Communication Dans Un Congrès Année : 2022

Modelling of agricultural SAR Time Series using Convolutional Autoencoder for the extraction of harvesting practices of rice fields

Résumé

We apply an unsupervised learning methodology to project SAR Time Series of growing rice fields onto a 3-dimensional space, where we explicit differences between the fields. The projection method used is a Convolutional Autoencoder, trained using a reconstruction task and a mean-square cost function. The chosen embedding space is of dimension 3, to provide the possibility to visualise it spatially using an RGB false colour composite. We compare two subsets of rice fields at both embedding space and original SAR time series levels to analyze the nature of the variations between the two subsets.
Fichier principal
Vignette du fichier
DTIS22312.1685112578_postprint.pdf (2.22 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04108125 , version 1 (26-05-2023)

Identifiants

  • HAL Id : hal-04108125 , version 1

Citer

Thomas Di Martino, Colin Koeniguer, Laetitia Thirion-Lefevre, Régis Guinvarc'h. Modelling of agricultural SAR Time Series using Convolutional Autoencoder for the extraction of harvesting practices of rice fields. EUSAR 2022 :14th European Conference on Synthetic Aperture Radar, Jul 2022, Leipzig, Germany. ⟨hal-04108125⟩
20 Consultations
41 Téléchargements

Partager

More