
HAL Id: hal-04108128
https://hal.science/hal-04108128

Submitted on 30 May 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A thermal coupling methodology of an arc-plasma and
weld pool, a TIG welding model

Christopher Nahed, Stephane Gounand, Pierre Verpeaux

To cite this version:
Christopher Nahed, Stephane Gounand, Pierre Verpeaux. A thermal coupling methodology of an arc-
plasma and weld pool, a TIG welding model. NAFEMS World Congress 2023 (NWC23), NAFEMS,
May 2023, Tampa (Florida), United States. �hal-04108128�

https://hal.science/hal-04108128
https://hal.archives-ouvertes.fr


A coupling methodology of an arc-plasma and weld pool, a TIG 

welding model 

 

Dr. Christopher Nahed, Eng. Stéphane Gounand, Eng. Pierre Verpeaux 

Université Paris-Saclay, CEA,  

Service d’études Mécaniques et Thermiques,  

91191, Gif-sur-Yvette, France. 

Abstract 

A focus on a novel conjugate heat transfer method used to couple the arc-plasma and 

workpiece (weld pool included) domains in a unified Tungsten Inert Gas welding model 

is presented in this paper. The method uses a non-associated relation to implement an 

asymmetric thermal constraint when coupling the arc and workpiece domains. The 

method is shown to be conservative and robust. The algorithm is used in a unified 3D 

TIG welding model with displacement effects. The promising simulation results are 

compared to experimental work from the literature.  

1 Introduction 

The use of arc plasmas as heat sources has become widespread in the manufacturing 

community in recent decades. In fact, arc-plasmas are used in applications ranging from 

(but not limited to) high temperature furnaces in steel making, metal welding and joining 

to additive manufacturing. The popularity of arc-plasmas in the metal manufacturing 

community is due to their duel role as a shielding fluid, that serves to protect the hot 

metals from oxidation, and as a high temperature heat source [1], [2], [3], [4]. The 

importance of arc based manufacturing techniques has thus motivated the mathematical 

modelling of the complex physical interactions that occur between the arc-plasmas and 

the melt pools generated. Moreover, the rise in computational power in recent decades 

has motivated an ever-increasing complexity of the physical models [1], [4], [9], [10], 

[12].  

Regarding welding applications, Tungsten Inert Gas (TIG) welding is largely one of the 

reference manufacturing techniques in the nuclear industry; thus the French 

Commissariat à l’Énergie Atomique (CEA) strongly invests in its mastery [1], [4]. Thus, 

the need to master the technique motivates the efforts put into the multiphysics 

modelling, the numerical simulation of TIG welding and its effects on the target metallic 

workpieces. Moreover, the ultimate goal of the multiphysics modelling of TIG welding 

is to develop a fully predictive computational model that uses typical welding 

parameters (arc-height, inlet current, materials etc…) to accurately predict the thermo-

mechanical responses of the welded workpiece. To achieve the intended accuracy, the 

multiphysics modelling of TIG welding is centred on augmenting the physical 

representativity of the process model (the accurate modelling of the TIG process itself). 

To this end, a focus on the magneto-thermo-hydrodynamic (MTH) modelling of the arc-

plasma and weld pool interactions is necessary. The basis of MTH modelling is 

mathematically describing the interactions between the electro-dynamically forced TIG 

arcs, the thermo-hydraulics of the molten metal (filler metal and/or target workpiece) 
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and the interfacial phenomena between the conjugate cathode, arc, liquid and solid 

metal. Thus, on a fundamental level, MTH modelling of the TIG process serves to 

improve the predictability of the generated thermal fields of the workpiece during 

welding. The accurately predicted thermal fields could then be used to feed mechanical 

and/or metallurgical models [1], [7], [8]. 

In this paper, we focus on treating the interface thermo-hydraulics of the conjugate arc 

and pool subdomains, where particular numerical difficulties are encountered. The 

difficulties are largely due to both the numerical stability of data exchange and the non-

linear heat and momentum transfer phenomena that occur at the plasma-pool interface 

[1], [5], [6]. To this end, we present a robust and novel interface coupling method that 

allows for a conservative conjugate heat transfer as shown by a 3D simulation of a 

moving TIG weld configuration (with no filler metal). The novel approach uses an 

asymmetric thermal constraint to implement a conservative quasi-monolithic algorithm 

that couples the arc-plasma and weld workpiece domains. The mathematical details 

show that by using the novel algorithm the heat transfer at the interface is conserved, 

but thermal continuity is only achieved at algorithm convergence. Certain simulation 

results are then compared to an experimental case as performed by Koudadge [9].  

The paper begins by presenting the governing equations of the physics model, then the 

weak formulation and the numerical implementation of the model are presented, then 

the geometry and problem configuration are presented, then some results are discussed. 

2 Governing equations 

In this section, we present the governing equations of our multiphysics model. The 

differential equations used to define the multiphysics model capture the various 

dominant phenomena found in TIG welding. The multiphysics model is constructed 

based on a TIG configuration as schematised in Figure 1. The model is based on the 

dominant electrodynamic laws, mass, momentum and energy conservation laws, under 

local thermodynamic equilibrium (LTE) assumptions in the entire domain Ω𝑡𝑜𝑡 =
Ω𝑐𝑎𝑡 ∪ Ω𝑝𝑙𝑎 ∪ Ω𝑎𝑛𝑜 [1], [2], [4]. The chosen arc and workpiece models are to be 

compatible with both conjugate heat transfer and phase change phenomena, while also 

allowing for the capture of the deformable arc-pool interface dynamics. We note that 

the model used in this paper is a stationary one that models the TIG system at long time 

scales [1], [4]. 

For brevity, only the heat transfer model used in this study is presented here; and so the 

interested reader is referred to the full physics model as it was described in detail in 

Nahed’s dissertation [1]. 
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Figure 1: Schematic of the TIG system [1] 

2.1 Energy conservation model 
 

The TIG welding system is made up of three bodies that transform electrical energy into 

heat and that transfer the generated heat to the workpiece, which melts to form the liquid 

weld pool. The cathode, arc-plasma and the workpiece subdomains are simultaneously 

subject to electro-thermal, heat transport and phase change phenomena. Thus, to 

effectively capture the range of thermal effects in the TIG system, the energy 

conservation law must be modelled in a manner compatible with both conjugate heat 

transfer and phase change phenomena. To this end, energy conservation in both the 

cathode and arc-plasma are modelled using the temperature variable as the primary 

unknown variable, while energy conservation in the workpiece is modelled using the 

enthalpy variable. The mixed variable method is used because the temperature based 

models allow for a simpler expression of the electro-thermal phenomena in the cathode 

and arc-plasma, while the enthalpy based model is adapted for the capture of phase 

change effects (solid to liquid) in the workpiece.  

 

2.1.1 Temperature based energy conservation model 

The cathode and arc-plasma interact electro-thermally to transmit and transform 

electrical energy into thermal energy useful for TIG welding. The cathode is modelled 

as a solid, and the arc-plasma is modelled to maintain LTE. However, for the sake of 

brevity, the presented thermal analysis is centred around the anode-plasma interface 

Γ𝐴𝑃𝐼 (see Figure 1). For details regarding the hypotheses and complete model, the 

interested reader is referred to [1], [4].  

Arc-plasma subdomain 

The energy conservation law in the arc-plasma subdomain is modelled using the 

following equation [4]: 

𝜌𝑐𝑝𝒖 ⋅ ∇𝑇 = ∇ ⋅ (𝜆 ∇𝑇) + 𝑠𝐽𝑜𝑢𝑙𝑒 − 𝑠𝑅𝑎𝑦,𝑝𝑙𝑎 

where the mass density 𝜌, the specific heat 𝑐𝑝, and the thermal conductivity 𝜆 of argon 

are detailed in appendix A in Nahed [1]. The arc-plasma velocity field is represented as 

𝒖. Heat generation in the arc-plasma is modelled by the Joule Effect, as given by:  



A coupling methodology of an arc-plasma and weld pool, a TIG welding model 

𝑠𝐽𝑜𝑢𝑙𝑒 = (𝜎
∗∇𝜙) ⋅ ∇𝜙 

where 𝜎∗ is the electrical conductivity and 𝜙 the electric potential (see Ch. 2 in [1] for 

details). As for the total radiated heat, it is adapted from Lago et al. [10] and is modelled 

in the following manner:  

𝑠𝑅𝑎𝑦,𝑝𝑙𝑎 = 4𝜋𝜖𝑛 

where 𝜖𝑛 is the total argon plasma emissivity term and is given as a function of 

temperature in appendix A in Nahed [1]. 

2.1.2 Enthalpy based energy conservation model 

The heat transported by the arc-plasma melts the weld zone of the workpiece, inducing 

phase change over the course of a welding operation. The phase change process is 

generally strongly temperature dependent and nonlinear in that the enthalpy of the 

studied material rises significantly over a small temperature range. For incompressible 

fluids, an isobaric enthalpy relation can be defined as:  

ℎ = ∫ 𝑐𝑝 𝑑𝑇
𝑇

𝑇𝑟𝑒𝑓

 

which applies for both the solid and liquid states of the workpiece [1]. The notion of 

using enthalpy as the unknown variable in place of the temperature is important when 

studying phase change because it masks the strongly nonlinear dependence of phase 

change onto temperature by acting as an integral quantity. This is evident when 

comparing the expression of enthalpy (for non-isothermal phase change) as a function 

of temperature, where the specific heat for a material undergoing fusion is:  

𝑐𝑝 =

{
 
 

 
 

𝑐𝑝𝑠                                                                       for  𝑇 < 𝑇𝑠 

𝐿𝑓 √
1

2𝜋(Δ𝑇𝑚 𝑎⁄ )2
exp(−

(𝑇 − 𝑇𝑐)
2

2(𝛥𝑇𝑚 𝑎⁄ )2
)              for  𝑇𝑠 ≤ 𝑇 ≤ 𝑇𝑙

𝑐𝑝𝑙                                                                         for  𝑇 < 𝑇𝑠 

 

where 𝑇𝑠 and 𝑇𝑙 are the solidus and liquidus temperatures of the material, 𝐿𝑓 the latent 

heat of fusion, 𝑇𝑚 = 𝑇𝑙 − 𝑇𝑠 the mushy temperature range, 𝑇𝑐 = (𝑇𝑙 + 𝑇𝑠) 2⁄  the mushy 

centre temperature, and 𝑎 a sharpness factor to be > 1. While the enthalpy of a material 

undergoing fusion is defined as:  

ℎ =

{
 
 
 

 
 
 ∫ 𝑐𝑝𝑠 𝑑𝑇 

𝑇

𝑇𝑟𝑒𝑓

                                            for  𝑇 < 𝑇𝑠 

∫ 𝑐𝑝𝑠 𝑑𝑇 
𝑇𝑠

𝑇𝑟𝑒𝑓

+ 𝐿𝑓𝑓𝑙                                        for  𝑇𝑠 ≤ 𝑇 ≤ 𝑇𝑙

∫ 𝑐𝑝𝑠 𝑑𝑇 
𝑇𝑠

𝑇𝑟𝑒𝑓

+ 𝐿𝑓 + ∫ 𝑐𝑝𝑙  𝑑𝑇 
𝑇

𝑇𝑙

        for  𝑇 < 𝑇𝑠 
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where 𝑓𝑙 is the liquid fraction defined as 𝑓𝑙  (𝑇 < 𝑇𝑠) = 0, 𝑓𝑙 (𝑇 > 𝑇𝑙) = 1, 

𝑓𝑙  (𝑇𝑠 < 𝑇 < 𝑇𝑙) = (𝑇 − 𝑇𝑠) 𝑇𝑚⁄ .  The interested reader is referred to appendix B of [1] 

for details on the derivation of the enthalpy-specific heat-temperature relation. The 

enthalpy-temperature and specific heat-temperature relations are schematised in Figure 

2, where the strong non-linearity of 𝑐𝑝 is evident when compared to ℎ. Thus, using the 

enthalpy variable instead of the temperature variable in the energy conservation model 

is better adapted at capturing phase change effects [1], [11]. The energy conservation 

model for the workpiece becomes: 

  

𝜌𝒗 ⋅ ∇ℎ = ∇ ⋅ (𝜆 ∇
ℎ

𝑐𝑝
∗  ) + 𝑠𝐽𝑜𝑢𝑙𝑒 

where 𝜌, 𝒗, 𝑐𝑝
∗  and 𝜆 are the density, pool velocity, a specific heat averaged in the mushy 

zone and thermal conductivity of the weld pool, respectively. The material properties 

are presented in appendix A of [1]. Note that in the solid domain of the workpiece, 𝒗 =
𝐕𝒅𝒊𝒔𝒑𝒍, the weld displacement velocity, w.r.t the laboratory reference frame.  

 

 

Figure 2.  Superimposed plots of schematised the workpiece 𝑐𝑝 and ℎ. Not to scale [1].   

2.1.3 Interfacial phenomena at the anode-plasma interface  

We remind the reader that only the interfacial phenomena modelled at Γ𝐴𝑃𝐼(see Figure 

1) are discussed here. The continuity of the temperature field across Γ𝐴𝑃𝐼 is imposed 

following the LTE hypothesis, where the thermal continuity expressed using both the 

temperature and enthalpy variables becomes: 

𝑇Γ𝑝𝑙𝑎 = 𝑇Γ𝑎𝑛𝑜  

and  

ℎΓ𝑎𝑛𝑜 = 𝑐𝑝(𝑇)𝑑𝑇Γ𝑎𝑛𝑜  
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thus 

𝑇Γ𝑝𝑙𝑎 = [∫
1

𝑐𝑝(𝑇)
 𝑑ℎ

ℎ

ℎ𝑟𝑒𝑓

]

Γano

+ 𝑇𝑟𝑒𝑓 
(1)  

where ℎ𝑟𝑒𝑓 is an arbitrary reference enthalpy calculated at some 𝑇𝑟𝑒𝑓. Next, the energy 

conservation condition at Γ𝐴𝑃𝐼 is expressed as (see [1][4] for a formal derivation):  

((𝜌𝒖 ⋅ 𝑐𝑝𝑇)𝑝𝑙𝑎
− (𝜌𝒗 ⋅ ℎ)𝑎𝑛𝑜) ⋅ 𝒏 

= ((𝜆 ∇𝑇 )𝑝𝑙𝑎 − (𝜆 ∇ ℎ 𝑐𝑝
∗⁄  )

𝑎𝑛𝑜
) ⋅ 𝒏 + ∑ 𝑠ΓAPI

𝑖𝑛𝑡𝑒.

 

(2)  

where 𝒏 is the normal to the interface Γ𝐴𝑃𝐼 and 𝑠Γ𝐴𝑃𝐼 represents the different interfacial 

heat sources (see [1], [4] for details). 

3 The numerical methodology 

For brevity, the presented analysis is centred around the anode-plasma interface Γ𝐴𝑃𝐼 
and on the thermo-hydraulic coupling methodology used in this study. The full details 

of the developed numerical model can be found in Nahed and Brochard’s theses [1], 

[4]. We begin with a brief description of the finite element spaces:  

3.1 Finite element formulation 

The variational form of the physics models are presented in the following. The 

space of test functions is defined as 𝒱 for all functions 𝑁(𝒙) ∈ 𝒱(𝒙 ∈ Ω) that 

are sufficiently smooth and square integrable and null at all boundaries. The 

space 𝒱 can thus be written as:  

𝒱 = {𝑁(𝒙) | 𝒙 ∈ Ω, N(𝒙) ∈ ℋ0
1(Ω),𝑁(𝒙) = 0 on 𝜕Ω }  

furthermore, using the Galerkin approach, we define the space of interpolation 

functions 𝒲 similarly as:  

𝑊 = {𝑁𝑇(𝒙) | 𝒙 ∈ Ω, NT(𝒙) ∈ ℋ0
1(Ω),𝑁𝑇(𝒙) = 0 on 𝜕Ω } 

where 𝑁𝑇(𝒙) is used to redefine the primary unknowns, as shown below:  

𝑇(𝒙) = 𝑁𝑇(𝒙)𝑇𝑛𝑜𝑑𝑒𝑠 + 𝒪(Δ𝑥
𝑟+1) 

where 𝑟 is the order of the polynomial order of the interpolation function 𝑁𝑇(𝒙). For a 

more formal description of the Galerkin method, the interested reader is referred to 

Reddy [13]. 
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3.2 Conjugate heat transfer coupling algorithm 

The energy conservation model presented in section 2.1 is numerically solved in 

a quasi-monolithic manner. The temperature based model used for the cathode 

and arc domains is coupled in a novel but simple manner to the workpiece 

domain. In fact, the quasi-monolithic approach in this work implies a coupling 

that strongly imposes heat flux conservation across the Γ𝐴𝑃𝐼 interface (see Figure 

1) while weakly imposing thermal continuity across the interface [1]. 

3.2.1 Monolithic variational model 

 The weak variational forms of the residuals of the stationary energy 

conservation models of both the arc-plasma and the melting workpiece are 

expressed and detailed in the following, and are based on the work in Nahed, 

Nguyen and Brochard [1], [4], [12].The approach presented here is monolithic 

because no domain partitioning is implemented. For the heat transfer model in 

the arc-plasma subdomain Ω𝑎𝑟𝑐, with 𝑇 as the primal unknown1:  

0 = 𝑅𝑇 = ∫(𝜌𝑐𝑝𝒖 ⋅ ∇𝑇)
T
⋅ (𝑁) 𝑑Ω𝑎𝑟𝑐 +∫(𝜆∇𝑇)

T ⋅ (∇𝑁) 𝑑Ω𝑎𝑟𝑐

−∫((𝜆∇𝑇) ⋅ 𝒏) ⋅ (𝑁) 𝑑Γ𝑝𝑙𝑎𝑎𝑝𝑖  + ∫ 𝑠𝑗𝑜𝑢𝑙𝑒 ⋅ (𝑁) 𝑑Ω𝑎𝑟𝑐

− ∫ 𝑠𝑅𝑎𝑦,𝑝𝑙𝑎 ⋅ (𝑁) 𝑑Ω𝑎𝑟𝑐   

(3)  

where Γ𝑝𝑙𝑎𝑎𝑝𝑖 is the plasma side of the Γ𝐴𝑃𝐼 subdomain. The heat transfer model 

in the workpiece subdomain Ω𝑎𝑛𝑜, with ℎ as the primal unknown:  

0 = 𝑅ℎ = ∫(𝜌𝒗 ⋅ ∇ℎ)
T ⋅ (𝑁) 𝑑Ω𝑎𝑛𝑜 +∫(𝜆∇ℎ/𝑐𝑝

∗)
T
⋅ (∇𝑁) 𝑑Ω𝑎𝑛𝑜

−∫((𝜆∇ℎ/𝑐𝑝
∗  ) ⋅ 𝒏) ⋅ (𝑁) 𝑑Γ𝑎𝑛𝑜𝑎𝑝𝑖  + ∫ 𝑠𝑗𝑜𝑢𝑙𝑒 ⋅ (𝑁) 𝑑Ω𝑎𝑛𝑜 

(4)  

where Γ𝑎𝑛𝑜𝑎𝑝𝑖 is the anode side of the Γ𝐴𝑃𝐼 where Γ𝐴𝑃𝐼 = Γ𝑝𝑙𝑎𝑎𝑝𝑖 ∪ Γ𝑎𝑛𝑜𝑎𝑝𝑖. To 

couple equations (3) and (4), they are summed and the resulting residual 

becomes: 

                                                 

1 For the sake of simplicity, the boundary conditions (at 𝜕Ω) are not detailed in the following 

residuals. However, the interfacial conditions (at Γ𝐴𝑃𝐼) are explicity detailed.  
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0 = 𝑅𝑡𝑜𝑡𝑎𝑙 = ∫(𝜌𝒗 ⋅ ∇ℎ)
T ⋅ (𝑁) 𝑑Ω𝑎𝑛𝑜 +∫(𝜆∇ℎ/𝑐𝑝

∗)
T
⋅ (∇𝑁) 𝑑Ω𝑎𝑛𝑜

+∫(𝜌𝑐𝑝𝒖 ⋅ ∇𝑇)
T
⋅ (𝑁) 𝑑Ω𝑎𝑟𝑐 +∫(𝜆∇𝑇)

T ⋅ (∇𝑁) 𝑑Ω𝑎𝑟𝑐   

−  ∫ 𝑠𝑅𝑎𝑦,𝑝𝑙𝑎 ⋅ (𝑁) 𝑑Ω𝑎𝑟𝑐 +∫𝑠𝑗𝑜𝑢𝑙𝑒 ⋅ (𝑁) 𝑑Ω𝑡𝑜𝑡𝑎𝑙  

− ∫([(𝜆∇𝑇) ⋅ (𝑁)]𝑝𝑙𝑎𝑎𝑝𝑖 − [(𝜆∇ℎ 𝑐𝑝
∗⁄ ) ⋅ (𝑁)])

𝑎𝑛𝑜𝑎𝑝𝑖
⋅ 𝒏  𝑑Γ𝐴𝑃𝐼 

(5)  

where the last term on the right hand side of equation (5) corresponds to the weak 

form of equation (2). Equation (5) requires a closure condition at the Γ𝐴𝑃𝐼 
interface, and thus equation (1) is recalled in the following form:  

∫(𝑇𝑝𝑙𝑎 − 𝑇𝑎𝑛𝑜(ℎ𝑎𝑛𝑜)) (𝛿(𝒙 − 𝒙𝑝𝑙𝑎𝑎𝑝𝑖) − 𝛿(𝒙 − 𝒙𝑎𝑛𝑜𝑎𝑝𝑖))  𝑑Γ𝐴𝑃𝐼 = 0 
(6)  

and where 𝛿(𝒙 − 𝒙𝐴𝑃𝐼) represents the Dirac Delta operator with 𝒙 representing the 

parametrised coordinate vector. Equation (6) is used as a constraint to equation 

(5), thus equation (5) is appended and becomes:  

0 = 𝑅𝑡𝑜𝑡𝑎𝑙 = ∫(𝜌𝒗 ⋅ ∇ℎ)
T ⋅ (𝑁) 𝑑Ω𝑎𝑛𝑜 +∫(𝜆∇ℎ/𝑐𝑝

∗)
T
⋅ (∇𝑁) 𝑑Ω𝑎𝑛𝑜

+∫(𝜌𝑐𝑝𝒖 ⋅ ∇𝑇)
T
⋅ (𝑁) 𝑑Ω𝑎𝑟𝑐 +∫(𝜆∇𝑇)

T ⋅ (∇𝑁) 𝑑Ω𝑎𝑟𝑐   

−  ∫ 𝑠𝑅𝑎𝑦,𝑝𝑙𝑎 ⋅ (𝑁) 𝑑Ω𝑎𝑟𝑐 +∫𝑠𝑗𝑜𝑢𝑙𝑒 ⋅ (𝑁) 𝑑Ω𝑡𝑜𝑡𝑎𝑙  

− ∫([(𝜆∇𝑇) ⋅ (𝑁)]𝑝𝑙𝑎𝑎𝑝𝑖 − [(𝜆∇ℎ 𝑐𝑝
∗⁄ ) ⋅ (𝑁)])

𝑎𝑛𝑜𝑎𝑝𝑖
⋅ 𝒏  𝑑Γ𝐴𝑃𝐼

−∫𝛽 (𝛿(𝒙 − 𝒙𝑝𝑙𝑎𝑎𝑝𝑖) − 𝛿(𝒙 − 𝒙𝑎𝑛𝑜𝑎𝑝𝑖))  𝑑Γ𝐴𝑃𝐼   

(7)  

where 𝛽 is a Lagrange multiplier to the imposed constraint expressed in equation 

(6). Thus, equations (6) and (7) make up the conjugate heat transfer model as it 

manifests in its monolithic variational form. To facilitate the numerical 

implementation of the closure interface conditions of equation (6), geometrically 

overlapping nodes are numerical generated along the meshed interface. This is 

schematised in Figure 3, where the overlapping nodes make up the interfacial 

nodes of the mesh, and lie along the Γ𝑝𝑙𝑎𝑎𝑝𝑖 and Γ𝑎𝑛𝑜𝑎𝑝𝑖, which exist in the 

submeshes of their respective subdomains Ω𝑝𝑙𝑎 and Ω𝑎𝑛𝑜. The Lagrange 

multiplier 𝛽𝑖,𝑗 , the arc-plasma temperature field 𝑇𝑖  and the anode enthalpy field 

ℎ𝑗  are applied on their respective nodes along the overlapping node zone as seen 

in Figure 3.  
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Figure 3. Simplified schematic of the arc 𝛺𝑎𝑟𝑐, workpiece 𝛺𝑎𝑛𝑜 and anode-plasma interface 𝛤𝐴𝑃𝐼 
subdomains/ 

3.2.2 Quasi-monolithic algorithm 

3.2.2.1 Linearised variational form 

The two equation monolithic thermal system, equations (6) and (7), are both non-

linear and of expressed with two variables (𝑇 and ℎ). Therefore, before system 

assembly and resolution, the two equations are linearised by an approximate 

Newton-Raphson algorithm (see [1] for details). After linearising and applying 

a change of variable (from 𝑇𝑎𝑛𝑜 → ℎ𝑎𝑛𝑜), equation (6) becomes:  

∫(𝑇𝑝𝑙𝑎 −
ℎ𝑎𝑛𝑜

𝑐𝑝
∗(𝑇𝑟𝑒𝑓)

) (𝛿(𝒙 − 𝒙𝑝𝑙𝑎𝑎𝑝𝑖) − 𝛿(𝒙 − 𝒙𝑎𝑛𝑜𝑎𝑝𝑖))  𝑑Γ𝐴𝑃𝐼 

= 𝑇𝑟𝑒𝑓 −
ℎ𝑟𝑒𝑓

𝑐𝑝
∗(𝑇𝑟𝑒𝑓)

+ 𝒪(𝛿𝑇2) 

(8)  

for an arbitrary reference temperature 𝑇𝑟𝑒𝑓 and enthalpy ℎ𝑟𝑒𝑓 along Γ𝑝𝑙𝑎𝑎𝑝𝑖 and 

Γ𝑎𝑛𝑜𝑎𝑝𝑖, respectively; where 𝒪(𝛿𝑇) represents higher order terms. The Jacobian 

(or tangent matrix) to the residual in equation (7) becomes (boundary condition 

contributions are omitted for simplicity): 
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[ 𝐽 ]𝑡𝑜𝑡𝑎𝑙 = [
{𝑅}𝑡𝑜𝑡𝑎𝑙
{𝑇}

]
⏟      

𝕋𝑇𝑇

+ [
{𝑅}𝑡𝑜𝑡𝑎𝑙
{ℎ}

]
⏟      

𝕋ℎℎ

+ [
{𝑅}𝑡𝑜𝑡𝑎𝑙
{𝛽}

]
⏟      

𝕀𝑑𝑢𝑎𝑙 

= ∫  (𝜆 ∇𝑁)T ⋅ (∇𝑁) 𝑑Ω𝑎𝑟𝑐  +  ∫  (𝜌𝑐𝑝𝒖 ⋅  ∇𝑁)
T
⋅ 𝑁 𝑑Ω𝑎𝑟𝑐  ⏟                                    

𝕋𝑇𝑇

+  ∫  (
𝜆

𝑐𝑝
∗
 ∇𝑁)

T

⋅ (∇𝑁) 𝑑Ω𝑎𝑛𝑜  +  ∫  (𝜌𝒗 ⋅  ∇𝑁)
T ⋅ 𝑁 𝑑Ω𝑎𝑛𝑜  

⏟                                    
𝕋ℎℎ

+ ∫ (𝛿(𝒙 − 𝒙𝑝𝑙𝑎𝑎𝑝𝑖) − 𝛿(𝒙 − 𝒙𝑎𝑛𝑜𝑎𝑝𝑖))  𝑑Γ𝐴𝑃𝐼 ⏟                            
𝕀𝑑𝑢𝑎𝑙

   

(9)  

where [ 𝐽 ]𝑡𝑜𝑡𝑎𝑙 is the total thermal Jacobian, [𝕋𝑇𝑇] the tangent matrix 

contribution associated to the temperature based residual, [𝕋ℎℎ] the tangent 

matrix contribution associated to the enthalpy based residual, and [𝕀𝑑𝑢𝑎𝑙] the 

dual contribution of the Lagrange multiplier 𝛽, as seen in column 3 of linear 

system (10).   

3.2.2.2 Linear system with asymmetric constraints 

Assembling equations (8), (9), and (7) in an iterative linearised system (in a 

manner that respects the Newton-Raphson algorithm), the system is expressed 

as: 

(

𝕋𝑇𝑇 0 1𝑖
0 𝕋ℎℎ −1𝑗
1𝑖 −1𝑗/𝑐𝑝𝑗

∗ 0
)

𝑘−1

[

𝛿𝑇
𝛿ℎ
𝛽𝑖,𝑗  

]

𝑘

= − [

𝑅𝑇
𝑅ℎ

𝒪(𝛿𝑇2) ≈ 0
]

𝑘−1 

 

(10)  

where [𝕋𝑇𝑇]
𝑘−1 and [𝕋ℎℎ]

𝑘−1 represent the temperature and enthalpy tangent 

matrices, respectively, and {𝛿𝑇, 𝛿ℎ}𝑘−1 = {𝑇, ℎ}𝑘 − {𝑇, ℎ}𝑘−1; where linear 

system (3) is to be solved for 𝑘 → 𝒦 iterations until {𝑅𝑇 , 𝑅ℎ}
𝑘−1 ≈ 0. The 

Lagrange multiplier  𝛽𝑖,𝑗
𝑘  at every geometrically overlapping node (see Figure 3) 

is equivalent to: 

𝛽𝑖,𝑗
𝑘 = ∫([(𝜆∇𝑇) ⋅ (𝑁)] ⋅ 𝒏)𝑘 𝑑Γ𝑖 −  ∫([(𝜆∇ℎ 𝑐𝑝

∗⁄ ) ⋅ (𝑁)] ⋅ 𝒏)
𝑘
 𝑑Γ𝑗   

(11)  

where use of the linearised constraint from equation (8) in linear system (10) 

strongly couples (monolithically) the temperature model of the arc-plasma to the 

enthalpy model of the workpiece/anode [5], [6]. However, although the now 
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asymmetric constraint from equation (8) allows for a mixed variable coupling, it 

does not ensure thermal continuity at the Γ𝐴𝑃𝐼 interface as imposed by equation 

(1). Rather the asymmetric constraint weakly imposes thermal continuity; thus, 

the constraint reaches thermal continuity only as the algorithm converges when 

{𝑅𝑇 , 𝑅ℎ}
𝑘−1 ≈ 0. Furthermore, at every global iteration 𝑘, the enthalpy field 

calculated in the anode is used to calculate the temperature field associated to it. 

The inverse relation to ℎ = ∫ 𝑐𝑝
𝑇

𝑇𝑟𝑒𝑓
𝑑𝑇 is used to this end, by simply using the 

inverse of the ℎ − 𝑇 relations as extracted from the thermophysical data set used 

in Nahed (see appendix A) [1]. Using the calculated enthalpy fields and the ℎ −
𝑇 relation, schematised by Figure 4, simple interpolation is used to find 𝑇Ω𝑎𝑛𝑜. 

This methodology allows for the algorithm to use the fixed mesh at iteration 𝑘 

to identify the pool solidus and liquidus boundaries. The pool domain is then 

used to solve the momentum and mass conservation equations in the pool 

subdomain (whose numerical algorithm is detailed in [1]). 

 

Figure 4. Typical temperature-enthalpy relation of a non-isothermal phase change process 

3.2.2.3 A note on the stability of the interfacial asymmetric constraint  
Although the asymmetric constraint approach is a specific case to the non-associated 

relation approach used by Verpeaux et al. [14], the asymmetric constraint approach 

conserves the interfacial heat flux because it is based on a minimisation problem [15]. 

Thus, the author hypothesises that the conservative property of the asymmetric 

constraint approach confirms the stability of the quasi-monolithic coupling between the 

two domains (Ω𝑎𝑟𝑐 and Ω𝑎𝑛𝑜). However, the change of variable and the linearisation of 

the constraint, applied between equations (6) and (8), are what render the thermal 

continuity condition as weakly imposed. Furthermore, although a detailed theoretical 

analysis of the expected stability of the quasi-monolithic approach is out of the scope of 

this text, a sample axisymmetric TIG Spot simulation is performed with this algorithm. 

The welding parameters of the simulated configuration are, an electric intensity of I = 

75 A for a thoriated tungsten cathode, an argon arc and a 316L steel. As seen in Figure 

6 (a) the convergence of the temperature profiles (at ≈ 2000 K) at the Γ𝑝𝑙𝑎𝑎𝑝𝑖 and Γ𝑎𝑛𝑜𝑎𝑝𝑖 
zones is achieved after only k ≈ 50 global iterations. This indicates that the temperature 

continuity condition of perfect thermal contact is rapidly approached, see equation (1). 

Furthermore, the global algorithm convergence plot is presented in Figure 6 (b), where 

all primal fields show a convergent trend. Thus, the reader is provided with a 
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preliminary proof of robustness of the quasi-monolithic approach presented in this 

study. A rigourous analysis of the asymmetric constraints in particular and the non-

associated methods in general is the authors’ current subject of study, to be presented in 

a future paper. 

 

4 A 3D TIG welding configuration 

4.1 Simulation setup 

The brief results presented in this section are based on the simulations performed 

in the author’s previous work, and the interested reader is to consult the 

manuscript in [1] for a detailed discussion of the 3D study. The 3D mesh, as 

shown in Figure 6, contains the cathode domain in red, the arc-plasma domain 

in green and the anode/workpiece domain in blue. The simulation presented is 

based on an experimental case taken from Koudadge [9], and has the following 

welding parameters:  

 

 

 

 

which are used to initialise the model before running the simulation. The 

temperature field of the global domain is calculated to be continuous across the 

(b) (a) 

Figure 5. a) Maximum temperature at 𝛤𝑝𝑙𝑎𝑎𝑝𝑖 (black plot) and at 𝛤𝑎𝑛𝑜𝑎𝑝𝑖 (red plot) interfaces as functions of 

iteration number. (b) Convergence plot of all variables of sample simulation 



A coupling methodology of an arc-plasma and weld pool, a TIG welding model 

arc-plasma and workpiece domains, as is represented by the black isocontours, 

see Figure 7. The continuity of the temperature field implies that the energy 

 

 

Figure 6. Mesh generation of 3D weld displacement model. 

conservation laws are respected by the quasi-monolithic coupling algorithm 

implemented with asymmetric constraints (see section 3). This indicates that the 

algorithm is robust and generally applicable to 3D welding configurations. 

Furthermore, the temperature field of the arc-plasma displays an asymmetry in 

its interaction  with the workpiece and this indicates the importance of modelling 

the arc-plasma in 3D. The full 3D model as it was solved with the numerical 

algorithms presented in this paper and in Nahed [1], shows promising results 

because of the similarity between the simulation results and the experimental 

measurements as reported in [9].  

 

Figure 7. Temperature field of simulated case of the weld displacement configuration 
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Figure 8. A closeup of the pool temperature and velocity fields 

 

Figure 9. Calculated maximum depth isocontour on the simulated pool geometry 

 

Figure 10. Comparison of numerical maximum depth isocontour to the experimental macrographic cross 

section from [12] 

4.2 Comparison to experimental measurements 

To compare the calculated pool geometry to the experimental macrographic 

image reported by Koudadje [9], the appropriate calculated pool geometry 

projection must be considered. In fact, referring to Figure 8, the pool geometry 

is not deepest where it is widest; furthermore, the pool floor exhibits multiple 

inflection points. Thus, calculating the equivalent macrographic slice from a 

stationary pool model requires that the maximum depth isocontour be calculated 

as a function of the 𝑥 and 𝑦 axes. The calculated maximum depth isocontour for 

the pool geometry is presented in Figure 9 and is represented by the red points 

and contour on the mesh of the pool geometry. Using the equivalent numerical 

macrographic projection the results are compared to the experimental cross 

section in Figure 10. Indeed, the calculated pool depth agrees with the 

experimentally measured depth; however, the calculated pool width is 22% 
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larger than the experimental one. Although the simulated welding configuration 

yields a pool profile that is of the same order of magnitude as the experimental 

cross section, a discussion of the potential sources of discrepancy can be found 

in [1]. 

 

5 Conclusion  

In this paper, we present the work done on the conjugate heat transfer module of our 3D 

unified TIG welding model, where a novel interface coupling method was 

mathematically described. The quasi-monolithic algorithm, which is based on an 

asymmetric thermal constraint, conserves energy at the arc-workpiece interface; 

however, the asymmetry renders thermal continuity weakly imposed. This method is 

shown to be at least stable within the scope of our application, even for 3D 

configurations. Furthermore, certain simulation results using the full model (as adapted 

from [1]) are shown to be comparable to an experimental case chosen from the literature. 

The authors encourage further research into non-associated relations, and themselves 

will publish future works on this broad topic.  
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