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Introduction

Let C be a smooth projective geometrically connected curve of genus g over a field k. Let N = N C (n, d) denote the moduli space of semistable vector bundles of rank n and degree d on C. When n and d are coprime, N is a smooth projective variety of dimension n 2 (g -1) + 1.

There has been a long history of work on the cohomological invariants of N . Inductive formulas for the Betti numbers of N were obtained by Harder and Narasimhan [START_REF] Harder | On the cohomology groups of moduli spaces of vector bundles on curves[END_REF] using the Weil conjectures and point counting over finite fields, by Atiyah and Bott [START_REF] Atiyah | The Yang-Mills equations over Riemann surfaces[END_REF] over k = C using gauge theory, and by Bifet, Ghione and Letizia [START_REF] Bifet | On the Abel-Jacobi map for divisors of higher rank on a curve[END_REF] using more algebro-geometric methods. All three approaches essentially involve first describing the cohomology of the stack Bun n,d of all vector bundles on C and then inductively computing the cohomology of N by performing a Harder-Narasimhan recursion. The approach of [START_REF] Bifet | On the Abel-Jacobi map for divisors of higher rank on a curve[END_REF] lead to a closed formula for the class of Bun n,d in a dimensional completion of the Grothendieck ring of varieties [START_REF] Behrend | On the motivic class of the stack of bundles[END_REF] and in Voevodsky's triangulated category of motives over k with Q-coefficients [START_REF] Hoskins | A formula for the Voevodsky motive of the moduli stack of vector bundles on a curve[END_REF]. Furthermore, the ideas in [START_REF] Bifet | On the Abel-Jacobi map for divisors of higher rank on a curve[END_REF] were used by del Baño to show that the Chow motive of N lies in the tensor subcategory generated by the motive of the curve [START_REF] Del Baño | On the Chow motive of some moduli spaces[END_REF].

More generally, for a smooth projective variety X and a moduli space of sheaves of some kind (possibly with some additional structure) on X, there are several examples in which the motive of this moduli space lies in the tensor subcategory generated by the motive of X. This holds for the moduli space of stable Higgs bundles on C of coprime rank and degree [START_REF]On the Voevodsky motive of the moduli space of Higgs bundles on a curve[END_REF] and for certain moduli spaces of semistable sheaves on K3 and abelian surfaces (as well as for closely related spaces such as crepant resolutions, twisted and non-commutative analogues) [START_REF] Bülles | Motives of moduli spaces on K3 surfaces and of special cubic fourfolds[END_REF][START_REF] Floccari | On the motive of O'Grady's ten-dimensional hyper-Kähler varieties[END_REF].

1.1. Qualitative results in arbitrary rank. Our motivation for this paper was to provide more explicit descriptions of the Chow motives of certain moduli spaces of vector bundles on a smooth projective curve with additional structure. Our approach is to use concrete geometric descriptions of the birational transformations between moduli spaces under variation of stability [START_REF] Boden | Variations of moduli of parabolic bundles[END_REF][START_REF]Geometric invariant theory and flips[END_REF] together with recent descriptions giving the change in Chow motives of smooth projective varieties under standard flips and flops and Mukai flops [START_REF] Jiang | On the Chow theory of projectivizations[END_REF][START_REF] Lee | Flops, motives, and invariance of quantum rings[END_REF]. In fact, since we also want to work with moduli spaces of Higgs bundles on C, which are non-proper, but smooth if n and d are coprime, we first need to extend the last of these results to smooth quasi-projective varieties (cf. Theorem 3.6) using a local-to-global trick explained in Appendix A.

One can simplify the geometry by fixing a degree d line bundle L and studying the moduli space N L = N L,C (n, d) of semistable vector bundles with determinant isomorphic to L. When n and d are coprime, N L is also smooth and projective and, moreover, is Fano [START_REF] Drezet | Groupe de Picard des variétés de modules de fibrés semi-stables sur les courbes algébriques[END_REF] and rational [START_REF] King | Rationality of moduli of vector bundles on curves[END_REF]. Quite remarkably, Harder and Narasimhan [START_REF] Harder | On the cohomology groups of moduli spaces of vector bundles on curves[END_REF] showed that, for any prime ℓ different from the characteristic of k, the ℓ-adic cohomology of N is the tensor product of that of N L and Jac(C). Our first result gives a motivic refinement of this classical theorem (see Theorem 4.2).

Theorem 1.1. Let n and d be coprime; then there is an isomorphism of rational Chow motives

h(N ) ≃ h(N L ) ⊗ h(Jac(C)).
The proof involves first checking that h(N ) and h(N L ) lie in the tensor subcategory generated by h(C), and thus are abelian motives; for N this is a theorem of del Baño [START_REF] Del Baño | On the Chow motive of some moduli spaces[END_REF] and for N L , see Proposition 4.1, which uses an argument of Bülles [START_REF] Bülles | Motives of moduli spaces on K3 surfaces and of special cubic fourfolds[END_REF] and Beauville [START_REF]Sur la cohomologie de certains espaces de modules de fibrés vectoriels, Geometry and analysis[END_REF]. We reduce to the case of a field of characteristic zero, then use the theorem of Harder and Narasimhan and the fact that the ℓ-adic realisation is conservative on abelian geometric motives in characteristic 0 [START_REF] Wildeshaus | On the interior motive of certain Shimura varieties: the case of Picard surfaces[END_REF].

In the case of parabolic vector bundles, which are vector bundles with flags of a specified type at a finite number of parabolic points D = {p 1 , . . . , p N } on C, there are various notions of stability, encoded by a set of parabolic weights α, which give rise to different moduli spaces N α = N α C,D (n, d). For generic weights (i.e. where semistability and stability coincide), these moduli spaces are smooth and projective. The space of weights admits a wall and chamber decomposition by considering how the notion of (semi)stability changes and the birational transformation between moduli spaces separated by a wall can be explicitly described [START_REF] Boden | Variations of moduli of parabolic bundles[END_REF][START_REF]Rationality of moduli spaces of parabolic bundles[END_REF][START_REF]Geometric invariant theory and flips[END_REF]. In the nicest cases, the wall-crossing transformation is a standard flip or flop whose centres can be explicitly described as certain projective bundles over a product of smaller moduli spaces and the dimensions of the projective space fibres can be computed in terms of the dimension of a certain Ext group. Consequently, for such walls, one obtains an explicit description of how the Chow motive varies with α (Corollary 5.16). We also provide a motivic description of flag degeneration (Corollary 5. [START_REF] Bülles | Motives of moduli spaces on K3 surfaces and of special cubic fourfolds[END_REF]). Furthermore, for coprime rank and degree and sufficiently small weights α, there is a forgetful map N α → N which is an iterated flag bundle [START_REF] Boden | Variations of moduli of parabolic bundles[END_REF][START_REF]Rationality of moduli spaces of parabolic bundles[END_REF]. Hence, it suffices to know h(N ) to compute the Chow motives of h(N α ) for generic α via wall-crossing; for some explicit formulas in rank n = 2, see §1.2. In particular, the motive h(N α ) depends on α, as was already known for the Poincaré polynomial [START_REF] Bauer | Parabolic bundles, elliptic surfaces and SU(2)-representation spaces of genus zero Fuchsian groups[END_REF][START_REF] Holla | Poincaré polynomial of the moduli spaces of parabolic bundles[END_REF]. As a corollary of these motivic formulas, we obtain descriptions of the Chow groups of 1-cycles (see Corollaries 5.18 and 5.21) strengthening and slightly correcting [START_REF] Chakraborty | Chow group of 1-cycles of the moduli of parabolic bundles over a curve[END_REF][START_REF]On Abel-Jacobi maps of moduli of parabolic bundles over a curve[END_REF] and for fixed i, a stabilisation result for CH i (N α ) (see Corollary 5.22).

The algebraic symplectic analogues of moduli spaces of (parabolic) vector bundles are the moduli spaces of Higgs bundles M and parabolic Higgs bundles M α , which are no longer proper, but are smooth when semistability and stability coincide. There is a G m -action on M given by scaling the Higgs field [START_REF] Hitchin | The self-duality equations on a Riemann surface[END_REF][START_REF]The Hodge filtration on nonabelian cohomology, Algebraic geometry-Santa Cruz[END_REF] which gives an associated Bia lynicki-Birula decomposition [START_REF] Bia Lynicki-Birula | Some theorems on actions of algebraic groups[END_REF] that enables one to see that the cohomology of M is nonetheless pure. In [START_REF]On the Voevodsky motive of the moduli space of Higgs bundles on a curve[END_REF]Corollary 6.9], the second and third authors show that the Voevodsky motive of M is a Chow motive by this method. The same holds for moduli spaces of parabolic Higgs bundles which are semistable with respect to a generic weight (cf. Lemma 6.6). Moreover, via the Bia lynicki-Birula decomposition, the Chow motive of M (resp. M α ) can be expressed in terms of N (resp. N α ) and moduli spaces of chains (resp. parabolic chains); see [START_REF]On the Voevodsky motive of the moduli space of Higgs bundles on a curve[END_REF] for the non-parabolic case.

There are several surprising changes as we pass from (parabolic) vector bundles to (parabolic) Higgs bundles. First, the analogue of Theorem 1.1 does not hold if we replace N by M; this was already seen on cohomology in rank n = 2 by Hitchin [START_REF] Hitchin | The self-duality equations on a Riemann surface[END_REF]. Moreover, for a general curve C of genus at least 2, the motive of M L is not contained in the subcategory generated by h(C) (see Proposition 6.3). Second, although the Chow motive of N α depends on α, this is no longer the case for M α . Theorem 1.2. (Corollary 6.7) For a generic weight α, the integral Chow motive of the moduli space M α of α-semistable parabolic Higgs bundles of rank n and degree d is independent of α.

Our proof relies on Thaddeus' description [START_REF]Variation of moduli of parabolic Higgs bundles[END_REF] of wall-crossings as Mukai flops, which can be thought of as algebraic symplectic versions of standard flops and do not alter the motive by Theorem 3.6.

1.2. Explicit formulas in rank 2 and odd degree. In order to compute the Chow motives of these moduli spaces, the basic building block is h(N ). By Theorem 1.1, it suffices to know h(N L ). In rank n = 2 and odd degree d, we compute this by using variation of stability for pairs consisting of a vector bundle and a section studied by Thaddeus [START_REF] Thaddeus | Stable pairs, linear systems and the Verlinde formula[END_REF][START_REF]Geometric invariant theory and flips[END_REF] and improving work of del Baño in [START_REF]On the motive of moduli spaces of rank two vector bundles over a curve[END_REF] on the motive of N L in a semisimple category of motives by using the fact that h(N L ) is abelian (cf. Proposition 4.1) and hence Kimura finite-dimensional. Consequently, we obtain corresponding decompositions of the Chow groups of these moduli spaces (see §4.3.1 for corollaries and comparisons with previous results for N L ). We denote by Pic d (C) the Picard scheme of line bundles of degree d on C. Theorem 1.3. For n = 2, d odd and L ∈ Pic d (C)(k), the rational Chow motive of the moduli space N L of semistable bundles with determinant L is

h(N L ) ≃ h(Sym g-1 (C))(g -1) ⊕ g-2 i=0 h(Sym i (C)) ⊗ (Q(i) ⊕ Q(3g -3 -2i)) .
We obtain the following formulas for the integral Chow motives of the other bundle moduli spaces in terms of h(N ) or h(N L ). For parabolic vector bundles, this comes from studying the wall-crossing flips/flops. For (parabolic) Higgs bundles, this come from using Bia lynicki-Birula decompositions associated to G m -actions scaling the Higgs field and Theorem 1.2.

Theorem 1.4. For n = 2, d odd and L ∈ Pic d (C)(k), we have the following formulas for the integral Chow motives of associated bundle moduli spaces. (i) (Theorem 5.32) For the moduli space N α of parabolic bundles on C with flags at N parabolic points which are semistable with respect to a generic weight α, we have

h(N α ) ≃ h(N ) ⊗ h(P 1 ) ⊗N ⊕ N -3 j=0 
h(Jac(C)) ⊗2 (g + j) ⊕b j (α) .

where the exponents 1 b j (α) are given in Definition 5.31.

1 If M is a Chow motive, then the notation M (i) ⊕n denotes the direct sum of n copies of M (i); this is not ambiguous since this is also canonically isomorphic to M ⊗ (Q(i) ⊕n ).

(ii) (Corollary 5.34) For the moduli space N α L of parabolic bundles on C with determinant L and flags at N parabolic points which are semistable with respect to a generic weight α, we have

h(N α L ) ≃ h(N L ) ⊗ h(P 1 ) ⊗N ⊕ N -3 j=0 h(Jac(C))(g + j) ⊕b j (α)
where the exponents b j (α) are as above. (iii) (Theorem 6.1) For the moduli space M of semistable Higgs bundles, we have

h(M) ≃ h(N (2, d)) ⊕ g-1 j=1 h(Pic a d,j (C)) ⊗ h(Sym 2j-1 (C))(3g -2j -2),
where a d,j = g -j + (d -1)/2. (iv) (Proposition 6.2) For the moduli space M L of semistable Higgs bundles with determinant L, we have

h(M L ) ≃ h(N L ) ⊕ g-1 j=1 h( Sym 2j-1 (C))(3g -2j -2)
where Sym i (C) → Sym i (C) is the pull back of the multiplication-by-2 map on Jac(C). (v) (Theorem 6.8) For the moduli space M α of parabolic Higgs bundles on C with flags at N parabolic points which are semistable with respect to a generic weight α, we have

h(M α ) ≃ h(N )⊗h(P 1 ) ⊗N ⊕ 0≤l≤N l+1-N 2 ≤j≤g-1 h(Pic a d,j (C))⊗h(Sym 2j+N -l-1 (C))(3g-2j +l-2) ⊕( N l )
where a d,j := g -j + (d -1)/2. As in Theorem 1.2, this is independent of α. (vi) (Proposition 6.9) For the moduli space M α L of parabolic Higgs bundles on C with determinant L and flags at N parabolic points which are semistable with respect to a generic weight α, we have

h(M α L ) ≃ h(N L ) ⊗ h(P 1 ) ⊗N ⊕ 0≤l≤N l+1-N 2 ≤j≤g-1 h( Sym 2j+N -l-1 (C))(3g -2j + l -2) ⊕( N l )
where Sym i (C) → Sym i (C) is the pull back of the multiplication-by-2 map on Jac(C).

1.3. Relation to other works. Let us mention here some previous and subsequent works that are closely related to above results:

• The consequences on the Betti numbers of moduli spaces of parabolic vector bundles in Theorem 1.4 (i) and (ii) were obtained by Bauer [START_REF] Bauer | Parabolic bundles, elliptic surfaces and SU(2)-representation spaces of genus zero Fuchsian groups[END_REF] in genus zero and by Holla [START_REF] Holla | Poincaré polynomial of the moduli spaces of parabolic bundles[END_REF] in a recursive form in general (for arbitrary rank). • For the moduli spaces of parabolic Higgs bundles over curves, the phenomenon of independence of the parabolic data in Theorem 1.2 was proved on the level of Betti numbers over k = C [START_REF] Boden | Moduli spaces of parabolic Higgs bundles and parabolic K(D) pairs over smooth curves. I[END_REF], then later for the diffeomorphic type in [START_REF] Nakajima | Hyper-Kähler structures on moduli spaces of parabolic Higgs bundles on Riemann surfaces, Moduli of vector bundles[END_REF], and recently on the level of Betti numbers for any reductive Lie group in [START_REF] Biquard | Parabolic Higgs bundles and representations of the fundamental group of a punctured surface into a real group[END_REF]. • As is mentioned before, our approach to Theorem 1.3 (iii) and (iv) using the G m -action and the associated Bia lynicki-Birula decomposition goes back to ideas of Hitchin [START_REF] Hitchin | The self-duality equations on a Riemann surface[END_REF] and Simpson [START_REF]The Hodge filtration on nonabelian cohomology, Algebraic geometry-Santa Cruz[END_REF]. Motivic computations following this approach already appeared in [START_REF] García-Prada | The y-genus of the moduli space of PGLn-Higgs bundles on a curve (for degree coprime to n)[END_REF], [START_REF] García-Prada | On the motives of moduli of chains and Higgs bundles[END_REF], and [START_REF]On the Voevodsky motive of the moduli space of Higgs bundles on a curve[END_REF]. • (Rank 3) Theorem 1.3 and Theorem 1.4 (iii) and (iv) are extended in our subsequent paper [START_REF] Fu | Motives of moduli spaces of rank 3 vector bundles and Higgs bundles on a curve[END_REF] to obtain formulas for the motives of moduli spaces of semistable vector bundles and Higgs bundles of rank 3 and coprime degree. The analogue of Theorem 1.4 (v) and (vi) in rank 3 has not been treated yet, but the Betti numbers have been worked out in the non-parabolic case in [START_REF] Gothen | The Betti numbers of the moduli space of stable rank 3 Higgs bundles on a Riemann surface[END_REF] and in parabolic case in [START_REF] García-Prada | Betti numbers of the moduli space of rank 3 parabolic Higgs bundles[END_REF] using Morse-theoretic methods.

Background on motives

Let k be a field and R be a commutative ring.

2.1. Chow motives. We write CHM(k, R) for the category of Chow motives over k with coefficients in R. This is of course a very classical object, but since the definition is short and there are two possible conventions in the literature, we provide some details. Objects in CHM(k, R) are triples (X, p, n), where X is a smooth projective k-variety, p is a projector in the ring CH * (X × X, R) of correspondences up to rational equivalence (with product given by composition of correspondences) and n ∈ Z. We adopt the standard notations: h(X) = (X, id X , 0) and R(n) = (Spec(k), id Spec(k) , n). The category CHM(k, R) admits a symmetric monoidal structure coming from products in SmProj k . Morphisms in CHM(k, R) are given, following an homological convention, by

CHM(k, R)((X, p, m), (Y, q, n)) = q • CH dim(Y )+n-m (X × Y, R) • p
(where dim(Y ) has to be interpreted as a locally constant function if Y is reducible). With this convention, there is a covariant functor h : SmProj k → CHM(k, R). For a morphism f : X → Y between smooth projective varieties, h(f ) is denoted by f * : h(X) → h(Y ); that is, the morphism given by the graph of f . Using Poincaré duality h(X

) ∨ ∼ = h(X)(-dim X), we have the Gysin morphism f * : h(Y ) → h(X)(dim Y -dim X).
By definition, we get the following, which we state for later reference.

Lemma 2.1. Let X be a smooth projective variety. Then CH i (X, R) ≃ Hom(h(X), R(i)), which thus vanishes if i < 0 or i > dim(X).

A Chow motive M ∈ CHM(k, Q) is Kimura finite-dimensional, in the sense of [START_REF] Kimura | Chow groups are finite dimensional, in some sense[END_REF] (see also [START_REF] André | Motifs de dimension finie (d'après S.-I. Kimura[END_REF]), if there exists a decomposition M = M even ⊕ M odd and n even , n odd ∈ N such that Λ neven (M even ) = 0 and Sym n odd (M odd ) = 0. Let CHM(k, Q) Kim denote the full subcategory of Kimura finite-dimensional motives. Kimura finite-dimensionality has some very pleasant categorical consequences, one of which we now recall. Proposition 2.2 (see [START_REF] André | Motifs de dimension finie (d'après S.-I. Kimura[END_REF]). The category CHM(k, Q) Kim is closed under taking direct sums, tensor products, direct summands and duals. The functor CHM(k, Q) Kim → M num (k, Q) to the category of motives for numerical equivalence is full and conservative.

In particular, because M num (k, Q) is abelian and semisimple by [START_REF] Jannsen | Motives, numerical equivalence, and semi-simplicity[END_REF], CHM(k, Q) Kim satisfies cancellation: if there exists an isomorphism M ⊕ P ≃ N ⊕ P , then M ≃ N .

Kimura and O'Sullivan conjectured that every Chow motive is Kimura finite-dimensional. While this is wide open in general, we still have the following result for abelian motives which turns out to cover all the motives encountered in this paper. The category CHM(k, Q) ab of abelian motives is the thick subcategory generated by motives of abelian varieties, or equivalently, the thick tensor subcategory generated by motives of curves (see [62, Proposition 4.5, Theorem 5.2]). Proposition 2.3 ([2, Théorème 2.8]). Abelian motives are Kimura finite-dimensional.

2.2.

Voevodsky motives. Some of the moduli spaces we are interested in, namely moduli spaces of (parabolic) Higgs bundles, are not smooth projective varieties, but only smooth and quasi-projective. A natural way to associate a motive to them is via the triangulated category DM(k, R) of Voevodsky motives over k with coefficients in R. It turns out that, in all the cases considered in this paper, the resulting motive is actually a Chow motive, where we identify CHM(k, R) with a full subcategory of DM(k, R) via the fundamental embedding theorem of Voevodsky [START_REF] Voevodsky | Triangulated categories of motives over a field, Cycles, transfers, and motivic homology theories[END_REF], which we recall now in the form we need.

Theorem 2.4. Assume that k is a perfect field or that the characteristic of k is invertible in R. Then the "motive" functor

M : SmProj k → DM(k, R)
factors through the category of Chow motives and induces a fully faithful embedding

CHM(k, R) → DM(k, R).
Proof. This result follows directly (by passing to idempotent completions) from the following formula for Hom groups in DM(k, R). Let X, Y be smooth varieties of pure dimensions d, e with Y projective. There is an isomorphism

(1) DM(k, R)(M (X), M (Y )) ≃ CH e (X × k Y, R)
which is natural in X and Y . This is a standard result but we could not find it precisely in this form in the literature, so we explain how to deduce it from existing references. Let us assume first that k is perfect. The formula then follows from the combination of the following results, which all only require k perfect: duality for smooth projective varieties in the category DM eff (k, R) of effective Voevodsky motives (see [START_REF] Huber | The slice filtration and mixed Tate motives[END_REF]Appendix B] for a reference which only requires k perfect), the representability of Chow groups in DM eff (k, R) [57, Proposition 14.16 and Corollary 19.2], and Voevodsky's cancellation theorem saying that DM eff (k, R) → DM(k, R) is fully faithful [START_REF]Cancellation theorem[END_REF].

Let us now assume that the characteristic of k is invertible in R. Let k perf /k be a perfect closure of k. Under the assumption on R, the base change functor DM(k, R) → DM(k perf , R) is an equivalence of categories [START_REF] Cisinski | Integral mixed motives in equal characteristic[END_REF]Proposition 8.1], while the Chow groups also do not change under purely inseparable extensions. This implies the general case. □

We also recall the following useful result.

Lemma 2.5. Let K/k be any field extension. Then the base change functor

(-) K : DM c (k, Q) → DM c (K, Q)
on constructible Voevodsky motives with rational coefficients is conservative. In particular, the base change functor

(-) K : CHM(k, Q) → CHM(K, Q) is conservative.
Proof. When working with rational coefficients, the category DM(k, Q) is equivalent to the category DM B (k, Q) of Beilinson motives [START_REF]Triangulated categories of mixed motives[END_REF]Corollary 16.1.4] (note that we use a Roman B instead of a cyrilic letter in our notation). Our claim is then a special case of the following much stronger result: if f : X → Y be any finite type surjective morphism, then

f * : DM B (Y ) → DM B (X) is conservative [24, Theorem 14.3.3, Definition 2.1.7].
The statement about Chow motives is then obtained from the one on constructible Voevodsky motives by using Theorem 2.4. □

Motives under flips and flops

In the context of the Minimal Model Program (see [START_REF] Kollár | Birational geometry of algebraic varieties[END_REF]), flips and flops are among the basic building blocks for birational transforms between algebraic varieties of dimension greater than 2. We recall here the geometry of two particularly elementary instances, namely standard flips and flops, and Mukai flops2 , and present some results on the corresponding change of motives, which will be applied later to birational transformations between various moduli spaces of stable vector bundles on curves. Let S be a smooth k-variety. Let m and l be two positive integers. Let V be a vector bundle on S of rank m + 1 and ϖ : Z = P(V ) → S the associated projective bundle. Let X be a smooth variety containing Z as a closed subvariety such that the restriction of the normal bundle N Z/X to each fibre of ϖ is isomorphic to O P m (-1) ⊕(l+1) , or equivalently (see [55, Lemma 1.1]), N Z/X ≃ O ϖ (-1) ⊗ ϖ * (V ′ ) for some vector bundle V ′ of rank l + 1 on S.

Let τ : X → X be the blow-up of X along the smooth center Z; then the exceptional divisor E is isomorphic to P(V ) × S P(V ′ ) with normal bundle N E/ X ≃ O(-1, -1). Therefore we can contract E along the other direction, E → Z ′ := P(V ′ ), which identifies E as the projectivisation of the vector bundle ϖ ′ * (V ′ ), where ϖ ′ : Z ′ → S is the natural projection. The contraction of E to Z ′ amounts to blowing down X to a new (smooth) variety X ′ , and the normal bundle becomes N Z ′ /X ′ ≃ O ϖ ′ (-1) ⊗ ϖ ′ * V . We call the induced birational transform ϕ : X X ′ a standard flip of type (m, l) with centre S. When m = l, it is called a standard flop. In terms of the K-partial order ≥ K on the birational class of X (as in [50, Definition 1.1]), for a standard flip as above, we have X ≥ K X ′ if and only if m ≥ l.

In this paper, we assume that X is quasi-projective. Note that the flipped variety X ′ could fail to be quasi-projective in general. We assume further that there exists a small extremal contraction (in the sense of the Minimal Model Program [START_REF] Kollár | Birational geometry of algebraic varieties[END_REF]) X → X whose restriction to Z is ϖ. Then X ′ is quasi-projective (see [START_REF] Kanemitsu | Mukai pairs and simple K-equivalence[END_REF]Proposition 4.2] and [START_REF] Lee | Flops, motives, and invariance of quantum rings[END_REF]Proposition 1.3]). We summarise the situation in the following commutative diagram.

(2)

E = Z × S Z ′ X Z X X ′ Z ′ X S j p p ′ τ τ ′ i ϖ ϕ i ′ ϖ ′
If all the varieties are projective, the relation between the Chow motives of X and X ′ are established by Lee-Lin-Wang [55, Theorem 2.1] in the case of flops (m = l) and by Jiang [START_REF] Jiang | On the Chow theory of projectivizations[END_REF]Theorem 3.4.(3), Corollary 3.8] in general. Theorem 3.2. Let ϕ : X X ′ be a standard flip of type (m, l) with centre S between smooth projective varieties, as in Definition 3.1. Suppose m ≥ l, then there is an isomorphism of integral Chow motives:

(τ * τ ′ * , j i * • (c 1 (O ϖ (1)) j • ) • ϖ * ) : h(X ′ ) ⊕ m j=l+1 h(S)(j) ≃ -→ h(X).
In particular, when ϕ is a standard flop (m = l), we have an isomorphism τ ′ * τ * : h(X) ≃ -→ h(X ′ ), with inverse τ * τ ′ * .

Mukai flops.

The so-called Mukai flop was discovered by Mukai [START_REF] Mukai | Symplectic structure of the moduli space of sheaves on an abelian or K3 surface[END_REF] as a typical instance of birational transforms between hyper-Kähler manifolds (see also [42, §3]). The following definition is a mild generalisation of the classical one 3 , which is enough for the purpose of this paper. Definition 3.3 (Mukai flops). Let S be a smooth variety and let m be a positive integer. Let V be a vector bundle on S of rank m + 1 and ϖ : Z = P(V ) → S the associated projective bundle. Let X be a smooth variety containing Z as a closed subvariety such that

N Z/X ≃ Ω Z/S ⊗ ϖ * (L),
for some line bundle L on S, where Ω Z/X is the relative cotangent bundle of ϖ : Z → S.

Let τ : X → X be the blow-up of X along the smooth center Z, then the exceptional divisor E = P(Ω Z/S ), which is isomorphic to the incidence hypersurface inside P(V ) × S P(V ∨ ), has normal bundle N E/ X ≃ O(-1, -1). By contracting E along the other direction E → Z ′ := P(V ∨ ), we blow down X to a new (smooth) variety X ′ . We call the induced birational transform ϕ : X X ′ a Mukai flop of type m with centre S. A significant difference compared to standard flops is that the fibre product X × X X ′ has two irreducible components of the same dimension, namely, X and Z × S Z ′ , intersecting along E.

As in Definition 3.1, in order to stay in the category of quasi-projective varieities, we assume in this paper that there exists a small extremal contraction in the sense of the Minimal Model Program X → X whose restriction to Z is ϖ. The situation is summarised in the following diagram.

(3)

Z × S Z ′ E X Z X X ′ Z ′ X S pr 1 pr 2 j p p ′ τ τ ′ i ϖ ϕ i ′ ϖ ′
In the projective situation, Lee-Lin-Wang [START_REF] Lee | Flops, motives, and invariance of quantum rings[END_REF]Theorem 6.3] proved the invariance of Chow motives under a Mukai flop; see also [START_REF] Fu | Motivic and quantum invariance under stratified Mukai flops[END_REF] for a generalisation to stratified Mukai flops. Theorem 3.4. Let ϕ : X X ′′ be a Mukai flop between smooth projective varieties, as in Definition 3.3, then the cycle given by the fibre product

[X × X X ′ ] = [ X] + [Z × S Z ′ ] ∈ CH dim X (X × X ′ ) induces an isomorphism of integral Chow motives: h(X) ≃ -→ h(X ′ ),
whose inverse is given by (the transpose of ) the same cycle.

Note that the isomorphism in the previous theorem is nothing but

τ ′ * τ * + i ′ * pr 2, * pr * 1 i * : h(X) → h(X ′ )
, where the notation for functoriality of Chow motives is explained in §2.1.

Remark 3.5. In fact, the argument in [START_REF] Lee | Flops, motives, and invariance of quantum rings[END_REF] proves that Theorem 3.4 holds in a slightly different situation: if the smooth variety S is not necessarily proper, while X and X ′ are both smooth varieties which are defined over S and proper and smooth over S (in particular requiring that in Diagram [START_REF] Atiyah | Vector bundles over an elliptic curve[END_REF] there is an extra proper morphism X → S making the inclusion S → X a section), then the proof in [START_REF] Lee | Flops, motives, and invariance of quantum rings[END_REF] 

still shows that the cycle [X × X X ′ ] = [ X] + [Z × S Z ′ ] ∈ CH dim X (X × S X ′ ) induces an isomorphism of Voevodsky motives M (X) ≃ -→ M (X ′ ),
and, in particular, an isomorphism of Chow groups CH * (X)

≃ -→ CH * (X ′ ).
As such a claim is not explicitly stated in [START_REF] Lee | Flops, motives, and invariance of quantum rings[END_REF], let us give a simple argument in a special case that is sufficient for our application in the proof of Theorem 3.6: let all varieties be defined and projective over S, and assume that Z, Z ′ , X, X ′ and the Mukai flop X X ′ are all Zariski locally trivial over S. Then, because X and X ′ are smooth projective over S, the cycle [X × X X ′ ] induces a morphism of relative Voevodsky motives M S (X) → M S (X ′ ) over S (in the sense of [START_REF]Triangulated categories of mixed motives[END_REF]Definition 11.1.1], and using [START_REF]Triangulated categories of mixed motives[END_REF]Example 11.2.3,§11.3.8] to relate correspondances to morphisms of relative motives). Relative Voevodsky motives satisfy Zariski descent (as a special case of Nisnevich descent, see [24, §11.1.2]), so it is enough to show this morphism is an isomorphism after passing to a Zariski open cover. By assumption and smooth base change of relative motives (applied here to open immersions) [24, §11.1.2], this reduces us to the case where the whole flopping situation is obtained from Diagram (3) with S = Spec(k) by a base change -× k S. The latter case follows directly from Theorem 3.4 for S = Spec(k) and base change. We conclude that [X × X X ′ ] induces an isomorphism M S (X) ≃ -→ M S (X ′ ), and we obtain the isomorphism M (X) Later when dealing with parabolic Higgs bundles in §6.2, we will need the following slight generalisation of Theorem 3.4 to treat certain smooth quasi-projective varieties.

Theorem 3.6. Let ϕ : X X ′ be a Mukai flop between smooth varieties. Using the notation in Diagram (3), there is an isomorphism of Chow groups

τ ′ * τ * + i ′ * pr 2, * pr * 1 i * : CH * (X) ≃ -→ CH * (X ′ ),
whose inverse is given by τ * τ ′ * +i * pr 1, * pr * 2 i ′ * . Here all the pull-backs are Gysin homomorphisms as in [START_REF] Fulton | Intersection theory[END_REF]. Assuming that the Voevodsky motives of X and X ′ are Chow motives, i.e. are in the essential image of the embedding from Theorem 2.4 (in particular k is perfect or we work with coefficients in a ring R where the characteristic is invertible), then these isomorphisms give isomorphisms between M (X) and M (X ′ ).

Proof. Let X loc = P Z (N Z/X ⊕ O Z ) π → Z and X ′ loc = P Z ′ (N Z ′ /X ′ ⊕ O Z ′ ) π ′
→ Z ′ which contain Z and Z ′ respectively via the zero sections. Then there is a Mukai flop ϕ loc : X loc X ′ loc as in Definition 3.3, which should be considered as the local model of ϕ. Let ι and ι ′ be the inclusions of E into X loc and X ′ loc as the infinite parts respectively (see Appendix A). Consider the following diagram (4)

CH l-1 (E) CH l ( X) ⊕ CH l (X loc ) CH k (E) CH l-1 (E) CH l ( X) ⊕ CH l (X ′ loc ) CH l (E), id (j * ,-ι * ) (id,F loc ) (j * ,-ι * ) id (j * ,-ι ′ * ) (j * ,-ι ′ * )
where F loc is the isomorphism obtained by applying Theorem 3.4 to the Mukai flop ϕ loc , or rather, by applying Remark 3.5, as S is not necessarily proper, but X loc and X ′ loc are both defined and proper smooth over S. (Note that Z, Z ′ , X loc , X ′ loc and the Mukai flop X loc X ′ loc are all Zariski locally trivial over S.) Diagram ( 4) is indeed commutative, as F loc restricts to identity outside of Z and Z ′ . By the local-to-global trick recalled in Proposition A.1, CH l (X) (resp. CH l (X ′ )) is isomorphic, via an explicit correspondence, to the middle cohomology of the top (resp. bottom) row of Diagram (4). Hence, we conclude that the composition

F := (τ ′ * , i ′ * π ′ * ) • (id, F loc ) • (τ * , π * i * ) = τ ′ * τ * + i ′ * pr 2, *
pr * 1 i * induces an isomorphism between CH * (X) and CH * (X ′ ), with inverse given by the composition

F -1 = (τ * , i * π * ) • (id, F -1 loc ) • (τ ′ * , π ′ * i ′ * ) = τ * τ ′ * + i * pr 1, * pr * 2 i ′ * .
Let R be any coefficient ring such that the characteristic of k is invertible if k is not perfect. Assume that the Voevodsky motives of X and X ′ in DM(k, R) are Chow motives, i.e., that there exist Chow motives h X and h X ′ in CHM(k, R) which are sent to M (X) and M (X ′ ) via the full embedding CHM(k, R) → DM(k, R) of Theorem 2.4. By the Yoneda lemma, to show that M (X) ≃ M (X ′ ), or equivalently that h X ≃ h X ′ , it suffices to show that for any Chow motive M ∈ CHM(k, R), there is a bijection

Hom CHM(k,R) (h X , M ) ≃ Hom CHM(k,R) (h X ′ , M )
which is natural in M . It is enough to do this for M = h(T )(n) where T is a smooth projective k-variety and n ∈ Z, as any Chow motive is a direct factor of such a motive. It is also easy to see that we can assume T is connected, and thus equidimensional of some dimension d (as the general case involves distinguishing connected components and just introduces more notation, but no additional difficulty). By definition of h X and the isomorphism (1) in the proof of Theorem 2.4 (which applies because X is smooth and T is smooth and projective), we have

Hom CHM(k,R) (h X , h(T )(n)) ≃ Hom DM(k,R) (M (X), M (T )(n)) ≃ CH d+n (X × k T, R).
The product ϕ × id : X × k T X ′ × k T is again a Mukai flop, so the first part of the proof (which works just as well with coefficients in the ring R) produces a bijection

CH d+n (X × k T, R) ≃ CH d+n (X ′ × k T, R).
As Diagram (3) for ϕ × id is simply the product of the diagram for ϕ with T , this isomorphism is induced by a correspondence of the form α

× ∆ T ∈ CH * (X × k X ′ × k T × k T, R) for some α ∈ CH * (X × k X ′ , R).
It remains to show that this isomorphism is natural in h(T )(n). Let T ′ be another smooth projective variety of equal dimension d ′ and n

′ ∈ Z. A morphism M (T )(n) → M (T ′ )(n ′ ) is given by a correspondence β ∈ CH * (T × k T ′ , R), and the corresponding morphism CH d+n (X × k T, R) → CH d ′ +n ′ (X × k T ′ , R) is induced by the correspondence ∆ X × β.
There is an equality of composition of correspondences

(α × ∆ T ′ ) • (∆ X × β) = α × β = (∆ X ′ × β) • (α × ∆ T ),
which thus implies the claimed naturality. □

Motives of moduli spaces of stable vector bundles

Let N = N C (n, d) denote the moduli space of semistable vector bundles of rank n and degree d on a smooth projective geometrically connected genus g curve C over k. We recall that a vector bundle E is semistable if for all proper subbundles F ⊂ E, we have µ(F ) ≤ µ(E), where µ(E) := deg(E)/ rk(E). It is stable if this equality is strict, and geometrically stable4 if it is stable after all field extensions. The moduli space N is a projective k-variety constructed by GIT [START_REF] Seshadri | Space of unitary vector bundles on a compact Riemann surface[END_REF] containing the moduli space N s of geometrically stable bundles as an open subset.

In this section, we assume that n and d are coprime, so that semistability, stability and geometric stability for rank n degree d vector bundles coincide and so N is a smooth projective k-variety of dimension n 2 (g -1) + 1. For g = 0, this moduli space is empty unless n = 1 (in which case it is a point) and for g = 1, we have N ≃ Jac(C) when k = k [3, Theorem 7]. The moduli space N admits a universal family E, as n and d are coprime [START_REF] Ramanan | The moduli spaces of vector bundles over an algebraic curve[END_REF]; that is, E is a vector bundle on C × N such that for every geometric point p of N , the bundle E |C×{p} is a stable vector bundle in the isomorphism class specified by p.

Let L ∈ Pic d (C)(k) and consider the moduli space N L = N L (n) of semistable vector bundles with determinant isomorphic to L. As n and d are coprime, N L is a smooth projective variety admitting a universal family. In this section, we study the Chow motives h(N ) and h(N L ). 4.1. Beauville's diagonal trick. Given a moduli space M of sheaves of some kind on a smooth projective variety X, there are several cases in which the motive of M lies in the tensor subcategory generated by the motive of X. In the case of the Chow motive of N , this was shown by del Baño in [START_REF] Del Baño | On the Chow motive of some moduli spaces[END_REF]. Other cases where this general principle is known to hold include the moduli space of stable Higgs bundles on C [START_REF]On the Voevodsky motive of the moduli space of Higgs bundles on a curve[END_REF] and certain moduli spaces of (semistable) sheaves on K3 and abelian surfaces (and closely related spaces: crepant resolutions, twisted and non-commutative analogues) [START_REF] Bülles | Motives of moduli spaces on K3 surfaces and of special cubic fourfolds[END_REF][START_REF] Floccari | On the motive of O'Grady's ten-dimensional hyper-Kähler varieties[END_REF]. However, in §6.1.2, we will see that this is not the case for moduli spaces of stable Higgs bundles with fixed determinant on a general curve C, and that motives of certain finite covers of the curve are necessary to generate the motive of the moduli space in that case (Proposition 6.3).

Based on an idea of Beauville [START_REF]Sur la cohomologie de certains espaces de modules de fibrés vectoriels, Geometry and analysis[END_REF] using Chern classes of the universal family to describe the diagonal of N , Bülles [START_REF] Bülles | Motives of moduli spaces on K3 surfaces and of special cubic fourfolds[END_REF] observed that one can give a short proof of del Baño's theorem. We review the argument and check that it gives a similar result for N L . Proof. Since the argument is the same in both cases, we give the proof for N L as this case has not explicitly appeared in the literature. We follow closely the exposition of [19, Theorem 0.1]. First, consider the natural projections

N L × C × N L π 12 w w π π 23 ' ' N L × C N L × N L C × N L .
Since n and d are coprime, there is a universal family on N L given by a vector bundle E on C × N L . Following Beauville [START_REF]Sur la cohomologie de certains espaces de modules de fibrés vectoriels, Geometry and analysis[END_REF], let us define a K-theory class

[Ext ! π ] := i (-1) i [R i π * Hom(π * 12 E, π * 23 E)] ∈ K 0 (N L × N L ).
As C is smooth and 1-dimensional, this sum has only two potentially non-zero terms, for i = 0 or 1, and it is possible to represent this class by a two-term complex u : K 0 → K 1 of locally free sheaves on N L × N L . For stable vector bundles E and F on C, the homomorphism group Hom(E, F ) vanishes unless E ≃ F , and is one-dimensional if E ≃ F . From this, Beauville deduces that the diagonal ∆ N L is equal to the degeneracy locus of u (at least set-theoretically, which is enough to carry out the rest of the proof) [10, p.28]. This degeneracy locus is a determinantal subvariety of the expected codimension and by applying Porteous's formula [START_REF] Fulton | Intersection theory[END_REF]Theorem 14.4] one obtains

(5) c N (-[Ext ! π ]) = [∆ N L ] ∈ CH N (N L × N L ) Q , where N = dim N L = (n 2 -1)(g -1)
. The Chow group CH * (N L × N L ) Q has a ring structure given by convolution of cycles, and the class [∆ N L ] of the diagonal is a two-sided unit. Following Bülles, we introduce

I := ⟨β • α|α ∈ CH * (N L × C k ) Q , β ∈ CH * (C k × N L ) Q , k ≥ 1⟩ which is clearly a two-sided ideal of CH * (N L × N L ) Q . The same computation as in [19, Proof of Theorem 0.1]
shows that I is also closed under intersection products.

Let us show that (5

) implies that [∆ N L ] ∈ I. As in [19, Proof of Theorem 0.1], the Grothendieck-Riemann-Roch Theorem implies that ch(-[Ext ! π ]) = -π * (π * 12 ch(E ∨ ) • π * 23 (E) • π * 2 td(C)) with E ∨ = Hom(E, O). Let α := ch(E ∨ ) • π * 2 √ td C and β := ch(E) • π * 2 √ td C.
Then, for a ∈ N, by considering the graded part of the previous equation in codimension a, we see that

ch a (-[Ext ! π ]) = - i+j=a+2 α i • β j ∈ I.
An induction on a then implies that c a (-[Ext ! π ]) also lies in I. By (5), we see that [∆ N L ] ∈ I. By the argument at the end of [19, Proof of Theorem 0.1], we then see that h(N L ) can be realised as a direct summand of a motive of the form i h(C k i )(n i ). This last motive is in the tensor subcategory of CHM(k, Q) generated by h(C), and can also be embedded as a direct summand of the motive of a large enough power of C. This completes the proof. □ 4.2. Motives of moduli spaces of vector bundles with and without fixed determinant.

Theorem 4.2. Assume that n and d are coprime and

L ∈ Pic d (C)(k). In CHM(k, Q), we have h(N ) ≃ h(N L ) ⊗ h(Jac(C)).
Proof. Since n and d are coprime, the moduli spaces N and N L are fine moduli spaces and we fix universal families

E (resp. E ′ ) on N × C (resp. N L × C). One can choose E ′ such that the induced morphism ι : N L → N satisfies (ι × id) * (E) ≃ E ′ .
The morphism ι is easily seen to be a proper monomorphism (for instance by checking the valuative criterion of properness), hence a closed immersion. Combining this with the action of Jac(C) on N by tensor product, we get a morphism ϕ :

N L × Jac(C) → N , (E, L) → ι(E) ⊗ L.
We will show that the map of Chow motives induced by this last morphism is an isomorphism.

First, let us show that we can reduce to the case of a field k of characteristic zero. Let B = Spec(R) be a complete local trait with R a discrete valuation ring with fraction field K of characteristic 0 and residue field k. Since C is a smooth projective curve, there exists a smooth projective curve C/B which lifts C [1, Exposé III Théorème 7.3]. Moreover, since C has dimension 1, we have H 2 (C, O C ) = 0; hence there exists a line bundle Λ on C which lifts L [44, Corollary 5.6.(a)]. There is a relative moduli space N C/B (resp. N C/B,Λ ) of vector bundles of rank n and degree d (resp. determinant Λ) over C/B, which are smooth projective schemes over B whose generic and special fibres are the corresponding moduli spaces over K and k (see [START_REF] Huybrechts | The geometry of moduli spaces of sheaves[END_REF]Theorem 4.3.7] for a very general construction of moduli spaces of sheaves in a relative setting). In particular, we have a relative Jacobian Jac(C/B) = N C/B (1, 0). The construction of the previous paragraph works in this generality and produces a B-morphism

ϕ C : N C/B,Λ × B Jac(C/B) → N C/B .
Assume now that we know that, over the generic fibre, this induces a isomorphism of Chow motives h(ϕ

C K ) : h(N C K ,Λ K × Jac(C K )) → h(N C K )
. By applying the specialisation morphisms for Chow groups in smooth projective families over B [31, §10.1], which are compatible with composition of correspondences, we see that this implies the same claim over k.

We can thus assume that k is of characteristic 0. Let L/k be a finite field extension. The base change functor CHM(k, Q) → CHM(L, Q) is conservative by Lemma 2.5. Since the characteristic of k is 0, by replacing k by a finite extension, we can assume that the group scheme Jac(C)[n] of n-torsion points in the Jacobian is the constant finite étale group scheme associated to Γ n := Jac(C)[n](k), and we identify the two.

The group Γ n acts on N L via M • E := E ⊗ M -1 and on Jac(C) by translation; we let N L × Γn Jac(C) denote the quotient by the diagonal Γ n -action. The morphism ϕ factors through this quotient and induces a morphism

ϕ : N L × Γn Jac(C) → N .
It is well known that this morphism is an isomorphism, but we could not find a reference in this generality; let us sketch the argument. It is enough to prove that this is an isomorphism after extending the field k, hence we can assume that k is algebraically closed. We construct an inverse in the other direction as follows. Let S be a k-scheme and [F → C × S] ∈ N (S) be the class of a family of rank n degree d stable vector bundles parametrised by S (recall that F and F ⊗ π * S Λ, where Λ is a line bundle on S, determine the same S-point of N ). Then det(F) ⊗ π * C L -1 → C × S is a family of line bundles of degree 0 and in particular defines an S-point of Jac(C). This family of line bundles does not necessarily admit an n-th root, but it does after passing to the finite étale cover S ′ → S defined by the pullback square

S ′ M / / p Jac(C) [n] S det(F )⊗L -1 / / Jac(C).
By construction, S ′ is a Γ n -torsor over S and the induced map S ′ → Jac(C) gives us a family M of degree 0 line bundles on C parametrised by S ′ (this is the point where it is useful to assume k is algebraically closed), uniquely determined up to the pullback of a line bundle on S ′ . We have

det(p * C F ⊗M -1 ) ≃ p * C det(F)⊗M ⊗-n ≃ π * C L⊗π * S ′ Λ for p C := Id C ×p and π C : C ×S ′ → C, and Λ a line bundle on S ′ . Hence, the pair (p * C F ⊗ M -1 , M ) defines a morphism S ′ → N L × Jac(C),
which is Γ n -equivariant and descends to a morphism S → N L × Γn Jac(C) between the Γ nquotients. One checks that the resulting morphism does not depend on the choice of F and M in their equivalence class. The whole construction is functorial in S, and defines a morphism N → N L × Γn Jac(C), which one can show is an inverse to ϕ.

Since we are working with Chow motives with rational coefficients, we deduce that

h(N ) ≃ h(N L × Γn Jac(C)) ≃ h(N L × Jac(C)) Γn ≃ (h(N L ) ⊗ h(Jac(C))) Γn . Let us write h(Jac(C)) = h(Jac(C)) Γn ⊕ R. Since the morphism [n] : Jac(C) → Jac(C) is a finite étale Γ n -torsor, it induces an isomorphism of motives [n] * : h(Jac(C)) ≃ h(Jac(C)) Γn .
Moreover, h(Jac(C)) Γn is Kimura finite-dimensional, as it is a direct factor of h(Jac(C)); thus, by Proposition 2.2, we can cancel on both sides and deduce that R ≃ 0. We deduce that the Γ n -action on h(Jac(C)) is trivial (see [START_REF] Jiang | On the Chow ring of certain rational cohomology tori[END_REF]Lemma 2.1] for a different argument using results of Beauville on Chow groups of abelian varieties [START_REF] Beauville | Sur l'anneau de Chow d'une variété abélienne[END_REF]). We deduce that

h(N ) ≃ (h(N L )) Γn ⊗ h(Jac(C)).
Finally, it remains to show that the action of Γ n on h(N L ) is trivial. A classical theorem of Harder-Narasimhan [START_REF] Harder | On the cohomology groups of moduli spaces of vector bundles on curves[END_REF] shows that this is the case for the Γ n -action on the ℓ-adic cohomology H * (N L , Q ℓ ) for any prime ℓ different from the characteristic of k. In other words, the ℓ-adic realisation of the morphism h(N L ) Γn → h(N L ) is an isomorphism. By Proposition 4.1, this is a morphism between abelian Chow motives. Since k is now a field of characteristic 0, the ℓ-adic realisation functor R ℓ : DM(k, Q) → D(Q ℓ ) is conservative when restricted to abelian geometric motives by [START_REF] Wildeshaus | On the interior motive of certain Shimura varieties: the case of Picard surfaces[END_REF]Theorem 1.12]. We deduce that h(N L ) Γn → h(N L ) is an isomorphism, which concludes the proof. □

4.3.

A closed formula in rank 2 using wall-crossing for stable pairs. In this section, we obtain a formula for the rational Chow motive of the moduli space of stable vector bundles of rank two and odd degree d from a result of del Bãno [START_REF]On the motive of moduli spaces of rank two vector bundles over a curve[END_REF]. Del Bãno's proof relies in turn on work of Thaddeus [START_REF] Thaddeus | Stable pairs, linear systems and the Verlinde formula[END_REF] involving variation of stability for so-called (Bradlow) stable pairs, consisting of a vector bundle with a non-zero section. The notion of (semi)stability for such pairs depends on a stability parameter σ ∈ Q >0 and involves checking an inequality for all subbundles. For each σ, there is an associated moduli space of σ-semistable pairs P σ = P σ C (2, d), which is a projective variety constructed via GIT [START_REF] Thaddeus | Stable pairs, linear systems and the Verlinde formula[END_REF]. The space of stability parameters Q >0 admits a wall and chamber decomposition by considering how the notion of (semi)stability changes as σ varies. The walls correspond to critical values of σ for which semistability and stability do not coincide (i.e., there is a subbundle violating stability) and in the chambers, semistability and stability coincide and the corresponding moduli space is smooth. For moduli spaces P σ L = P σ C,L (2, d) of pairs with fixed determinant, Thaddeus showed (i) for σ in the minimal chamber, there is a forgetful map P σ L → N L (which is a projective bundle if d ≥ 4g -3); (ii) each wall-crossing corresponds to standard flip (or flop) between the P σ L 's on both sides with centre a symmetric power of C and iii) for σ in the maximal non-empty chamber, the moduli space of stable pairs is a projective space.

In [START_REF] Thaddeus | Stable pairs, linear systems and the Verlinde formula[END_REF], the field k is assumed to be the complex numbers. We claim that this assumption is not necessary. First of all, the constructions in [START_REF] Thaddeus | Stable pairs, linear systems and the Verlinde formula[END_REF] are purely algebro-geometric and work at the very least over any algebraically closed field. The key observation to pass to a general base field is then the following: when k = k, for a given stability parameter σ and a pair (E, s), Thaddeus shows that there is at most one destabilising line subbundle L ⊂ E with s ∈ H 0 (L) and one subbundle M ⊂ E with s / ∈ H 0 (M ) [66, (1.4)]. The same uniqueness statement for those two types of line subbundles then holds over any field k, and in fact for families of pairs over any base scheme over k (defined in the obvious way), by passing to geometric points and using the statement over an algebraically closed field. Moreover, when σ is not on a wall, the line subbundle L (resp. M ) exists precisely for the unstable pairs which become stable after passing to the right (resp. to the left) chamber [66, Proofs of (3.2), (3.3)].

When k = k, this is how Thaddeus defines the flipping loci that relate the P σ L 's. For a general base field k, the uniqueness statement above applied to a general base k-scheme implies that the same flipping loci are defined over k and implies a modular description of those loci (as the image of the moduli spaces of triples (E, s, L) (resp. (E, s, M )) with L (resp. M ) line subbundle with s ∈ H 0 (L) (resp. s / ∈ H 0 (M )) via the map forgetting L (resp. M ), which is a closed immersion because of the uniqueness statement). Using that modular description, all the arguments of [66, §3] identifying these flipping loci and proving that the resulting birational maps are standard flips go through over an arbitrary field k. Alternatively, one can adapt the proof in [START_REF] Huybrechts | The geometry of moduli spaces of sheaves[END_REF]Theorem 1.3.7] that the uniqueness of the Harder-Narasimhan filtration for sheaves implies this filtration is stable under base field extension to the setting of pairs. Indeed, if k is perfect, one can also argue by Galois descent and check that the whole diagram of flips over a fixed algebraic closure k and the isomorphisms described by [66, §3] are stable under the action of Gal( k/k). 

h(N L ) ≃ h(Sym g-1 (C))(g -1) ⊕ g-2 i=0 h(Sym i (C)) ⊗ (Q(i) ⊕ Q(3g -3 -2i))
and the rational Chow motive of the moduli space N = N C (2, d) of stable rank 2 degree d vector bundles is given by

h(N ) ≃ h(Jac(C)) ⊗ h(Sym g-1 (C))(g -1) ⊕ g-2 i=0 h(Sym i (C)) ⊗ (Q(i) ⊕ Q(3g -3 -2i)) .
Proof. For g = 0, both moduli spaces are empty and both formulas hold. For g = 1, the determinant induces a morphism N → Pic d (C) ≃ Jac(C) (where we use Pic d (C)(k) ̸ = ∅). We claim that the induced morphism of Chow motives is an isomorphism. By Lemma 2.5, it suffices to check this after passing to the algebraic closure k = k. In that case, the determinant morphism is actually an isomorphism and N L is a point by [START_REF] Atiyah | Vector bundles over an elliptic curve[END_REF]Theorem 7]. Since we are working with rational coefficients, we can use a Q-divisor of degree 1 to get an isomorphism

h(C) ≃ h(Jac(C)) in CHM(k, Q) (even when C(k) = ∅).
By Theorem 4.2, it suffices to prove the formula for h(N L ). By assumption, C has a degree d line bundle L and tensoring with L ⊗e induces an isomorphism N C (2, d) ∼ = N C (2, (2e+1)d); thus we can assume without loss of generality that d ≥ 4g -3 and g ≥ 2. Let us write d = 4g -3 + 2δ with δ ≥ 0.

Since d ≥ 4g -3, Thaddeus' work [START_REF] Thaddeus | Stable pairs, linear systems and the Verlinde formula[END_REF] shows there are d-1 2 = 2g -2 + δ walls and 2g -1 + δ chambers for pairs with corresponding smooth pairs moduli spaces P σ i L for 0 ≤ i ≤ 2g -2 + δ 5 The formula holds for all g ≥ 0, with the convention that Sym -1 (C) = ∅.

with σ 0 > • • • > σ 2g-2+δ > 0 which fit into a diagram P σ 0 L ≃ (0,5g-7+2δ) centre C / / P σ 1 L (1,5g-9+2δ) centre Sym 2 (C) / / P σ 2 L / / • • • / / P σ 2g-3+δ L (2g-3+δ,g-1+2δ) centre Sym 2g-2+δ (C) / / P σ 2g-2+δ L π P 5g-5+2δ N L
where the horizontal maps are standard flips (or flops) with the given type and centre and π is the forgetful map, which is a P 2g-2+2δ -bundle.

Let us first assume that C admits a line bundle of degree 1 and that d = 4g -3 (which in this case can be achieved by tensoring by that line bundle). Under this assumption, using the above sequence of flips with δ = 0, del Baño computes the class of the motive of N L (2, d) in the completion K of the ring K 0 (CHM eff k ) along the ideal generated by the Lefschetz motive

L := Q(1) [26, Theorem 2.6] in terms of h 1 (C).
In general, suppose that C does not admit a line bundle of degree 1 and that δ is not necessarily 0. We claim that the proof of [START_REF]On the motive of moduli spaces of rank two vector bundles over a curve[END_REF]Theorem 2.6] still applies in this case with some minor modifications. The assumption that C has a line bundle of degree 1 is not used in the proof, besides the reduction to degree d = 4g -3 (in particular, as del Baño observes in [26, §1.2.4], the formula for motives with rational coefficients of high enough symmetric powers in terms of the motive of the Jacobian holds without any assumption on C, despite the fact that those symmetric powers are not projective bundles over the Jacobian). The computation for δ > 0 is then completely parallel to the computation for δ = 0 in the proof of [START_REF]On the motive of moduli spaces of rank two vector bundles over a curve[END_REF]Theorem 2.6] and shows that the class of the motive of N L in the ring K is given by applying the homomorphism K[[T ]] → K, T → L to the expression (generalising the penultimate line on page 8 of [START_REF]On the motive of moduli spaces of rank two vector bundles over a curve[END_REF], which only deals with the case δ = 0)

1 1 -T 2g-1+2δ (1 -T 2g-1+2δ )(1 + T ) h 1 (C) (1 -T )(1 -T 2 ) - (1 + 1) h 1 (C) (1 -T ) T 2g-1+δ -T 2g-1+δ 1 -T - T 3g-1+2δ -T g 1 -T 2 which simplifies to (1 + T ) h 1 (C) -(1 + 1) h 1 (C) (1 -T )(1 -T 2
) and is thus independent of δ.

At this point, we have the formula above in the ring K. Del Baño then claims in [26, Corollary 2.7] that this implies that we have [START_REF]La réalisation étale et les opérations de Grothendieck[END_REF] h

num (N L ) ≃ g i=0   Λ i h 1 num (C) ⊗   g-i-1 j=0 Q(j)   ⊗ g-i-1 l=0 Q(2j) ⊗ Q(i)  
in the category M eff num (k, Q) of effective numerical motives with rational coefficients, where we have used the decomposition h

(C) = Q(0) ⊕ h 1 (C) ⊕ Q(1)
of the motive of C. Since he does not give a complete proof and this is a crucial step in our argument, let us fill in the details.

The first part of the proof of [26, Corollary 2.7] is complete and shows that formula (6) holds in K. Write K num for the completion of K 0 (M eff num (k, Q)) along the ideal generated by L. Formula (6) in K implies the same formula in K num .

We claim that the map K 0 (M eff num (k, Q)) → K num is injective. For this, it suffices to show that the filtration (L n ) n≥0 is separated, i.e. ∩ n≥0 (L n ) = 0. By Jannsen's theorem [START_REF] Jannsen | Motives, numerical equivalence, and semi-simplicity[END_REF],

M eff num (k, Q) is a semisimple abelian category; thus K 0 (M eff num (k, Q))
is the free abelian group generated by isomorphism classes of simple objects of M eff num (k, Q). Let us write I for this set of isomorphism classes of simple objects, and choose a simple representative

M i ∈ M eff num (k, Q) for every i ∈ I. Let α ∈ (L n ), i.e. α = L n • β with β ∈ K 0 (M eff num (k, Q));
we write these elements uniquely as

α = i∈I m i [M i ] and β = i∈I n i [M i ].
Since the functor

M eff num (k, Q) → M num (k, Q) is fully faithful, there are no L-torsion objects in M eff num (k, Q).
In particular, multiplication by L induces an injective map from I to I. By comparing the expansions of α and L n • β, we see that whenever m i ̸ = 0, we must have that

M i is divisible by L n , i.e. M i ≃ L n ⊗ M ′ i for some M ′ i ∈ M eff num (k, Q). Let now α ̸ = 0 be in ∩ n≥0 (L n ) and choose i ∈ I such that m i ̸ = 0; the previous argument shows that M i is also divisible by L n for all n ≥ 0. It is thus enough to show that if M ∈ M eff num (k, Q) is such that [M ] ∈ ∩ n≥0 (L n ), then M = 0.
By Yoneda, it suffices to show that for any N ∈ M eff num (k, Q), we have Hom(N, M ) = 0. Writing M = M ′ ⊗ L n , we see that this group vanishes for n large enough for dimension reason. This finishes the proof of the separatedness of the filtration, and thus the injectivity of K 0 (M eff num (k, Q)) → K num . Since both sides of ( 6) lie in M eff num (k, Q), we now deduce from this injectivity statement that formula [START_REF]La réalisation étale et les opérations de Grothendieck[END_REF] 

holds in K 0 (M eff num (k, Q)). Finally, since M eff num (k, Q) is semisimple, the formula of [26, Corollary 2.7] holds for isomorphism classes of objects in M eff num (k, Q). Recall that the motive h(C) decomposes as h(C) = Q(0) ⊕ h 1 (C) ⊕ Q(1)
. By using this decomposition and expanding the formula in our Theorem, we see that it is equivalent to del Baño's formula. We have thus proven our theorem in M num (k, Q).

By Theorem 4.1, both sides of the formula are abelian Chow motives. By Propositions 2.3 and 2.2, we deduce that the formula also holds in CHM(k, Q). This concludes the proof. □

We note that as we used Kimura finite-dimensionality, the above isomorphism is not explicit. 

CH a (N L ) Q ≃ CH a+1-g (Sym g-1 (C)) Q ⊕ g-2 i=0 CH a-i (Sym i (C)) Q ⊕ CH a-3g+3+2i (Sym i (C)) Q and CH a (N L ) Q ≃ CH a+1-g (Sym g-1 (C)) Q ⊕ g-2 i=0 CH a-3g+3+2i (Sym i (C)) Q ⊕ CH a-i (Sym i (C)) Q .
For a small or close to 3g -3, many of these terms vanish for dimensional reasons (Lemma 2.1). Consequently, we can recover several descriptions of rational Chow groups in the literature (although our isomorphism is non-explicit).

Corollary 4.5. (i) [61] CH 1 (N L ) ≃ Z . (ii) [7] CH 2 (N L ) Q ≃ CH 0 (C) Q if g = 2, CH 0 (C) Q ⊕ Q if g > 2. (iii) [22] CH 1 (N L ) Q ≃ CH 0 (C) Q .
Proof. These are special cases of Corollary 4.4 and Lemma 2.1, with the additional remark that CH 1 (N L ) is torsion free because N L is a smooth projective Fano variety. □

In fact, by examining the flip sequence in the proof of Theorem 4.3 and using Theorem 3.2, we can be more precise and compute some integral Chow groups of N L ; for example, one can deduce that CH 1 (N L ) hom ≃ Jac(C) ≃ CH 2 (N L ) hom (see [START_REF] Balaji | Algebraic cohomology of the moduli space of rank 2 vector bundles on a curve[END_REF][START_REF] Choe | Chow group of 1-cycles on the moduli space of vector bundles of rank 2 over a curve[END_REF][START_REF] Li | A note on 1-cycles on the moduli space of rank-2 bundles over a curve[END_REF]).

More interestingly, our formula enables us to deduce simple descriptions of Chow groups which were previously unknown. Let us give the first examples.

Corollary 4.6. We have

CH 2 (N L ) Q ≃ Q if g = 2, Q ⊕ CH 0 (Sym 2 (C)) Q if g ≥ 3 and CH 3 (N L ) Q ≃    Q if g = 2, Q ⊕ Pic(Jac(C)) Q if g = 3, Q ⊕2 ⊕ Pic(Jac(C)) Q if g ≥ 4.
Proof. This follows from Corollary 4.4 and Lemma 2.1 together with the fact that

Pic(Sym 2 (C)) Q ≃ Q ⊕ Pic(Jac(C)) Q . which follows as h(C) = Q(0) ⊕ h 1 (C) ⊕ Q(1). □
For each value of a, the descriptions of CH a (N L ) Q and CH a (N L ) Q vary in low genus but stabilise in higher genus to the following uniform formulas.

Corollary 4.7. Let a ∈ N. For g ≥ a + 1, we have

CH a (N L ) Q ≃ a i=⌈ a 2 ⌉ CH a-i (Sym i (C)) Q ; CH a (N L ) Q ≃ a i=⌈ a 2 ⌉ CH a-i (Sym i (C)) Q .
Proof. These follow from Corollary 4.4 by determining the terms which are not forced to vanish by Lemma 2.1 and the condition g ≥ a + 1. □

Motives of moduli spaces of parabolic vector bundles

Moduli spaces of parabolic vector bundles were introduced by Mehta and Seshadri [START_REF] Mehta | Moduli of vector bundles on curves with parabolic structures[END_REF], where one of the key differences with moduli of vector bundles is that in their GIT construction there is a choice of linearisations of the action giving rise to various notions of stability, encoded by a set of parabolic weights. Several authors have studied the geometry of the birational transformations between these moduli spaces for different weights [START_REF] Boden | Variations of moduli of parabolic bundles[END_REF][START_REF]Rationality of moduli spaces of parabolic bundles[END_REF][START_REF]Geometric invariant theory and flips[END_REF]. The Betti numbers and Poincaré polynomials of these moduli spaces over the complex numbers have been computed by Holla [START_REF] Holla | Poincaré polynomial of the moduli spaces of parabolic bundles[END_REF] using a gauge theoretic approach à la Atiyah-Bott. For C = P 1 and rank n = 2, the Poincaré polynomials have been studied using variation of parabolic stability [START_REF] Bauer | Parabolic bundles, elliptic surfaces and SU(2)-representation spaces of genus zero Fuchsian groups[END_REF]. We will use the explicit wall-crossing descriptions to give formulae for the Chow motives of these moduli spaces in rank n = 2. 5.1. Moduli spaces of parabolic vector bundles. Throughout this section, we fix a set D = {p 1 , . . . , p N } of distinct k-rational points on C, which we refer to as the parabolic points. We limit ourselves to the case of rational points, mostly for simplicity; it is likely that very similar formulas hold for closed points. E,E i,j ) on (C, D) is a vector bundle E on C with a quasi-parabolic structure, consisting of flags E i,j in the fibres at each point

p i ∈ D E p i = E i,1 ⫌ E i,2 ⫌ • • • ⫌ E i,l i ⫌ E i,l i +1 = 0.
A parabolic vector bundle is a quasi-parabolic vector bundle E * with weights α = (α i,j ) satisfying

0 ≤ α i,1 < • • • < α i,l i < 1 for each 1 ≤ i ≤ N.
The discrete invariants of E * are given by the rank and degree of E and for each p i ∈ D, the length l i := l(E i,j ) and flag type n i,j := dim E i,j (or equivalently, the multiplicity m(E * ) = (m i,j ) defined by m i,j := n i,j -n i,j+1 for 1 ≤ i ≤ N, 1 ≤ j ≤ l i ). We write these invariants as a tuple η(E * ) = (rk(E), deg(E), m(E * )). The flags are full if m i,j = 1 for all i, j.

For us, we will be interested in varying the weights for quasi-parabolic bundles and we will later think of these weights as defining a notion of stability for quasi-parabolic vector bundles and the variation of weights gives different notions of stability and moduli spaces.

Remark 5.2. One can equivalently think of a quasi-parabolic vector bundle E * = (E, E i,j ) on (C, D) as a vector bundle with a sheaf filtration (by locally free sheaves) for each

p i ∈ D E = E i 1 ⫌ E i 2 ⫌ • • • ⫌ E i l i ⫌ E i l i +1 = E(-p i ) where E i j is the kernel of the sheaf homomorphism E ↠ (E p i /E i,j )⊗O p i . If (E * , α
) is a parabolic vector bundle, then the weights α determine, for each p i ∈ D, a filtered sheaf E i x indexed by x ∈ R (cf. [START_REF] Simpson | Harmonic bundles on noncompact curves[END_REF] and [18, §5]): for α i,j-1 < x ≤ α i,j set E i

x := E i j (where we define α i,0 = 0 and α i,l i+1 = 1), which defines E i

x for x ∈ (0, 1] and then set E i x+m := E i x (-mp i ) for m ∈ Z. Definition 5.3. Let (E * , α) and (F * , β) be parabolic vector bundles on (C, D). A homomorphism ϕ : E → F is said to be parabolic (resp. strongly parabolic) if α i,j > β i,k (resp. α i,j ≥ β i,k ) implies ϕ(E i,k ) ⊂ F i,k+1 for all i, j, k.

If E * and F * have the same flag lengths and α = β, then a homomorphism ϕ :

E → F is parabolic if ϕ(E i,j ) ⊂ F i,j (resp. strongly parabolic if ϕ(E i,j ) ⊂ F i,j+1
) for all i, j.

There is a subsheaf of parabolic homomorphisms ParHom((E * , α), (F * , β)) ⊂ Hom(E, F ) with torsion quotient supported on D. Consequently, the Euler characteristic of this sheaf is

χ(ParHom((E * , α), (F * , β)) = χ(Hom(E, F )) - p i ∈D (rk(E) rk(F ) -P i ((E * , α), (F * , β))) ,
where P i ((E * , α), (F * , β)) := dim ParHom((E i, * , α i, * ), (F i, * , β i, * )); see [73, §4] and [START_REF] Boden | Variations of moduli of parabolic bundles[END_REF]Lemma 2.4]. As this Euler characteristic only depends on the underlying discrete invariants and weights, we write

χ par ((η(E * ), α) ∨ ⊗ (η(F * ), β)) := χ(ParHom((E * , α), (F * , β)).
Remark 5.4. If E * and F * have the same flag lengths and α = β, we drop the weights from the notation and we have

χ par (η(E * ) ∨ ⊗ η(F * )) = -n F d E + n E d F + n E n F (1 -g) - N i=1 j>k m i,j (E * )m i,k (F * ).
5.1.2. Parabolic weights and stability. For a fixed rank n, the space of weights for rank n parabolic vector bundles on (C, D) is

A := { α = ( α i,j ) ∈ R N n : 0 ≤ α i,1 ≤ α i,2 ≤ • • • ≤ α i,n < 1 for 1 ≤ i ≤ N }.
Note that in the space of weights A, we allow α i,j = α i,j+1 .

Definition 5.5. For a weight α ∈ A and 1 ≤ i ≤ N , let l i ( α) denote the number of distinct weights in α i,1 ≤ α i,2 ≤ • • • ≤ α i,n and for 1 ≤ j ≤ l i ( α), we let m i,j ( α) denote the multiplicities of these distinct weights in increasing order. We refer to l( α) = (l i ( α)) i and m( α) = (m i,j ( α)) i,j as the length and multiplicity of α. There is a decomposition

A = m A m
by multiplicities and the ordering on multiplicities by successive refinement defines an ordering on the set of weights of fixed multiplicity:

A m > A m ′ if A m ′ is a proper face contained in the closure of A m .
For α of length l and multiplicity m, the collapsed weight α is obtained by deleting for each i repeated instances of weights:

α := (α i,1 < α i,2 < • • • < α i,l i ) 1≤i≤N where α i,j := α i,1+ k<j m i,k .
When the rank n and multiplicity m are fixed, we can freely go back and forth between extended weights α and collapsed weights α by deleting or inserting repeated weights. Definition 5.6. Let E * be a quasi-parabolic vector bundle on (C, D) of rank n and with multiplicity m = (m i,j ). For α ∈ A m , we define the α-slope of E * by

µ α (E * ) = deg α (E * ) rk(E) , where deg α (E * ) = deg(E) + p i ∈D n j=1 α i,j = deg(E) + p i ∈D l i j=1 α i,j m i,j .
For a subbundle E ′ ⊂ E, we can intersect E ′ p i with the flags E i,j in E p i . If we do not delete repeated subspaces in this flag in E ′ p i , we obtain a length l i flag in E ′ p i with multiplicity defined (slightly unconventionally, but as in [START_REF]Rationality of moduli spaces of parabolic bundles[END_REF]) by setting for 1

≤ j ≤ l i m ′ i,j := dim(E ′ p i ∩ E i,j ) -dim(E ′ p i ∩ E i,j+1
) which may now also be zero. Then the α-slope of this subbundle is defined by

µ α (E ′ * ) := deg α (E ′ * ) rk(E ′ )
, where deg

α (E ′ * ) = deg(E ′ ) + p i ∈D l i j=1 α i,j m ′ i,j .
If instead we delete repeated subspaces in the flag in E ′ p i , we obtain a flag of length

l ′ i ≤ l i E ′ p i = E ′ i,1 ⫌ E ′ i,2 ⫌ • • • ⫌ E ′ i,l ′ i ⫌ E ′ i,l ′ i +1 = 0, giving a quasi-parabolic structure 6 E ′ * .
We endow this with a subset of the weights ( 7)

(α ′ i,k ) = (α i,j 1 < α i,j 2 < • • • < α i,j l ′ i ) 1≤i≤N
, where j k := max{j :

E ′ i,k ⊆ E i,j }. Then deg α (E ′ * ) = deg(E ′ ) + p i ∈D l ′ i k=1 α i,j k (dim E ′ i,k -dim E ′ i,k+1
).

Remark 5.7. Given a short exact sequence E ′ → E ↠ E ′′ with quasi-parabolic structure E * on E, one can similarly give E ′′ a quasi-parabolic structure and define its multiplicity m ′′ analogously. The advantage of our unconventional definition of multiplicities m ′ and m ′′ of suband quotient bundles is that then m = m ′ +m ′′ . If E has weights α, then we also have subsets α ′ and α ′′ of the weights as described above which satisfy α = α ′ + α ′′ for the associated extended weights.

Moreover (E ′ * , α ′ ) → (E * , α) ↠ (E ′′ * , α ′′ ) are parabolic homomorphisms. Definition 5.8. A quasi-parabolic bundle E * with m(E * ) = m(α) is α-semistable (resp. α- stable) if for all subbundles E ′ ⊊ E, we have µ α (E ′ * ) ≤ µ α (E * ) (resp. µ α (E ′ * ) < µ α (E * )).
Remark 5.9. We note that the notion of stability is invariant under the shift

(α i,j ) → (α i,j + C i )
for constants C i for 1 ≤ i ≤ N . Hence, we may assume α i,1 = 0 without loss of generality.

Fix discrete invariants η = (n, d, m). For each α ∈ A m , there is a moduli space N α C,D (η) of α-semistable parabolic bundles with invariants η, which is a normal projective variety [START_REF] Mehta | Moduli of vector bundles on curves with parabolic structures[END_REF]. If it is non-empty, by the deformation theory of parabolic bundles [START_REF]Infinitesimal deformation of parabolic Higgs sheaves[END_REF]Theorem 5.1], it has dimension

dim N α C,D (η) = dim N C (n, d) + N i=1 dim F(m i ) = n 2 (g -1) + 1 + N i=1 j>k m i,j m i,k
where F(m i ) is the variety of flags of type n given by the rank n, degree d and multiplicity m. For simplicity, we write N α := N α C,D (η) and similarly N α-s for the open subset of α-stable parabolic bundles.

= l i j=1 m i,j > l i j=2 m i,j > • • • > m i,l i > 0. The moduli space of α-stable parabolic bundles N α-s C,D (η) is a smooth open subvariety of N α C,D (η).
We can divide the space of weights A into walls and chambers such that stability is constant on the chambers and changes over the walls. More precisely, on the walls there are strictly semistable bundles, i.e., we have µ α (E ′ * ) = µ α (E * ) for a subbundle E ′ ⊂ E. To describe the walls it therefore suffices to consider the possible discrete invariants η ′ of subbundles. Definition 5.10. For η ′ := (n ′ , d ′ , m ′ ) such that 0 < n ′ < n, d ′ ∈ Z and m ′ = (m ′ i,j ) are non-negative integers with m ′ i,j ≤ m i,j and l i j=1 m ′ i,j = n ′ , we define the corresponding wall

W m,η ′ = α ∈ A m : µ α (η ′ ) = µ α (η) = A m ∩ W η ′
where for α ∈ A m :

µ α (η ′ ) = µ α (η) ⇐⇒ d ′ + N i=1 l i j=1 α i,j m ′ i,j n ′ = d + N i=1 l i j=1 α i,j m i,j n .
The complement of R N n \ W η ′ of each wall is two half-spaces H ± η ′ such that for α ∈ H ± η ′ we have ±(µ α (η ′ ) -µ α (η)) > 0. The connected components of A m \ ∪ η W m,η are called chambers and we refer to weights α ∈ A m \ ∪ η W m,η as being generic.

Note that there are only finitely many walls in A m . The invariants η ′ := (n ′ , d ′ , m ′ ) have complementary invariants η ′′ = (n ′′ , d ′′ , m ′′ ) satisfying n ′ +n ′′ = n, d ′ +d ′′ = d, m ′ +m ′′ = m and determine the same wall 7 . We say a wall W m,η ′ is good if there are no discrete invariants other than η ′ and η ′′ which define this wall. All walls are good, if we take multiplicities corresponding to full flags (see [68, (2.4)]).

By [18, Proposition 3.2], A m contains a generic weight if and only if the degree d and multiplicities m i,j have greatest common divisor 1. In this case, for any generic weight, semistability coincides with stability and corresponding the moduli space of stable parabolic vector bundles is a fine moduli space and a smooth projective variety.

The geometric description of the birational tranformation between parabolic moduli spaces for two generic weights separated by a good wall is described by Boden-Hu [START_REF] Boden | Variations of moduli of parabolic bundles[END_REF], Boden-Yokogawa [START_REF]Rationality of moduli spaces of parabolic bundles[END_REF] and Thaddeus [START_REF]Geometric invariant theory and flips[END_REF]. These papers assume that k is algebraically closed. However, when crossing a good wall, their proofs show that, for a parabolic bundle in the exceptional locus, there is a unique subbundle which does not violate stability on one side of the wall but does on the other side. A descent argument similar to that in the second and third paragraphs of §4.3, then implies that the description of the wall-crossing holds over a general field k.

Theorem 5.11 (Boden-Hu, Boden-Yokogawa and Thaddeus). Consider a line segment which joins two adjacent chambers and passes through a weight α on a single good wall W m,η ′ . Let α(±) ∈ H ± η ′ be weights in adjacent chambers which satisfy

± µ α(±) (η ′ ) -µ α(±) (η) > 0.
Then there is a standard flip

N α(-) # # (n -,n + ) centre N α-sss / / N α(+) { { N α
with centre isomorphic to a product of smooth projective moduli spaces

N α-sss := N α \ N α-s ∼ = N α ′ C,D (η ′ ) × N α ′′ C,D (η ′′
) with smaller invariants η ′ and complementary invariants η ′′ (the weights α ′ are defined at [START_REF] Balaji | Algebraic cohomology of the moduli space of rank 2 vector bundles on a curve[END_REF] and similarly for α ′′ ). Over the centre the fibres are projective spaces of dimensions

n -:= n -(η ′ ) = -χ par ((η ′′ , α ′′ ) ∨ ⊗ (η ′ , α ′ )) -1 n + := n + (η ′ ) = -χ par ((η ′ , α ′ ) ∨ ⊗ (η ′′ , α ′′ )) -1.
The closest formulation in the literature to the above statement is [18, Theorem 4.1], whose proof computes the flip type. Our (slightly unconventional) approach to multiplicities of sub-

7 If η ′ = η(E ′ * ) for a subbundle E ′ * ⊂ E * , then η ′′ is the discrete invariants of the quotient bundle E ′′ * .
and quotient bundles allows us to easily compute the dimensions of the fibres using Remark 5.4:

n -(η ′ ) =n ′ d ′′ -n ′′ d ′ + n ′ n ′′ (g -1) -1 + N i=1 j>k m ′′ i,j m ′ i,k n + (η ′ ) =n ′′ d ′ -n ′ d ′′ + n ′′ n ′ (g -1) -1 + N i=1 j>k m ′ i,j m ′′ i,k , (8) 
which satisfy n -+ n + + 1 = codim(N α-sss , N α ) as stated in [18, Theorem 4.1].

5.1.4. Geometric description of flag degeneration. For weights with different multiplicities that are not separated by walls W η ′ , one can consider the flag degeneration giving by forgetting part of the flags. The geometric description of this is due to Boden-Hu [START_REF] Boden | Variations of moduli of parabolic bundles[END_REF] and Boden-Yokogawa [START_REF]Rationality of moduli spaces of parabolic bundles[END_REF].

Theorem 5.12. [18, Theorem 4.2] Let A m ′ > A m and suppose α ∈ A m ′ and β ∈ A m are generic weights which are not separated by any walls W η ′ ⊂ A. Then there is a forgetful map

N α → N β
which is an iterated Zariski locally trivial flag bundle.

Remark 5.13. In fact, one can factor this forgetful map into a tower of Grassmannian bundles as follows. Consider a chain

A m ′ = A m(0) > A m(1) > • • • > A m(t)
= A m such that for each 0 ≤ k < t there exists a unique i k such that the length of l i k of m(k) and m(k + 1) differ by 1. Take generic weights α(k) ∈ A m(k) not separated by walls with α(0) = α and α(t) = β, then there is a unique j k such that the morphism N α(k) → N α(k+1) is given by forgetting the subspace E i k ,j k in the flag of E p i k . This map is a Grassmannian bundle with fibre Gr(m(k

) i k ,j k , m(k) i k ,j k + m(k) i k ,j k -1
). Hence, we obtain a factorisation into a tower of Grassmannian bundles

N α = N α(0) → N α(1) → • • • → N α(t) = N β .
Similarly using flag degenerations, one can relate moduli spaces of parabolic vector bundles to moduli spaces of vector bundles (viewed as parabolic vector bundles with trivial flags) provided one takes sufficiently small weights; see [18, Proposition 5.3]. 5.1.5. Hecke modifications of parabolic vector bundles. One can compare moduli spaces of vector bundles of rank n for different values of d using Hecke modifications of parabolic vector bundles. This useful observation was noted at the end of [START_REF] Mehta | Moduli of vector bundles on curves with parabolic structures[END_REF] in rank n = 2 and then expanded upon in [18, §5]. Let us introduce Hecke modifications as isomorphisms between moduli spaces of parabolic vector bundles for the same rank but different degrees, multiplicities and weights. The name Hecke modification reflects the fact that on the underlying vector bundle, we perform a Hecke modification at one of the parabolic points p i ∈ D using part of the flag at that point. Definition 5.14. Fix invariants η = (n, d, m) and a weight α ∈ A m . For p i ∈ D and 1 ≤ j < l i and α i,j < β ≤ α i,j+1 , we define new invariants H i,j (η) and weights H i,j,β (α) by (1) H i,j (η) = (n, d -j k=1 m i,k , m) with cyclically permuted multiplicities ( mi,1 , . . . mi,l i ) = (m i,j+1 , . . . , m i,l i , m i,1 , . . . , m i,j ) and mi ′ ,j = m i ′ ,j for all i ′ ̸ = i and 1 ≤ j ≤ l i ′ , (2) α := H i,j,β (α) is given by (α i,1 , . . . αi,l i ) = (α i,j+1 -β, α i,j+2 -β, . . . , α i,l i -β, 1 + α i,1 -β, . . . , 1 + α i,j -β) and αi ′ ,j = α i ′ ,j for all i ′ ̸ = i and 1 ≤ j ≤ l i ′ .

Then the Hecke modification at p i with respect to j and α i,j < β ≤ α i,j+1 is the isomorphism

H i,j,β : N α (η) → N H i,j,β (α) (H i,j (η)) sending E * to E ′ * with E ′ := ker(E ↠ E p i /E i,j+1 ⊗ O p i
) which inherits a quasi-parabolic structure from E with multiplicities as specified above (see [18, §5]).

Hecke modifications are isomorphisms with inverses given by Hecke modifications. Moreover, Hecke modifications at different points commute in the obvious sense.

The Hecke modification H i,j,β is most simply understood in terms of the N -tuple of Rindexed filtered sheaves E i ′

x associated to the parabolic vector bundle (E * , α) (see Remark 5.2) as performing a shift by β in the R-indexed filtration at the parabolic point p i (see [18, §5]):

H i,j,β (E i ′ x ) = Êi ′ x where Êi ′ x := E i x+β if i ′ = i E i ′ x if i ′ ̸ = i.
Example 5.15. Let us consider the case for n = 2. For a parabolic point p i at which the multiplicity m specifies a full flag (i.e. l i = 2), we get a Hecke modification for j = 1. This decreases the degree d by 1 and as (m i,1 , m i,2 ) = (1, 1) permuting these multiplicities does not change m, thus H i,1 (η) = (n, d -1, m). For α i,1 < β ≤ α i,2 , the new weight α = H i,1,β (α) is given by (α i,1 , αi,2 ) = (α i,2 -β, 1 + α i,1 -β) and is unchanged for i ′ ̸ = i. When we take the maximal value β = α i,2 , we write the Hecke modification H i,1,α i,2 simply as

H p i : N α (2, d, m) → N α(p i ) (2, d -1, m) with α(p i ) i,j = (0, 1 + α i,1 -α i,2 ) and α(p i ) i ′ ,j = α i ′ ,j for all i ′ ̸ = i. More generally, given a subset D ′ ⊂ D with l i = 2 for all p i ∈ D ′ , we let H D ′ : N α (2, d, m) → N α(D ′ ) (2, d -|D ′ |, m)
denote the composition (in any order) of the Hecke modifications H p i for p i ∈ D ′ .

For degrees d and d ′ which are coprime to n, one can relate the vector bundle moduli spaces N (n, d) and N (n, d ′ ) using moduli spaces of parabolic vector bundles, Hecke modifications and a sequence of wall-crossing flips, together with degeneration of flag structures (see [START_REF] Mehta | Moduli of vector bundles on curves with parabolic structures[END_REF][START_REF]Rationality of moduli spaces of parabolic bundles[END_REF]).

Motivic consequences.

5.2.1. Motivic variation of stability for moduli of parabolic vector bundles. By combining Theorem 5.11 and Theorem 3.2, we obtain the following result describing the Chow motives of moduli spaces of parabolic vector bundles for different weights.

Corollary 5.16. For a line segment which joins two adjacent chambers and passes through a weight α on a single good wall W m,η ′ , let α(±) ∈ H ± η ′ be weights in adjacent chambers satisfying

± µ α(±) (η ′ ) -µ α(±) (η) > 0.
Then there is an explicit isomorphism of integral Chow motives

(9) h(N α(+) ) ⊕ n -(η)<j≤n + (η) h(N α-sss )(j) ≃ h(N α(-) ) ⊕ n + (η)<j≤n -(η) h(N α-sss )(j),
where n ± (η ′ ) are specified in [START_REF] Bauer | Parabolic bundles, elliptic surfaces and SU(2)-representation spaces of genus zero Fuchsian groups[END_REF].

Note that in the above isomorphism at least one of the big direct sums on either side is empty. In the case when n -(η ′ ) = n + (η ′ ), this wall-crossing is a flop and both big direct sums are empty, so the Chow motives of these moduli spaces are isomorphic.

Remark 5.17. For fixed invariants η = (n, d, m), the space A m of corresponding weights is cut into chambers by finitely many walls W m,η ′ , which do not depend on the genus g of C (see Definition 5.10). However, the types of the flips at these walls, given by n ± (η ′ ) in Equation ( 8), grow linearly with g. For low genus, there may be some chambers which give rise to empty moduli spaces and there may be some wall-crossings which are simply blow-ups. However, for fixed invariants η = (n, d, m), if g is sufficiently large, then we have n ± (η ′ ) > 0 for all invariants η ′ specifying walls in A m . For example, for rank n = 2 with full flags, it suffices to take g ≥ 2 (see the bounds on the flip type given in Proposition 5.24).

As an application, we slightly correct and strengthen the result of Chakraborty [START_REF] Chakraborty | Chow group of 1-cycles of the moduli of parabolic bundles over a curve[END_REF]Theorem 1.1] to integral coefficients.

Corollary 5.18. Fix invariants η = (n, d, m) with m corresponding to full flags. There exists an integer g 0 , depending only on η, such that as long as g ≥ g 0 , we have isomorphisms between the Chow groups of 1-cycles and the third homology H 3 for two generic weights α and β:

CH 1 (N α ) ≃ CH 1 (N β ), H 3 (N α ) ≃ H 3 (N β ),
where H 3 denotes either singular homology equipped with its Hodge structure if k = C, or the ℓ-adic homology over k (in the sense of [START_REF] Laumon | Homologie étale, Séminaire de géométrie analytique[END_REF], say) equipped with its Galois action if ℓ is coprime to the characteristic of k. In particular, the intermediate Jacobians for 1-cycles are isomorphic.

Proof. As the flags are full, every wall is good (i.e. corresponds uniquely to a pair of complementary invariants (η ′ , η ′′ ) with η = η ′ + η ′′ ). By wall-crossing, it suffices to show the isomorphism for α and β in adjacent chambers. As in Remark 5.17, we take g sufficiently large so that n ± (η ′ ) > 0 for all invariants η ′ specifying walls in A m . We see that in [START_REF] Beauville | Sur l'anneau de Chow d'une variété abélienne[END_REF], the index j, when appearing, is at least 2. Hence the big direct sums do not contribute to CH 1 , nor to H 3 (once we apply either the Betti [START_REF] Ayoub | Note sur les opérations de Grothendieck et la réalisation de Betti[END_REF] or ℓ-adic realisation [START_REF]La réalisation étale et les opérations de Grothendieck[END_REF] of Voevodsky motives). □

Motivic descriptions of flag degenerations.

We have the following motivic consequence of Theorem 5.12. Proof. By Theorem 5.12, the forgetful map N α → N β is an iterated flag bundle. More precisely, as in Remark 5.13, we can factor this forgetful map into a tower Grassmannian bundles

N α = N α(0) → N α(1) → • • • → N α(t) = N β with N α(k) → N α(k+1) having fibre a Grassmannian Gr k := Gr(m(k) i k ,j k , m(k) i k ,j k +m(k) i k ,j k -1
).

Then we have explicit isomorphisms

h(N α(k) ) ≃ h(N α(k+1) ) ⊗ h(Gr k ) which together give h(N α ) ≃ h(N β ) ⊗ T
where T is a tensor product of motives h(Gr k ) of Grassmannians for 0 ≤ k < t. □

In the case when we forget all of the flags at all of the parabolic points, we obtain simply a vector bundle. Suppose that n and d are coprime, so that semistability and stability coincide for rank n degree d vector bundles and N = N (n, d) is smooth and projective. In this case the weight given by the origin 0 ∈ A is a generic weight and corresponds to parabolic vector bundles with trivial flags (i.e. vector bundles) and we have N = N 0 . By [START_REF]Rationality of moduli spaces of parabolic bundles[END_REF]Proposition 5.3], if α ∈ A m is a generic weight which is sufficiently small (i.e in a chamber whose closure contains the origin 0), then α and 0 are not separated by any wall and consequently we obtain the following special case of the above result.

Corollary 5.20. Let n and d be coprime. Then for a sufficiently small generic weight α ∈ A m as above, we have an explicit isomorphism of integral Chow motives

h(N α ) ≃ h(N ) ⊗ T, where T = N i=1 h(F(m i ))
and

F(m i ) is the variety of flags n = l i j=1 m i,j > l i j=2 m i,j > • • • > m i,l i > 0.
As an application, we compute the intermediate Jacobian of 1-cycles for the moduli spaces N α L of parabolic vector bundles with fixed determinant 8 L for a generic weight α; this strengthens the results of Chakraborty [START_REF] Chakraborty | Chow group of 1-cycles of the moduli of parabolic bundles over a curve[END_REF]Theorem 1.2] and [START_REF]On Abel-Jacobi maps of moduli of parabolic bundles over a curve[END_REF]Proposition 3.4] to integral coefficients.

Corollary 5.21. Fix invariants η = (n, d, m) with m corresponding to full flags. Fix a degree d line bundle L. There exists an integer g 0 > 2, depending only on η, such that as along as g ≥ g 0 , for a generic weight α, we have an isomorphism of Chow groups of 1-cycles,

CH 1 (N α L ) hom ≃ CH 1 (N L
) hom and if k = C, we also have an isomorphism of abelian varieties:

J H 3 (N α L ) ≃ Jac(C)
, where J denotes the functor that associates to a level 1 Hodge structure its Jacobian.

For rank n = 2 with full flags at N parabolic points, and always g ≥ g 0 and α generic, we have

CH 1 (N α L ) ≃ CH 0 (C) ⊕ Z ⊕N and, if k = C, we have AJ : CH 1 (N α L ) hom ≃ -→ J H 3 (N α L ) ≃ Jac(C),
where AJ is the Abel-Jacobi map.

Proof. As in Remark 5.17, we take g sufficiently large so that n ± (η ′ ) > 0 for all invariants η ′ specifying walls in A m . By Corollary 5.18, the CH 1 and the intermediate Jacobian do not vary for generic weights. Therefore, we can assume that α is sufficiently small. In this case, by Corollary 5.20, we have isomorphisms of Chow groups and Hodge structure (for k = C)

CH 1 (N α L ) hom ≃ CH 1 (N L ) hom ⊕ CH 0 (N L ) ⊕m hom , H 3 (N α L , Z) ≃ H 3 (N L , Z) ⊕ H 1 (N L , Z)(1)
⊕m , where m is the number of summands Z(1) in the Tate motive T . However, H 1 (N L , Z) = 0 and CH 0 (N L ) hom = 0, as N L is rational [START_REF] King | Rationality of moduli of vector bundles on curves[END_REF]. Therefore,

CH 1 (N α L ) hom ≃ CH 1 (N L ) hom and H 3 (N α L , Z) ≃ H 3 (N L , Z
), and they are compatible with respect to the Abel-Jacobi maps. When g > 2, by [45, Theorem 2.1], H 3 (N L , Z) ≃ H 1 (C, Z)(1) as Hodge structures; thus we obtain the claimed result for the intermediate Jacobian.

Now suppose n = 2 and we take full flags at N parabolic points. By the recent work [START_REF] Li | A note on 1-cycles on the moduli space of rank-2 bundles over a curve[END_REF], we have CH 1 (N L ) ≃ CH 0 (C) and as N L is rational, we also have CH 0 (N L ) = Z. By applying Corollary 5.20, where the Tate motive T is the motive of (P 1 ) N , we deduce CH d,m) with m corresponding to full flags. For i ∈ N, there is an integer g 0 , depending only on η, such that for C of genus g ≥ g 0 and any generic weight α, the Chow groups CH i (N α ) and CH i (N α ) are both independent of α and can be computed in terms of Chow groups of N by the formula h(N α ) = h(N ) ⊗ h(F) ⊗N , where F is the full flag variety 9 and N is the number of parabolic points.

1 (N α L ) ≃ CH 0 (C) ⊕ Z ⊕N . Over k = C, we have CH 1 (N L ) hom ≃ Jac(C),
8 Fixing the determinant does not change the type of the wall-crossing flips, only their centres. 9 The motive of the full flag variety F in a D-dimensional vector space is pure Tate; by [14, Theorem 5.1], we have h(F) ≃ D(D-1)/2 i=0 Q(i) l i , where li is the number of elements of length i in the symmetric group SD seen as a Coxeter group.

Proof. Recall from Remark 5.17 that there are finitely many walls W m,η ′ , which are all good and do not depend on the genus g of C, but the flip types n ± (η ′ ) of these walls grow linearly with g as in Equation [START_REF] Bauer | Parabolic bundles, elliptic surfaces and SU(2)-representation spaces of genus zero Fuchsian groups[END_REF]. In particular, for fixed i, if we take g sufficiently large, then n ± (η ′ ) ≥ i for all walls. In Corollary 5.16, the index j in (9) then satisfies j > i and thus the big direct sums do not contribute to CH i nor CH i , as i -j < 0. Consequently CH i (N α ) and CH i (N α ) are both independent of α. Thus we can take α sufficiently small to apply Corollary 5.20, where T = h(F) ⊗N and F is the full flag variety, and express CH i (N α ) and CH i (N α ) in terms of Chow groups of N . □ 5.3. Closed formulas for the motive in rank 2. Let us consider rank n = 2 vector bundles of degree d with N parabolic points. By the shifting trick described in Remark 5.9, we can without loss of generality set the first parabolic weight at each parabolic point to be zero. Therefore, we assume α i,1 = 0 for i = 1, . . . , N and let us simply write α i := α i,2 ; then we consider weights lying in the half-open hypercube

α = (α 1 , . . . , α N ) ∈ A N := [0, 1) N .
Weights in the open hypercube (0, 1) N correspond to the multiplicity m = (m i,j ) with m i,j = 1 for all i, j (i.e. full flags at each parabolic point). We fix invariants η = (2, d, m) for rank 2 degree d parabolic vector bundles with full flags at each of the N parabolic points. Unlike for the moduli space N = N (2, d) of rank 2 vector bundles, where we had to restrict to d odd to describe the Chow motive (as for g > 2 and d even, N is singular), for parabolic vector bundles we can consider even degrees provided we choose a generic weight. In rank n = 2, we will compute the Chow motives of the associated parabolic moduli spaces for all d and all choices of generic weights. In fact, the moduli spaces of rank 2 parabolic vector bundles for odd and even degrees are related by Hecke modifications and so it suffices to compute these Chow motives for odd degrees (see Remark 5.35, for how to compute them in even degrees using a Hecke modification).

5.3.1.

Description of the walls. We recall that the walls correspond to subbundles of the same slope. In rank 2, the invariants of a subbundle have the form η ′ = (1, d ′ , m ′ ), where for each 1 ≤ i ≤ N , we have m ′ i,1 + m ′ i,2 = 1. In particular, m ′ i,1 is determined by m ′ i,2 ∈ {0, 1} and so we simply write m ′ i := m ′ i,2 . The associated wall in A N is given by the equation

2d ′ -d = N i=1 α i (1 -2m ′ i ).
Note that the integer 2d ′ -d has the same parity as d. Since the complementary invariants η ′′ = (n ′′ = 1, d ′′ , m ′′ ) define the same wall, we can assume without loss of generality that 2d ′ -d ≥ 0. Furthermore, the multiplicity m ′ can be encoded in a subset I ⊂ {1, . . . , N } given by I = {1 ≤ i ≤ N : m ′ i = 0}. Then the corresponding wall has the equation

0 ≤ 2d ′ -d = i∈I α i - i∈I c α i
where I c := {1, . . . , N } \ I. This wall has non-empty intersection with A N precisely when |I| > 2d ′ -d. This proves the following description of the walls.

Lemma 5.23. The walls in A N = [0, 1) N can be enumerated as follows.

(1) For odd d, for each s ∈ N with 2s + 1 < N and for each I ⊂ {1, . . . , N } with cardinality |I| > 2s + 1, we have the wall W s,I defined by

2s + 1 = i∈I α i - i∈I c α i .
This wall is determined by the discrete invariants η ′ (s, I) = (1, d ′ (s), m ′ (I)), where d ′ (s) = (2s + 1 + d)/2 and m ′ (I) i,1 = 1 (and m ′ (I) i,2 = 0) if and only if i ∈ I.

(2) For even d, for each s ∈ N with 2s < N and I ⊂ {1, . . . , N } with cardinality |I| > 2s, we have the wall W k,I defined by

2s = i∈I α i - i∈I c α i .
This wall is determined by the discrete invariants η ′ (s, I) = (1, d ′ (s), m ′ (I)), where d ′ (s) = (2s + d)/2 and m ′ (I) i,1 = 1 (and m ′ (I) i,2 = 0) if and only if i ∈ I.

Let us refer to a vertex of the closed hypercube [0, 1] N as even (resp. odd ) if it has an even (resp. odd) number of 1's. The only vertex which lies in A N = [0, 1) N is the origin, which is even. For d odd (resp. even), we see that precisely the odd (resp. even) vertices lie on the walls. In particular, for d odd, the origin 0 ∈ A N does not lie on any wall, whereas for d even, the origin lies on the intersection of all the walls indexed by s = 0.

Let us focus on the odd degree case for now and later describe the even degree case by performing a Hecke modification (see Example 5.15 and Remark 5.35). Proposition 5.24. For odd d, consider the walls W s,I ⊂ A N = [0, 1) N in Lemma 5.23.

(1) The centre of the hypercube 1 2 ∈ A N lies on the wall W s,I if and only if |I| = 2s + 1 + N 2 . In particular, for odd N , the centre does not lie on any wall.

(2) The centre of the hypercube 1 2 ∈ A N lies on W s,I if and only if this is a flopping wall. (3) Crossing the wall W s,I is a flip with centre Jac(C) 2 and type (n -(s, I), n + (s, I)) where

(10) n -(s, I) = g + |I| -2s -3 and n + (s, I) = g + N -|I| + 2s -1.
In particular, the types n ± (s, I) (i.e. the dimensions of the projective space appearing over the centre) satisfy g -1 ≤ n ± (s, I) ≤ g + N -3. (4) For any wall W s,I not containing 1 2 , crossing this wall in the direction from the centre of the hypercube is a flip which decreases the canonical divisor. More precisely, if β, γ ∈ A N are weights in chambers on either side of W k,I and we suppose that the line joining β and γ meets W k,I in a point α which lies on no other wall, then if β denotes the weight nearest to 1 2 we have a wall-crossing flip

N β > K N γ .
Proof. The first statement is immediate from the explicit equations of the walls given in Lemma 5.23. For the third statement, we use Theorem 5.11 to describe the flip for crossing the wall W s,I : the centre of this flip is a product of two moduli spaces for rank 1 parabolic vector bundles, thus is a product of Jacobians, and the type of the flip is given by n ± (s, I) := n ± (η ′ (s, I)), which we can compute using [START_REF] Bauer | Parabolic bundles, elliptic surfaces and SU(2)-representation spaces of genus zero Fuchsian groups[END_REF] to give the formula in [START_REF]Sur la cohomologie de certains espaces de modules de fibrés vectoriels, Geometry and analysis[END_REF]. For the final part of the third statement, since 2 ≤ |I| -2s ≤ N , we obtain inequalities

g -1 ≤ n ± (s, I) ≤ g + N -3. Note that n -(s, I) = n + (s, I) if and only if |I| = 2s+1+ N 2
, which proves the second statement. The final statement will follow from the claim that for each wall W s,I , we have

4 µ 1 2 (η ′ (s, I)) -µ 1 2 (η) = n + (s, I) -n -(s, I) = 2(2s + 1) + N -2|I|. Indeed we have µ 1 2 (η ′ (s, I))-µ 1 2 (η) = 2s + 1 + d 2 + N i=1 1 2 m ′ (I) i,2 - d + N i=1 1 2 m i,2 2 = 1 4 (2(2s + 1) + N -2|I|) .
To conclude the final statement, we then use Theorem 5.11: if n + (s, I) -n -(s, I) > 0, then β = α(+) and γ = α(-) and if n + (s, I) -n -(s, I) < 0, then β = α(-) and γ = α(+). In both cases, we obtain N β > K N γ and so crossing a wall away from the centre decreases K. □ 5.3.2. Group actions on the space of weights. In this section we exploit certain symmetries of the weight space A N by introducing two group actions on A N which enable us to significantly reduce the number of wall-crossings we must study. The first group action arises from Hecke modifications and the second group action arises from permutations of the weights. By §5.1.5 (see Example 5.15), performing a Hecke modification at a subset D ′ ⊂ D gives an isomorphism

H D : N α (η) ∼ = N α(D ′ ) (η(D ′ )) where η(D ′ ) = (2, d -|D ′ |, m
) and (recalling we set α i,1 = 0 and α i := α i,2 for all i)

α(D ′ ) i = α i if p i / ∈ D ′ 1 -α i if p i ∈ D ′ .
If we perform a Hecke modification at a subset D ′ of even cardinality |D ′ | = 2e, then after tensoring by a line bundle of degree e, we obtain an isomorphism

N α (η) ∼ = N α(D ′ ) (η)
between moduli spaces for the same invariants η but different weights. This gives a natural action on the weight space A N by Hecke modifications at an even number of points: this group is generated by Hecke modifications at the points (p i , p i+1 ) for 1 ≤ i ≤ N -1. Therefore, we consider the group

H ∼ = (Z/2Z) N -1 acting on A N by, for 1 ≤ i ≤ N -1, the involution (α 1 , . . . , α N ) → (α 1 , . . . , α i-1 , 1 -α i , 1 -α i+1 , α i+2 , . . . , α N ).
Note that any weights in the same H-orbit have isomorphic moduli spaces and the H-action sends walls to walls and chambers to chambers.

We also have the natural permutation action of the symmetric group S N on A N = [0, 1) N . Although, the corresponding moduli spaces for weights in the same S N -orbit are not necessarily isomorphic, this action sends walls to walls and chambers to chambers, and preserves the numerical data of the wall-crossings in the following sense.

Lemma 5.25. The action of σ ∈ S N on A N sends W s,I to W s,σ(I) and preserves the type of the wall-crossing, in the sense that n ± (η ′ (s, I)) = n ± (η ′ (s, σ(I))).

Proof. This follows as n ± (η ′ (s, I)) in [START_REF]Sur la cohomologie de certains espaces de modules de fibrés vectoriels, Geometry and analysis[END_REF] only depend on g, s and the cardinality |I|. □

We can utilise these actions to reduce the number of wall-crossings we must consider.

Proposition 5.26. Let d be an odd degree. A set of representatives for the walls under the H ⋊ S N -action is given by, for 0 ≤ l ≤ N/2 -1, the wall W (l) defined by

1 = - l i=1 α i + N i=l+1 α i corresponding to the invariants η(l) = (1, (d + 1)/2, m(l)) with m(l) i,1 = 0 for i ≤ l and m(k) i,1 = 1 for i > l.
Proof. Let us start with a wall of the form

2s + 1 = i∈I α i - i∈I c α i
of Lemma 5.23. If s > 0, then as |I| > 2s + 1, we pick a subset J ⊂ I of cardinality 2s and perform a Hecke modification at the set E = {p j : j ∈ J } ⊂ D. This wall transforms to

1 = i∈K α i - i∈K c α i with K = I \ J of cardinality |K| > 1. If |K c | ≤ N 2 -1,
then after a permutation we can put it in the above form.

If |K c | > N 2 -1, then |K| < N 2 + 1.
After performing a Hecke modification at a set J ⊂ K of cardinality 2 and multiplying the equation by -1, we obtain a wall

1 = - i∈K\J α i + i∈K c ∪J α i with |K \ J | < N 2 -1,
and after a permutation we can put it in the above form. □

Recall that each wall W (l) separates R N \ W (l) into two half-spaces H(l) ± such that for α ∈ H(l) ± , we have ±(µ α (η(l)) -µ α (η)) > 0. For odd d, note that 0 ∈ H(l) + . Proposition 5.27. For an odd degree d and 0 ≤ l ≤ N/2 -1, crossing the wall W (l) at a point on no other wall from H(l) + to H(l) -is a flip of type (g + l -1, g + N -3 -l) with centre Jac(C) 2 . In particular, for l < N/2 -1, this flip increases K and for N even and l = N/2 -1, this wall-crossing is a flop and so preserves K.

Proof. This follows from Theorem 5.11 and Equation [START_REF]Sur la cohomologie de certains espaces de modules de fibrés vectoriels, Geometry and analysis[END_REF] in Proposition 5. [START_REF]Triangulated categories of mixed motives[END_REF].

□

We recall that in the wall and chamber decomposition of A N for an odd degree d, only the odd vertices in [0, 1] N lie on the walls. Moreover the centre of the hypercube lies on a wall if and only if N is even. We make the following definition of minimal and maximal chambers, whose terminology will be justified in Proposition 5.29 below.

Definition 5.28. For an odd degree d, a chamber in A • N = (0, 1) N is said to be (1) minimal if it contains an even vertex in its closure, (2) maximal if it contains the centre of the hypercube in its closure.

The minimal chambers are the chambers lying on the exterior of the hypercube. Note that if N is odd, then there is a unique maximal chamber containing the centre of the hypercube. Proposition 5.29. Consider the K-ordering on chambers in A N given by

C 1 > K C 2 : ⇐⇒ N α 1 > K N α 2 for α i ∈ C i .
For an odd degree d, the K-minimal (resp. K-maximal) chambers are the minimal (resp. maximal) chambers defined above. Moreover, the moduli spaces N α for all weights α in minimal chambers are isomorphic and the moduli spaces N α for all weights α in maximal chambers are related by a sequence of flops.

Proof. The first part follows the last statement in Proposition 5.24. Since Hecke modifications can be used to identify all the minimal chambers, their corresponding moduli spaces are isomorphic. The maximal chambers are all related by crossing walls through the centre of the hypercubes, which are precisely the flopping walls by Proposition 5.24. □ 5.3.3. Explicit formulas for the motive.

Proposition 5.30. Let α ∈ A • N = (0, 1) N be a generic weight and let h(N α ) denote the integral Chow motive of the moduli space N α of α-semistable rank 2 and odd degree d parabolic bundles.

(1) If α = α min is in a minimal chamber, then there is an explicit isomorphism

h(N α min ) ≃ h(N ) ⊗ h(P 1 ) ⊗N .
(2) If α = α max is in a maximal chamber, then there is an explicit isomorphism

h(N αmax ) ≃ h(N ) ⊗ h(P 1 ) ⊗N ⊕ 0≤s<M 2s≤l<2M N -3-l j=l h(Jac(C)) ⊗2 (g + j) ⊕( N l-2s )
where M := (N -2)/4. (3) For arbitrary generic α, there is an explicit isomorphism

h(N α ) ≃ h(N ) ⊗ h(P 1 ) ⊗N ⊕ N -3 j=0 h(Jac(C)) ⊗2 (g + j) ⊕b j
such that the exponents b j ∈ N can be inductively computed (see Theorem 5.32, for a closed formula). In particular, this Chow motive is a direct factor of h(N αmax ) and contains h(N α min ) as a direct summand.

Proof. Let us first consider the minimal chambers. It suffices to consider a weight α in the minimal chamber containing the origin in its closure, as all other minimal chambers are related by Hecke modifications and so their corresponding moduli spaces are isomorphic (cf. Proposition 5.29). By successively degenerating the flag as in Theorem 5.12, we obtain a forgetful morphism N α → N which is a (P 1 ) N -fibration, which gives the above description of h(N α min ) (cf. Corollary 5.20).

To describe the Chow motives of the moduli spaces for weights in maximal chambers, it suffices to consider one maximal chamber, as the moduli spaces N α for all weights α in maximal chambers are related by a sequence of flops (cf. Proposition 5.29). We will compute this using a sequence of flips from a minimal chamber to a maximal chamber. The line segment from the origin to the centre of the hypercube crosses the wall W s,I (given in Lemma 5.23) For an arbitrary generic weight α, consider the ray from the centre of the hypercube through α to the edge of the hypercube. By perturbing α, we can assume this ray passes each wall one by one. By Proposition 5.24, we know that moving along this ray from the centre to the edge of the hypercube decreases K. Therefore, we consider the corresponding sequence of flips running backwards along this ray, starting at a weight α min in a minimal chamber (at the exterior of the cube) and passing through α and then ending at a weight α max in a maximal chamber. All of these wall-crossings are flips with centre Jac(C) 2 and the types are specified by Proposition 5.24. Hence, by iterative applications of Corollary 5.16, one obtains the final statement. □

We can more explicitly compute the exponents appearing above using a method inspired by Bauer's computation [START_REF] Bauer | Parabolic bundles, elliptic surfaces and SU(2)-representation spaces of genus zero Fuchsian groups[END_REF] of the Poincaré polynomials of moduli spaces of parabolic vector bundles on P 1 . In fact, for parabolic vector bundles on a curve C of positive genus, the wallcrossing picture and associated combinatorics is the same, except for the fact that rather than the inductive description starting with a chamber where the parabolic moduli space in g = 0 is empty, we start with a chamber where the parabolic moduli space is related to the moduli space N = N C (2, d) of semistable vector bundles on C. The relationship between the constants b j (α) and d j (α) is given by the following equality of polynomials in x

(11) (1 -x)(1 -x 2 ) N -3 j=0 b j (α)x j = (1 + x) N + N j=0 d j (α)x j .
Theorem 5.32. For a generic weight α ∈ A • N , the integral Chow motive of the moduli space of rank 2 and odd degree α-semistable parabolic vector bundles is given by

h(N α ) ≃ h(N ) ⊗ h(P 1 ) ⊗N ⊕ N -3 j=0 h(Jac(C)) ⊗2 (g + j) ⊕b j (α)
with the exponents b j (α) given in Definition 5.31.

Proof. By inductively crossing walls, it suffices to check this formula holds for a particular chamber and then show that the formula respects wall-crossings. First consider α = (ϵ 1 , . . . , ϵ N ) ∈ (0, 1) N in the minimal chamber very close to the origin. Then

d j (α) = # {I ⊂ {1, . . . , N } : |I| = j} = N j and c j (α) = b j (α) = 0,
which agrees with the formula for h(N α min ) in Proposition 5.30. Now suppose we have two generic weights α ± which are separated by a single wall W s,I defined by η ′ := η ′ (s, I) as in Lemma 5.23. Suppose that α ± ∈ H ± s,I ; thus

µ α -(η ′ ) -µ α -(η) < 0 < µ α + (η ′ ) -µ α + (η) or equivalently 2s + 1 + i∈I c (α -) i - i∈I (α -) i < 0 < 2s + 1 + i∈I c (α + ) i - i∈I (α + ) i .

This implies

i∈I c (α -) i - i∈I (α -) i + |I| < |I| -2s -1 < i∈I c (α + ) i - i∈I (α + ) i + |I|
and also for J = I c we have

i∈J c (α + ) i - i∈J (α + ) i + |J | < |J | + 2s + 1 = N -|I| + 2s + 1 < i∈J c (α -) i - i∈J (α -) i + |J |.
Hence, the only differences between the values of d j (α -) and d j (α + ) are as follows

d |I|-2s-2 (α -) = d I-2s-2 (α + ) + 1 d |I|-2s (α + ) = d I-2s (α -) + 1 d N -|I|+2s (α + ) = d N -|I|+2s (α -) + 1 d N -|I|+2s+2 (α -) = d N -|I|+2s+2 (α + ) + 1.
From [START_REF] Behrend | On the motivic class of the stack of bundles[END_REF], we obtain a corresponding relationship between the b j (α ± )

(12) (1 -x)(1 -x 2 ) N -3 j=0 (b j (α + ) -b j (α -))x j = x |I|-2s -x |I|-2s-2 + x N -|I|+2s -x N -|I|+2s+2 .
By Proposition 5.26, crossing the wall W s,I from α -to α + is a flip with centre Jac(C) 2 of type (n -, n + ) = (g + |I| -2s -3, g + N -|I| + 2s -1). By taking Poincaré polynomials of the corresponding equation in Corollary 5.16, we obtain

P t (N α + ) -P t (N α -) = P t (Jac(C)) 2 ) (P t (P n -) -P t (P n + )) = (1 + t) 4g t 2(n + +1) -t 2(n -+1) 1 -t 2 .
Thus to prove the claimed formula respects this wall-crossing, we need to show

(1 -t 2 ) N -3 j=0 (b j (α + ) -b j (α -)t 2j = t 2(N -|I|+2s) -t 2(|I|-2s-2) .
After multiplying this by (1 -t 4 ), we see this holds by inserting x = t 2 in [START_REF] Bia Lynicki-Birula | Some theorems on actions of algebraic groups[END_REF]. □ Corollary 5.33. For a generic weight α ∈ A • N , the rational Chow motive of the moduli space N α of α-semistable parabolic vector bundles of rank 2 and odd degree d is given by

h(N α ) ≃   N -3 j=0 h(Jac(C)) ⊗2 (g + j) ⊕b j (α)   ⊕ h(Jac(C)) ⊗ h(P 1 ) ⊗N ⊗ h(Sym g-1 (C))(g -1) ⊕ g-2 i=0 h(Jac(C)) ⊗ h(P 1 ) ⊗N ⊗ h(Sym i (C)) ⊗ (Q(i) ⊕ Q(3g -3 -2i))
with the exponents b j (α) given in Definition 5.31.

For L ∈ Pic d (C), we have the moduli space N α L of α-semistable rank 2 parabolic vector bundles with determinant L. The wall-crossing picture remains the same except that the centre of each flip/flop between fixed determinant parabolic moduli spaces is only one copy of the Jacobian. Consequently, by the same argument we obtain the following formula.

Corollary 5.34. For a generic weight α ∈ A • N , the integral Chow motive of the moduli space of α-semistable parabolic vector bundles of rank 2 and odd degree determinant L is given by

h(N α L ) ≃ h(N L ) ⊗ h(P 1 ) ⊗N ⊕ N -3 j=0 h(Jac(C))(g + j) ⊕b j (α)
with the exponents b j (α) given in Definition 5.31. (1) For N = 2, we have A • 2 = (0, 1) 2 and the following picture shows the wall and chamber decomposition for d odd (on the left) and d even (on the right).

These pictures are related via the Hecke modification (α 1 , α 2 ) → (1 -α 1 , α 2 ) at p 1 . There is one wall (shown in red), which is a flopping wall, as it goes through the center of the hypercube. Thus for any generic α and any d, we have

h(N α ) ≃ h(N ) ⊗ h(P 1 ) ⊗2 .
In this case the minimal and maximal chambers coincide.

(2) For N = 3, we have A • 3 = (0, 1) 3 . For d odd, there are 4 walls which cut out a tetrahedron inside this cube through the odd vertices (1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 1) as in the diagram below.

In this case the interior of the tetrahedron is the maximal chamber and there are four exterior chambers, all of which are minimal. The motives of the parabolic moduli spaces for weights in the minimal and maximal chambers are given by

h(N α min ) ≃ h(N ) ⊗ h(P 1 ) ⊗3 h(N αmax ) ≃ h(N ) ⊗ h(P 1 ) ⊗3 ⊕ h(Jac(C)) ⊗2 (g),
where the second formula is obtained from the first formula by crossing the back wall 1 = α 1 + α 2 + α 3 of the tetrahedron, which is of type (g -1, g) with centre Jac(C) 2 .

6. Motives of moduli spaces of (parabolic) Higgs bundles 6.1. Moduli spaces of Higgs bundles. Let ω C := Ω 1 C/k denote the canonical line bundle on C. A Higgs bundle on C is a pair (E, Φ) consisting of a vector bundle E and an O Clinear homomorphism Φ : E → E ⊗ ω C called the Higgs field. A Higgs subbundle of (E, Φ) is a subbundle of E that is invariant under the Higgs field. There is a notion of semistability for Higgs bundles which involves saying that the slope is increasing on Higgs subbundles. Let M = M(n, d) denote the moduli space of semistable rank n degree d Higgs bundles on C. The moduli space M is a quasi-projective variety which contains the cotangent bundle to the moduli space N = N (n, d) of semistable vector bundles as a dense open subvariety. Over k = C, M is a non-compact hyper-Kähler manifold [START_REF] Hitchin | The self-duality equations on a Riemann surface[END_REF]. Moreover, M contains the moduli space M s of (geometrically) stable Higgs bundles as a smooth open subset. In this section, we will assume that n and d are coprime, so semistability and stability coincide and M = M s is a smooth quasi-projective variety.

We can also fix L ∈ Pic d (C)(k) and consider the moduli space M L = M L (n, d) of semistable rank n degree d Higgs bundles on C with fixed determinant L, which is also quasi-projective and is smooth when n and d are coprime. 6.1.1. Motives of moduli spaces of Higgs bundles. Although the smooth quasi-projective moduli spaces M and M L are not proper, Hitchin [START_REF] Hitchin | The self-duality equations on a Riemann surface[END_REF] and Simpson [START_REF]The Hodge filtration on nonabelian cohomology, Algebraic geometry-Santa Cruz[END_REF] observed that there is a G maction on both moduli spaces given by scaling the Higgs field such that the fixed locus is proper and the limit as t ∈ G m tends to zero exists for all points (such a G m -action is referred to as being semi-projective, see [START_REF]On the Voevodsky motive of the moduli space of Higgs bundles on a curve[END_REF]Definition A.1], and induces an associated Bia lynicki-Birula decomposition [START_REF] Bia Lynicki-Birula | Some theorems on actions of algebraic groups[END_REF]). In particular, the flow under this action is a deformation retract and consequently the Voevodsky motives of M and M L are pure (see [START_REF]On the Voevodsky motive of the moduli space of Higgs bundles on a curve[END_REF]Corollary 6.9] for the case of M) and we can consider them as Chow motives via the embedding of Theorem 2.4. With a slight abuse of notation, we will denote the corresponding Chow motives by h(M) and h(M L ). By [START_REF]On the Voevodsky motive of the moduli space of Higgs bundles on a curve[END_REF]Therorem 1.1], the rational Chow motive h(M) is contained in the subcategory of CHM(k, Q) generated by h(C) and is a direct summand of the motive of a sufficiently large power of C.

Unlike in the case of the moduli spaces N and N L of semistable vector bundles without and with fixed determinant whose motives are related by Theorem 4.2, for the Higgs moduli spaces M and M L we have h(M) ̸ ≃ h(M L ) ⊗ h(Jac(C)). Indeed, already for rank n = 2, Hitchin shows this over k = C on the level of singular cohomology [START_REF] Hitchin | The self-duality equations on a Riemann surface[END_REF] (similar phenomenon was also observed in rank 3 by Gothen [START_REF] Gothen | The Betti numbers of the moduli space of stable rank 3 Higgs bundles on a Riemann surface[END_REF]). We will describe the motives of M and M L for rank n = 2 below and show in Proposition 6.3 that the motive of M L is in general not contained in the tensor subcategory of CHM(k, Q) generated by h(C).

6.1.2. Formulas for the motive of the rank 2 Higgs moduli spaces. In this section, we consider rank 2 Higgs bundles of odd degree d and let M = M(2, d) and M L = M L (2, d) denote the moduli spaces of Higgs bundles without and with fixed determinant respectively. Theorem 6.1. For an odd integer d, the integral Chow motive of the moduli space of semistable rank 2 degree d Higgs bundles on C is given by an explicit isomorphism

h(M(2, d)) ≃ h(N (2, d)) ⊕ g-1 j=1 h(Pic a d,j (C)) ⊗ h(Sym 2j-1 (C))(3g -2j -2),
where a d,j = g -j + (d -1)/2. When working with rational coefficients, we have a non-explicit isomorphism

h(M(2, d)) ≃h(Jac(C)) ⊗ h(Sym g-1 (C))(g -1) ⊕ g-2 i=0 h(Sym i (C)) ⊗ (Q(i) ⊕ Q(3g -3 -2i)) ⊕ g-1 j=1 h(Pic a d,j (C)) ⊗ h(Sym 2j-1 (C))(3g -2j -2).
Proof. We prove the above formula using the motivic Bia lynicki-Birula decomposition associated to the G m -action on M(2, d) given by t • (E, Φ) = (E, tΦ). For this, we first need to describe the fixed locus and the associated geometric Bia lynicki-Birula decomposition, which in rank 2 was studied by Hitchin [START_REF] Hitchin | The self-duality equations on a Riemann surface[END_REF]. We claim that

M(2, d) Gm ≃ N (2, 1) ⊔ g-1 j=1 Sym 2j-1 (C) × Pic a d,j (C).
Indeed if (E, Φ) is a G m -fixed point, then either Φ = 0 and E is a semistable vector bundle, or Φ ̸ = 0 and so we have G m ⊂ Aut(E) giving a weight space decomposition E = L 0 ⊕ L 1 as a sum of two line bundles such that Φ is given by a homomorphism L 0 → L 1 ⊗ ω C . In this latter case, let (e, d -e) denote the degrees of (L 0 , L 1 ); then since the Higgs field gives a non-zero section of L ∨ 0 ⊗ L 1 ⊗ ω C , we have d -2e + 2g -2 ≥ 0. Furthermore, stability of the Higgs bundle means that the Higgs subbundle L 1 ⊂ (E, Φ) has slope less than that of E and so we must have d < 2e. Therefore, we have (d + 1)/2 ≤ e ≤ g -1 + (d -1)/2. For each e in this range, the Higgs bundle is determined by a degree e line bundle L 0 and an effective divisor of degree d -2e + 2g -2. After setting j = g -e + (d -1)/2, we get the fixed locus components

F j := Sym 2j-1 (C) × Pic a d,j (C) for 1 ≤ j ≤ g -1.
For 1 ≤ j ≤ g -1, let M(2, d) + j denote the locus of points whose flow as t → 0 lies in F j . The rank of the fibration M(2, 1) + j → F j is 1 2 dim M(2, 1) = dim N (2, 1), as the downward flow is Lagrangian; thus the codimension c + j of M(2, 1) + j is given by c + j = dim N (2, 1)-(2j -1+g) (see [START_REF]On the Voevodsky motive of the moduli space of Higgs bundles on a curve[END_REF]Proposition 2.2] and Equation (2) in loc. cit. as well as the references therein). The result then follows from the motivic Bia lynicki-Birula decomposition (see [START_REF]On the Voevodsky motive of the moduli space of Higgs bundles on a curve[END_REF]Theorem A.4], where although the isomorphism is given in Voevodsky's triangulated category, all motives appearing are pure and so we can interpret this in the category of Chow motives) and Theorem 4.3. □ If C admits a degree 1 line bundle, then we have h(Pic i (C)) ≃ h(Jac(C)) for all i, and in Theorem 6.1, we obtain the same formula for all d. One can replace the Chow motives of Sym n (C) for g ≤ n ≤ 2g -2 appearing in the formulas in Theorem 6.1 with lower symmetric powers of C and Tate twists of h(Jac(C)) using [47, Corollary 5.1].

Similarly to above, one can use the motivic Bia lynicki-Birula decomposition for the moduli space M L (2, d) of Higgs bundles with fixed determinant. Proposition 6.2. For d odd and L ∈ Pic d (C), the integral Chow motive of the moduli space of semistable rank 2 Higgs bundles with determinant L on C is given by an explicit isomorphism

(13) h(M L (2, d)) ≃ h(N L (2, d)) ⊕ g-1 j=1 h( Sym 2j-1 (C))(3g -2j -2)
where Sym 2j-1

(C) → Sym 2j-1 (C) is the degree 2 2g étale cover given by the base change of the multiplication-by-2 map on Jac(C).

Proof. The proof is almost the same as in the case without fixed determinant, except now the fixed locus for the G m -action is

M L (2, d) Gm ≃ N L (2, d) ⊔ g-1 j=1 Sym 2j-1 (C),
as the determinant is fixed (see [START_REF] Hitchin | The self-duality equations on a Riemann surface[END_REF]). □ By combining this with Theorem 4.3, one obtains a non-explicit isomorphism describing the rational Chow motive of M L (2, d) with d odd.

The following result contrasts with Proposition 4.1. Proof. For any k ∈ N, there is a surjective morphism Sym

k ( C) → Sym k (C), thus h( Sym k (C)) is a summand of h(Sym k ( C)) ≃ Sym k h( C). Since also h 1 (C) is a direct factor of h 1 ( C)
, we deduce the first statement from Propositions 4.1 and 6.2.

Let us now assume that k = C. We thank Salvatore Floccari and Zhi Jiang for their kind help on the proof. Étale double covers (not necessarily connected) of C (or Jac(C)) are in bijection with the following abelian group

T := Hom(H 1 (C, Z), Z/2Z) = H 1 (C, Z/2Z) ≃ (Z/2Z) ⊕2g .
For any t ̸ = 0 ∈ T , we denote by π t : C ′ t → C the corresponding étale double cover and denote by P t := Prym(C ′ t /C) the associated (g-1)-dimensional Prym variety. By convention, C ′ 0 = C C and P 0 = Jac(C). Note that the rank 2 variation of Hodge structures π t, * Q C ′ t splits up as Q C ⊕ L t . In particular, there is an isomorphism of Hodge structures H

1 (P t , Q) ≃ H 1 (C, L t ).
Since π : C → C is an abelian cover, the variation of Hodge structures π * Q C splits into a direct sum of rank one variations of Hodge structures:

π * Q C ≃ t∈T L t ,
where L t is the local system on C corresponding to the double cover C ′ t /C. Therefore, we have isomorphisms of rational Hodge structures:

H 1 ( C, Q) ≃ H 1 (C, π * Q C ) ≃ t∈T H 1 (C, L t ) ≃ t∈T H 1 (P t , Q).
Therefore we have an isogeny [START_REF] Biglari | Motives of reductive groups[END_REF] Jac

( C) ≃ Q t∈T P t
Consequently, the tensor subcategory of CHM(k, Q) generated by h( C) is the same as the tensor subcategory generated by the motives of C and all Prym varieties P t for t ∈ T . Let us denote this subcategory by ⟨h(P t ), t ∈ T ⟩. This is also equivalent to the category generated by the motives of the double covers C ′ t of C. Since h(Sym j ( C)) ∈ ⟨h(P t ), t ∈ T ⟩ for all j ∈ N and h(N L (2, d)) ∈ ⟨h(C)⟩ (Proposition 4.1), we deduce statement (i) from Equation [START_REF] Bifet | On the Abel-Jacobi map for divisors of higher rank on a curve[END_REF].

To prove (ii), it suffices to show that for some t ∈ T \{0}, the Hodge structure H 1 (P t , Q) does not belong to the tensor subcategory generated by H 1 (C, Q). Assuming the contrary, by Tannakian duality, H 1 (P t , Q) is a (2g -2)-dimensional representation of the Hodge group of C, which is the symplectic group Sp(H 1 (C, Q)) ≃ Sp 2g when C is general. But this is absurd since a nontrivial representation of the symplectic group Sp 2g is of dimension at least 2g. □ Remark 6.4. We think that part (i) of this proposition also holds over field k ̸ = C, as we suspect the isogeny ( 14) holds in greater generality. 

p i , 1 ≤ i ≤ N ; • an O C -linear homomorphism Φ : E → E ⊗ ω C (D)
, called a (strongly parabolic) Higgs field, satisfying that Φ(E i,j ) ⊂ E i,j+1 ⊗ω C (D), for any 1 ≤ i ≤ N and any 1 ≤ j ≤ rk(E).

The notion of (semi-)stablity is defined similarly as in Definition 5.8 using α-slopes, except that only parabolic Higgs subbundles need to be considered, i.e. those parabolic subbundles

F of E * that are Φ-invariant: Φ(F ) ⊂ F ⊗ ω C (D).
For n ∈ N * , d ∈ Z and a weight α, Yokogawa [START_REF]Infinitesimal deformation of parabolic Higgs sheaves[END_REF][START_REF] Yokogawa | Compactification of moduli of parabolic sheaves and moduli of parabolic Higgs sheaves[END_REF] constructed the moduli space of α-semistable parabolic Higgs bundles rank n degree d, which we denote by M α (n, d). The (geometrically) stable locus M α-s (n, d) forms an open subset.

Similarly to the case of parabolic bundles discussed in §5, there is a wall and chamber structure in the weight space, such that the corresponding moduli space of stable parabolic Higgs bundles stays the same when varying the weight within a chamber, and undergoes a birational transform when crossing a wall. However, Boden-Yokogawa [START_REF] Boden | Moduli spaces of parabolic Higgs bundles and parabolic K(D) pairs over smooth curves. I[END_REF] observed that moduli spaces of stable parabolic Higgs bundles have the same Betti numbers when crossing a wall, and they conjectured that the diffeomorphism type should also be preserved, which was proved by Nakajima [START_REF] Nakajima | Hyper-Kähler structures on moduli spaces of parabolic Higgs bundles on Riemann surfaces, Moduli of vector bundles[END_REF] shortly after. Subsequently, Thaddeus [START_REF]Variation of moduli of parabolic Higgs bundles[END_REF] gave a more precise geometric picture: when crossing a wall in the weight space, the moduli space of stable parabolic Higgs bundles undergoes a very special birational transform, namely, a Mukai flop; see §3.2, for the precise definition.

For a generic weight α, the moduli space M α (n, d) = M α-s (n, d) is a smooth quasi-projective (and over k = C, hyper-Kähler) variety [START_REF] Nakajima | Hyper-Kähler structures on moduli spaces of parabolic Higgs bundles on Riemann surfaces, Moduli of vector bundles[END_REF], but in general it is non-proper. Neverthless, its Voevodsky motive is pure. Lemma 6.6. For α generic (i.e. not on any wall), the Voevodsky motive of M α (n, d) lies in the subcategory of Chow motives.

Proof. The argument is almost identical to the result for (non-parabolic) Higgs moduli spaces when n and d are coprime [40, Corollary 6.9] and so we simply sketch the details. In the parabolic setting, there is also a G m -action on parabolic Higgs moduli space M α (n, d) given by scaling the parabolic Higgs field. For generic α, the parabolic Higgs moduli space M α (n, d) is a smooth quasi-projective variety. In this case, the G m -action on the smooth variety M α (n, d) is semi-projective (see [START_REF]On the Voevodsky motive of the moduli space of Higgs bundles on a curve[END_REF]Definition A.1]) in the sense that the fixed locus is proper and the limit as t ∈ G m tends to zero exists for all points. Indeed the G m -fixed points and flow are described in [START_REF] Simpson | Harmonic bundles on noncompact curves[END_REF]Theorem 8]: the G m -fixed loci are moduli spaces of chains of parabolic vector bundles for appropriate stability parameters, which are projective varieties by their GIT constructions. In particular, there is an associated Bia lynicki-Birula decomposition [START_REF] Bia Lynicki-Birula | Some theorems on actions of algebraic groups[END_REF] of M α (n, d), and as the flow under this G m -action is a deformation retract and the fixed loci are smooth projective varieties, the Voevodsky motive of M α (n, d) is pure (see [START_REF]On the Voevodsky motive of the moduli space of Higgs bundles on a curve[END_REF]Appendix A]). □

As a consequence of Theorem 3.6 combined with Thaddeus' aforementioned result [68, 6.2], we obtain the following result. Corollary 6.7. Fix (C, D) and n and d. Then for a generic weight α, the integral Chow motive of the moduli space M α C,D (n, d) of α-semistable parabolic Higgs bundles of rank n and degree d is independent of α. 10 One can also consider non-full flags, but we make this simplifying assumption so that all walls are good (see §5. 1.3) and so all wall-crossings can be explicitly described. where a d,j := g -j + (d -1)/2 and N = N (2, d) is the moduli space of semistable vector bundles.

Proof. We use the G m -action on M α given by t • (E * , Φ) = (E * , tΦ) and its associated motivic Bia lynicki-Birula decomposition to prove the above formula. Since h(M α ) is independent of α by Corollary 6.7, we will take a particular choice of α.

By performing a linear shift, we can assume that α has the form (α i,1 , α i,2 ) = (0, α i ) with α i > 0. The fixed points of this G m -action in rank 2 for trivial parabolic degree and fixed determinant is described in [START_REF] Boden | Moduli spaces of parabolic Higgs bundles and parabolic K(D) pairs over smooth curves. I[END_REF] and the fixed locus in our setting is a minor modification of this. If (E * , Φ) is a G m -fixed point, then either Φ = 0 and E * is an α-semistable parabolic vector bundle or Φ ̸ = 0 and so we have G m ⊂ Aut(E) giving a weight space decomposition E = L ⊕ M as a sum of two line bundles such that Φ is given by a non-zero strongly parabolic Now let us pick α i very small, so that the moduli space N α of α-stable parabolic vector bundles is a (P 1 ) N -bundle over the moduli space N of stable vector bundles (cf. Corollary 5.20) and so ( 15) is equivalent to 2d ′ ≥ d + 1 for all possible m ′ . If we set j = g -d ′ + (d -1)/2, then for this α, we have fixed set

(M α ) Gm = N α ⊔ m ′ ∈{0,1} N l+1-N 2 ≤j≤g-1
Pic a d,j (C) × Sym 2j+N -l-1 (C).

and the codimension of the Bia lynicki-Birula stratum indexed by (m ′ , j) is c + m ′ ,j = dim N α -(2j + N -l -1 + g) = 3g -2j + l -2 since the downward flow is Lagrangian (as in the proof of Theorem 6.1). For 0 ≤ l ≤ N , there are N l multiplicities m ′ with l = N i=1 m ′ i and so the motivic Bia lynicki-Birula decomposition (see [START_REF]On the Voevodsky motive of the moduli space of Higgs bundles on a curve[END_REF]Theorem A.4], again interpreted in the category of Chow motives) gives

h(M α ) ≃ h(N α ) ⊕ 0≤l≤N l+1-N 2 ≤j≤g-1
h(Pic a d,j (C)) ⊗ h(Sym 2j+N -l-1 (C))(3g -2j + l -2) ⊕( N l ) .

To conclude, we use the fact that N α → N is a (P 1 ) N -bundle (cf. Corollary 5.20). □ By combining Theorem 6.8 with the formula for the rational Chow motive of N (2, d) in Theorem 4.3, we obtain a formula for the rational Chow motive of M α (2, d) in terms of sums and tensor products of Tate twists of motives of Pic i (C) and Sym j (C).

For even degree d and generic α, we can also compute the Chow motive of M α (2, d) using a Bia lynicki-Birula decomposition, where the fixed locus N α (2, d) is isomorphic to N α ′ (2, d -1) by a Hecke modification at a single parabolic point, where α ′ := α(p i ) (see Example 5.15 and Remark 5.35).

We can also obtain a formula for the Chow motives of moduli space M α L (2, d) of parabolic Higgs bundles with fixed determinant L. Indeed these are also invariant of α (for α generic), as the Mukai flops for M α (2, d) restrict to M α L (2, d), where the centres are pullbacks of symmetric powers of C under the multiplication-by-2 map on Jac(C). The proof of the following formula is essentially the same as Theorem 6.8 using a modification as in Proposition 6.2. Proposition 6.9. For a generic weight α, the Chow motive of moduli space M α L (2, d) of parabolic Higgs bundles with fixed determinant L of odd degree is given by an explicit isomorphism

h(M α L ) ≃ h(N L ) ⊗ h(P 1 ) ⊗N ⊕ 0≤l≤N l+1-N 2 ≤j≤g-1 h( Sym 2j+N -l-1 (C))(3g -2j + l -2) ⊕( N l )
where Sym i (C) → Sym i (C) is the degree 2 2g étale cover given as the base change of the multiplication-by-2 map on Jac(C).

Appendix A. A local-to-global trick

We present a local-to-global trick employed in [START_REF] Lee | Flops, motives, and invariance of quantum rings[END_REF] and [START_REF] Fu | Motivic and quantum invariance under stratified Mukai flops[END_REF], which sometimes allows one to reduce the problem of computing the change of motives or Chow groups under a birational transform to the same problem for a local model.

Let i : Z → X be a closed immersion between smooth varieties. Let τ : X → X be the blow-up along Z and E = P(N Z/X ) the exceptional divisor. Define X loc := P Z (N Z/X ⊕ O Z ), the compactification of the total space of the vector bundle N Z/X , with the infinite part E. We think of the inclusion by zero section Z → X loc as the local projective model of i. We summarise the situation in the following diagram. -----→ CH k ( X) ⊕ CH k (X loc )

, whose inverse is given by (τ * , i * π * ).

Proof. The statement and the argument are essentially contained in [55, §4]. The surjectivity of (j * , -ι * ) follows from the surjectivity of ι * , and the injectivity of ι * implies the injectivity of (j * , -ι * ).

Denote by ξ = c 1 (O p (1)) ∈ CH 1 (E). Since N E/ X ≃ O p (-1), the composition j * j * is multiplication by -ξ. Since N E/X loc ≃ O p (1), the composition ι * ι * is multiplication by ξ. Therefore, (j * , -ι * ) • (j * , -ι * ) = 0, i.e. Im(j * , -ι * ) ⊂ ker(j * , -ι * ), and so the right-hand side of (17) makes sense.

To see that (τ * , π * i * ) is well-defined: (j * , -ι * ) • (τ * , π * i * ) = j * τ * -ι * π * i * = 0, by the commutativity of Diagram [START_REF] Boden | Variations of moduli of parabolic bundles[END_REF]. Similarly, one checks that (τ * , i * π * ) is well-defined.

The composition (τ * , i * π * ) • (τ * , π * i * ) = τ * τ * + i * π * π * i * = id, thanks to the projection formula. It remains to show that (τ * , i * π * ) is injective. More explicitly, for any a ∈ CH l ( X) and b ∈ CH l (X loc ) satisfying j * (a) = ι * (b), [START_REF]Rationality of moduli spaces of parabolic bundles[END_REF] τ * (a) = -i * π * (b), [START_REF] Bülles | Motives of moduli spaces on K3 surfaces and of special cubic fourfolds[END_REF] we want to show the existence of γ ∈ CH l-1 (E), such that a = j * (γ) and b = -ι * (γ).

To this end, by abuse of notation, let ξ denote both c 1 (O π (1)) and c 1 (O p (1)) (note that the former does restrict to the latter). By the blow-up formula and the projective bundle formula, we can write for some a 0 ∈ CH l (X), a r ∈ CH l-r (Z) and b r ∈ CH l-r (Z), where e := codim(Z ⊂ X).

Using ( 18), ( 20), [START_REF]On Abel-Jacobi maps of moduli of parabolic bundles over a curve[END_REF], one obtains the following relations: 

3. 1 .

 1 Standard flips and flops. Definition 3.1 (Standard flips and flops).

≃

  -→ M (X ′ ) by applying the functor p ♯ : DM(S, R) → DM(k, R) where p : S → Spec(k) is the structure morphism [24, §11.1.2].

Proposition 4 . 1 .

 41 Assume that n and d are coprime and L is a line bundle of degree d on C. Then the rational Chow motives h(N ) and h(N L ) both lie in the tensor subcategory of CHM(k, Q) generated by h(C) (i.e. appear as direct summands of the Chow motive of a large enough power of C).

Theorem 4 . 3 .

 43 Let L be a line bundle on C of odd degree d. Then the rational Chow motive of the moduli space N L = N C,L (2, d) of stable rank 2 bundles with fixed determinant L is given by5 

4. 3 . 1 .Corollary 4 . 4 .

 3144 Corollaries and comparisons with previous results. From Theorem 4.3, one obtains the following description of the Chow groups of N L for n = 2 and d odd, when Pic 1 (C)(k) ̸ = ∅. We assume that g ≥ 2 for simplicity and to avoid some case distinctions. Let a ∈ N. There are isomorphisms

5. 1 . 1 .

 11 (Quasi)-Parabolic vector bundles. Definition 5.1. A quasi-parabolic vector bundle E * = (

5. 1 . 3 .

 13 Geometric description of variation of stability. Fix the discrete invariants η = (n, d, m)

Corollary 5 . 19 .

 519 Let A m ′ > A m and suppose α ∈ A m ′ , β ∈ A m are generic weights which are not separated by any walls W η ′ ⊂ A. Then there is an explicit isomorphism of integral Chow motives h(N α ) ≃ h(N β ) ⊗ T where T ∈ CHM(k, Z) is a tensor product of motives of Grassmannians as appearing in Remark 5.13; thus T is a pure Tate motive.

Corollary 5 . 22 .

 522 which implies the claimed Abel-Jacobi isomorphism with the intermediate Jacobian. □ Similarly to Corollary 4.7 in §4.3.1, we have the following stabilisation result. Fix invariants η = (n,

4

  and each 0 ≤ t <N 2 -(2k + 1) and each subsets I c ⊂ {1, . . . , n} of cardinality t, we cross the wall W s,I . Each of these wall-crossings is a flip whose type is explicitly described in Proposition 5.24 and so by applying Corollary 5.16, we obtain the above formula. More precisely, any such wall W s,I is transformed by Hecke modifications and permutations to a standard wall of the formW (|I c | + 2s) in Proposition 5.26. Since 0 ≤ |I c | < N 2 -(2s + 1), we have 2s ≤ |I c | + 2s < 2M .Thus for 0 ≤ s < M and 2s ≤ l < 2M we have N l-2s wall-crossings of the type W (l), which is a flip of type (g -1, g + N -3 -l) with centre Jac(C) 2 by Proposition 5.27.

Definition 5 . 31 .

 531 For a weight α and 0 ≤ j ≤ N , defined j (α) = # I ⊂ {1, . . . , N } : |I| ≡ j mod 2, and -1 + j < |I| + i∈I c α i -i∈I α i < 1 + j and b j (α) = j i=0 i + 2 2 c j-i (α), where c j (α) = N j -d j (α).

Remark 5 . 35 .Example 5 . 36 .

 535536 For n = 2 and an even degree d, one can perform a Hecke modification at a single point p i to obtain an isomorphism N α (2, d) ∼ = N α ′ (2, d -1), where α ′ = α(p i ) (see Example 5.15). Therefore, for n = 2, d even and α generic, we also obtain formulas for the Chow motive of N α (2, d). Let us explicitly compute some examples for low values of N .

Proposition 6 . 3 .

 63 The rational Chow motive of M L (2, d) lies in the tensor subcategory of CHM(k, Q) generated by the motive of the 2 2g -cover π : C → C given as the base change of the multiplication-by-2 map on Jac(C). Furthermore, over k = C, we have:(i) h(M L (2, d))lies in the tensor subcategory of CHM(k, Q) generated by the motives of the étale double covers of C (or equivalently, C and the Prym varieties associated to the étale double covers of C). (ii) For a general curve C of genus ≥ 2, h(M L (2, d)) does not belong to the tensor subcategory of CHM(k, Q) generated by the motive of C.

6. 2 . 1 .Theorem 6 . 8 .

 2168 Closed formula for motives of rank 2 parabolic Higgs bundles. In this section we consider moduli spaces parabolic Higgs bundles of rank n = 2 and odd degree d with full flags at N points p 1 , . . . p N . For a generic weight α, we compute the Chow motive of M α = M α (2, d). For a generic weight α, we have an explicit isomorphism of integral Chow motives h(M α ) ≃ h(N )⊗h(P 1 ) ⊗N ⊕ 0≤l≤N a d,j (C))⊗h(Sym 2j+N -l-1 (C))(3g-2j +l-2) ⊕( N l )

  homomorphism Φ : L → M ⊗ ω C . The parabolic structure and weights on L and M are induced by that of E * as follows. Let d ′ = deg(L) and m ′ denote the multiplicity of L ⊂ E * given by m′ i = dim(L p i ∩ E i,2 ) ∈ {0, 1}.Then the weight of the induced flags inL p i is α i if m ′ i = 1, and 0 if m ′ i = 0. Hence Φ : L → M ⊗ ω C being strongly parabolic means Φ(L p i ) = 0 for all i with m ′ i = 1.Equivalently this means that Φ factors asΦ : L → M ⊗ ω C (D -N i=1 m ′ i p i ) → M ⊗ ω C (D).In this case (E * = L ⊕ M, Φ) is specified by L ∈ Pic d ′ (C) and L → M ⊗ ω C (D -N i=1 m ′ i p i ), which corresponds to an effective divisor of degree d -2d ′ + 2g -2 + N -|m ′ | ≥ 0, where |m ′ | := N i=1 m ′ i . Since (E * , Φ) is α-stable, the parabolic Higgs subbundle M * ⊂ E * satisfies µ α (M * ) < µ α (E * ), or equivalently µ α (L * ) > µ α (E * ), which gives (15) 2d ′ > d + N i=1 α i (1 -2m ′ i )Therefore the G m -fixed locus with non-zero Higgs field is indexed by tuples(m ′ , d ′ ) such that d + N i=1 α i (1 -2m ′ i ) < 2d ′ ≤ 2g -2 + N + d -|m ′ |and the corresponding fixed locus is Pic d ′ (C) × Sym 2g+d-2d ′ +N -l-2 (C).

1 .

 1 With the above notation, we have the following isomorphism(17) (τ * , π * i * ) : CH k (X) ≃ -----→ ker CH k ( X) ⊕ CH k (X loc ) (j * ,-ι * ) -------↠ CH k (E) Im CH k-1 (E) (j * ,-ι * )

a

  = τ * (a 0 ) + j * (p * (a 1 ) + • • • + p * (a e-1 )ξ e-2 ); (20) b = π * (b 0 ) + π * (b 1 )ξ + • • • + π * (b e )ξ e ,(21)

i

  * (a 0 ) = b 0 -b e c e (N );[START_REF] Choe | Chow group of 1-cycles on the moduli space of vector bundles of rank 2 over a curve[END_REF] a r + b r = b e c e-r (N ), 1 ≤ r ≤ e -1,[START_REF] Cisinski | Integral mixed motives in equal characteristic[END_REF] where N := N Z/X is of rank e and, for E = P(N ), we used the following identity in CH * (E):ξ e + p * c 1 (N )ξ e-1 + • • • + p * c e (N ) = 0.By[START_REF] Bülles | Motives of moduli spaces on K3 surfaces and of special cubic fourfolds[END_REF],[START_REF] Chakraborty | Chow group of 1-cycles of the moduli of parabolic bundles over a curve[END_REF],[START_REF]On Abel-Jacobi maps of moduli of parabolic bundles over a curve[END_REF], we have[START_REF]Triangulated categories of mixed motives[END_REF] a 0 = -i * (b e ), which implies that i * (a 0 ) = -i * i * (b e ) = -b e c e (N ). Combining with[START_REF] Choe | Chow group of 1-cycles on the moduli space of vector bundles of rank 2 over a curve[END_REF], we get b 0 = 0. Using again[START_REF]Triangulated categories of mixed motives[END_REF] and the excess intersection formula [31, §6.3],(25) τ * (a 0 ) = -j * (p * (b e )c e-1 (E)),where E := p * (N )/O p (-1) is the excess normal bundle of the blow-up square in Diagram[START_REF] Boden | Variations of moduli of parabolic bundles[END_REF]. Putting[START_REF] Del Baño | On the Chow motive of some moduli spaces[END_REF] into[START_REF] Chakraborty | Chow group of 1-cycles of the moduli of parabolic bundles over a curve[END_REF], we obtain that a = j * (γ) withγ := -p * (b e )c e-1 (E) + p * (a 1 ) + p * (a 2 )ξ + • • • + p * (a e-1 )ξ e-2 .Therefore, it remains to show that -ι * (γ) = b. To this end,-ι * (γ) = ι * (p * (b e )c e-1 (E)) -ι * (p * (a 1 ) + • • • + p * (a e-1 )ξ e-2 ), = ι * (p * (b e )c e-1 (E)) + ι * (p * (b 1 -b e c e-1 (N ))) + • • • + ι * (p * (b e-1 -b e c 1 (N ))ξ e-2 ), = π * (b e )ι * c e-1 (E) + π * (b 1 -b e c e-1 (N )))ξ + • • • + π * (b e-1 -b e c 1 (N ))ξ e-1 , = b + π * (b e ) ι * c e-1 (E) -π * (c e-1 (N ))ξ -• • • -π * (c 1 (N ))ξ e-1 -ξ e , = b,where the second equality uses[START_REF] Cisinski | Integral mixed motives in equal characteristic[END_REF], the third equality uses the projection formula (note that p = π • ι) and the fact that [E] = ξ ∈ CH 1 (X loc ), the fourth equality uses[START_REF]On Abel-Jacobi maps of moduli of parabolic bundles over a curve[END_REF] and that b 0 = 0, and the last equality uses the equality c e-1 (E) = p * (c e-1 (N )) + • • • + p * (c 1 (N ))ξ e-2 + ξ e-1 , which can be easily deduced from c t (N ) = c t (E)c t (O p (-1)) = c t (E)(1 -tξ). □

  if and only if 2s + 1 ≤ |I| -N 2 , with equality if and only if the wall-crossing happens at the centre 1 2 (i.e this is a flopping wall by Proposition 5.24). By replacing the centre of the hypercube by a small perturbation of the form ( 1 2 -ϵ 1 , . . . , 1 2 -ϵ N ), we can ensure this line segment goes from a minimal chamber to a maximal chamber by crossing one wall at a time and does not cross the flopping walls. Hence this line segment crosses the walls W s,I with 2s + 1 < |I| -N 2 (or equivalently |I c | < N 2 -(2s + 1)). Since |I| ≤ N , it follows that 2s + 1 < N 2 . We can enumerate these walls as follows: for each 0 ≤ s < M := N -2

  6.2. Motives of moduli spaces of parabolic Higgs bundles. Let C be a smooth projective curve of genus g. Let p 1 , . . . , p N be N distinct k-rational points on C and denote D = p 1 + • • • + p N . Assume that 2g -2 + N ≥ 0, i.e. ω C (D) is nef. Definition 6.5. A (quasi) parabolic Higgs bundle on (C, D) is a pair (E * , Φ) consisting of • a (quasi) parabolic vector bundle E * (see Definition 5.1) with full flag-type 10 at each marked point

In the literature, standard flips and flops are also called elementary, ordinary or Atiyah flips and flops; Mukai flops also go under the name of elementary transforms, especially in the context of hyper-Kähler geometry.

Our definition is called a twisted Mukai flop in[START_REF] Lee | Flops, motives, and invariance of quantum rings[END_REF].

Over an algebraically closed field k, the notions of stability and geometric stability coincide.

Usually the multiplicity of E ′ * is defined as the differences dim E ′ i,k -dim E ′ i,k+1 > 0 in the collapsed flag.

L. F. is supported by the Radboud Excellence Initiative from the Radboud University, by the project FanoHK (ANR-20-CE40-0023) of Agence Nationale de la Recherche in France, and by the University of Strasbourg Institute for Advanced Study (USIAS) within the French national programme "Investment for the future" (IdEx-Unistra). S. P. L. is supported by The Netherlands Organisation for Scientific Research (NWO), under project number 613.001.752.