

Sensitivity analysis on numerical simulation of the weld pool shape in TIG welding

Xiao-Fei Kong, Olivier Asserin, Stephane Gounand, Philippe Gilles, Jean-Michel Bergheau, Marc Medale

▶ To cite this version:

Xiao-Fei Kong, Olivier Asserin, Stephane Gounand, Philippe Gilles, Jean-Michel Bergheau, et al.. Sensitivity analysis on numerical simulation of the weld pool shape in TIG welding. 9th International Conference on Trends in Welding Research, ASM, Jun 2012, Chicago (Illinois), United States. hal-04108154

HAL Id: hal-04108154 https://hal.science/hal-04108154

Submitted on 30 May 2023 $\,$

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. Sensitivity Analysis on Numerical Simulation of the Weld Pool Shape in Tig Welding

Xiaofei KONG, Olivier ASSERIN, Stéphane GOUNAND, Philippe GILLES, Jean-Michel BERGHEAU et Marc MEDALE

9th International Trends in Welding Research Conference

08 June 2012

Introduction

Model

Physical model Mathematical model Numerical model

Results and analyses Influence of the free surface Numerical sensitivity

Introduction

Model Physical model Mathematical model Numerical model

Results and analyses Influence of the free surface Numerical sensitivity

Introduction

Model

Physical model Mathematical model Numerical model

Results and analyses Influence of the free surface Numerical sensitivity

Introduction

Model

Physical model Mathematical model Numerical model

Results and analyses Influence of the free surface Numerical sensitivity

Contexts and challenges

The TIG welding in the nuclear industry

- Assembly of the nuclear components with large thickness by TIG welding
- Ensure quality and reliability of the weldment

Benefits of the simulation of welding

- Welding process design,
- Prediction of the deformations and the residual stresses, interpretation of the technological test,
- Help in understanding the limiting factors in the welding,
- Reduce the number of experiments.

3D Simulation of the weld pool for the TIG welding taking into account the free surface and the welding speed, and with the filler metal in the next step.

Introduction	Model ●0000000	Results and analyses	Conclusion and perspectives
		Outline	

Model Physical model

Mathematical model Numerical model

Results and analyses Influence of the free surface Numerical sensitivity

Physical phenomena in the weld pool

4 ロ ト 4 回 ト 4 臣 ト 4 臣 ト 臣 の Q () 6/21

Introduction	Model	Results and analyses	Conclusion and perspectives
	000000	000000	

Importance of the various forces

Quantity of power :

Power of the Marangoni force : ∫_Γ F_{Marangoni} · u dΓ ≈ 10⁻⁴ W
Power of the arc drag force : ∫_Γ F_{Arc_drag} · u dΓ ≈ 10⁻⁴ W
Power of the Lorentz force : ∫_Ω F_{Lorentz} · u dΩ ≈ 10⁻⁵ W
Power of the Buoyancy force : ∫_Ω F_{Buoyancy} · u dΩ ≈ 10⁻⁷ ∽ 10⁻⁶ W

$$\begin{array}{l} \mbox{Main forces}: F_{Marangoni} \mbox{ and } F_{Arc_drag} \\ \hline P_{Arc_drag} \\ \hline P_{Marangoni} \mbox{ } \approx 1, \ \hline P_{Lorentz} \\ \hline P_{Marangoni} \mbox{ } \approx 0.1, \ \hline P_{Buoyancy} \\ \hline P_{Marangoni} \mbox{ } \approx 0.01. \end{array}$$

Introduction	Model	Results and analyses	Conclusion and perspectives
	0000000	000000	

Developed Model

Hypothesis

- A laminar, Newtonian fluid of the liquid metal and a stationary state
- Boussinesq approximation
- Free surface of the weld pool
- Variation of $\frac{\partial \gamma}{\partial T}$ and thermophysical properties depending on temperature
- The constant speed v_s of welding, the equation solved in a reference frame moving with the heat source

Effect not modelled

- Lorentz force
- Metal evaporation

Introduction	Model ○○○●○○○	Results and analyses	Conclusion and perspectives
	Οι	utline	

Model

Physical model Mathematical model

Numerical model

Results and analyses Influence of the free surface Numerical sensitivity

Conservation equations and boundary conditions

- Continuity $\nabla \cdot \mathbf{v} = \mathbf{0}$
- Momentum : $\rho(\nabla \mathbf{v}).(\mathbf{v} \mathbf{v}_s) + \nabla p \nabla.\mu(\nabla \mathbf{v} + \nabla^T \mathbf{v}) = \mathbf{f}_{\mathsf{Buoyancy}} + \mathbf{f}_{\mathsf{Extinction}}$
- Energy : $\rho c_{\rho}(\nabla h).(\mathbf{v} \mathbf{v}_{s}) = \nabla . \lambda \nabla T$

Introduction	Model ○○○○○●○	Results and analyses	Conclusion and perspectives
		Outline	

Model

Physical model Mathematical mode Numerical model

Results and analyses Influence of the free surface Numerical sensitivity

Hybrid approach 2D axisymmetric arc model + 3D weld pool model

2D arc model provides the arc source

Radial evolution of the pressure of the arc

Radial evolution of the arc drag force

Radial evolution of the heat source

Introduction	Mode l 00000000	Results and analyses	Conclusion and perspectives
		Outline	

Model

Physical model Mathematical model Numerical model

Results and analyses Influence of the free surface Numerical sensitivity

Two different simulations : with and without free surface

Calculated weld pool without free surface

Calculated weld pool with free surface

Model	$\begin{array}{c} T_{max} \\ (K) \end{array}$	$\begin{array}{c} u_{max} \\ (m.s^{-1}) \end{array}$			$\begin{array}{c} \text{Width} \\ (mm) \end{array}$	$\begin{array}{c} \text{Depth} \\ (mm) \end{array}$	Volume (mm^3)
With free surface Without free surface	$2486 \\ 2706$	$0.31 \\ 0.18$	0.32 0.23	$0.15 \\ 0.06$	$3.60 \\ 3.60$	$2.36 \\ 1.50$	$70.6 \\ 51.7$

Weld pool characteristics with and without free surface

oduction Model Results and analyses Conclusion and perspectives

Influence of the free surface on the temperature field of the bottom surface

With free surface

Temperature field with and without free surface

Difference of the temperature field on the bottom surface

- $\Delta T_{max} = 135 \ ^{\circ}C$
- The weld pool length is larger in the model with free surface

5.3

Comparison between the simulation and the experiment

Welding torch			workpiece IR camera
Current	Voltage	Arc length	Welding speed
(A)	(V)	(mm)	(mm/s)
150	10	2	2.5

• The calculated penetration and weld shape in the model with free surface agree well with the experiment.

Introduction	Mode l 00000000	Results and analyses ○○○●○○	Conclusion and perspectives
		Outline	

Model

Physical model Mathematical model Numerical model

Results and analyses

Influence of the free surface Numerical sensitivity

Introduction	Model	Results and analyses
	0000000	0000000

Design of numerical experiments

Tests	Pressure (Pa)	Heat flux (W)	Welding speed (mm/s)
1	326	1021	2
2	407	1021	2
3	326	1276	2
4	326	1276	2.5
5	407	1021	2.5
6	407	1276	2
7	407	1276	2.5
8	326	1021	2.5

Regression model for the sensitivity analysis

- $y = a_1 + a_2 X_P + a_3 X_F + a_4 X_V + a_5 X_P X_F + a_6 X_P X_V + a_7 X_F X_V + a_8 X_P X_F X_V$
- y the response, X_p, X_F, X_V the factors (pressure, heat flux and welding speed).

		Results and analyses	Conclusion and perspectives
00000	000	0000 00	

Contributions of the different factors

Factors	Penetration P	Width <i>L</i>	P/L	Volume of the pool
X _P	54.01	0.06	92.62	3.80
X_F	42.00	79.26	2.7	64.91
X_{ν}	2.41	20.49	2.7	8.79
$X_P X_F$	0,13	0,06	0.06	6.00
$X_P X_V$	0.02	0.06	0.06	6.30
$X_F X_v$	0,33	0,00	0.50	2.50
$X_P X_F X_V$	1.11	0,06	1.38	7.69

- Trends consistent with those of the literature,
- In progress : validation of the model by correlations with the corresponding experimental tests.

H 16

Conclusions and perspectives

Conclusions :

- The model taking into account the free surface predicts better the weld pool shape than the model without the free surface,
- Numerical sensitivity analysis of the influence of the free surface, the welding speed, the heat flux and the quantity of sulfur composition.

Perspectives :

- Simulation of the metal evaporation,
- Simulation of the filler metal.

Model 00000000 Results and analyses

Conclusion and perspectives

Thank you for your attention !