ)

)]
.

We use the relation (2.19) and obtain in L(L2(Rd),Σkε(Rd)),

(2.22) J
[
u e

i
εS WPεΦ

(
(dΦpx− dΦqDx) · (L′xgΘ)

)]
= −i

√
εJ
[
ue

i
εS WPεΦ

(
L′x d(gΘ)

)]
+O(ε).

We calculate

d(gΘ) =
dcΘ
cΘ

gΘ + (dΘx · x)gΘ,
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with

(dΘx · x)x gΘ = (dΘx · x)M−1
Θ (dΦpx− dΦqDx)gΘ

= M−1
Θ (dΦpx− dΦqDx)

(
(dΘx · x)gΘ

)
− 2M−1

Θ dΦqdΘx gΘ.

Therefore, there exists matrices L1 and L2 such that, setting θ̃ = (dΘx · x)gΘ, we have

L′x d(gΘ) = L1xg
Θ + L2(dΦpx− dΦqDx)θ̃.

We deduce

J
[
u e

i
εS WPεΦ

(
(dΦpx− dΦqDx) · (L′xgΘ)

)]
= −i

√
εJ [L1xg

Θ]− i
√
εJ [L2(dΦpx− dΦqDx)θ̃]

and we obtain (2.21) by Lemma 2.20 applied to the function θ̃, and by the relation (2.19), which
concludes the proof �

2.3.3. Operators built on Bargmann transform via classical quantities. We now apply
the results of the preceding section to the diffeomorphism Φ given by a flow map associated to a
Hamiltonian h. We are going to derive the results induced by Lemma 2.20 and Corollary 2.21
for time dependent quantities after integration in time. We will use the resulting formula for the
Hamiltonians h1 and h2 associated with the matrix-valued Hamiltonian Hε.

Lemma 2.24. Let k ∈ N. Let h be a subquadratic Hamiltonian on I ×R2d, I = [t0, t0 + T ]. We
consider

(1) the classical quantities associated to h as in Section 1.3 on the interval I:

z 7→ S(t, z),Φt,t0(z), F (t, t0, z),

(2) a smooth function defined on I × R2d, bounded and with bounded derivatives, (t, z) 7→
u(t, z),

(3) a smooth map from I × R2d into S(Rd), (t, z) 7→ θ(t, z),
(4) a smooth function from R2d into I, z 7→ t[(z).

Then, for all χ ∈ C∞0 (I), we have the following equality between operators in L(L2(Rd),Σkε(Rd)),∫
R
χ(t)J

[
It>t[(z)u(t) e

i
εS(t) WPεΦt,t0

(
(dΦtpx− dΦt,t0q Dx)θ(t)

)]
dt

= i
√
ε

∫
R
J
[
It>t[(z)du(t) e

i
εS(t) WPεΦt,t0 (θ(t))

]
dt

+ i
√
ε

∫
R
χ(t)J

[
It>t[(z)u(t) e

i
εS(t) WPεΦt,t0 (dθ(t))

]
dt

− i
√
εJ
[
χ(t[) dt[ u(t[) e

i
εS(t[) WPε

Φt
[,t0

(θ(t[))
]
.

Note that the result of this lemma is an equality. Thus, we have not emphasized assumptions
that make these operators bounded. One could for example assume global boundedness of all the
quantities involve and of their derivatives, or, what would be enough, that θ is compactly supported
in z.

We also emphasize that the functions denoted by (χ ◦ t[)u(t[) e
i
εS(t[) WPε

Φt[
(θ(t[)) is the map

z 7→ χ
(
t[(z)

)
u
(
t[(z), z

)
e
i
εS(t[(z),z) WPε

Φt
[(z),t0 (z)

(
θ
(
t[(t), z

))
.

Note also that, by construction, the flow map Φt,t0 and the action S satisfy Assumptions 2.19
(see [13, 53, 43]).
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Proof. The proof follows the lines of the one of Lemma 2.20, using the relation

(2.23) d
(
It>t[(z)

)
= dt[(z)δ(t− t[(z))

that produces an additional term. �

As a Corollary, for Gaussian profiles, we have the following Corollary.

Corollary 2.25. With the same assumptions as in Lemma 2.24, we additionally assume
θ(t) = gΘ(t), with Θ ∈ C∞(I ×R2d,S+(d)). Then, for all L ∈ C∞(R2d,Cd,d), we have the following
equality in L(L2(Rd),Σkε(Rd)),∫

χ(t)J
[
It>t[(z)u e

i
εS(t,t0) WPεΦt,t0

(
Lx · xgΘ(t,t0)

)]
dt

=
1

i

∫
χ(t)J

[
1t>t[(z)ũ(t, t0) e

i
εS(t,t0) WPεΦt,t0

(
gΘ(t,t0)

)]
dt+O(ε)

with ũ(t, t0) = Tr
(
L
[
(A(t, t0)− iB(t, t0))−1(C(t, t0)− iD(t, t0))−Θ(t, t0)

]−1
)

.

Proof. The proof follows the lines of the one of Corollary 2.21, using the relation (2.23). �





CHAPTER 3

Convergence of the thawed and the frozen Gaussian
approximations

3.1. Strategy of the proofs

Our aim in this section is to prove the initial value representations of Theorems 1.15. We also
explain the overall strategy that is also used for proving Theorems 1.18, 1.19 and 1.20.

Let k ∈ N. Let ψε0 = ~̂V φε0 be as in Assumption 1.9 with φε0 ∈ L2 frequency localized at the
scale β ≥ 0 with Nβ > d + k + 1

2 (which implies φε0 ∈ Σkε . Without loss of generality, we assume
~V = π`(t0)~V for some ` ∈ {1, 2} that is now fixed.

We start with the Gaussian frame equality (2.2)

ψε0 = (2πε)−d
∫
z∈R2d

〈gεz, ~̂V φε0〉gεz dz.

Writing 〈gεz, ~̂V φε0〉 = 〈 ~̂V gεz, φε0〉 and using Remark 2.22, we have in Σkε ,

ψε0 = J [ ~̂V (z)gεz]
∗(φε0) +O(ε) = J [ ~̂V (z)gεz](φ

ε
0) +O(ε‖φε0‖L2).

Corollary 2.16 yields that, in Σkε , we have

ψε0 = J [I|z|<R ~̂V (z)gεz](φ
ε
0) +O(ε‖φε0‖L2) +O(εβCβR

−nβ )

= J [ ~̂V (z)gεz]((φ
ε
0)R,<) +O(ε‖φε0‖L2) +O(εβCβR

−nβ )

with the notations of Corollary 2.16 and setting nβ = Nβ − k − d− 1
2 > 0.

Now that the data has been written in a convenient form, we apply the propagator UεH(t, t0)
and we take advantage of its boundedness in L(Σkε) to write

UεH(t, t0)ψε0 = (2πε)−d
∫
|z|≤R

〈gεz, φε0〉
(
UεH(t, t0)~V (z)gεz

)
dz +O(ε‖φε0‖L2) +O(εβ Cβ R

−nβ )

= J
[
I|z|≤R UεH(t, t0)~V (z)gεz

]
(φε0) +O(ε‖φε0‖L2) +O(εβ Cβ R

−nβ ).

We then use the description of the propagation of wave packets by UεH(t, t0), as stated in Theo-
rem 1.21: for N ≥ d+ 1, in Σkε(Rd), we have

UεH(t, t0)~V (z)gεz = ψε,N` (t) +O(εN ).

Therefore, by (1) of Theorem 2.14 in L(L2(Rd),Σkε(Rd,Cm)),

(3.1) UεH(t, t0)ψε0 = J
[
I|z|≤R ψε,N` (t)

]
+O(εN−dRd ‖φε0‖L2) +O(εβ Cβ R

−nβ )

41
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Besides, using that ψε,N` (t) is a linear combination of wave packets and considering the explicit

formula of Theorem 1.21, (2) of Theorem 2.14 implies that in L(Σkε(Rd,Cm)),

UεH(t, t0)ψε0 = J t,t0`,th

(
~̂V (φε0)R,<

)
+O(

√
ε‖φε0‖L2) +O(εN−dRd ‖φε0‖L2) +O(εβ Cβ R

−nβ )

= J t,t0`,th

(
~̂V φε0

)
+O(

√
ε‖φε0‖L2) +O(εN−dRd ‖φε0‖L2) +O(εβ Cβ R

−nβ )

where we have used again Corollary 2.16. If β < 1
2 , we perform an appropriate choice of R and N :

we choose R = ε−γ with γ ≥ 1
nβ

( 1
2 − β) and N ≥ 1

2 + d(1 + γ).

At this stage of the description, the thawed Gaussian approximation of Theorem (1.15) is
proved. For obtaining the frozen one, we shall argue as in the scalar case considered in [53]
(Lemma 3.2 and Lemma 3.4). We will detail this argument later in Section 3.3 below.

The proofs of the order ε approximations of Theorems 1.18, 1.19 and 1.20 start with the same
lines. However, one includes in the approximation the two first terms of the asymptotic expansion

of ψε,N` (t): the one of order ε0 and the one of order ε
1
2 . The terms of order

√
ε are twofold:

(i) The one along the same mode as the initial data, here denoted by `. This term will be
proved to be of lower order because its structure allows to use the first part of Corol-
lary 2.21.

(ii) The one generated by the crossing along the other mode. This one is not negligible.

At that stage of the proofs, one will be left with the thawed approximation. The derivation of the
frozen approximation from the thawed one involves the second part of Corollary 2.21. However,
complications are induced in the treatment of term described in (ii) above because of the singularity
in time that it contains. This difficulty is overcome by averaging in time and using Corollary 2.25.
We implement this strategy in the next sections.

3.2. Thawed Gaussian approximations with transfers terms

We prove here the higher order approximation of Theorem 1.18 for initial data ψε0 = ~V φε0 with
(φε0)ε>0 frequency localized at the scale β ≥ 0 in a compact set K. As in the preceding section, we

assume ~V = π`(t0)~V and, without loss of generality, we suppose ` = 1.

We start as in the preceding section and transform equation (3.1) by taking the terms of order

ε0 and ε
1
2 in the expansion of ψε,N` . We obtain

UεH(t, t0)ψε0(x) = J
[
I|z|<R(ψε,11 (t) + ψε,12 (t))

]
(φε0) +O

(
εβ Cβ R

−nβ
)

+O(εN−dRd‖ψε0‖L2).

The rest in O(εN−dRd‖ψε0‖L2) comes from the remainder of the approximation of UεH(t, t0)gεz while
the term O(ε‖ψε0‖L2) comes from the terms of order εj for j ≥ 1 of the approximation, these terms
having a wave packet structure while the rest is just known as bounded in Σkε .

We write for ` ∈ {1, 2}

ψε,1` (t) =

1∑
j=0

ε
j
2ψε,1`,j (t).

Because the assumptions on K induce that there is only one passage through the crossing, Theo-
rem 1.21 implies that ψε,12,0(t) = 0 and ψε,12,1(t) only depends on the transfer profile fε1→2 (indeed, we
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have assumed ~V = π1(t0)~V ). Moreover, for the mode 1, we have for ` ∈ {1, 2} and j ∈ {0, 1}

ψε,1`,j (t) = e
i
εS`(t,t0,z0)WPεz`(t)

(
R`(t, t0)M[F`(t, t0)] ~B`,j(t)g

iI
)
.

We recall that ~B`,1 is given by (1.41). We use the structure of the term

R`(t, t0)M[F`(t, t0)] ~B`,1(t)giI

(see [54] section 3 or the book [13]): it writes

R`(t, t0)M[F`(t, t0)] ~B`,1(t)giI(x) = ~a(t)xgΓ`(t,t0,z0)(x)

for some smooth and bounded vector-valued map (t, z) 7→ ~a(t, z). Therefore, Corollary 2.21 yields

J
[
I|z|<Rψε,11,1(t)

]
(φε0) = O(

√
ε‖φε0‖L2)

and we are left with

UεH(t, t0)ψε0(x) = J
[
I|z|<R(ψε,11,0(t) +

√
εψε,12,1(t))

]
(φε0) +O

(
εβ Cβ R

−nβ
)

+O(εN−dRd‖ψε0‖L2)

= J
[
ψε,11,0(t) +

√
εψε,12,1(t)

]
((φε0)R,<) +O

(
εβ Cβ R

−nβ
)

+O(εN−dRd‖ψε0‖L2)

= J
[
ψε,11,0(t) +

√
εψε,12,1(t)

]
(φε0) +O

(
εβ Cβ R

−nβ
)

+O(εN−dRd‖ψε0‖L2)

by Corollary 2.16. Identifying the terms, we deduce

UεH(t, t0)ψε0(x) = J t,t01,th

(
~̂V φε0

)
+
√
εJ t,t01,2,th

(
~̂V φε0

)
+O

(
εβ Cβ R

−nβ
)

+O(εN−dRd‖ψε0‖L2).

If β < 1, we choose R = ε−γ , N = 1 + d(γ + 1) with γ ≥ 1
nβ

(1− β). This gives Theorem 1.18.

More precisely, for a general ~V = π1(t0)~V + π2(t0)~V , we obtain

UεH(t, t0)ψε0(x) = J t,t01,th

(
̂
π1(t0)~V φε0

)
+ J t,t02,th

(
̂
π2(t0)~V φε0

)
+
√
εJ t,t01,2,th

(
̂
π1(t0)~V φε0

)
(3.2)

+O (ε(Cβ + ‖ψε0‖L2)) .

3.3. Frozen Gaussian approximations with transfers terms

It remains to pass from the thawed to the frozen approximation. As we have already mentioned,
we use the argument developed in Lemma 3.2 and 3.4 of [53]. It is based on an evolution argument
which crucially uses Corollary 2.21. We now explain that step.

End of the proof of Theorem 1.15. We start from the approximation given by the first
part of Theorem 1.15: in Σkε(Rd), we have

UεH(t, t0)ψε0(x) = J t,t01,th

(
̂
π1(t0)~V φε0

)
+O(

√
ε(Cβ + ‖φε0‖L2))

and our aim is to prove that in Σkε(Rd)

J t,t01,th

(
̂
π1(t0)~V φε0

)
= J t,t01,fr

(
̂
π1(t0)~V φε0

)
+O(ε).

Of course, a remainder of size O(
√
ε) would be enough for proving Theorem 1.15; however, it will

be usefull to have it in order to prove Theorems 1.19 and 1.20.
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The strategy dates back to [53]. We follow the presentation of [21]. We set for s ∈ [0, 1]

Θ(s, z) = (1− s)Γ`(t, t0, z) + isI

where Γ` is given by (1.18). We consider the partially normalised Gaussian function

g̃(t, s) = (π)−d/4e
i
2 Θ(s,z)x·x, x ∈ Rd

and we set

g̃
Θ(s),ε

Φ
t,t0
` (z)

(x) = WPε
Φ
t,t0
` (z)

(g̃(t, s)) ,

The aim is to construct a map s 7→ a(s, z) such that for all s ∈ [0, 1] in L(L2(Rd),Σkε),

d

ds
J
[
a(s, z)~V`(t, t0, z)g̃

Θ(s),ε

Φ
t,t0
` (z)

]
= O(ε).

Choosing a(0, z) = 1, we have

J t,t0`,th = J
[
a(0, z)~V`(t, t0, z)g̃

Θ(0),ε

Φ
t,t0
` (z)

]
,

and we will obtain that for any f ∈ L2(Rd), we have in Σkε(Rd)

J t,t0`,th (~V f) = J
[
a(1, z)~V`(t, t0, z)g̃

Θ(1),ε

Φ
t,t0
` (z)

]
(f) +O(ε)

= J t,t0`,fr (~V f) +O(ε)

provided a(1, z) = a`(t, t0, z) as defined in (1.24).

For constructing the map s 7→ a(s, z), we compute

d

ds
J
[
a(s, z)~V`(t, t0, z)g̃

Θ(s),ε

Φ
t,t0
` (z)

]
= J

[
∂sa(s, z)~V`(t, t0, z)g̃

Θ(s),ε

Φ
t,t0
` (z)

]
+
i

2
J
[
a(s, z)~V`(t, t0, z)WPε

Φ
t,t0
` (z)

(
∂sΘ(s)x · xg̃Θ(s),ε

)]
.

We use equation (2.20) of Corollary 2.21 to transform the second term of the right-hand side and
obtain

J
[
a(s, z)~V`(t, t0, z)WPε

Φ
t,t0
` (z)

(∂sΘ(s)x · xgΘ(s))
]

=
1

i
J
[
a(s, z)~V`(t, t0, z)WPε

Φ
t,t0
` (z)

(Tr(Θ1(s))gΘ(s))
]

+O(ε)

in L(L2(Rd),Σkε) and with

Θ1(s) = ∂sΘ(s)
[
(A` − iB`)−1(C` − iD`)−Θ

]−1

where M`(s, z) is associated to Θ(s, z) according to (2.18). In particular, we have

∂sM(s) = −(A` − iB`)∂sΘ(s).

We deduce

Θ1(s) = −(A` − iB`)−1∂sM(s)M(s)−1(A` − iB`)
and

Tr(Θ1(s)) = −Tr(∂sM(s)M(s)−1) = −detM(s)−1 ∂s (detM(s)) .
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Therefore, the condition

∂sa(s, z)− 1

2
Tr(∂sM(s, z)M(s)−1)a(s, z) = 0

that we have to fulfilled, is realized by

a(s, z) =
detM(s)

detM(0)
a(0, z) = a`(t, t0, z).

�

Proof of Theorem 1.19. We now start from the result of Theorem 1.18, that is equa-
tion (3.2). In view of what has been done in the end proof of the proof of Theorem 1.15, we
only have to prove

J t,t01,2,th

(
̂
π1(t0)~V φε0

)
= J t,t01,2,fr

(
̂
π1(t0)~V φε0

)
+O

(√
ε(Cβ + ‖φε0‖L2

)
.

As noticed in the introduction, when t < t1,min(K), then τ1,2(t, t0, z) = 0 for all z ∈ K and when
t ∈ [t1,max(K), t2,min(K)), z 7→ τ1,2(t, t0, z) is smooth. Therefore, one can use the perturbative
argument allowing to froze the covariances of the Gaussian terms as in the proof of Theorem 1.15
and one obtains the formula (1.35). �

Proof of Theorem 1.20. One now has to cope with the discontinuity of the transfer coeffi-
cient τ1,2(t, t0, z). We use Lemma 2.24. �





Part 2

Wave-packet propagation through smooth
crossings





CHAPTER 4

Symbolic calculus and diagonalization of Hamiltonians with
smooth crossings

In this section, we revisit the diagonalization of Hamiltonians in the case of the smooth crossings
in which we are interested. We settle the algebraic setting that we will use in Section 5 for the
propagation of wave packets.

We will use the Moyal product about which we recall some facts: if Aε, Bε are semi-classical
series, their Moyal product is the formal series

Cε := Aε ~Bε where Cε =
∑
j≥0

εjCj

Cj(x, ξ) =
1

2j

∑
|α+β|=j

(−1)|β|

α!β!
(Dβ

x∂
α
ξ A).(Dα

x∂
β
ξ B)(x, ξ), j ∈ N.(4.1)

We also introduce the Moyal bracket

{Aε, Bε}~ := Aε ~Bε −Bε ~Aε.

Let us now consider a smooth matrix-valued symbol Hε = H0+εH1, where the principal symbol
H0 = h1π1 + h2π2 has two smooth eigenvalues h1 and h2 with smooth eigenprojectors π1 and π2.
We allow for a non-empty crossing set Υ as in Definition 1.2. By standard symbolic calculus with
smooth symbols, we have for ` ∈ {1, 2} the relations

(4.2) π` ~ (iε∂t −Hε) = (iε∂t − h`)~ π` = O(ε).

We are going to see two manners to replace the projector π` and the Hamiltonian h` by asymptotic
series so that the relation above holds at a better order.

We call “rough” the first diagonalization process that we propose. It will hold everywhere,
including Υ and is comparable the reduction performed in [4] for avoided crossings. It is the
subject of Section 4.2.

The second one, more sophisticated, will require to work in a domain that does not meet Υ.
Based on the use of superadiabatic projectors, as developed in [5, 46, 55, 58]. This strategy
is implemented in Section 4.3. The new element comparatively to the references that we have
mentioned, is that we keep a careful memory of the dependence of the constructed elements with
respect to the distance of their support from Υ. For this reason, we will use a pseudodifferential
setting that we precise in the next Section 4.1.
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4.1. Formal asymptotic series

We consider formal semi-classical series

Aε =
∑
j≥0

εjAj

where all the functions Aj are smooth (matrix-valued) in an open set D ⊂ R × R2d, that is,
Aj ∈ C∞(D,Cm,m).

Notation. If Aε =
∑
j≥0 ε

jAj is a formal series and N ∈ N, we denote by Aε,N the function

(4.3) Aε,N =
∑

0≤j≤N

εjAj .

The formal series that we will consider in Section 4.3 will present two small parameters: the
semi-classical parameter ε > 0 and another parameter δ > 0 that controls the growth of the symbol
and of its derivatives. For our intended application, δ is related to the size of the gap between the
eigenvalues of the Hamiltonian’s symbol.

Definition 4.1 (Symbol spaces). Let µ ∈ R and δ ∈ (0, 1].

(i) We denote by Sµδ (D) the set of smooth (matrix-valued) functions in D such

|∂γzA(t, z)| ≤ Cγδµ−|γ|, ∀(t, z) ∈ D.

Notice that the set Sδ(D) := S0
δ(D) has the algebraic structure of a ring.

(ii) We shall say that a formal series Aε =
∑
j≥0

εjAj is in Sµε,δ(D) if Aj ∈ Sµ−2j
δ (D) for all

j ∈ N. We set Sε,δ(D) := S0
ε,δ(D).

Remark 4.2. (1) If A ∈ Sµδ , B ∈ Sµδ′ then AB ∈ Sµ+µ′

δ while {A,B} ∈ Sµ+µ′−2
δ . Besides,

if A ∈ Sµδ (D), then ∂γzA ∈ S
µ−|γ|
δ (D).

(2) When δ = 1, as in the next Section 4.2, then for all µ ∈ R, Sµ1 = S0
1 coincides with the

standard class of Calderón-Vaillancourt symbols, those smooth functions that are bounded
together with their derivatives. Similarly, Sµε,1 = Sµε coincides with asymptotic series of
symbols.

(3) The parameter δ can be understood as a loss that appears at each differentiation. However,
in the asymptotic series, one loose δ2 when passing from some j-th term of to the (j+1)-th.
one. In Section 4.3, δ will monitor the size of the gap function f in the domain D.

The Moyal bracket satisfies the property stated in the next lemma.

Lemma 4.3. Let δA, δB ∈]0, 1]. If Aε and Bε are formal series of Sε,δA(D) and Sε,δB (D),
respectively. then Aε ~Bε is a formal series of Sε,min(δA,δB)(D). Besides, for N ∈ N,

Aε,N ~Bε,N =
∑

0≤j≤N

εjCj + εN+1Rε,NA,B

where for all γ ∈ N2d, there exists CN,γ independent on δA,B and ε such that

|∂γzR
ε,N
A,B(t, z)| ≤ CN,γ [min(δA, δB)]−N−κ0 , ∀ε ∈]0, 1], ∀(t, z) ∈ D,

where κ0 is a universal constant depending only on the dimension d.
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Proof. The estimate is a direct consequence of [6, Theorem A1]. In Appendix B, Theorem B.1
we give a detailed proof. �

When δA = 1 and δB = δ ∈ (0, 1], min(δA, δB) = δ. This shows that

Sε,1(D)~ Sε,δ(D) ⊂ Sε,δ(D).

Let us conclude this Section by comments on the quantization of symbols of the classes Sµδ .
The Calderón-Vaillancourt estimate for pseudodifferential operators (see [14, 64]) states that there
exists a constant C > 0 such that for all a ∈ C∞(R2d),

‖opε(a)‖L(L2(Rd)) ≤ C sup
0≤|γ|≤d+1

ε
|γ|
2 sup
z∈Rd

|∂γz a(z)|.

Actually, the article [9] treats the case ε = 1 and the estimate in the semi-classical case comes from
the observation that

opε(a) = Λ∗εop1(a(
√
ε·))Λε

where Λε is the L2-unitary scaling operator defined on function f ∈ S(Rd) by

Λεf(x) = ε−
d
4 f

(
x√
ε

)
, x ∈ Rd.

One can derive an estimate in the sets Σkε by observing(
xα(ε∂x)β

)
◦ opε(a) =

∑
|γ1|+|γ2|+|γ3|≤k

ε
|γ1|
2 cγ1,γ2,γ3(ε) opε(∂

γ1
z a) ◦ (xγ2(ε∂x)γ3)

for some coefficients cγ1,γ2,γ3(ε), uniformly bounded with respect to ε ∈ [0, 1]. This implies the
boundedness of opε(a) in weighted Sobolev spaces: for all k ∈ N, there exists a constant Ck > 0
such that for all a ∈ S(R2d),

(4.4) ‖opε(a)‖L(Σkε ) ≤ Ck
∑

0≤|γ|≤d+k+1

ε
|γ|
2 sup

z∈Rd
|∂γz a(z)|.

Proposition 4.4. Let A ∈ Sµ−2j
δ for µ ∈ R, j ∈ N. Then, for k ∈ N

‖opε(A)‖L(Σkε ) ≤ Ck sup
0≤|γ|≤d+1

ε
|γ|
2 δµ−2j−k−|γ|

Therefore, if δ ≥
√
ε

(4.5) ‖opε(A)‖L(Σkε ) ≤ Ck δµ−k−2j .

We will use such estimates. Questions related with symbolic calculus in the classes Sµδ,ε are
discussed in Appendix B.2.
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4.2. ‘Rough’ reduction

The next result gives a reduction of the Hamiltonian in a block diagonalized form. We will use
this reduction on small interval of times.

Theorem 4.5. Assume Hε = H0+εH1 with H0 having smooth eigenprojectors and eigenvalues.
There exist matrix-valued asymptotic series

πε1 = π1 +
∑
j≥1

εjπ1,j , hε` = h` I +
∑
j≥1

εjh`,j , W ε =
∑
j≥1

εjWj , ` ∈ {1, 2}

such that for all N ∈ N, πε,N1 and πε,N2 = 1− πε,N1 are approximate projectors

(4.6) πε,N` ~ πε,N` = πε,N` +O(εN+1), ` ∈ {1, 2}
and Hε = H0 + εH1 reduces according to

πε,N1 ~ (iε∂t −Hε) = (iε∂t − hε,N1 )~ πε,N1 +W ε,N ~ πε,N2 +O(εN+1),(4.7)

πε,N2 ~ (iε∂t −Hε) = (iε∂t − hε,N2 )~ πε,N2 + (W ε,N )∗ ~ πε,N1 +O(εN+1).(4.8)

Moreover, for all ` ∈ {1, 2} and j ≥ 1, the symbols π`,j and h`,j are self-adjoint, the matrices Wj

are the off-diagonal (see equation (1.44) for the value of W1) and

h`,1 = π`H1π` + (−1)`
i

2
(h1 − h2)π`{π1, π1}π`.(4.9)

If Hε also satisfies Assumption 1.4 on the time interval I, then the 4×4 matrix-valued Hamiltonian

Hε :=

(
hε1 W ε

(W ε)∗ hε2

)
is subquadratic according to Definition 1.1.

Note that in Hε, the off-diagonal blocks are of lower order than the diagonal ones since the
asymptotic series W ε has no term of order 0.

Theorem 4.5 allows to put the equation (1.1) in a reduced form by setting

ψε = t(ψε
1
, ψε

2
) with ψε` = π̂ε`ψ

ε.

Indeed, we then have

(4.10) iε∂tψ
ε = Ĥ

ε
ψε +O(ε∞), ψε|t=0

= t
(
π̂ε1 ψ

ε
0, π̂

ε
2 ψ

ε
0

)
.

We deduce the corollary.

Corollary 4.6. Formally, we have for t ∈ I,

UεH(t, t0)ψε0 = ψε1 + ψε2,

where ψε solves (4.10).

Proof. The proof relies on a recursive argument.

The case N = 0 is equivalent to (4.2)
The case N = 1 has been proved in Lemma B.2 in [20]. However, we revisit the proof in order

to compute W1. We first compute π`,` by requiring πε,(`) ~ πε,(`) = πε,(`) + O(ε2), which admits
the solution

π1,1 = −π2,1 = − 1

2i
π1{π1, π1}π1 +

1

2i
π2{π1, π1}π2.
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We recall that {π1, π1} is diagonal and skew-symmetric (see Lemma B.1 in [20]). Then, we observe

π` ~ (iε∂t −Hε) = (iε∂t − h`)~ π` + εΘ` +O(ε2)

with

Θ` = − 1

2i
{π`, H0} − π`H1 − i∂tπ` +

1

2i
{h`, π`}

or, equivalently

Θ1 =
1

2i
(h2 − h1){π1, π1} − i∂tπ1 − π1H1 +

1

i
{h1, π1}π1 +

1

2i
{h1 + h2, π1}π2,

Θ2 =
1

2i
(h1 − h2){π2, π2} − i∂tπ2 − π2H1 +

1

i
{h2, π2}π2 +

1

2i
{h1 + h2, π2}π1

= − 1

2i
(h2 − h1){π1, π1}+ i∂tπ1 − π2H1 −

1

i
{h2, π1}π2 −

1

2i
{h1 + h2, π2}π1

We observe

Θ∗2 = − 1

2i
(h2 − h1){π1, π1} − i∂tπ1 −H1π2 +

1

i
π2{h2, π1}+

1

2i
π1{h1 + h2, π2}

and

(4.11) π1Θ∗2π2 = π1Θ1π2.

Thus, we have to solve

−π1,1H0 = −h1,1π1 − h1π1,1 + i∂tπ1 + Θ1 +W1π2,

−π2,1H0 = −h2,1π2 − h2π2,1 + i∂tπ2 + Θ2 +W ∗1 π1.

Multiplying on the right the first equation by π1 and the second by π2, we obtain that h1,1 and h2,1

have to solve

h1,1π1 = i∂tπ1π1 + Θ1π1 and h2,1π2 = i∂tπ2π2 + Θ2π2

which is solved by taking the self-adjoint matrices

h1,1 = i∂tπ1π1 + Θ1π1 − iπ1∂tπ1π2 + π1Θ∗1π2,

h2,1 = i∂tπ2π2 + Θ2π2 − iπ2∂tπ2π1 + π2Θ∗2π1.

Multiplying on the right the first equation by π2 and the second by π1, we obtain that W1 has to
solve

W1π2 = −(h2 − h1)π1,1π2 −Θ1π2 and W ∗1 π1 = (h2 − h1)π2,1π1 −Θ2π1.

Using the relations π∗1,1 = π1,1 = −π2,1, π1∂t,zπ1 = ∂t,zπ1π2 and (4.11), we obtain

W1π2 = π1W1 = π1

(
H1 + i∂tπ1 +

1

2
{h1 + h2, π1}

)
π2,

whence (1.44).

One can now perform the recursive argument. Assume that we have obtained (4.6), (4.7)
and (4.8) for some N ≥ 1 and let us look for π1,N+1, h1,N+1, h2,N+1 and WN+1 such that the
relations for N + 1 too.

We start with π1,N+1. We write

πε,N1 ~ πε,N1 = πε,N1 + εN+1Rε,
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where Rε is an asymptotic series with first term RN . We first observe that RN is diagonal. Indeed,
we have

(1− πε,N1 )~ πε,N1 ~ πε,N1 = πε,N1 ~ πε,N1 ~ (1− πε,N1 )

and

(1− πε,N1 )~ πε,N1 ~ πε,N1 = −εN+1Rε ~ πε,N1 , πε,N1 ~ πε,N1 ~ (1− πε,N1 ) = −εN+1πε,N1 ~Rε.

This yields πε,N1 ~ Rε = Rε ~ πε,N1 and imply π1RN = RNπ1. We now look to π1,N+1 that must
satisfy

π1,N+1 = RN + π1,N+1π1 + π1π1,N+1.

This relation fixes the diagonal part of π1,N+1 according to

π1π1,N+1π1 = −π1RNπ1 and π2π1,N+1π2 = π2RNπ2,

We will see later that we do not need to prescribe off-diagonal components to π1,N+1.

Let us now focus on h1,N+1, h2,N+1 and WN+1. We write

πε,N1 ~ (iε∂t −Hε) = (iε∂t − hε,N1 )~ πε,N1 +W ε,N ~ πε,N2 + εN+1Θε
1

where Θε
1 is an asymptotic series of first term Θ1,N . For obtaining information about Θ1,N , we

compute

πε,N` ~ (iε∂t −Hε)~ πε,N`′

for different choices of `, `′ ∈ {1, 2}.
• Taking ` 6= `′ gives two relations

πε,N1 ~ (iε∂t −Hε)~ πε,N2

= πε,N1 ~W ε,N ~ πε,N2 + εN+1πε,N1 ~Θε
1 ~ π

ε,N
2 +O(εN+2)

πε,N2 ~ (iε∂t −Hε)~ πε,N1

= πε,N2 ~ (W ε,N )∗ ~ πε,N1 + εN+1πε,N2 ~Θε
2 ~ π

ε,N
1 +O(εN+2),

from which we deduce π2Θ2,Nπ1 = (π1Θ1,Nπ2)
∗
.

• Taking ` = `′ gives the relations

πε,N` ~ (iε∂t −Hε)~ πε,N`

= πε,N` ~ (iε∂t − hε,N` )~ πε,N` + εN+1πε,N` ~Θε
` ~ π

ε,N
` +O(εN+2),

whence the self-adjointness of the diagonal part of Θε
` .

We now enter into the construction of h1,N+1, h2,N+1 and WN+1. We write the asymptotic series

πε,N+1
1 ~ (iε∂t −Hε) = πε,N1 ~ (iε∂t −Hε)− εN+1π1,N+1H0 +O(εN+2),

(iε∂t − hε,N+1
1 )~ πε,N+1

1 +W ε,N+1 ~ πε,N+1
2 = (iε∂t − hε,N1 )~ πε,N1 +W ε,N ~ πε,N2

+ εN+1 (i∂tπ1,N − h1,N+1π1 − h1π1,N+1 +WN+1π2) +O(εN+2).

Therefore, we look for h1,N+1 and WN+1 such that

−π1,N+1H0 = i∂tπ1,N − h1,N+1π1 − h1π1,N+1 +WN+1π2 + Θ1,N

or equivalently

0 = i∂tπ1,N − h1,N+1π1 + (h2 − h1)π1,N+1π2 +WN+1π2 + Θ1,N .
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By multiplying on the right by π12 and π2, we are left with the two equations

(4.12) h1,N+1π1 = Θ1,Nπ1 + i∂tπ1,Nπ1 and WN+1π2 = Θ1,Nπ2 + (h2−h1)π1,N+1π2 + i∂tπ1,Nπ2.

Considering similarly the conditions for the mode h2, we obtain that h2,N+1 and W ∗N+1 have to
satisfy

h2,N+1π2 = Θ2,Nπ2 + i∂tπ2,Nπ2 and W ∗N+1π1 = Θ2,Nπ1 − (h2 − h1)π2,N+1π1 + i∂tπ2,Nπ1.

Since π2,N = −π1,N for N ≥ 1, we are left with the relation

(4.13) h2,N+1π2 = Θ2,Nπ2− i∂tπ1,Nπ2 and W ∗N+1π1 = Θ2,Nπ1 + (h2−h1)π1,N+1π1− i∂tπ1,Nπ1.

We set

h1,N+1 = Θ1,Nπ1 + i∂tπ1,Nπ1 + π1Θ∗1,Nπ2 − iπ1∂tπ1,Nπ2,

h2,N+1 = Θ2,Nπ2 + i∂tπ2,Nπ2 + π2Θ∗2,Nπ1 − iπ2∂tπ2,Nπ1.

Then, h1,N+1 and h2,N+1 are self-adjoint and satisfy the first part of (4.12) and (4.13) respectively.

The construction of WN+1 requires to be more careful because there is a compatibility condition
between (4.12) and (4.13). We look for WN+1 of the form

WN+1 = Θ1,Nπ2 + (h2 − h1)π1,N+1π2 + i∂tπ1,Nπ2 + UN+1π1,

which guarantees (4.12). Then, one has

W ∗N+1 = π2Θ∗1,N + (h2 − h1)π2π1,N+1 − iπ2∂tπ1,N + π1U
∗
N+1

and

W ∗N+1π1 = π2Θ∗1,Nπ1 − iπ2∂tπ1,Nπ1 + π1U
∗
N+1π1

= π2Θ2,Nπ1 − iπ2∂tπ1,Nπ1 + π1U
∗
N+1π1

where we have used the first property of the matrices Θ1,N and Θ2,N that we have exhibited,
together with the fact that π1,N+1 is diagonal. It is then enough to choose

UN+1 = π1

(
Θ∗2,N + (h2 − h1)π1,N+1 + i∂tπ1,N

)
π1

since it implies

W ∗N+1π1 = π2Θ2,Nπ1 − iπ2∂tπ1,Nπ1

+ π1(Θ2,N + i∂tπ1,N + (h2 − h1)π1,N+1)π1

= Θ2,Nπ1 + (h2 − h1)π1,N+1π1 − iπ2∂tπ1,Nπ1,

where we have used π1,N+1π1 = π1π1,N+1π1. As a consequence, the second part of (4.13) is satisfied.
This concludes the recursive argument and the proof of the Theorem 4.5 since the growth properties
of the matrices that we have constructed come with the recursive equations. �
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4.3. Superadiabatic projectors and diagonalization

One now wants to get rid of the off-diagonal elements Ŵ ε, which is possible outside Υ. We are
going to take into account how far from the crossing set we are by introducing a gap assumption.

Assumption 4.7 (Gap assumption). Let t0 < t1, I an open interval of R containing [t0, t1]
and Ω an open subset of R2d. We say that the eigenvalue h has a gap larger than δ ∈ (0, 1] in
D := I × Ω if one has

(NCδ) d (h(t, z),Sp(H0(t, z))) ≥ δ, ∀(t, z) ∈ D.

The construction of superadiabatic projectors dates to [5] which was inspired by the paper [17].
It has then been carefully developed in [46] and [55] (see also the book [58]). We revisit here
the construction of superadiabatic projectors, in order to control their norms with respect to the
parameter δ.

We follow the construction of the Section 14.4 of the latest edition of [13] (2021), that we adapt
to our context. One proceeds in two steps: first by defining the formal series for the projectors and
then for the Hamiltonians. In order to simplify the notations in the construction, we just consider
an eigenvalue h and we will then apply the result to the eigenvalues h1 and h2.

4.3.1. Formal superadiabatic projectors.

Theorem 4.8 (semiclassical projector evolution). Assume the eigenvalue h of the Hamilton-
ian H0 satisfies Assumption 4.7 in D. Then, there exists a unique formal series

∑
j≥1 ε

j−1Πj in

S−1
ε,δ(D) such that setting Π0(t, z) = π(t, z), the formal series

Πε(t, z) =
∑
j≥0

εjΠj(t, z)

is a formal projection and

(4.14) iε∂tΠ
ε(t) = [Hε(t),Πε(t)]~.

Moreover the sub-principal term Π1(t) is an Hermitian matrix given by the following formulas:

π(t)Π1(t)π(t) = − 1

2i
π(t){π(t), π(t)}π(t),(4.15)

π(t)⊥Π1(t)π(t)⊥ =
1

2i
π(t)⊥{π(t), π(t)}π(t)⊥,

π(t)⊥Π1(t)π(t) = π(t)⊥(H0(t)− h(t))−1π(t)⊥R1(t)π(t),

where

R1(t) = i∂tπ(t)− 1

2i
({H0(t), π(t)} − {π(t), H0(t)})− [H1(t), π(t)].

Proof. With Notations 4.3,

Πε,N ~Πε,N −Πε,N = εN+1SN+1 +O(εN+2),(4.16)

iε∂tΠ
ε,N −

[
H0 + εH1,Π

ε,N
]
~

= εN+1RN+1 +O(εN+2).(4.17)

Step N = 1. We start with N = 0. We have Π(0) = π ∈ S0
δ(D). Since π2 = π and [H0, π] = 0, we

obtain
S1 = 1

2i{π, π} and R1 = i∂tπ − 1
2i ({H0, π} − {π,H0})− [H1, π],

and we have R1, S1 ∈ S0
δ(D). Two structural observations are in order:
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(1) The matrix S1 is symmetric and satisfies πS1π
⊥ = π⊥S1π = 0.

(2) The matrix R1 is skew-symmetric. It satisfies

πR1π = 0 and π⊥R1π
⊥ = [H0, π

⊥S1π
⊥].

If H0 has only two eigenvalues, H0 expresses only in terms of π and the expression of R1 given
above shows that R1 is off-diagonal. The situation is more complicated if H0 has strictly more
than two distinct eigenvalues. For verifying (2) in that case, one uses the Poisson bracket rule
{A,BC} − {AB,C} = {A,B}C −A{B,C} two times. We obtain

{H0, π} − {π,H0} = {H0, π
2} − {π2, H0}

= {hπ, π}+ {H0, π}π −H0{π, π} − {π, hπ}+ {π, π}H0 − π{π,H0}
= π{h, π} − {π, h}π + [{π, π}, H0] + {H0, π}π − π{π,H0},

which implies

π⊥({H0, π} − {π,H0})π⊥ = π⊥[{π, π}, H0]π⊥.

For determining the π-diagonal component, we choose A = π, B = H0π
⊥, and C = π to obtain

0 = {π,H0π
⊥}π − π{H0π

⊥, π}
= {π,H0}π − {π, hπ}π − π{H0, π}+ π{hπ, π}
= {π,H0}π − {π, h}π − π{H0, π}+ π{h, π}.

This relation implies

π({H0, π} − {π,H0})π = 0.

For constructing the matrix Π1 that defines Π(1) = π + εΠ1, we need to satisfy

πΠ1 + Π1π −Π1 = −S1 and − [H0,Π1] = −R1.

The first of these two equations uniquely determines the diagonal blocks of Π1, while the second
equation uniquely determines the off-diagonal blocks. We obtain

πΠ1π = −πS1π and π⊥Π1π
⊥ = π⊥S1π

⊥,

πΠ1π
⊥ = −πR1π

⊥(H0 − h)−1 and π⊥Π1π = (H0 − h)−1π⊥R1π.

For concluding this first step, we deduce from R1, S1 ∈ S0
δ(D) that Π1 ∈ S−1

δ (D).

Step N ≥ 1. Next we proceed by induction and assume that we have constructed the matrices
Πj(t) ∈ S1−2j

δ (D) for 1 ≤ j ≤ N such that (4.16) and (4.17) hold. Note that by Lemma 4.3, this
implies

RN+1(t) ∈ S−2N
δ (D) and SN+1(t) ∈ S−2N

δ (D).

Indeed, iε∂tΠ
ε,N −

[
H0 + εH1,Π

ε,N
]
~

is a formal series of εS−2
ε,δ(D) while ΠN ~Πε,N −Πε,N is a

formal series of εS−1
ε,δ(D). In order to go one step further, we see that ΠN+1 has to satisfy

πΠN+1 + ΠN+1π −ΠN+1 = −SN+2 and − [H0,ΠN+1] = −RN+2.

For solving these equations, and achieving the recursive process, we need to verify that at each step

(1) The matrix SN is symmetric and satisfies πSNπ
⊥ = π⊥SNπ = 0.

(2) The matrix RN is skew-symmetric and off-diagonal. It satisfies

πRNπ = 0 and π⊥RNπ
⊥ = [H0, π

⊥SNπ
⊥].
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Then, we will be able to construct ΠN+1(t) ∈ S
−2N−1)
δ (D) and we will have as a by product

RN+2(t) ∈ S−2N−2
δ (D), SN+2(t) ∈ S−2N−2

δ (D) because of equations (4.16), (4.17) and Lemma 4.3.

For proving (1), we take advantage of the fact that

Z := Πε,N ~
(
(Πε,N )2~ −Πε,N

)
~ (I−Πε,N ) = εN+1πSN+1π

⊥ +O(εN+2),

while one also has by construction

Z =
(
(Πε,N )2~ −Πε,N

)
~
(
Πε,N − (Πε,N )2~

)
= O(ε2N+2).

This implies that πSN+1π
⊥ = 0 and, using that SN+1 is hermitian, we deduce that it is diagonal.

For proving (2), we argue similarly with

Z ′ := Πε,N ~
(
iε∂tΠ

ε,N −
[
H0 + εH1,Π

ε,N
]
~

)
~Πε,N = εN+1πRN+1π +O(εN+2),

which also satisfies

Z ′ =
(
(Πε,N )2~ −Πε,N

)
~ (H0 + εH1)Πε,N −Πε,N (H0 + εH1)

(
(Πε,N )2~ −Πε,N

)
= O(ε2N+2).

This implies πRN+1π = 0 and one can argue similarly with 1−Πε,N for obtaining the other relation
π⊥RN+1π

⊥ = 0. �

4.3.2. Formal adiabatic decoupling. The second (and decisive) part of the analysis is a
formal adiabatic decoupling using the superadiabatic projectors introduced before.

Theorem 4.9 (formal adiabatic decoupling). Assume the eigenvalue h of the Hamiltonian H0

satisfies Assumption 4.7 in D. There exists a formal time dependent Hermitian Hamiltonian in D,

Hadia,ε =
∑
j≥0

εjHadia
j

such that

(4.18) Πε ~ (iε∂t −Hε) = (iε∂t −Hadia,ε)~Πε

with the following properties:

(1) The principal symbol is Hadia
0 = h ICm .

(2) The subprincipal term Hadia
1 is a Hermitian matrix satisfying

π⊥Hadia
1 π = π⊥ (i∂tπ + i{h, π})π and πHadia

1 π = πH1π +
1

2i
π{H0, π}π

(see (1.19)) and we can choose π⊥Hadia,ε
1 π⊥ = 0.

(3) We have
ε−2

(
Hadia,ε − hIm,m − εHadia

1

)
∈ S−1

ε,δ(D).

(4) Finally, π(t) satisfies a transport equation along the classical flow for h(t).

(4.19) ∂tπ + {h, π} =
1

i
[Hadia

1 , π].

Remark 4.10. Note that equations (1.19) implies that Hadia
1 (t, z) is smooth everywhere, in-

cluding on the crossing set, if any.

The above construction applied to the Hamiltonian Hε with two smooth eigenvalues (h1, h2)
and two smooth eigenprojectors (π1, π2) imply the construction of two pairs of formal series

(4.20) Πε
` =

∑
j≥0

εjΠ`,j and Hadia,ε
` =

∑
j≥0

εjHadia
`,j .
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Corollary 4.11. At the level of the evolution operator, the result implies

UεH(t, t0) = Π̂ε
1(t)Uadia,ε

1 (t, t0)Π̂ε
1(t0) + Π̂ε

2(t)Uadia,ε
2 (t, t0)Π̂ε

2(t0)

where for ` ∈ {1, 2}, Uadia,ε
` (t, t0) are the evolution operators associated with the Hamilton-

ian Hadia,ε
`

Proof. This result is Theorem 80 of Chapter 14 in [13] combined with Lemma 4.3. We first
observe that equation (4.18) reduces to proving

(4.21) Πε ~ (iε∂t −Hε) = (iε∂t −Hadia,ε)~Πε.

For proving the latter relation, one first observes that if Hadia
0 = h, then we have

(Hadia,ε −H0 − εH1)~Πε = ε

(
(h−H0)Π1 + (Hadia

1 −H1)π +
1

2i
{h−H0, π}

)
+ i∂tπ +O(ε2).

Therefore, H1 has to be chosen so that

(Hadia
1 −H1)π = (H0 − h)Π1 +

1

2i
{H0 − h, π}+ i∂tπ.

In view of (4.15), this requires

π(Hadia
1 −H1)π =

1

2i
π{H0, π}π,

which is given by the second relation of (1.19), and, using again (4.15)

π⊥(Hadia
1 −H1)π = π⊥(R1 +

1

2i
{H0 − h, π}+ i∂tπ)π = π⊥(i∂tπ +

1

2i
{π,H0} −

1

2i
{h, π} −H1)π

which is also given by the first relation of (1.19) in view of the observation that

π⊥{π,H0, π}π = −π⊥{h, π}π.
For proving this relation, one uses the Poisson bracket rule

{A,BC} − {AB,C} = {A,B}C −A{B,C}
several times. First, one gets

π{π, π}π⊥ = 0 = π⊥{π, π}π.
Then, taking A = π⊥, B = π, C = H0, one gets

{π⊥, hπ} − 0 = {π⊥, π}H0 − π⊥{π,H0},

whence −π⊥{π, h}π = −π⊥{π,H0}π. Finally, for concluding the construction of Hadia
1 , It remains

to check that (
(H0 − h)Π1 +

1

2i
{H0 − h, π}+ i∂tπ

)
π⊥ = 0

which comes from the latter observation about {H0, π}.
Now that Hadia

0 and Hadia
1 are constructed, one uses a recursive argument: assume that one has

constructed Hadia
j for 0 ≤ j ≤ N with Hadia

j ∈ S−2j
δ for j ∈ {2, · · · , N} and such that has (4.21)

holds up to O(εN+1). Let us construct Hadia
N+1. Setting as in Notation 4.3

Hadia,ε,N =

N∑
j=1

εjHadia
j
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we write
(Hadia,ε,N −H0 − εH1)~Πε,N = εN+1TN +O(εN+2)

with TN ∈ S−2N−3
δ and we look for Hadia

N+1 such that πHadia
N+1 = TN . This is doable as long as

π⊥TN = 0, which comes form the observation that

(H0 + εH1 −Hadia,ε,N )~Πε,N ~ (1−Πε,N ) = εN+1π⊥TN +O(εN+1) = O(εN+1)

by the properties of superadiabatic projectors. Besides, Hadia
N+1 ∈ S−2N−3

δ , which fits with (ii) of
Definition 4.1

(3) comes from Lemma 4.3.

(4) comes from (1.19). �



CHAPTER 5

Propagation of wave packets through smooth crossings

In this section, we prove Theorem 1.21. We consider a subquadratic HamiltonianHε = H0+εH1

satisfying Assumptions 1.2 in I×Ω, Ω ⊂ R2d, and we are interested in the description of the solution
to equation (1.1) for initial data that is a wave packet as in (1.8).

The proof consists in three steps: one first propagates the wave packet from time t0 to some
time t[− δ, δ > 0 in a zone that is at a distance of Υ of size larger than cδ for some constant c > 0.
In this zone, we use the superadiabatic projectors. Then, we propagate the wave packet from time
t[− δ to t[ + δ, using the rough diagonalization in the crossing region. Finally, between times t[ + δ
and t1, we are again at distance larger than cδ to Υ and the analysis with superadiabatic projectors
apply. The parameter δ will be taken afterwards as δ ≈ εα; the analysis of Section 5.2 will ask for
α < 1

2 (see Theorem 5.9).

In order to explain carefully each step of the proof, we start by proving the propagation faraway
from the crossing area in Section 5.1. That allows us to settle the arguments, before doing it
precisely close to Υ in Section 5.2. Then, Section 5.3 is devoted to the calculus of the transitions
in the crossing region.

All along Section 5, we will use Assumption 4.7 and the following dynamical Assumption 5.1.

Assumption 5.1 (Dynamical assumption). We say that Ω1 and t1 satisfy the dynamical as-
sumption (DA) for the mode h` if we have

(DA) Φt,t0` (Ω1) ⊂ Ω for all t ∈ [t0, t1].

5.1. Propagation faraway from the crossing area

In this section, we analyze the propagation of wave packets in a region where the gap is bounded
from below. It gives the opportunity to introduce the method that we shall use in the next section
for a small gap region. So, we fix δ = δ0, δ0 > 0 small but independent on ε and we work in the
open set

Ω := {z ∈ R2d, |h2(t, z)− h1(t, z)| > δ0, ∀t ∈ [t0, t1]}, D = I × Ω

where I is an open interval of R containing [t0, t1] and where the gap condition is also satisfied. We
associate with Hε the formal series of Theorems 4.9 and 4.8 for each of the modes:

Πε
` =

∑
j≥0

εjΠ`,j and Hadia,ε
` =

∑
j≥0

εjHadia
`,j

and we will use the notation introduced in (4.3).
With z0 ∈ Ω, we associate the open sets Ω0, Ω1, Ω2 and Ω3 such that

z0 ∈ Ω0 b Ω2 b Ω1 b Ω3 b Ω

61



62 5. PROPAGATION OF WAVE PACKETS THROUGH SMOOTH CROSSINGS

where Ω0 and Ω2 are constructed so that for any initial data z ∈ Ω0 the flows are staying in Ω2:

Φt,t0h`
(z) ∈ Ω2, ∀t ∈ [t0, t1], ∀z ∈ Ω0, ∀` ∈ {1, 2}.

We associate cut-offs to these subsets. We take χ0 ∈ C∞0 (Ω0) with χ0 = 1 near z0. Then, we
choose K0 a compact neighborhood of z0 in Ω0, which implies that Ω2 is a neighborhood of

K̃`,0 := {Φt,t0h`
(K0), t0 ≤ t ≤ t1}, ` ∈ {1, 2}.

So we can choose χ2 ∈ C∞0 (Ω) with χ2 = 1 on K̃0 = K̃1,0 ∪ K̃2,0. Finally, we take χ1, χ3 ∈ C∞0 (Ω)
with χ1 = 1 on supp(χ2) and χ3 = 1 on supp(χ1).

For ` ∈ {1, 2}, we set

H̃adia,ε,N
` (t) = χ3H

adia,ε,N
` (t),

which is a smooth subquadratic Hamitonian, and we consider Uadia,ε,N
` (t, s) the propagator associ-

ated with the Hamiltonian χ1H
adia,ε,N
` (t).

The next result is the usual adiabatic decoupling that results from the preceding analysis.

Proposition 5.2 (adiabatic decoupling - I). Let k ∈ N.

(i) For any ` ∈ {1, 2}, we have in L(Σkε),(
iε∂t − Ĥε(t)

)
opε

(
χ1ΠN,ε

` (t)
)

opε(χ2) =(5.1)

opε

(
χ1ΠN,ε

` (t)
) (

iε∂t − opε

(
χ3H

adia,N,ε
` (t)

))
opε(χ2) +O(εN+1).

(ii) Let ψε0 ∈ Σkε such that χ̂0ψ
ε
0 = ψε0 +O(ε∞). Set

ψε,N` (t) = opε

(
χ1ΠN,ε

` (t)
)
Uadia,N,ε
` (t, t0) opε

(
χ0ΠN,ε

` (t0)
)
ψε0, ` ∈ {1, 2}.

Then we have in Σkε ,

(5.2) UεH(t, t0)ψε0 = ψε,N1 (t) + ψε,N2 (t) +O(εN+1), ∀t ∈ [t0, t1].

Remark 5.3. (1) The assumption satisfied by (ψε0)ε>0 in (ii) of Proposition 5.2 is some-
times referred in the literature as having a compact semi-classical wave front set.

(2) In the proof below, the reader will notice that we do not need to assume that Hε(t) is

sub-quadratic, we only need to know that Ĥε(t) defines a unitary Schrödinger propagator
in L2(Rd,Cm). However, we use the boundedness of the derivatives of the projectors.

Proof. (i) We fix ` ∈ {1, 2}. Using Theorem 4.9, we obtain

(iε∂t −Hε(t))~ (χ1Πε,N
` (t)

)
= χ1(iε∂t −Hε(t))~

(
χ1Πε,N

` (t)
)

+ εN+1RεN

= χ1

(
Πε,N
` (t)

)
~
(
iε∂t −Hadia,ε,N

` (t)
)

+ εN+1RεN

=
(
χ1Πε,N

` (t)
)
~
(
iε∂t − H̃adia,ε,N

` (t)
)

+ εN+1RεN

where the RεN s are rest terms that may change from one line to the other one and all satisfy
χ2R

ε
N = 0 and where we have used that χ3χ1 = χ1. The relation on operators follows from

Theorem B.1 and Corollary B.2 (with δ = 1).
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(ii) Let K0 = supp(χ0). We apply (5.1) and we use that χ2 is identically equal to 1 on the

compact set K̃0. Hence, using Egorov Theorem of Appendix C.1, we have for ` ∈ {1, 2}

χ̂1 Uadia,N,ε
` (t, t0) χ̂0 = χ̂1 Uadia,N,ε

` (t, t0) χ̂0 Uadia,N,ε
` (t, t0)−1 Uadia,N,ε

` (t, t0)

= Uadia,N,ε
` (t, t0) χ̂0 +O(εN+1).

Hence we deduce (5.2) from (5.1) using again the Egorov Theorem and that

opε

(
χ1ΠN,ε

1 + χ1ΠN,ε
2

)
χ̂0 = χ̂0 +O(εN+1).

�

The adiabatic decoupling of Proposition 5.2 and Egorov Theorem (see Proposition C.1) allows
to give an explicit description at any order of the solution of equation (1.1) for initial data that are
focalized wave packets.

Indeed, by the technics of Appendix C that are classic when δ = 1 (see for example the recent
edition of [13]), one constructs two maps R1(t, t0, z) and R2(t, t0, z) introduced in (1.20)) and one
has the following result (see Proposition C.5).

Theorem 5.4. Assume that ψε0 a polarized wave packet:

ψε0 = ~V0WPεz0(f0), with f0 ∈ S(Rd) and ~V0 ∈ Cm.
Let N ≥ 1 and k ≥ 0. Then, there exists a constant CN,k > 0 such that the solution ψε(t) of (1.1)
satisfies for all t ∈ [t0, t1], ∥∥∥ψε(t)− (ψε,N1 (t) + ψε,N2 (t)

)∥∥∥
Σkε

≤ CN,k εN ,

with for ` ∈ {1, 2} and for all M ≥ 0,

ψε,N` (t) = e
i
εS`(t,t0,z0) WPεz`(t)

R`(t, t0, z0)M[F`(t, t0)]
∑

0≤j≤M

εj/2 ~B`,j(t)f0

+O(εM/2),

where ~B`,j(t) are differential operators of degree ≤ 3j with vector-valued time-dependent coefficients
satisfying (1.40) and (1.41).

5.2. Propagation close to the crossing area

Our goal in this section is to extend the result of Theorem 5.4 up a the time t[ − cδ for some
c > 0 and δ � 1. We follow the same strategy as in the preceding section and checks carefully the
dependence in δ of the estimates.

More precisely, the situation is the following: we consider a wave packet at initial time t0
that is focalized along the mode h1 at some point z0. We let it evolve along that mode according
to Theorem 5.4, up to (t1, z1) conveniently chosen and we consider ψε(t1) as a new initial data,
knowing that it is a wave-packet, modulo O(ε∞). The point (t1, z1) is chosen close enough to (t[, ζ[)
such that |t1 − t[|+ |z1 − ζ[| ≤ η0 where η0 is defined in the next Lemma.

Lemma 5.5. Assume (t[, ζ[) is a generic smooth crossing point as in Definition 1.2 and consider
δ ∈ (0, 1].

(1) There exist η0 > 0 and c0 > 0 such that we have

|f(t,Φt,t1h1
(z))| ≥ c0|t− t[| if |t− t[|+ |z − ζ[| ≤ η0.
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(2) There exists c,M > 0 such that for all (t, z) satisfying
∣∣z − Φt,t1h1

(z1)
∣∣ ≤ cδ, we have

|f(t, z)| ≥ c0δ −Mcδ ≥ c0
2
δ.

Proof. The result comes readily from the transversality of the curve t 7→ Φt,t1h1
(z) to the set

Υ = {f = 0}. Recall that this transversality is due to Point (b) of Assumption 1.2. �

Our goal is to prove accurate estimates for the evolution of the solution ψε(t) of the Schrödinger
equation with the initial data ψε(t1), for t ∈ [t1, t

[ − cδ]. We thus have to improve in this precise
setting the accuracy of the estimates obtained before for fixed δ = δ0.

We use the control in the small parameter δ of the Moyal product rule for ε-Weyl quantization
as stated in Lemma 4.3 and the estimates in the Egorov Theorem for symbols in the classes Sε,δ.
Finally, the construction of the cut-off functions relies on the fact that due to Point (b) of Assump-
tion 1.2, we can apply a straightening theorem for vector fields.

In several place we need to replace δ by cδ, for a finite number of 0 < c = c0, c1, · · · , cL (L ∈ N).
We will not mention that point each time.

5.2.1. Localization up to the crossing region. We construct the cut-off functions by using
thin tubes along the classical trajectories. We use a straightening theorem for non singular vector
fields. We set D(z1, ρ1) = {|z − z1| ≤ ρ1} and consider a branch of trajectory

T1 := {Φt,t1h (z1), t ∈ [t1, t
+
1 ]}, t+1 > t[.

Lemma 5.6. [2] Let be P1 a transverse hyperplane to the curve T1 in z1. There exist ρ1 > 0
and t−1 < t1 < t[ < t+1 such that the map

(t, z) 7→ Φt,t1h (z)

is a diffeomorphism from ]t−1 , t
+
1 [×D(z1, ρ1) onto a neighborhood W1 of T1 in P1.

Hence for any z in the tube W1, we have

z = Φ
τ(z),t1
h (Y (z))

where τ and Y are smooth functions of z, τ(z) ∈ [t1, t
+
1 ], Y (z) ∈ D(z1, ρ1).

We then define the cut-off functions as follows: consider

• ζ ∈ C∞0 (]− 2, 2[) equal to 1 in [−1, 1],
• θ ∈ C∞(R) with θ(t) = 0 if t ≤ −1 and θ(t) = 1 if t ≥ 1,

we set for δ > 0,

χδ(z) = θ

(
τ(z)− t−1

η

)
(1− ζ)

(
τ(z)− t[

cδ

)
ζ

(
|z − Φ

τ(z),t1
h (z1)|2

(Cδ)2

)
,

where c > 0, C > 0 and η > 0 is a small enough constant.

By adapting the constants c and C conveniently, we construct some functions

χδj ∈ C∞0 (R2d, [0, 1]), j ∈ {1, 2, 3},

such that

(1) χδj = 1 on
⋃

t0≤t≤t1

B
(
Φt0,th (z0), cjδ

)
and χδj is supported in

⋃
t0≤t≤t1

B
(
Φt0,th (z0), 2cjδ

)
,
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(2) for all γ ∈ N2d, there exists Cγ such that for all z ∈ R2d

|∂γzχδj(z)| ≤ Cγ δ−|γ|,

(3) χδ3 = 1 on suppχδ1 and χδ1 = 1 on suppχδ2.

Finally, with χ0 ∈ C∞0 (R2d, [0, 1]) satisfying χ0 = 1 on B(0, 1) and χ0(z) = 0 for |z| ≥ 2, we
associate

χδ0(z) = χ0

(
z1 − z
δ

)
.

And we consider χ4 a smooth fixed cut-off (δ-independent).

5.2.2. Adiabatic decoupling close to the gap. Omitting the mode index, we set

(5.3) H̃adia,N,ε(t) = χ4

(
h(t) + εHadia

1 (t)
)

+ χδ3

 ∑
2≤j≤N

εjHadia
j (t)

 .

Notice that, because the crossing is smooth, the eigenavalues h`, π` and the first adiabatic correctors
Hadia
`,1 are smooth, even in a neighborhood of (t[, ζ[).

Let Uadia,N,ε(t, s) be the quantum propagator associated with the Hamiltonian H̃adia,N,ε(t)
(omitting once again the index ` = 1). The following result is a consequence of the sharp estimates
given in [6] concerning propagation of quantum observables (see (ii) of the Egorov Theorem C.1).

Proposition 5.7. Consider the cut-off functions χδ0 and χδ2 defined above and set for t ∈
[t1, t

[ − cδ]
opε(χ

δ
0(t, t1)) := Uadia,ε,N (t, t1) opε(χ

δ
0) Uadia,ε,N (t1, t).

Then, for any M ≥ 1, z ∈ R2d and t ∈ [t1, t
[ − cδ], we have:

(1− χδ2)~ χδ0(t, t0, z) =
( ε
δ2

)M
ζM (t) with ζM (t, z) ∈ Sδ2(D).

Revisiting the proof of Proposition 5.2, using Lemma 4.3 for the formal series Πε
` ∈ S0

δ2(D) and

using (3) of Theorem 4.9 about Hε,adia
` , we obtain the following result.

Proposition 5.8 (adiabatic decoupling - II). With the previous notations, we have the follow-
ing properties.

(ii) For t1 ≤ t ≤ t[ − δ, we have(
iε∂t − Ĥε(t)

)
opε

(
χδ1 ΠN,ε(t)

)
opε(χ

δ
2)(5.4)

= opε
(
χδ1 ΠN,ε(t)

) (
iε∂t − opε(H̃

adia,N,ε(t))
)

opε(χ
δ
2) +O

(( ε
δ2

)N+1

δ−κ0

)
where κ0 ∈ N is N -independent.

(ii) Set for ` = 1,

ψε,N` (t) = opε

(
χδ1ΠN,ε

` (t)
)
Uadia,N,ε
` (t, t1) opε

(
χδ0ΠN,ε

` (t1)
)
ψε(t1)

where ψε(t1) = UεH(t1, t0)ψε(t0). Then we have, for N ≥ 2 and for all t ∈ [t1, t
[ − δ],

UεH(t, t0)ψε0 = ψε,N1 (t) + ψε,N2 (t) +O
(( ε

δ2

)N+1

δ−κ0

)
.

where Uadia,N,ε
` is the propagator associated with the Hamiltonian H̃adia,N,ε(t).
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The Remark 5.3 is valid also for this Proposition, furthermore here the coefficients of the

expansion of ψε,Nj (t) in
√
ε are δ-dependent for the order εk/2 for k ≥ 2.

Note that the integer κ0 stems from the symbolic calculus estimates of Theorem B.1.

5.2.3. Application to wave packets. As in Theorem 5.4, the previous results have con-
sequences for wave packets propagation and give an asymptotic expansion mod O(ε∞) for any
α < 1/2 if δ ≈ εα. In other words the super-adiabatic approximation is valid for times t such that
|t− t[| ≥ ε1/2−η, for any η > 0. The results of Appendix C give the following result.

Theorem 5.9. Consider

ψε1 := ψε(t1) = WPεz1(ϕε1), ϕε1 ∈ S(Rd) modulo O(ε∞).

There exist N0 ∈ N and two families of differential operators
(
~B`,j(t)

)
j∈N

, ` ∈ {1, 2} such that

setting for t ∈ [t1, t
[ − δ]

(5.5) ψε,N` (t) = e
i
εS`(t,t0,z0)WPεz`(t)

R`(t, t0)M[F`(t, t0)]
∑

0≤j≤2N

εj/2 ~B`,j(t)ϕ0

 ,

one has the following property: for all k ∈ N, N ∈ N, there exists CN,k > 0 such that the solution

ψε(t) of (1.1) satisfies for all t ∈ [t1, t
[ − δ].∥∥∥ψε(t)− (ψε,N1 (t) + ψε,N2 (t)

)∥∥∥
Σkε

≤ CN,k
( ε
δ2

)N+1

δ−κ0 .

Moreover the operators B`,j(t) are differential operators of degree ≤ 3j with time dependent smooth
vector-valued coefficients and satisfy (1.40) and (1.41).

5.3. Propagation through the crossing set

We now use the rough reduction of section 4.2 to treat the zone around the crossing. We fix
the point (t[, ζ[) ∈ Υ and consider trajectories z1(t) and z2(t) arriving simultaneously at time t[ in
the point ζ[. We consider N ∈ N and we set

ψε,N
`

(t) = π̂ε,N` (t)ψε(t), ` ∈ {1, 2}.

By Theorem 4.5, if k ∈ N, the solution ψε(t) of the Schrödinger equation (1.1) satisfies in Σkε ,

(5.6) ψε(t) = ψε,N
1

(t) + ψε,N
2

(t) +O(εN+1).

Our aim in this section is to determine ψε(t[+δ) in terms of ψε(t[−δ) by using the description (5.6)
of ψε(t).

The family ψε,N = t(ψε,N
1

, ψε,N
2

) satisfies

(5.7) iε∂tψ
ε,N = Ĥε,N (t)ψε,N

with

Hε,N (t) :=

(
hε,N1 (t, z) 0

0 hε,N2 (t, z)

)
+

(
0 W ε,N (t)

W ε,N (t)∗ 0

)
.

According to Theorem 4.5, the Hamiltonian Hε is subquadratic (see Definition 1.1), thus for k,N ∈
N there exists Ck,N > 0 such that for all ε > 0 and t ∈ I,

(5.8) ‖Ŵ ε,N (t)‖L(Σk+1
ε ,Σkε ) ≤ Ck,Nε.
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We have used here the fact that the asymptotic series W ε, starts with the term of order ε and we
recall that the value of W1 is given in (1.44).

Let us summarize the information about the data that comes from the preceding section. Let
δ > 0, for all s ∈ (t[ − δ, t[ − δ

2 ),

(5.9) ψε,N (s) = t
(

WPεz1(s)(ϕ
ε,N
1 (s)),WPεz2(s)(ϕ

ε,N
2 (s))

)
,

with for ` = 1, 2,

ϕε,N` =

N∑
j=0

ε
j
2ϕj,`, ϕj,` ∈ S(Rd).

Our aim is to prove that the description of ψε,N (s) given in Equation (5.9) extends to s = t[ + δ

and to derive precise formula for ϕj,`(t
[ + δ) when j = {0, 1} and ` ∈ {1, 2}.

We consider the Hamiltonians

Hε,N
diag(t, z) =

(
hε,N1 (t, z) 0

0 hε,N2 (t, z)

)
and

εHε,N
adiag(t, z) =

(
0 W ε,N (t)

W ε,N (t)∗ 0

)
.

so that Hε,N = Hε,N
diag + εHε,N

adiag. We fix N large enough and, for simplifying the notations, we drop
the mentions of N in the following. We use the notations

UεH(t, s) and UεHdiag
(t, s)

for the propagators associated to the truncated Hamiltonians Hε,δ,N (t) and Hε,N
diag(t) respectively,

omitting the mention of δ in UεH(t, s). The action of UεH(t, s) on wave packets is described by the next

Theorem on which we focus now. It gives a precise description of the action of UεH(t[+δ, t[−δ) on a
wave packet and describes the propagation of a wave packet through the crossing set, in particular
the exchange of modes at the crossing points.

Theorem 5.10. Let k,N,M ∈ N with M ≤ N . Let δ > 0 such that δ2 ≥
√
ε. Then, there

exists C > 0 and an operator Θε,δ
M such that for all ε ∈ (0, 1),

(5.10) UεH(t[ + δ, t[ − δ) = Uεdiag(t[ + δ, t[) Θε,δ
M U

ε
diag(t[, t[ − δ) +Rε,δM

with ‖Rε,δM ‖L(Σk+M+1
ε ,Σk) ≤ Cδ

M+1 and

Θε,δ
M (t[) = I +

∑
1≤m≤M

Θε,δ
m,M (t[).

Moreover, there exists ε0 > 0, and a family of operators (T ε,δm,M )m≥1 such that for all ~ϕ ∈ S(Rd,C2),

m ≥ 1, ε ∈ (0, ε0),

(5.11) Θε,δ
m,MWPζ[(ϕ) = WPεζ[(T

ε,δ
m,M ~ϕ) +O(

√
ε‖ϕ‖Σk+2m+2)

with

(5.12) ‖T ε,δm,M ~ϕ‖Σk ≤ ck,m,M ε
m
2 | log ε|max(0,m−1) ‖~ϕ‖Σk+2m+1
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for some constants ck,m > 0. Besides, with the notation (1.43)

(5.13) T ε,δ1,M =

(
0 W1(t[, ζ[)T [2→1

W1(t[, ζ[)∗T [1→2 0

)
.

We point out that some additional action effects will appear when applying UεH(t[+ δ, t[− δ) to

a wave packet via the operators Uεdiag(t[ + δ, t[) and Uεdiag(t[, t[ − δ). When applied to a Gaussian

wave packets, i.e. when ϕ`,1 = gΓ
` in (5.9), the leading order correction term at time t[ + δ due to

the crossing is

√
ε

(
e
i
εS1(t[+δ,t[,ζ[)+ i

εS2(t[,t0,z0)WPεz1(t[+δ)(ϕ1)

e
i
εS2(t[+δ,t[,ζ[)+ i

εS1(t[,t0,z0)WPεz2(t[+δ)(ϕ2)

)
with

ϕ1 =M[F1(t[ + δ, t[, ζ[)]W1(t[, ζ[)T [2→1M[F2(t[, t0, z0)]gΓ
2 ,

ϕ2 =M[F2(t[ + δ, t[, ζ[)]W1(t[, ζ[)∗T [1→2M[F1(t[, t0, z0)]gΓ
1 .

Recall that W1 is the off-diagonal matrix described in (1.44).

The remainder of this section is devoted to the proof of Theorem 5.10. The use of Dyson series
allows to obtain the decomposition (5.10) (see Section 5.3.1). Then, the analysis of each terms
of the series is made in Sections 5.3.2 and 5.3.3. Finally, we recall how to compute explicitly the

quantities T ε,δm,M and S[1,m in Section 5.3.5, which was already done in [20].

Before starting the proof, we introduce a cut-off χδ(t) = χ
(
t−t[
δ

)
, χ0 ∈ C∞0 ]− 1, 1[, χ0(t) = 1

if |t| ≤ 1/2. We set

Hε,δ,N (t) = Hε,N
diag(t) + εχδ(t− t[)Hε,N

adiag(t)

and we consider the propagator UεHδ(t, s) associated with Hε,δ,N . We claim that if Theorem 5.10

holds for UεHδ(t, s), then it also holds for UεH(t, s).

Indeed, we have for t ∈ [t[ + δ, t[ + δ
2 ],

UεH(t, t[−δ) = UεHδ(t
[+δ, t[−δ)ψε,N (t[−δ)+i

∫ t

t[−δ
UεHδ(t, s)(1−χδ)(s−t

[)Ĥε,N
adiag(s)UεH(s, t[−δ)ds.

This formula allows to obtain (5.10) for UεH(t, t[−δ). It remains to consider the action of UεH(t, t[−δ)
on asymptotic sum of wave packets We observe that in the support of the integral, |t[ − s| > δ

2

and −δ ≤ s− t[ ≤ δ
2 . Therefore, s ∈ [t[ − δ, t[ − δ

2 ] on the support of the integral. where we know

that UεH(s, t[− δ) propagates wave packets, whence the expansion in wave packets To conclude, we

observe that since |t[ − s| > δ
2 on the support of the integral term, we have

UεH(t[ + δ, t[ − δ) = UεHδ(t
[ + δ, t[ − δ) +O(δ2) = UεHδ(t

[ + δ, t[ − δ) + o(
√
ε)

so the formula for the first two terms of the asymptotic assumptions are the same.

In view of these considerations, we focus in the next sections in proving Theorem 5.10 for the
Hamiltonian Hε,δ,N (t).
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5.3.1. Dyson expansion. We perform a Dyson expansion via the Duhamel formula. A first
use of Duhamel formula gives for t1, t2 ∈ R,

(5.14) UεH(t2, t1) = UεHdiag
(t2, t1) + i−1

∫ t2

t1

UεH(t2, s1)Ĥε
adiag(s1)UεHdiag

(s1, t1)ds1.

With one iteration of the Duhamel formula, we obtain

UεH(t2, t1) = UεHdiag
(t2, t1) + i−1

∫ t2

t1

UεHdiag
(t2, s1)Ĥε

adiag(s1)UεHdiag
(s1, t1)ds1

−
∫ t2

t1

∫ t2

s1

UεH(t2, s2)Ĥε
adiag(s2)UεHdiag

(s2, s1)Ĥε
adiag(s1)UεHdiag

(s1, t1)ds1ds2.

With two iterations, we have

UεH(t2, t1) = UεHdiag
(t2, t1) + i−1

∫ t2

t1

UεHdiag
(t2, s1)Ĥε

adiag(s1)UεHdiag
(s1, t1)ds1

−
∫ t2

t1

∫ t2

s1

Uεdiag(t2, s2)Ĥε
adiag(s2)UεHdiag

(s2, s1)Ĥε
adiag(s1)UεHdiag

(s1, t1)ds1ds2

− 1

i

∫ t2

t1

∫ t2

s2

∫ t2

s1

UεHdiag
(t2, s3)Ĥε

adiag(s3)Uεdiag(s3, s2)Ĥε
adiag(s2)

× UεHdiag
(s2, s1)Ĥε

adiag(s1)UεHdiag
(s1, t1)ds1ds2

After M iterations, M ∈ N, we have the Dyson formula

UεH(t2, t1) = UεHdiag
(t2, t1)

(
I+∑

1≤m≤M

(i)−m
∫
P(t2,t1)

F ε(s1, · · · , sm, t1)dsm · · · ds1

)
+RεM (t2, t1)

with

(5.15) F ε(s1, · · · , sm, t1) = E(sm, t1)E(sm−1, t1) · · ·E(s2, t1)E(s1, t1),

where the operators E(s, t1) are given by

(5.16) E(s, t1) = UεHdiag
(t1, s)Ĥε

adiag(s)UεHdiag
(s, t1),

and the set of integration P(t2, t1) ⊂ RM satisfies

P(t2, t1) = {t1 ≤ sM ≤ · · · ≤ s2 ≤ s1 ≤ t2}.

Besides, by (5.8) there exists a constant C > 0 such that

‖RεM (t2, t1)‖L(Σk+M+1
ε ,Σkε ) ≤ C|t2 − t1|

M+1.
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We apply this formula to t1 = t[, t2 = t[ + δ,

UεH(t[ + δ, t[ − δ) = UεHdiag
(t[ + δ, t[)

(
I+∑

1≤m≤M

(i)−m
∫
sM∈R

∫ sM

−∞
· · ·
∫ s2

−∞
F ε(s1, · · · , sM , t[)dsM · · · ds1

)
UεHdiag

(t[, t[ − δ)

+RεM (t[ + δ, t[)UεHdiag
(t[, t[ − δ)

which gives equation (5.10) with

Θε,δ
m,M = (i)−m

∫
sM∈R

∫ sM

−∞
· · ·
∫ s2

−∞
F ε(s1, · · · , sM , t[)dsM · · · ds1

and Rε,δM = RεM (t[ + δ, t[ − δ)UεHdiag
(t[, t[ − δ) satisfies

‖Rε,δM ‖L(Σk+M+1
ε ,Σk) ≤ Cδ

M+1.

The operators Θε,δ
m,M contain all the information about the interactions between the modes h1

and h2 modulo O(δ∞) when M goes to +∞.

In the next sections, we focus in understanding the action of Θε,δ
m,M on wave packets of the form

WPεζ[(~ϕ) =

(
WPεζ[(ϕ1)

WPεζ[(ϕ2)

)
and in proving equations (5.11), (5.12) and (5.13).

5.3.2. Analysis of the matrices E(s, t[). We have

E(s, t[) =

(
0 I(s, t[)

I∗(s, t[) 0

)
, s ∈ [t[ − δ, t[ + δ]

with

(5.17) I(s, t[) = Uε
hε,N1

(t[, s)χδ(s− t[)W ε,N (s)Uε
hε,N2

(s, t[).

This operator combines conjugation of the pseudodifferential operator χδ(s − t[)W ε,N (s) by the
propagator Uε

hε,N2

(s, t[) and composition by two different propagators Uε
hε,N1

(t[, s) and Uε
hε,N2

(t[, s).

Indeed, we can write

I(s, t[) =
(
Uε
hε,N1

(t[, s)W ε,N (s)Uε
hε,N1

(s, t[)
)
◦
(
Uε
hε,N1

(t[, s)Uε
hε,N2

(s, t[)
)
.

The conjugation of a pseudo by a propagator is perfectly understood and is described in our setting
by the Egorov Theorem of Appendix C (with δ = 1). The operator Uε

hε,N2

(t[, s)W ε,N (s)Uε
hε,N2

(s, t[)

has an asymptotic expansion.

Uε
hε,N2

(t[, s)W ε,N (s)Uε
hε,N2

(s, t[) =
∑
j≥1

εjW j(s).

Similarly, for I∗(s, t[), one writes

I∗(s, t[) =
(
Uε
hε,N2

(t[, s)W ε,N (s)∗Uε
hε,N2

(s, t[)
)
◦
(
Uε
hε,N2

(t[, s)Uε
hε,N1

(s, t[)
)
.
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Note that the actions of these two operators are perfectly adapted to the geometric con-
text: I(s, t[) picks the contribution of the second component (the lower one), which lives on the
mode 2, transforms it into something related with the mode 1 (the upper one), via the opera-
tor Uε

hε,N1

(t[, s)Uε
hε,N2

(s, t[), and then, an operator related to the first mode acts on what is now a

component living on this precise mode. And conversely for I∗(s, t[).
The action on wave packets of two different propagators acting one backwards and the other

one forwards has been studied in [20] (see Section 5.2). Using Egorov theorem, the action of scalar
propagators on wave packets, and the precise computation of the operator Uε

hε,N1

(t[, s)Uε
hε,N2

(s, t[)

performed therein (which involves the canonical transformation of the phase space z 7→ Φt
[,s

1 ◦
Φs,t

[

2 (z)), one obtains the analogue of Lemma 5.3 of [20], which writes in our context as follows.

Lemma 5.11. Let k ∈ N. There exist

- A smooth real-valued map s 7→ Λ(s) with Λ(0) = 0, Λ̇(0) = 0, Λ̈(0) = 2µ[ + α[ · β[,
- A smooth vector-valued map s 7→ z(s) = (q(s), p(s)) with z(0) = 0, ż(0) = (α[, β[),

- A smooth map σ 7→ Qε(s) of pseudodifferential operators, that maps Schwartz functions

to Schwartz functions, with Qε(s) =
∑M
j=0 ε

jQj(s) +QεM+1,

Q0(0) = W1(t[, ζ[)∗

such that for all ϕ ∈ S(Rd),

I(s, t[)∗WPε(ϕ)(y) = WPε
(

e
i
εΛ(s−t[)Qε(s− t[)eipε(s−t

[)·(y−qε(s−t[))ϕ(y − qε(s− t[)) +Rεϕ
)

with, for some cM > 0

‖Qj(s)ϕ‖Σk ≤ cM‖ϕ‖Σk+1 , ∀j ∈ {1, · · · ,M},
‖QM+1(s)ϕ‖Σk ≤ cM‖ϕ‖Σk+1+κ0 ,

‖Rεϕ‖Σk ≤ cM ‖ϕ‖Σk+1+κ0 ,

where we have used the scaling notation zε(s) = z(s)/
√
ε and where κ0 is the universal constant of

Theorem B.1.

A similar result holds for I(s, t[) by replacing W1(t[, ζ[)∗ by W1(t[, ζ[) and exchanging the roles
of the modes h1 and h2.

5.3.3. Uniform estimates for the elements of the Dyson series. We now focus on the

operators Θε,δ
m,M . For s ∈ [t[−δ, t[+δ], we define recursively the quantities Jm(s) for m ∈ {1, · · ·M}

by

J1(s) = −i
∫ s

−∞
E(s1, t

[)ds1

and for m ≥ 2,

Jm(s) = −i
∫ s

−∞
E(sm, t

[)Jm−1(sm)dsm.

We recall that E1(s, t[) is supported on |t[ − s| ≤ δ due to the cut-off function χδ(s − t[) that
appears in (5.17). With these notations,

Θε,δ
m,M = Jm(t[ + δ).
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We are reduced to proving the existence of operators s 7→ T ε,δm (s) such that for all s ∈ [t[− δ, t[+ δ]
and ~ϕ ∈ S(Rd,C2),

(5.18) Jm(s)WPεζ[(~ϕ) = WPεζ[(T
ε,δ
m (s)~ϕ),

with for all k ∈ N, the estimate 5.12. Note that we are omitting the index M of the notations of
Theorem 5.10.

If the functions T ε,δm exist, they satisfy for s′ ∈ [t[ − δ, t[ + δ] the recursive equations

WPεζ[
(
T ε,δm+1(s)~ϕ

)
2

= −i
∫ s′

−∞
I(s, t[)∗WPεζ[

(
T ε,δm (s)~ϕ

)
1
ds

and

WPεζ[
(
T ε,δm+1(s)~ϕ

)
1

= −i
∫ s′

−∞
I(s, t[)WPεζ[

(
T ε,δm (s)~ϕ

)
2
ds.

Therefore, by Lemma 5.11, if the functions T ε,δm exist, they satisfy for s′ ∈ [t[−δ, t[+δ] the recursive
equations(

T ε,δm+1(s)~ϕ
)

2
=

∫ s′

−∞
e
i
εΛ(s−t[)Qε(s− t[)eipε(s−t

[)·(y−qε(s−t[))(T ε,δm (s)~ϕ)1(y − qε(s− t[))ds

and some analogue equation for the other components.

At the stage of the proof, the operators T ε,δm are defined by a recursive process that we are
going to study for proving (5.12). Therefore, we focus on the analysis for scalar valued functions ϕ
of

Imϕ :=

∫ s′

−∞
e
i
εΛ(s−t[)Qε(s− t[)eipε(s−t

[)·(y−qε(s−t[))(T ε,δm (s)ϕ)(y − qε(s− t[))ds.

In the following sections, we prove (5.18) recursively:

(1) In Section 5.3.4, we prove that if m > 1 and if (5.18) holds for m′ = 1, 2, · · · ,m− 1, then
it also holds for m′ = m.

(2) In Section 5.3.5, we prove (5.18) when m = 1.

5.3.4. Proof of Lemma 5.12: the recursive argument. We use Lemma 5.11 to perform
a recursive argument on the structure of Jm(s).

Lemma 5.12. Assume there exists m ∈ {1, 2, · · · ,M−1} such that for all k ∈ N, we have (5.18)
with the inequality (5.12) for m and for the integers between 1 and m. Then, for all k ∈ N, there
exists a constant Ck,m+1 such that for all ϕ ∈ S(Rd), we have

‖Iϕ‖Σk ≤ Ck,m+1ε
m+1

2 | log ε|max(0,m)‖ϕ‖Σk+2(m+1)+1 .

This lemma, together with the precise computation of J1(t[ + δ) (see [20] and Section 5.3.5
below) concludes the proof of Theorem 5.10.

Note that at each step of the recursion one loose 2 degrees of regularity. One degree is lost
because the operator Qε that may has linear growth, and another loss is due to an integration by
parts that will involve the term y · pε in the phase and the argument qε inside the function ϕ. The
initial loss of regularity when m = 1 comes from similar reasons: one step is due to the presence of
the operator Qε and the two other ones by integration by parts.
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Let us start by exhibiting basic properties of Iϕ. After the change of variables s = t[ + σ
√
ε

and letting appear a cut-off χ̃ such that χχ̃ = χ, we write

Iϕ =
√
ε

∫ (s′−t[)/
√
ε

−∞
e
i
εΛ(σ

√
ε)χ(σ/λ)Qε(σ

√
ε)eipε(σ

√
ε)·(y−qε(σ

√
ε))

× (T ε,δm (t[ + σ
√
ε)ϕ)(y − qε(σ

√
ε))dσ

with

λ =
δ√
ε
.

One sees that the change of variable has exhibited a power
√
ε, which is exactly what one wants

to earn for the recursive process. However, even though the integrand is bounded, the size of the
support of the integral is large: it is of size λ = δ√

ε
, which spoils that gain of

√
ε. This integral will

turn out to be smaller than what gives this rough estimate because of the oscillations of the phase.
The proof then consists in integration by parts. For this reason, we are interested in derivatives
and we observe that the recursive assumption yields

(5.19) ‖∂sT ε,δm (s)~ϕ‖Σk ≤ Ck,mε
m−1

2 | log ε|max(0,m−2)‖~ϕ‖Σk+2(m−1)+1

and similarly for the integers between 2 and m.

Analysis of the phase. We know analyze the phase of the integral Iϕ. We set

φε(σ) = Λ(σ
√
ε)− 1

2
pε(σ
√
ε) · (y − qε(σ

√
ε)) and L = β[ · y − α[ ·Dy.

We will use that eisL maps Σk into itself continuously for all s ∈ R and k ∈ N. Besides, for δ ≤ δ0,
δ0 > 0 small enough, we have ∣∣∣∣ ddsφε(s)

∣∣∣∣ ≥ c0|s|, ∀|s| ≤ λ
and

eiφ
ε(s) =

1

s
bε(s)∂se

iφε(s) with bε(s) :=
s

i∂sφε(s)
.

The function bε(s) is uniformly bounded, as well as its derivatives, for |s| ≥ 1/2. Then, follow-
ing [20], we have

Imϕ =
√
ε

∫ (s′−t[)/
√
ε

−∞
eiφ

ε(σ)Qε(σ
√
ε)χ(σ/λ)eiLσT ε,δm (t[ + σ

√
ε)ϕdσ

and there exists a smooth function f such that

φε(σ) = µ[σ2 +
√
ε σ3 f(σ

√
ε).

At the stage of the proof, all the elements have been collected to perform the recursive argument.
Because of the considerations we have made on the support of the integral and because the

phase φε(s) is oscillating for s far away from 0, we use the cut-off function χ to write

Imϕ = Im,1ϕ + Im,2ϕ

with

Im,1ϕ =
√
ε

∫ (s′−t[)/
√
ε

−∞
eiφ

ε(σ)χ(σ)χ(σ/λ)Qε(σ
√
ε)eiLσT ε,δm (t[ + σ

√
ε)ϕdσ
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The compactly supported term. The term Im,1ϕ is the easiest to deal with since it has compact
support, independently of ε and δ. Therefore,

‖Im,1ϕ ‖Σk ≤ C
√
ε sup
s∈[t[−δ,t[+δ]

‖T ε,δm (s)ϕ‖Σk+1

≤ Cε
m+1

2 | log ε|max(0,m−1) ‖ϕ‖Σk+2m+2 .

Note that the presence of Qε induces a loss of regularity of 1.
The oscillating term. For dealing with the term Im,2ϕ , we take advantage of the oscillating phase

for compensating the fact that the support is large and we perform integration by parts. We write

Im,2ϕ =
√
ε

∫ (s′−t[)/
√
ε

−∞
∂σ

(
eiφ

ε(σ)
) 1

σ
bε(σ)(1− χ)(σ)χ(σ/λ)Qε(σ

√
ε)

× eiLσ(T ε,δm (t[ + σ
√
ε)ϕ)dσ

= −
√
ε

∫ (s′−t[)/
√
ε

−∞
eiφ

ε(σ)∂σ

(
1

σ
bε1(σ)eiLσT ε,δm (t[ + σ

√
ε)ϕ

)
dσ

+
√
ε

(
eiφ

ε(σ) 1

σ
bε1(σ)eiLσ

)∣∣∣∣
σ= s′−t[√

ε

T ε,δm (s′)ϕ

with

bε1(σ) = (1− χ)(σ)χ(σ/λ)Qε(σ
√
ε).

Note that the operator-valued functions σ 7→ bε1(σ) and σ 7→ 1
σ b
ε
1(σ) are bounded form Σk+1

ε to Σkε
(with a loss due to the presence of the operator Qε), and similarly for its derivatives. We write

Im,2ϕ = −
√
ε

∫ (s′−t[)/
√
ε

−∞
eiφ

ε(σ)∂σ

(
1

σ
bε1(σ)

)
eiLσ(T ε,δm (t[ + σ

√
ε)ϕ)dσ

−
√
ε

∫ (s′−t[)/
√
ε

−∞
eiφ

ε(σ) 1

σ
bε1(σ)eiLσ(iLT ε,δm (t[ + σ

√
ε)ϕ+

√
ε∂sT

ε,δ
m (t[ + σ

√
ε)ϕ)dσ

+
√
ε

(
eiφ

ε(σ) 1

σ
bε1(σ)eiLσ

)∣∣∣∣
σ= s′−t[√

ε

T ε,δm (s′)ϕ

and we check∥∥Im,2ϕ

∥∥
Σk
≤ C

√
ε

× sup
s∈[t[−δ,t[+δ]

(
‖T ε,δm (s)ϕ‖Σk+1 + (‖LT ε,δm (s)ϕ‖Σk+1 +

√
ε‖∂sT ε,δm (s)ϕ‖Σk+1)

∫
1
2≤|s|≤

δ√
ε

dσ

σ

)
≤ C

(√
ε ε

m
2 | log ε|max(0,m−1) ‖ϕ‖Σk+2m+3 + ε| log ε|ε

m−1
2 | log ε|max(0,m−1)‖ϕ‖Σk+2m

)
≤ Cε

m+1
2 | log ε|max(0,m) ‖ϕ‖Σk+2(m+1)+1 .

We point out that it is at that very last stage that we loose some log ε coefficient. Note also that
the loss of regularity in the recursive process is covered by the m→ m+1 process. It will appear in
the initialization process (m = 1) in which we will get rid of the logarithmic loss | log ε| by trading
it as a loss of regularity.
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5.3.5. Proof of Lemma 5.12: the initialization of the recursion. For initializing the
recursive process, we have to study J1(s), i.e. the integral Imϕ replacing the transfer operator of the
integrand by I, the identity operator. We obtain

Im=1
ϕ =

√
ε

∫ (s′−t[)/
√
ε

−∞
eiφ

ε(σ)Qε(σ
√
ε)χ(σ/λ)eiLσϕdσ.

Besides the estimate of the norm of Im=1
ϕ , we also want to calculate the leading order term when

s = t[ + δ. The main difference with the preceding analysis is that we can push the integration by
parts at any order because the integrand is simpler.

Lemma 5.13. Let k ∈ N. Then, there exists a constant Ck,1 such that for all ϕ ∈ S(Rd)

‖Im=1
ϕ ‖Σk ≤ Ck,1

√
ε ‖ϕ‖k+3.

Moreover, there exists an operator Θε,δ = Θε,δ
1 +

√
εΘε,δ

2 and a constant ck,M such that for all
M ∈ N,

‖ Im=1
ϕ

∣∣
s′=t[+δ

−
√
εW1(t[, ζ[)∗T [1→2ϕ− εΘε,δϕ‖Σk ≤ Ck,M

√
ε

(√
ε

δ

)M+1

‖ϕ‖Σk+M+3

with for ` = 1, 2, ‖Θε,δ
` ϕ‖Σk ≤ ck,M‖ϕ‖Σk+3 .

We recall that T [1→2 is the transfer operator defined in (1.43). In [20], this Lemma has already
be proved with M = 1. We ameliorate here this result. This terminates the proof of Theorem 5.10

with (T ε,δ1,M )2 = W1(t[, ζ[)∗T [1→2.

Proof. Following the same lines of proofs than above, we write Im=1
ϕ = I1,1

ϕ + I1,2
ϕ with

I1,1
ϕ =

√
ε

∫ (s′−t[)/
√
ε

−∞
eiφ

ε(σ)χ(σ)χ(σ/λ)Qε(σ
√
ε)eiLσϕdσ.

We point out that we use here the same notation than in the preceding section for a simpler
integrand. Like before, this term satisfies the estimate

‖I1
ϕ‖Σk ≤ C

√
ε ‖ϕ‖Σk+1 .

We proceed to integration by parts in I2
ϕ. We obtain

I1,2
ϕ = −

√
ε

∫ (s′−t[)/
√
ε

−∞
eiφ

ε(σ)∂σ

(
1

σ
bε1(σ)

)
eiLσϕdσ

− i
√
ε

∫ (s′−t[)/
√
ε

−∞
eiφ

ε(σ) 1

σ
bε1(σ)eiLσ L ϕdσ +

√
ε

(
eiφ

ε(σ) 1

σ
bε1(σ)eiLσ

)∣∣∣∣
σ= s′−t[√

ε

ϕ.

We write

∂σ

(
1

σ
bε1(σ)

)
= bε2(σ) +

1

σ
bε3(σ) with bε3(σ) = ∂σb

ε
1(σ) +

√
ε(1− χ)(σ)χ(σ/λ)∂sQε(

√
εσ).

where the maps σ 7→ bε2(σ), σ 7→ bε3(σ) and σ 7→ 1
σ b
ε
3(σ) are bounded from Σk+1

ε to Σkε (with a loss
of regularity because of the presence of Qε(s)) with the additional property∫

R
‖bε2(σ)‖L(Σk+1

ε , Σkε )dσ < c0 < +∞
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for some constant c0 independent of ε and δ. Therefore, in Σk,

I1,2
ϕ = −

√
ε

∫ (s′−t[)/
√
ε

−∞
eiφ

ε(σ) 1

σ
(bε3(σ) + ibε1(σ)L)eiLσϕdσ +O(

√
ε‖ϕ‖Σk+1).

Another integration by parts gives

I1,2
ϕ =

√
ε

∫ (s′−t[)/
√
ε

−∞
eiφ

ε(σ)∂σ

(
1

σ2
bε(σ)(bε3(σ) + ibε1(σ)L)

)
eiLσϕdσ

−
√
ε

(
eiφ

ε(σ) 1

σ2
bε(σ)(bε3(σ) + ibε1(σ)L)eiLσϕ

)∣∣∣∣
σ= s′−t[√

ε

+O(
√
ε‖ϕ‖Σk+1)

= O(
√
ε‖ϕ‖Σk+3),

since the integrand has gained integrability. Note that it is at that very place that we have a loss
of 3 momenta and derivatives in the estimate. We have obtained the first inequality that allows to
initiate the recursive process of the preceding section. It remains to focus on the case s′ = t[ + δ.

We now consider the operator

Iϕ =
1√
ε
Im=1
ϕ

∣∣
s′=t[+δ

−W1(t[, ζ[)T [1→2.

Note first that by the construction of the function χ,

Im=1
ϕ

∣∣
s′=t[+δ

=
√
ε

∫
R

eiφ
ε(σ)χ(σ/λ)Qε(σ

√
ε)eiLσϕdσ

Following [20] Section 5.3, we first transform the expression Im=1
ϕ

∣∣
s′=t[+δ

by performing the change

of variable

z = σ(1 +
√
εσf(σ

√
ε)/µ[)1/2

and observe that σ = z(1 +
√
εzg1(z

√
ε)) and ∂σz = 1 +

√
εzg2(z

√
ε) for some smooth bounded

functions g1 and g2 with bounded derivatives. Note that we have used that σ
√
ε is of order δ,

thus small, in the domain of the integral. Besides, there exists a family of operator Q̃ε(z) such

that Qε(σ
√
ε) = Q̃ε(z

√
ε) with Q̃ε(0) = Qε(0) and Q0(0) = W1(t[, ζ[) and a compactly supported

function χ̃, such that

Im=1
ϕ

∣∣
s′=t[+δ

=
√
ε

∫
R

eiµ
[z2 χ̃(z/λ)Q̃ε(z

√
ε)eiz(1+

√
εzg1(z

√
ε))Lϕ

dz

1 +
√
εzg2(z

√
ε)
.

A Taylor expansion allows to write

Q̃ε(z
√
ε)ei
√
εz2g1(z

√
ε))L 1

1 +
√
εzg2(z

√
ε)

= Q0(0) +
√
εz(Q̃ε1(z

√
ε) + zQ̃ε2(z

√
ε))

for some smooth operator-valued maps z 7→ Q̃εj(z
√
ε) mapping S(Rd) into itself, such that for all

ϕ ∈ S(Rd) the family ‖Q̃εj(z
√
ε)ϕ‖Σk ≤ cj‖ϕ‖Σk+2 (because of the loss of regularity involved by L

and Qε) We obtain

Iϕ = I1
ϕ + I2

ϕ



5.4. PROPAGATION OF WAVE PACKETS - PROOF OF THEOREM ?? 77

with

I1
ϕ =
√
ε

∫
R
z eiµ

[z2 χ̃(z/λ)(Q̃ε1(z
√
ε) + zQ̃ε2(z

√
ε))eizL ϕdz,

I2
ϕ = Q0(0)

∫
R

eiµ
[z2(1− χ̃)(z/λ) eizL ϕdz.

Let us study I1
ϕ. Arguing by integration by parts as previously, we obtain

I1
ϕ =−

√
ε

2iµ[

∫
R

eiµ
[z2 d

dz

(
χ̃(z/λ)(Q̃ε1(z

√
ε) + zQ̃ε2(z

√
ε)eizL

)
dz

= − ε

2iµ[

∫
R

eiµ
[z2 χ̃(z/λ)∂zQ̃ε1(z

√
ε)eizL dz

−
√
ε

2iµ[

∫
R
χ̃(z/λ)( eiµ

[z2∂z

(
Q̃ε2(z

√
ε) +

√
εz∂zQ̃ε2(z

√
ε)eizL

)
dz

−
√
ε

2iµ[

∫
R

eiµ
[z2 χ̃′(z/λ)

(
λ−1Qε1(z

√
ε) +

z

λ
Q̃ε2(z

√
ε)
)

eizL dz.

One then performs M + 2 integration by parts in the last term of the right-hand side that is
supported in |z| > λ

2 and we obtain

I1
ϕ =− ε

2iµ[

∫
R

eiµ
[z2 χ̃(z/λ)(∂zQ̃ε1(z

√
ε) + 2∂zQ̃ε2(z

√
ε))eizL dz

− ε

2iµ[

∫
R
χ̃(z/λ) eiµ

[z2z∂2
zQ̃ε2(z

√
ε)eizL dz +O

(√
ε
(ε
δ

)M+1

‖ϕ‖Σk+M+3

)
=
√
εΘε,δ

1 ϕ+O

((ε
δ

)M
‖ϕ‖Σk+M+3

)
+

ε

(2iµ[)2

∫
R

eiµ
[z2∂z

(
χ̃(z/λ)∂2

zQ̃ε2(z
√
ε)eizL

)
dz

=
√
εΘε,δ

1 ϕ+ εΘε,δ
2 ϕ+O

((ε
δ

)M
‖ϕ‖Σk+M+3

)
with

‖Θε,δ
1 ‖Σk ≤ c δ‖ϕ‖Σk+3 .

It remains to observe that the term I2
ϕ satisfies after M + 1 integration by parts

‖I2
ϕ‖Σk ≤ C

(√
ε

δ

)M+1

‖ϕ‖Σk+M+3 .

�

5.4. Propagation of wave packets - Proof of Theorem 1.21

Let k ∈ N and let be ψε0 a polarized wave packet as in (1.39):

ψε0 = ~V0WPεz0(f0) with f0 ∈ S(Rd) and ~V0 ∈ Cm.

Let δ > 0. By Theorem 5.9, for t ∈ [t0, t
[ − δ], and in Σkε , ψε(t) is an asymptotic sum of wave

packets and writes

ψε(t) = ψε,N1 (t) + ψε,N2 (t) +O
(( ε

δ2

)N
δ−κ0

)
.

with ψε,N` (t) given by (5.5).
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We now take the vector

ψε,N (t[ − δ) = t
(
ψε,N

1
(t[ − δ), ψε,N

2
(t[ − δ)

)
, ψε,N

`
(t[ − δ) = ψε,N` (t[ − δ), ` = 1, 2,

as initial data in the system (5.7). It is a sum of N wave packets. By construction, in particular
because of the linearity of the equation, we have for all t ∈ [t[ − δ, t[ + δ],

ψε(t) = ψε,N
1

(t) + ψε,N
2

(t) +O
(( ε

δ2

)N
δ−κ0

)
in Σkε . When t = t[ + δ, we deduce from Theorem 5.10 that in Σkε ,

ψε,N (t[ + δ) = Uεdiag(t[ + δ, t[)

I +
∑

1≤m≤M

Θε,δ
m,M

 Uεdiag(t[, t[ − δ)ψε,N (t[ − δ) +O(δM ).

By Proposition C.5 of the Appendix, ψε,N
`

(t[ + δ) is a sum of wave packets

ψε,N
`

(t[ + δ) =
∑

0≤m≤M

ε
m
2 ψε,m,M,N

`
(t[ + δ)

where each term ψε,m,M,N

`
(t[ + δ) involves a term of action. When m = 0 and m = 1, these terms

have been computed precisely:

• If m = 0, for ` = 1, 2,

ψε,0,M,N

`
(t[ + δ) = e

i
εS`(t

[+δ,t[−δ,ζ[)WPε
Φt
[+δ,t0 (z0)

(
M[F`(t

[ + δ, t0, z0)]π`(t0, z0)~V0f0

)
where we have used the property of the scalar propagation of wave packets.

• If m = 1, only the term with ` = 2 contributes and

ψε,1,M,N

2
(t[ + δ) = e

i
εS2(t[+δ,t[,ζ[)+ i

εS1(t[,t0,z0)WPε
Φt
[+δ,t[

2 (ζ[)
(ϕ2)

with

ϕ2 =M[F2(t[ + δ, t[, ζ[)]W1(t[, ζ[)∗T [1→2M[F1(t[, t0, z0)]π1(t0, z0)~V0f0,

where W1 is the off-diagonal matrix computed in (1.44).

At that stage of the proof, we have obtained that ψε(t[ + δ) is a sum of wave packet in Σkε up to

O
((

ε
δ2

)N
δ−κ0 + δM+1

)
and we know precisely the terms of order ε0 and ε

1
2 .

For concluding, we take the vector

ψεapp(t[ + δ) := ψε,N
1

(t[ + δ) + ψε,N
2

(t[ + δ)

as initial data at time t = t[+δ in the equation (1.1). The function ψεapp(t[+δ) is an approximation

of ψε(t[ + δ) at order O
((

ε
δ2

)N
δ−κ0 + δM+1

)
in Σkε . By construction and because of the linearity

of the equation, for all times t ∈ [t[ + δ, t0 + T ],

ψε(t) = UH(t, t[ + δ)ψεapp(t[ + δ) +O
(( ε

δ2

)N
δ−κ0 + δM+1

)
.

We then applies Theorem 5.9 between times t[ + δ and t. Indeed, the classical trajectories involved
in the construction do not meet Υ again and we are in an adiabatic regime, as in theorem 5.9. This
concludes the proof of Theorem 1.21.



APPENDIX A

Matrix-valued Hamiltonians

We explain here the set-up and the technical assumptions that we make on the Hamiltonian Hε.
It is the occasion of motivating the set of Assumptions 1.4 and deriving their consequences. The
objectives of these assumptions are first to ensure the existence of the propagators associated with
the full matrix-valued Hamiltonian and with its eigenvalues, and secondly to guarantee adequate
properties of growth at infinity which are used in our analysis.

In this section, we work with m × m (m ∈ N) matrix-valued Hamiltonians H that are sub-
quadratic:

(A.1) ∀β ∈ Nd, ∃Cβ > 0, ∀(t, z) ∈ I × Rd, |∂βH(t, z)|Cm,m ≤ Cβ〈z〉(2−|β|)+.

Lemma A.1. Assume that the matrix-valued function H ∈ C∞(I × Rd,Cm,m) satisfies (A.1).
Assume that for all (t, z) ∈ I×R2d, H(t, z) has a smooth eigenvalue h with a smooth eigenprojector
π(t, z) of constant rank for |z| > m, > 0. Then, there exists a constant C > 0 such that for all
(t, z) ∈ I × R2d with |z| > m,

|h(t, z)| ≤ C〈z〉2, |∇h(t, z)| ≤ C〈z〉.

Proof. The relation Hπ = hπ implies |h(t, z)| ≤ C〈z〉2. Moreover, writing

H = hπ +H(1− π) = hπ + (1− π)H

and differentiating these two relations, we obtain for all j ∈ {1, · · · 2d}, denoting ∂zj by ∂j

(A.2) ∂jH = ∂jhπ + h∂jπ + ∂jH(1− π)−H∂jπ = ∂jhπ + h∂jπ + (1− π)∂jH − ∂jπH.
Multiplying from the left and the right with π and using that ∂π is off-diagonal, we obtain the
relation π∂jHπ = ∂jhπ, whence with c = Rank(π) = cte,

∂jh = cTr(π∂jHπ).

This implies |∂jh(t, z)| ≤ C〈z〉. �

This proof shows that the study of higher derivatives of the eigenvalues requires a control on the
derivatives of the eigenprojectors. The following example shows that the situation may become very
intricate and one can have smooth subquadratic eigenvalues while the derivatives of the projectors
are unbounded.

Example A.2. Assume d = 1. Let ρ, θ ∈ C∞(R) such that ρ has with bounded derivatives and
with

ρ(x) =
1

x3
and θ(x) = x ln(x)− x for |x| > 1.

Define

H(x) = ρ(x)

(
cos(θ(x)) sin(θ(x))
sin(θ(x)) − cos(θ(x))

)
.
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The eigenvalues of H are ±ρ and the eigenprojector associated with the eigenvalue ρ is

π(x) =
1

2

(
1 +

(
cos(θ(x)) sin(θ(x))
sin(θ(x)) − cos(θ(x))

))
.

Its derivative

π′(x) =
1

2
θ′(x)

(
− sin(θ(x)) cos(θ(x))
cos(θ(x)) sin(θ(x))

)
is not bounded. On the other side, ρ and H are sub-quadratic. Indeed, for |x| > 1, the derivatives
of the coefficient of H are of the form

1

x3

(
p1

(
1

x
, lnx

)
cos θ(x) + p2

(
1

x
, lnx

)
sin θ(x)

)
for p1 and p2 two polynomial functions of two variables and thus bounded.

A manner of controlling the growth of the potential consists in requiring a lower bound on the
gap function f at infinity.

Lemma A.3. Let ` ∈ {1, 2}. Assume that the matrix-valued function H ∈ C∞(I × Rd,Cm,m)
satisfies (A.1). Assume that for all (t, z) ∈ I ×R2d, H(t, z) has a smooth eigenvalue h with smooth
associated eigenprojectors π(t, z) of constant rank for |z| > m. Assume there exists C, n0 > 0 such
that for (t, z) ∈ I × Rd with |z| > m,

dist (h(t, z),Sp(H(t, z)) \ {h(t, z)}) ≥ C〈z〉−n0 .

Then, for all γ ∈ N2d with |γ| ≥ 2, there exists a constant Cγ > 0 such that

∀(t, z) ∈ I × R2d, |∂γz π(t, z)| ≤ Cγ〈z〉|γ|n0+`−1 and |∂γz h(t, z)| ≤ Cγ〈z〉(|γ|−1)n0+2(`−1).

Proof. We work for |z| > m and fix j ∈ {1, 2}. The relation (A.2) also implies

∂jπ(H − h) = (H − h)∂jπ = ∂j(H − h)

where we keep the notation ∂j := ∂zj for j ∈ {1, · · · , 2d}. Using that ∂jπ is off diagonal and (H−h)
invertible on Range(1− π), we deduce

∂jπ = (1− π)∂jπ π + π ∂jπ(1− π)

with
(1− π)∂jπ π = (H − h)−1(1− π)∂j(H − h)

and
π ∂jπ(1− π) = π ∂j(H − h)(1− π)(H − h)−1 = π∂j(H − h)(H − h)−1(1− π).

On the range of π, the resolvent (H−h)−1 is invertible, more precisely, there exists c > 0 such that

‖(H − h)−1(1− π)‖L(Ran(1−π)) ≤ cdist (h,Sp(H) \ {h})−1 ≤ cC〈z〉n0+`−1,

whence |∂jπ(t, z)| ≤ C〈z〉n0 .

For analyzing the derivatives of π, one observes that the relation π = π2 implies

∂γπ = π∂γπ + ∂γπ π +
∑

1<|α|,|β|<|γ|

cα,β∂
απ∂βπ

for some coefficients cα,β . A recursive argument then gives the estimate on the growth of the
eigenprojectors.

Let us now consider the eigenvalue h. The relation Hπ = πH = hπ gives

∂hπ = ∂Hπ − ∂π(H − h) = π∂H − (H − h)∂π.
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Multiplying on both side by π, using (H − h)π = 0 and taking the matricial trace, we obtain

∂hTrCm,m(π) = TrCm,m(π∂H).

This implies |∂h| ≤ C〈z〉`−1.
To get the relation on higher derivatives, we differentiate this relation, which gives for i, j ∈ N2d,

∂2
ijhTrCm,m(π) = ∂i (TrCm,m(π∂jH))− ∂jhTrCm,m(∂iπ).

Since TrCm,m(∂iπ) = 0, we are left with

∂2
ijhTrCm,m(π) = TrCm,m(∂iπ∂jH) + TrCm,m(π∂ijH).

We obtain a control of the form 〈z〉n0+2(`−1). Besides, it allows to perform a recursive argument
by writing for γ ∈ N2d,

∂γ∂2
ijhTrCm,m(π) = ∂γ (TrCm,m(∂iπ∂jH) + TrCm,m(π∂ijH))

−
∑

2≤|α|,α≤γ

cα∂
γ−α∂2

ijhTrCm,m(∂απ)

=
∑
α≤γ

cα
(
TrCm,m(∂γ−α∂iπ ∂

α∂jH) + TrCm,m(∂γ−απ∂α∂ijH)
)

−
∑

2≤|α|,α≤γ

cα∂
γ−α∂2

ijhTrCm,m(∂απ)

for some coefficients cα. One can then conclude recursively to |∂γ∂2
ijh| ≤ c′γ〈z〉(|γ|+1)n0+2(`−1). �

These two Lemmata allow to derive the consequences of Assumptions 1.4 for a Hamiltonian
Hε = H0 + εH1. We now fix m = 2.

Proposition A.4. Assume that Hε = H0 + εH1 satisfies the Assumptions 1.4. Then, for
j ∈ {1, 2} we have the following properties:

(1) For all γ ∈ N2d with |γ| ≥ 2, there exists a constant Cγ > 0 such that

∀(t, z) ∈ I × R2d, |∂γz πj(t, z)| ≤ Cγ〈z〉|γ|n0 and |∂γz hj(t, z)| ≤ Cγ〈z〉(|γ|−1)n0 .

(2) If moreover n0 = 0 in (1.6), then the maps z 7→ ∂γπj(t, z) and z 7→ ∂γz hj(t, z) for |γ| ≥ 2

are bounded. As a consequence, the Hamiltonian trajectories Φt0,th (z) are globally defined
for all z ∈ R. Besides, there exists C ′ > 0 such that

|Φt0,thj
(z)| ≤ C|z|eC|t−t0|

and the Jacobian matrices Fj(t, z) = ∂zΦ
t,t0
hj

(z) (see (1.12)) satisfy

‖Fj(t, z)‖C2d,2d ≤ CeC|t−t0|.

Remark A.5. Note that under the assumptions of Proposition A.4, for all j ∈ {1, · · · , 2d}, the
matrices

f∂zjπ1 = −f∂zjπ2 =
1

2

(
∂zj (H − v)− ∂zjf(π2 − π1)

)
are bounded. This comes from the differentiation of the relation H = vI + f(π2 − π1).
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Proof. Note first that Point 2 is a consequence of Point 1. We thus focus on Point 1. We use
that π2 is the projector of the matrix H0−vI for the eigenvalue f . And the matrix H0−vI satisfies
the assumptions of Lemma A.3 with ` = 1. Therefore, we have for (t, z) ∈ I × Rd with |z| ≥ 1 and
for γ ∈ Nd.

|∂γz πj(t, z)| ≤ Cγ〈z〉|γ|n0 and |∂γz f(t, z)| ≤ Cγ〈z〉(|γ|−1)n0 .

One concludes by observing that the function v = 2Tr(H) is subquadratic, whence the property of
h2 = v + f . One argues similarly for h1. �

We close this Section with the proof of Lemma 1.10

Proof of Lemma 1.10. The map t 7→ R`(t, t0, z) is valued in the set of unitary maps because
the matrix Hadia

`,1 is self adjoint. Besides, the map

(t, z) 7→ Z`(t, z) = π`(Φ
t,t0
` (z)R`(t, t0, z)π⊥` (z)

satisfies the ODE

i∂tZ` = −i (π`(∂tπ` + {h, π`})) ◦ Φt,t0` Z`, Z`(t0, z) = 0,

and thus coincides with the solution Z`(t) = 0. �



APPENDIX B

Elements of symbolic calculus : the Moyal product

In this section, we revisit results about the remainder estimate for the Moyal product, aiming
at their extension to the setting of the sets Sµδ (D) that we have introduced in Definition 4.1.

B.1. Formal expansion

We first recall the formal product rule for quantum observables with Weyl quantization. Let
A,B ∈ S(R2d,Cm,m). The Moyal product C := A~B is the semi-classical observable C such that

Â ◦ B̂ = Ĉ. Some computations with the Fourier transform give the following well known formula
[34, Theorems 18.1.8]

(B.1) C(x, ξ) = exp

(
iε

2
σ(Dq, Dp;Dq′ , Dp′)

)
A(q, p)B(q′, p′)|(q,p)=(q′,p′)=(x,ξ),

where σ is the symplectic bilinear form σ((q, p), (q′, p′)) = p ·q′−p′ ·q and D = i−1∇. By expanding
the exponential term, we obtain

(B.2) C(x, ξ) =
∑
j≥0

εj

j!

(
i

2
σ(Dq, Dp;Dq′ , Dp′)

)j
A(q, p)B(q′, p′)|(q,p)=(q′,p′)=(x,ξ).

So that C =
∑
j≥0 ε

jCj is a formal power series in ε with coefficients given by (4.1).

B.2. Symbols with derivative bounds

For µ ≥ 0 denote by P(µ) the linear space of matrix-valued C∞ symbols A : R2d → Cm,m such
that for any γ ∈ N2d with |γ| ≥ µ, there exists Cγ > 0 such that

|∂γzA(z)| ≤ Cγ ∀z ∈ R2d.

Assuming that A ∈ P(µA), B ∈ P(µB) it is known that, for ε fixed, A~B = C where C ∈ P(µC)
with µC ≥ max{µA, µB} (see e.g. the proof [34, Theorem 18.1.8])

We aim at having better estimates for small ε > 0 and a control of the derivatives of C in terms
of those of A and B. The following estimate and its proof are a particular case of [6, Theorem A.1].

Theorem B.1. For every N ∈ N and γ ∈ N2d, there exists a constant KN,γ such that for any
A ∈ P(µA), B ∈ P(µB) the Moyal remainder

(B.3) RN (A,B; z; ε) := (A~B)(z)−
∑

0≤j≤N

εjCj(z)

satisfies for every z ∈ R2d and ε ∈ (0, 1],

(B.4) |∂γzRN (A,B; z; ε)| ≤ εN+1KN,γ

∑
N+1≤|α|,|β|≤N+κ0+|γ|

‖∂αz A‖L∞‖∂βzB‖L∞ ,

83



84 B. ELEMENTS OF SYMBOLIC CALCULUS : THE MOYAL PRODUCT

with κ0 = 4d+ 2.

The estimate 4.4 allows to evaluate the norms of the operators involved in Theorem B.1.

Corollary B.2. If A ∈ Sµε,δ and B ∈ Sµ
′

ε,δ, then A~ B ∈ Sµ+µ′

ε,δ (see Remark 4.2) and for all
N, k ∈ N, there exists a constant CN,k > 0 such that

‖opε(RN (A,B; z; ε))‖Σkε ≤ CN,k ε
N+1 δµ+µ′−2(N+1+k+κ0).

Proof. By Fourier transform computations and application of the Taylor formula, we get the
following formula for the remainder,

(B.5) RN (A,B; z; ε) =
1

N !

(
iε

2

)N+1 ∫ 1

0

(1− t)NRN,t(z; ε)dt,

where

RN,t(z; ε) =

(2πεt)−2d

∫ ∫
R2d×R2d

exp

(
− i

2tε
σ(u, v)

)
σN+1(Du, Dv)A(u+ z)B(v + z)dudv.

Notice that the integral is an oscillating integral as we shall see below. We now use Lemma B.3 for
A,B ∈ S(R2d) with the integrand

FN,γ(z;u, v) = π−2d ∂γz
(
σN+1(Du, Dv)A(u+ z)B(v + z)

)
and the parameter λ = 1/(2tε). We then have

|∂γzRN,t(z; ε)| ≤ Cd sup
u,v∈R2d

|α|+|β|≤4d+1

|∂αu∂βv FN,γ(z;u, v)|.

Moreover, there holds the elementary estimate

|σN+1(Du, Dv)A(u)B(v)| ≤ (2d)N+1 sup
|α|+|β|=N+1

|∂αx ∂
β
ξ A(x, ξ)∂βy ∂

α
ηB(y, η)|.

Together with the Leibniz formula, we then get the claimed results with universal constants. For

symbols A ∈ P(µA) and B ∈ P(µB) we argue by localisation. We use Aη(u) = e−ηu
2

A(u) and

Bη(v) = e−ηv
2

B(v) for η > 0 and pass to the limit η → 0. �

Lemma B.3. There exists a constant Cd > 0 such that for any F ∈ S(R2d × R2d,Cm,m) the
integral

(B.6) I(λ) = λ2d

∫
R2d×R2d

exp[−iλσ(u, v)]F (u, v)dudv.

satisfies

(B.7) |I(λ)| ≤ Cd sup
u,v∈R2d

|α|+|β|≤4d+1

|∂αu∂βv F (u, v)|.

Proof of Lemma B.3. The lemma is proved in a standard way, using integration by parts
and stationary phase argument. For the sake of completeness, we give here a proof. We introduce
a cut-off χ0 ∈ C∞0 (R) such that

χ0(x) = 1 for |x| ≤ 1/2 and χ0(x) = 0 for |x| ≥ 1.



B.2. SYMBOLS WITH DERIVATIVE BOUNDS 85

We split I(λ) into too pieces and write I(λ) = I0(λ) + I1(λ) with

I0(λ) = λ2d

∫ ∫
R2d×R2d

exp[−iλσ(u, v)]χ0(u2 + v2)F (u, v)dudv,

I1(λ) = λ2d

∫ ∫
R2d×R2d

exp[−iλσ(u, v)](1− χ0)(u2 + v2))F (u, v)dudv.

We notice that (u, v) 7→ σ(u, u) is a quadratic non-degenerate real form on R4d.
Let us estimate I1(λ). We can integrate by parts with the differential operator

L =
i

|u|2 + |v|2

(
Ju · ∂

∂v
− Jv · ∂

∂u

)
,

using that Le−iλσ(u,v) = Le−iλJu·v = λe−iλσ(u,v). For I1(λ), the integrand is supported outside the

ball of radius 1/
√

2 in R4d. Performing 4d + 1 integrations by parts for gaining enough decay to
ensure integrability in (u, v) ∈ R4d, we get a constant cd such that

|I1(λ)| ≤ cd sup
u,v∈R2d

|µ|+|ν|≤4d+1

|∂µu∂νvF (u, v)|.

To estimate I0(λ) we apply the stationary phase. The symmetric matrix of the quadratic form
σ(u, v) is

Aσ =

(
0 −J
J 0

)
.

So the stationary phase Theorem ([34], Vol.I, section 7.7), we obtain the existence of two constants
c1, c2 > 0 such that

(B.8) |I0(λ)− λ−2dc1| ≤ c2 sup
u,v∈R2d
|α|≤2

|∂α(χ0(u2 + v2)F (u, v)|.

�





APPENDIX C

Elements of semi-classical calculus: perturbation of scalar
systems

In this Appendix, we revisit several well-known results concerning a Hamiltonian K(t) valued
in the set Cm,m of m×m matrices (m ∈ N), and which is a perturbation of a scalar function k(t).
We consider an interval Iδ ⊂ R that may depend on δ > 0 and assume that K(t) is defined on Iδ
and of the form

(C.1) K(t) = k(t)Im + εK1(t) + · · · εNKN (t)

with k scalar-valued and k(t)Im + εK1(t) is subquadratic on the time interval Iδ according to
Definition 1.1.

The difference with the classical setting is that we assume

∀t ∈ Iδ,
1

ε2
(K(t)− k(t)Im − εK1(t)) ∈ S−1

ε,δ(D).

Therefore, we have to revisit the results to take care of the loss in δ and control all the classical
estimates with respect to this parameter. We denote by UεK(t0, t) the unitary propagator associated
with K(t).

These assumptions are those satisfied by the Hamiltonian that we consider in the adiabatic

region (see Section 5.2): by (3) of Theorem 4.9, the Hamiltonians H̃adia,N,ε
` (t), defined for ` ∈ {1, 2}

in (5.3), satisfy the assumptions made on the Hamiltonian K(t) on the interval [t0, t
[ − δ] and on

the interval [t[ + δ, t0 + T ], for adequate domains D given by the cut-offs. Therefore, the analysis
below allows to deduce Theorem 5.9 from Proposition 5.8. In the gap region, we also use these
results in the simpler case δ = 1 (see Sections 5.3 and 5.4).

C.1. Egorov Theorem

The Egorov Theorem describes the evolution of an observable when it is conjugated by the
propagator UεK(t, s) associated with the operatorK(t). It is important to notice that this propagator
maps Σkε in itself for all k ∈ N. Indeed, for 1 ≤ j ≤ d,

iε∂t(xjψ
ε(t))− K̂(t)(xjψ

ε(t)) = fεj (t) and iε∂t(ε∂xjψ
ε(t))− K̂(t)(ε∂xjψ

ε(t)) = gεj (t),

with fεj (t) = [xj , K̂(t)]ψε(t) and gεj (t) = [εDxj , K̂(t)]ψε(t) uniformly bounded in L2. Therefore,

one deduces the L2-boundedness of the families (xjψ
ε(t)) and (εDxjψ

ε(t)) for all 1 ≤ j ≤ d, whence

the boundedness of ψε(t) in Σ1
ε for all t ∈ R. The reader will have understood that a recursive

process will give the boundedness of ψε(t) in any Σkε , for t ∈ R and k ∈ N. In this setting, our

aim is to revisit the evolution of UεK(tin, t)ÂUεK(t, tin) for matrix-valued observables A ∈ Sδ and in
spaces Σkε , with a precise estimate of the remainders.
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Proposition C.1. With the above notations, for any matrix-valued symbol A ∈ Sδ, there
exists a formal series (t, tin) 7→

∑
j≥0εj Aj(t, tin) defined on Iδ × Iδ and such that for any J ≥ 1, we

have for all t, tin ∈ Iδ,

UεK(tin, t)ÂUεK(t, tin) =
∑

0≤j≤J

εjÂj(t, tin) + εJ+1R̂εJ(t, tin),

with Aj(t, tin) ∈ S−2j
δ uniformly in ε ∈]0, 1]. Besides, for all k ∈ N, there exists a constant Ck,J

such that

‖R̂εJ(t, tin)‖Σkε ≤ ckδ
−2(J+1+κ0),

and the matrix A0(t, tin) is given by

(C.2) A0(t, tin, z) = (R∗(t, tin)AR(t, tin)) ◦ (Φt,tink )(z),

where the unitary matrices R(t, tin, z) solve the transport equation

(C.3) i∂tR(t, tin, z) = K1

(
t,Φt,tink (z)

)
R(t, tin, z), R(tin, tin, z) = Im.

Remark C.2. In particular we have the propagation law of the supports:

supp(Aj(t, tin)) = Φtin,tk (supp(A)) for any j ≥ 0.

In the scalar time independent case case (k = k(z) and Kj = 0 for j ≥ 1), the Egorov theorem

UεK(tin, t)ÂUεK(t, tin) = ̂A ◦ Φt,tink +O(ε)

is well-known (see [13, 14, 64] for example). In the time-dependent matrix-valued case considered
here, the dynamics on the observable is driven by the classical flow twisted by the precession R
(see also Section 1.3.3 where such terms appear). The proof also requires a careful treatment of the
time.

Proof. We perform a recursive argument. The starting point comes from the analysis of the
auxiliary map defined for τ, t ∈ Iδ and valued in Sδ by

A 7→ A(t, τ) := (R(τ, t)AR(τ, t)∗) ◦ Φt,τk .

Because we are going to differentiate in τ , we use the relation

i∂τΦt,τk = −J∇k(τ,Φt,τk ),

(where J is the matrix defined in (1.10)), which implies for all z ∈ R2d, using also that the flow
map is symplectic and preserves the Poisson bracket,

∂τA(t, τ, z) + {k(τ), A(t, τ)}(z) =
1

i
[K1(τ, z), A(t, τ, z)], A(t, t) = A.

Let us know starts with the proof of the result for J = 0. We choose s, τ, t ∈ Iδ and consider
the quantity

QεA(t, s, τ) = UεK(s, τ)Â(t, τ)UεK(τ, s).

The times s, τ, t can be understood as s ≤ τ ≤ t with s an initial time (that will be taken as s = tin)
and t the time at which we want to prove the property. We then have the boundary properties

QεA(t, s, t) = UεK(s, t)ÂUεK(t, s) and QεA(t, s, s) = Â(t, s).
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Differentiating in τ , we have

d

dτ
QεA(t, s, τ) = UεK(s, τ)

([
− 1

iε
K̂(τ), Â(t, τ)

]
+ ∂τ Â(t, τ)

)
UεK(τ, s)

= UεK(s, τ)

([
− 1

iε
K̂(τ), Â(t, τ)

]
− ̂{k,A(t, τ)}+

1

i
̂[K1(τ), A(t, τ)]

)
UεK(τ, s)

= εUεK(s, τ) B̂ε1(t, τ)UεK(τ, s)

where the matrix Bε1 ∈ S−2
ε,δ stems from the Moyal product (see Corollary B.2). We deduce by

integration between the times s and t

UεK(s, t)ÂUεK(t, s) = Â(t, s) + ε

∫ t

s

UεK(s, τ) B̂ε1(t, τ)UεK(τ, s)dτ,

which gives the first step of the recursive argument.

We now assume that we have obtained for J ≥ 0

UεK(s, t)ÂUεK(t, s) =

J∑
j=0

εjÂj(t, s) + εJ+1

∫ t

s

UεK(s, τ) B̂εJ+1(t, τ)UεK(τ, s)dτ

with BεJ+1 ∈ S
−2(J+1)
δ . We write

BεJ+1 = BJ+1 +B1,ε
J+2

with BJ+1 ∈ S
−2(J+1)
δ and BεJ+2 ∈ S

−2(J+2)
ε,δ . Then, the preceding equation writes

UεK(s, t)ÂUεK(t, s) =

J∑
j=0

εjÂj(t, s)(C.4)

+ εJ+1

∫ t

s

QεBJ+1
(t, s, τ)dτ + εJ+2

∫ t

s

UεK(s, τ) B̂1,ε
J+2(t, τ)UεK(τ, s)dτ.

We focus on the term involving QεBJ+1
(t, s, τ) that we treat as in the preceding step. We obtain

QεBJ+1
(t, s, τ) = R(s, τ)BJ+1(t, τ)R(τ, s)∗ + ε

∫ τ

s

UεK(s, τ ′)B̂2,ε
J+2(τ, τ ′)UεK(τ ′, s)dτ ′

with B2,ε
J+2 ∈ S

−2(J+2)
ε,δ . We set

AJ+1(s, t) =

∫ t

s

R(s, τ)BJ+1(t, τ)R(τ, s)∗ ∈ S
−2(J+1)
δ

and

BεJ+2(t, τ) = B1,ε
J+2(t, τ) +

∫ τ

s

B2,ε
J+2(τ ′, τ)dτ ′ ∈ S

−2(J+1)
ε,δ .

The equation (C.4) then becomes

UεK(s, t)ÂUεK(t, s) =

J+1∑
j=0

εjÂj(t, s) + εJ+2

∫ t

s

UεK(s, τ) B̂εJ+2(t, τ)UεK(τ, s)dτ

and this concludes the proof. �
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C.2. Asymptotic behavior of the propagator

In this section, we analyze the propagator UεK(t, tin) and compare it with UεKS(t, tin) the prop-
agator for

KS(t) = k(t)Im + εK1(t).

Lemma C.3. For all J ∈ N, there exists

W ε(t, tin) =
∑

0≤j≤J

εjWj(t, tin) + εJ+1RεJ(t, tin)

with Wj(t, tin) ∈ S−2j
δ such that for all t ∈ R,

UεK(t, tin) = Ŵ ε(t, tin)UεKS(t, tin).

Besides, W0(t, tin) = Im and for all γ ∈ N2d, there exists CJ,γ > 0 such that

sup
z∈Rd

|∂γzRεJ(t, tin, z)| ≤ CJ,γ δ−2(J+1+|γ|+κ0)

where κ0 is the universal constant of Theorem B.1.

Remark C.4. Using the estimate (4.4), we deduce that for all k ∈ N, there exists Ck > 0 such
that

‖opε(R
ε
J(t, tin))‖L(Σkε ) ≤ Ck

( ε
δ2

) |γ|
2

δ−2(J+1+k+κ0).

As a consequence, for δ = εα with α ∈ (0, 1
2 ], we have

(C.5) ‖opε(R
ε
J(t, tin))‖L(Σkε ) ≤ Ck δ−2(J+1+k+κ0).

Similarly, by (4.5), for such δ,

(C.6) ‖opε(Wj(t, tin))‖L(Σkε ) ≤ Ck δ−2j−k, j ∈ N.

Proof. If such a W ε(t, tin) exists, it must satisfy the following equation

iε∂tŴ
ε(t, tin)Ŵ ε(t, tin)UεKS(tin, t)

(
K̂(t)− K̂S(t)

)
UεKS(t, tin)∗, Ŵ ε(tin, tin) = Im

Applying Egorov Theorem of Propostion C.1, we know that

UεKS(tin, t)
(
K̂(t)− K̂S(t)

)
UεKS(tin, t)

∗ = ε2L̂ε(t, tin)

where
Lε(t, tin) =

∑
j≥0

εjLj(t, tin) ∈ S−1
ε,δ with estimates on Lj(t, tin) and on the remainder term in the

asymptotic expansion. Using the estimates proved in Appendices A and B, it is enough to solve as
formal series in ε the equation

(C.7) i∂t

∑
j≥0

εjWj(t, tin)

 = ε

∑
j≥0

εjWj(t, tin)

~
∑
k≥0

εjLj(t, tin)

 .

�
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C.3. Propagation of wave packets

When ψε0 is a wave packet, the action of UεKS(t, t1)ψε0 on ψε0 can be described precisely. Following
Section 14.2 of [13], Theorem 77, we have the following result.

Proposition C.5. Assume we have ψε = WPεz0(fε)~V with ~V ∈ Cm,

fε =
∑

0≤j≤J

εj/2fj , fj ∈ S(Rd).

There exists a family (~Uj(t))j≥0 defined on the interval Iδ such that

(i) For all j ∈ N and t ∈ Iδ, ~Uj(t) ∈ S(Rd),
(ii) For all k, j ∈ N, there exists a constant Ck,j such that

sup
t∈Iδ

sup
|α|+|β|=k

‖xα∂βxUj(t)‖L∞ ≤ Ck,jδ−j .

(iii) For all k ∈ N and N ∈ N, there exists Ck,N and Nk such that for all t ∈ R, we have∥∥∥∥∥∥UεK(t, tin)ψε − e
i
εS(t,tin,z0)WPε

Φ
t,tin
k (z0)

 2N∑
j=0

ε
j
2 ~Uj(t)

∥∥∥∥∥∥
Σkε

≤ Ck,N
( ε
δ2

)N
δ−N−Nk .

Besides

(C.8) ~U0(t) = R(t, tin)M[F (t, tin)]f0
~V and ~U1(t) = R(t, tin)M[F (t, tin)]b1(t, tin)f0

~V

where

b1(t, tin) =
1

i

∑
|α|=3

1

α!

∫ t

tin

∂αz h(s, zs)opw1 ((F (tin, s)z)
α)ds

+
1

i

∫ t

tin

∂zH1(s, zs)op1(F (tin, s)z)ds,(C.9)

F (t, tin) is the stability matrix for the flow zt := Φt,tink (z0) (see (1.12)) and R(t, tin) satisfies the
equation (C.3).

Proof. Let k ∈ N. Using Lemma C.3 and the estimate (C.5), we obtain

UεK(t, tin)ψε = Ŵ ε(t, tin)UεKS(t, tin)ψε

=
∑

0≤j≤J

εj Ŵj(t, tin)UεKS(t, tin)ψε + εJ+1R̂εJ(t, tin)UεKS(t, tin)ψε

=
∑

0≤j≤J

εj Ŵj(t, tin)UεKS(t, tin)ψε +O
(
εJ+1δ−2(J+1+κ0)

)
in Σkε(Rd). We then use the standard result of propagation of wave packets for KS(t) (see [13])

UεKS(t, tin)ψε = e
i
εS(t,tin,z0)WPεzt

 2J∑
j=1

ε
j
2 ~Bj(t)

+O(εJ+1)
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with ~Bj(t) = ~Uj(t) as in (C.8) for j = 0, 1, and ~Bj(t) is determined by a recursive equation in terms

of ~B0(t), · · · , ~Bj−1(t). This description relies on the observation that setting

ϕεj(t) = e
i
εS(t,tin,z0)WPεzt

(
~Bj(t)

)
we have the two relations

iε∂tϕ
ε
j(t) = e

i
εSWPεzt

(
−∂t(S + ξt · xt) ~Bj +

√
εżt · ẑ ~Bj + iε∂t ~Bj

)
K̂S(t)ϕεj(t) = e

i
εSWPεzt

(
̂KS(t, zt +

√
εz) ~Bj(t)

)
= e

i
εSWPεzt

(
op1

(
k(t, zt) +

√
ε∇k(t, zt) · z +

ε

2
Hess k(t, zt)z · z + εK1(t, zt) +O(ε

3
2

)
~Bj

)
where we have set zt = (xt, ξt). These relations also prove (C.8) with the additional remark that
W0(t, tin) = I and, for j ∈ N,

Ŵj(t, tin)WPεzt

(
~Bj(t)

)
= WPεzt

(
op1

(
Wj(t, tin, zt +

√
εz)
)
~Bj(t)

)
and using the estimate (C.6) with ε = 1. �
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